Positive Solutions for Singular Initial Value Problems with Sign Changing Nonlinearities Depending on y'

Lili Zhang and Baoqiang Yan

(Received September 25, 2007)

Abstract. Using the theory of fixed point index, this paper presents the existence of positive solutions for the singular second-order initial value problems, where f(t, y, y') may be singular at y = 0 and y' = 0, and f may change sign.

AMS 2000 Mathematics Subject Classification. 34A12.

 $Key\ words\ and\ phrases.$ Initial value problems, singularity, positive solutions, fixed point index.

1. Introduction

In this paper, we consider the singular initial value problems

$$\begin{cases} y''(t) = \Phi(t)f(t, y, y'), & t \in (0, T] \\ y(0) = y'(0) = 0, \end{cases}$$
(1.1)

where f(t, y, y') may change sign and may be singular at y = 0 and y' = 0.

When f(t, y, y') > 0 may be singular at t = 0, y = 0 or y' = 0 and suplinear at $y = +\infty$, R.P. Agarwal and D. O'Regan considered the existence of positive solutions to (1.1) in [1]. Also, in [4], H.Wang and W.Ge presented the existence of positive solutions to (1.1) by improving the work in [1] when f(t, y, y') is nonnegative. In [5, 6], G.Yang considered the existence of positive solutions to (1.1) (T = 1) when f(t, y, y') > 0 is singular at y = 0 and y' = 0, but the boundedness of f(t, y, y') at $+\infty$ is necessary. In this paper, f(t, y, y') changes sign and may be singular at y = 0 and y' = 0 and f(t, y, y') may be superlinear at $y = +\infty$.

There are main two sections in our paper. In section 3, using the theory of fixed point index on a cone (see [3]) we discuss the existence of positive

solutions to (1.1) when f(t, y, y') is singular at y' = 0 but not y = 0 and when f may change sign. In section 4, we discuss the existence of positive solutions to (1.1) when f(t, y, y') is singular at y' = 0 and y = 0 and when f may change sign. Some ideas come from [2] and [7].

2. Preliminaries

Let

 $C^{1}[0,T] = \{y : [0,T] \to R \mid y(t) \text{ is continuously differentiable on } [0,T]\}$

with norm $|| y || = \max\{\max_{t \in [0,T]} |y(t)|, \max_{t \in [0,T]} |y'(t)|\}$ and

$$P = \{ y \in C^1[0,T] : y(t) \ge 0 \text{ and } y'(t) \ge 0, \ \forall t \in [0,T] \}.$$

Obviously, $C^{1}[0,T]$ is a Banach space and P is a cone in $C^{1}[0,T]$.

The following lemma is needed later.

Lemma 2.1. Let Ω be a bounded open set in real Banach space E, P be a cone of $E, \theta \in \Omega, \Omega \cap P$ is a relatively open set in P and $A: \overline{\Omega} \cap P \longrightarrow P$ be continuous and compact. Suppose

$$\lambda Ax \neq x, \ \forall x \in \partial \Omega \cap P, \ \lambda \in (0,1].$$

Then

$$i(A, \Omega \cap P, P) = 1.$$

Suppose the following condition holds:

$$\Phi \in C[0,T] \cap L^{1}[0,T] \text{ for } t \in (0,T], \text{ and } f \in C([0,T] \times [0,\infty) \times [0,\infty), R).$$
(2.2)

For $y \in P$, define an operator by

$$(Ay)(t) = \int_0^t \max\left\{0, \int_0^s \Phi(\tau) f(\tau, y(\tau), y'(\tau)) d\tau\right\} ds, \ \forall t \in [0, T].$$
(2.3)

A standard argument in the literature [1, 4] yields:

Lemma 2.2 Suppose that (2.2) holds. Then $A : P \to P$ is continuous and completely continuous.

3. Singularities at y' = 0 but not y = 0

In this section our nonlinearity f may be singular at y' = 0, but not at y = 0. Throughout this section we will assume that the following conditions hold:

 $(H_1) \Phi \in C[0,T]$ with $\Phi(t) > 0$ on (0,T];

 (H_2) $f: [0,T] \times [0,+\infty) \times (0,+\infty) \rightarrow R$ is continuous with $|f(t,x,y)| \leq$ h(x)[g(y) + r(y)] on $[0, T] \times [0, +\infty) \times (0, +\infty)$ with g(y) > 0 continuous and nonincreasing on $(0, +\infty)$, and $h(x) \ge 0$, $r(y) \ge 0$ continuous and nondecreasing on $[0,\infty)$;

 (H_3)

$$\sup_{c \in (0,+\infty)} \frac{c}{\max\{1,T\}I^{-1}(|\Phi|_0 \int_0^c h(x) dx)} > 1,$$

where $I(z) = \int_0^z \frac{udu}{g(u)+r(u)}$, $z \in (0, +\infty)$, and $|\Phi|_0 = \max_{t \in [0,T]} |\Phi(t)|$; (H₄) there is a $\beta \in C((0,T), (0, +\infty))$ and constants $\delta > 0$ and $1 > \gamma \ge 0$

such that

$$f(t,x,y) \geq \beta(t)x^{\gamma}, \ \forall (t,x,y) \in (0,T) \times [0,+\infty) \times (0,\delta].$$

For $y \in P$ and each $n \in \{1, 2, \dots\}$, define operators by

$$(A_n y)(t) = \int_0^t \max\left\{0, \int_0^s \Phi(\tau) f(\tau, y(\tau) + \frac{\tau}{n}, y'(\tau) + \frac{1}{n}) d\tau\right\} ds, \ \forall \ t \in [0, T].$$
(3.1)_n

Theorem 3.1 Suppose that $(H_1) - (H_4)$ hold. Then (1.1) has at least one nonnegative solution $y_0 \in C^1[0,T] \cap C^2(0,T)$ with $y_0(t) > 0$ on (0,T].

Proof. From (H_3) , choose $R_1 > 0$ with

$$\frac{R_1}{\max\{1,T\}I^{-1}(|\Phi|_0\int_0^{R_1}h(x)dx)} > 1.$$

From the continuity of I^{-1} , I and $\int_0^z h(u) du$, we can choose $\varepsilon > 0$ and $\varepsilon < R_1$ such that

$$\frac{R_1}{\max\{1,T\}I^{-1}(|\Phi|_0 \int_0^{R_1+\varepsilon} h(x)dx + I(\varepsilon))} > 1.$$
(3.2)

Let $n_0 \in \{1, 2, \dots\}$ be chosen so that $\frac{1}{n_0} < \delta/2$, $\frac{T}{n_0} < \varepsilon$ and let $N_0 = \{n_0, n_0 + 1, \dots\}$. Now (H_1) , (H_2) and Lemma 2.2 guarantee that for each $n \in N_0, A_n : P \to P$ is continuous and completely continuous. Now let

$$\Omega_1 = \{ y \in C^1[0,T] : \| y \| < R_1 \}.$$

We now show that

$$y \neq \mu A_n y, \forall y \in P \cap \partial \Omega_1, \ \mu \in (0, 1], \ n \in N_0.$$
(3.3)

Suppose there exist a $y_0 \in P \cap \partial \Omega_1$ and a $\mu_0 \in (0, 1]$ such that $y_0 = \mu_0 A_n y_0$, i.e.,

$$y_0(t) = \mu_0 \int_0^t \max\left\{0, \int_0^s \Phi(\tau) f\left(\tau, y_0(\tau) + \frac{\tau}{n}, y_0'(\tau) + \frac{1}{n}\right) d\tau\right\} ds, \ t \in [0, T],$$

which yields

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\}, \ t \in [0, T].$$

Obviously, $y'_0(t) \ge 0$, $t \in (0,T]$ and $\lim_{t\to 0^+} y'_0(t) = 0$. Then, from $\frac{1}{n} < \delta/2$, there is a $t_0 > 0$ such that $0 \le y'_0(t) + \frac{1}{n} \le \delta$ for all $t \in (0, t_0]$. (H₄) implies $f(t, y_0(t) + \frac{t}{n}, y'_0(t) + \frac{1}{n}) \ge \beta(t)(y_0(t) + \frac{t}{n})^{\gamma} > 0$ for all $t \in (0, t_0]$, which means that

$$\max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\}$$

$$\geq \max\left\{0, \int_0^t \Phi(s)\beta(s) \left(y_0(s) + \frac{s}{n}\right)^\gamma ds\right\}$$

$$= \int_0^t \Phi(s)\beta(s) \left(y_0(s) + \frac{s}{n}\right)^\gamma ds > 0, \ t \in (0, t_0]$$

and

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\}$$

$$\geq \mu_0 \max\left\{0, \int_0^t \Phi(s) \beta(s) \left(y_0(s) + \frac{s}{n}\right)^{\gamma} ds\right\}$$

$$= \mu_0 \int_0^t \Phi(s) \beta(s) \left(y_0(s) + \frac{s}{n}\right)^{\gamma} ds > 0, \ t \in (0, t_0].$$

Let $t^* = \sup\{t \in (0,T] \mid y'_0(s) > 0 \text{ for all } s \in (0,t]\}$. Then, we claim that $t^* = T$, which means that $y'_0(t) > 0$ for all $t \in (0,T)$, and so

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\} > 0, \ \forall t \in (0, T).$$

Hence

$$y_0'(t) = \mu_0 \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds, \ t \in (0, T).$$
(3.4)

Suppose that $t^* < T$, which means $y_0'(t^*) = 0$ and $y_0'(t) > 0$ for all $t \in (0, t^*)$ and

$$0 < y'_{0}(t) = \mu_{0} \max\left\{0, \int_{0}^{t} \Phi(s) f\left(s, y_{0}(s) + \frac{s}{n}, y'_{0}(s) + \frac{1}{n}\right) ds\right\}$$
$$= \mu_{0} \int_{0}^{t} \Phi(s) f\left(s, y_{0}(s) + \frac{s}{n}, y'_{0}(s) + \frac{1}{n}\right) ds, \ t \in (0, t^{*}).$$
(3.5)

The continuity of $y'_0(t)$ at t^* and $\frac{1}{n} < \delta/2$ guarantee that there is a $t_0^* \in (0, t^*)$ such that $0 < y'_0(t) + \frac{1}{n} \le \delta$ for all $t \in [t_0^*, t^*]$, which implies that $f(t, y_0(t) + \frac{t}{n}, y'_0(t) + \frac{1}{n}) \ge \beta(t)(y_0(t) + \frac{t}{n})^{\gamma}$ for all $t \in [t_0^*, t^*]$. Thus, from (3.5), we have

$$y_0'(t_0^*) = \mu_0 \int_0^{t_0^*} \Phi(s) f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right) ds$$

and

$$\begin{split} 0 &= y_0'(t^*) \\ &= \mu_0 \max\left\{0, \int_0^{t^*} \Phi(s)f(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n})ds\right\} \\ &= \mu_0 \max\left\{0, \int_{t_0^*}^{t^*} \Phi(s)f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right)ds \\ &+ \int_0^{t_0^*} \Phi(s)f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right)ds\right\} \\ &= \mu_0 \max\left\{0, \int_{t_0^*}^{t^*} \Phi(s)f\left(s, y_0(s) + \frac{s}{n}, y_0'(s) + \frac{1}{n}\right)ds + \frac{1}{\mu_0}y_0'(t_0^*)\right\} \\ &\geq \mu_0 \max\left\{0, \int_{t_0^*}^{t^*} \Phi(s)\beta(s)\left(y_0(s) + \frac{s}{n}\right)^{\gamma}ds + \frac{1}{\mu_0}y_0'(t_0^*)\right\} \\ &= \mu_0 \int_{t_0^*}^{t^*} \Phi(s)\beta(s)\left(y_0(s) + \frac{s}{n}\right)^{\gamma}ds + y_0'(t_0^*) > 0. \end{split}$$

This is a contradiction.

Consequently, $t^* = T$ and (3.4) is true. Since $y_0(0) = 0$, one has $y_0(t) > 0$ for all $t \in (0, T]$. And by direct differentiation, (3.4) yields

$$\begin{cases} y_0''(t) = \mu_0 \Phi(t) f(t, y_0(t) + \frac{t}{n}, y_0'(t) + \frac{1}{n}), \ t \in (0, T), \\ y_0(0) = 0, \ y_0'(0) = 0. \end{cases}$$
(3.6)

Therefore,

$$\begin{aligned} y_0''(t) &= \mu_0 \Phi(t) f\left(t, y_0(t) + \frac{t}{n}, y_0'(t) + \frac{1}{n}\right) \\ &\leq \Phi(t) \left| f\left(t, y_0(t) + \frac{t}{n}, y_0'(t) + \frac{1}{n}\right) \right| \\ &\leq \Phi(t) h\left(y_0(t) + \frac{t}{n}\right) \left(g\left(y_0'(t) + \frac{1}{n}\right) + r\left(y_0'(t) + \frac{1}{n}\right)\right), \quad \forall t \in (0, T), \end{aligned}$$

which means that

$$\frac{y_0''(t)(y_0'(t) + \frac{1}{n})}{g(y_0'(t) + \frac{1}{n}) + r(y_0'(t) + \frac{1}{n})} \le \Phi(t)h\left(y_0(t) + \frac{t}{n}\right)\left(y_0'(t) + \frac{1}{n}\right), \quad \forall t \in (0,T).$$

Integration from 0 to t yields

$$I\left(y_0'(t) + \frac{1}{n}\right) \le I(\varepsilon) + \int_0^t \Phi(s)h\left(y_0(s) + \frac{s}{n}\right)d\left(y_0(s) + \frac{s}{n}\right)$$
$$\le |\Phi|_0 \int_0^{y_0(t) + \frac{t}{n}} h(x)dx + I(\varepsilon).$$

Thus

$$y_0'(t) \le I^{-1} \left(|\Phi|_0 \int_0^{y_0(t) + \frac{t}{n}} h(x) dx + I(\varepsilon) \right)$$
$$\le I^{-1} \left(|\Phi|_0 \int_0^{R_1 + \varepsilon} h(x) dx + I(\varepsilon) \right), \ t \in (0, T).$$

Integration from 0 to T yields

$$y_0(T) - y_0(0) = y_0(T) \le \int_0^T I^{-1} \left(|\Phi|_0 \int_0^{R_1 + \varepsilon} h(x) dx + I(\varepsilon) \right) dt$$
$$= T I^{-1} \left(|\Phi|_0 \int_0^{R_1 + \varepsilon} h(x) dx + I(\varepsilon) \right)$$

Then we have

$$R_1 = \|y_0\| \le \max\{1, T\} I^{-1} \left(|\Phi|_0 \int_0^{R_1 + \varepsilon} h(x) dx + I(\varepsilon) \right),$$

which means that

$$\frac{R_1}{\max\{1,T\}I^{-1}(|\Phi|_0\int_0^{R_1+\varepsilon}h(x)dx+I(\varepsilon))}\leq 1.$$

This is a contradiction to (3.2). Thus (3.3) is true.

From Lemma 2.1, for each $n \in N_0$, we have

$$i(A_n, P \cap \Omega_1, P) = 1. \tag{3.7}$$

As a result, for each $n \in N_0,$ there exists an $y_n \in P \cap \Omega_1$ such that $y_n = A_n y_n,$ i.e. ,

$$y_n(t) = (A_n y_n)(t) \\ = \int_0^t \max\left\{0, \int_0^s \Phi(\tau) f\left(\tau, y_n(\tau) + \frac{\tau}{n}, y'(\tau) + \frac{1}{n}\right) d\tau\right\} ds, \ t \in [0, T].$$

A similar argument to show (3.4) yields

$$y'_n(t) > 0$$
, and $y'_n(t) = \int_0^t \Phi(s) f\left(s, y_n(s) + \frac{s}{n}, y'_n(s) + \frac{1}{n}\right) ds$, $t \in (0, T)$, $n \in N_0$.

Now we consider $\{y_n\}_{n \in N_0}$. Since $||y_n|| \le R_1$, obviously

the functions belonging to $\{y_n(t)\}$ are uniformly bounded on [0,T] (3.8) and

the functions belonging to $\{y'_n(t)\}\$ are uniformly bounded on [0,T]. (3.9)

And moreover, (3.9) guarantees that

the functions belonging to $\{y_n(t)\}\$ are equicontinuous on [0, T]. (3.10)

A similar argument to show (3.6) yields that

$$\begin{cases} y_n''(t) = \Phi(t)f(t, y_n(t) + \frac{t}{n}, y_n'(t) + \frac{1}{n}), & t \in (0, T), \\ y_n(0) = 0, & y_n'(0) = 0. \end{cases}$$

And then,

$$y_n''(t) = \Phi(t) f\left(t, y_n(t) + \frac{t}{n}, y_n'(t) + \frac{1}{n}\right)$$

$$\leq \Phi(t) \left| f\left(t, y_n(t) + \frac{t}{n}, y_n'(t) + \frac{1}{n}\right) \right|$$

$$\leq \Phi(t) h\left(y_n(t) + \frac{t}{n}\right) \left(g\left(y_n'(t) + \frac{1}{n}\right) + r\left(y_n'(t) + \frac{1}{n}\right)\right), \quad \forall t \in (0, T),$$
(3.11)

which means that

$$\frac{(y'_n(t) + \frac{1}{n})'(y'_n(t) + \frac{1}{n})}{g(y'_n(t) + \frac{1}{n}) + r(y'_n(t) + \frac{1}{n})} \le \Phi(t)h\left(y_n(t) + \frac{t}{n}\right)\left(y'_n(t) + \frac{1}{n}\right), \quad \forall t \in (0,T).$$
(3.12)

Therefore, for any $t_1, t_2 \in [0,T], t_1 < t_2$, one has

$$I\left(y_{n}'(t_{2})+\frac{1}{n}\right)-I\left(y_{n}'(t_{1})+\frac{1}{n}\right) \leq \int_{t_{1}}^{t_{2}} \Phi(s)h\left(y_{n}(s)+\frac{s}{n}\right)d\left(y_{n}(s)+\frac{s}{n}\right)$$
$$\leq |\Phi|_{0}\int_{y_{n}(t_{1})+\frac{t_{1}}{n}}^{y_{n}(t_{2})+\frac{t_{2}}{n}}h(x)dx.$$
(3.13)

On the other hand

$$-y_{n}''(t) = -\Phi(t)f\left(t, y_{n}(t) + \frac{t}{n}, y_{n}'(t) + \frac{1}{n}\right)$$

$$\leq \Phi(t)\left|f\left(t, y_{n}(t) + \frac{t}{n}, y_{n}'(t) + \frac{1}{n}\right)\right|$$

$$\leq \Phi(t)h\left(y_{n}(t) + \frac{t}{n}\right)\left(g\left(y_{n}'(t) + \frac{1}{n}\right) + r\left(y_{n}'(t) + \frac{1}{n}\right)\right), \quad \forall t \in (0, T).$$
(3.14)

Therefore, for any $t_1, t_2 \in [0,T], t_1 < t_2$, one has

$$I\left(y_n'(t_1) + \frac{1}{n}\right) - I\left(y_n'(t_2) + \frac{1}{n}\right) \le |\Phi|_0 \int_{y_n(t_1) + \frac{t_1}{n}}^{y_n(t_2) + \frac{t_2}{n}} h(x)dx.$$
(3.15)

(3.13) and (3.15) imply that

$$\left| I\left(y'_n(t_1) + \frac{1}{n}\right) - I\left(y'_n(t_2) + \frac{1}{n}\right) \right| \le |\Phi|_0 \left| \int_{y_n(t_1) + \frac{t_1}{n}}^{y_n(t_2) + \frac{t_2}{n}} h(x) dx \right|,$$

which together with (3.10) implies that

the functions belonging to $\left\{ I\left(y'_n(t) + \frac{1}{n}\right) \right\}$ are equicontinuous on [0, T]. (3.16)

Since I^{-1} are uniformly continuous on $[0, I(R_1 + \varepsilon)]$, for any $\tilde{\varepsilon} > 0$, there is a $\varepsilon' > 0$ such that

$$|I^{-1}(s_1) - I^{-1}(s_2)| < \tilde{\varepsilon}, \quad \forall |s_1 - s_1| < \varepsilon', s_1, s_2 \in [0, I(R_1 + \varepsilon)].$$
(3.17)

From (3.16), for $\varepsilon' > 0$, there is a $\delta' > 0$ such that

$$\left| I\left(y'_{n}(t_{1}) + \frac{1}{n}\right) - I\left(y'_{n}(t_{2}) + \frac{1}{n}\right) \right| < \varepsilon', \quad \forall |t_{1} - t_{2}| < \delta', \ t_{1}, t_{1} \in [0, T].$$
(3.18)

(3.17) and (3.18) yield that

$$\begin{aligned} |y'_n(t_1) - y'_n(t_2)| &= \left| y'_n(t_1) + \frac{1}{n} - \left(y'_n(t_2) + \frac{1}{n} \right) \right| \\ &= \left| I^{-1} \left(I \left(y'_n(t_1) + \frac{1}{n} \right) \right) - I^{-1} \left(I \left(y'_n(t_2) + \frac{1}{n} \right) \right) \right| \\ &< \tilde{\varepsilon}, \ \forall |t_1 - t_2| < \delta', \ t_1, t_2 \in [0, T], n \in N_0, \end{aligned}$$

which means that

the functions belonging to $\{y'_n(t)\}\$ are equicontinuous on [0, T]. (3.19)

Consequently, from (3.8), (3.9), (3.10) and (3.19), the Arzela-Ascoli Theorem guarantees that $\{y_n(t)\}$ and $\{y'_n(t)\}$ are relatively compact in C[0,T], i.e., there is a function $y_0 \in C^1[0,T]$, and a subsequence $\{y_{n_j}\}$ of $\{y_n\}$ such that

$$\lim_{j \to +\infty} \max_{t \in [0,T]} |y_{n_j}(t) - y_0(t)| = 0, \quad \lim_{j \to +\infty} \max_{t \in [0,T]} |y'_{n_j}(t) - y'_0(t)| = 0.$$

Since $y_{n_j}(0) = 0$ and $y'_{n_j}(0) = 0$, $y_{n_j}(t) > 0$, $y'_{n_j}(t) > 0$, $t \in (0,T)$, $j \in \{1, 2, \dots\}$, one has

$$y_0(0) = 0, \quad y'_0(0) = 0, \quad y_0(t) \ge 0, \quad y'_0(t) \ge 0, \quad \forall \ t \in (0, T).$$
 (3.20)

Following we show that $y'_0(t) > 0$, $t \in (0, T)$. By the continuity of $y'_0(t)$ at t = 0, there is a $t_0 < T$ such that $y'_0(t) \le \frac{1}{2}\delta$ for all $t \in [0, t_0]$. By

$$\lim_{j \to +\infty} \max_{t \in [0,T]} |y'_{n_j}(t) - y'_0(t)| = 0,$$

there is a $j_0 > 0$ such that $0 < y'_{n_j}(t) + \frac{1}{n_j} \leq \delta$ for all $t \in [0, t_0], j \geq j_0$. Thus, (H_4) implies

$$f\left(t, y_{n_j}(t) + \frac{t}{n_j}, y'_{n_j}(t) + \frac{1}{n_j}\right) \ge \beta(t) \left(y_0(t) + \frac{t}{n}\right)^{\gamma}, \ t \in [0, t_0],$$

which yields

$$y'_{n_j}(t) = \int_0^t \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}, y'_{n_j}(s) + \frac{1}{n_j}\right) ds$$

$$\geq \int_0^t \Phi(s) \beta(s) \left(y_0(s) + \frac{s}{n}\right)^{\gamma} ds > 0, \ t \in [0, t_0], \ j \in \{j_0, j_0 + 1, \cdots\}.$$

Therefore, $y'_0(t) \ge \int_0^t \Phi(s)\beta(s)ds > 0, t \in [0, t_0]$. Let $t^* = \sup\{t \in (0, T] | y'_0(s) > 0$ for all $s \in (0, t]\}$. We claim that $t^* = T$.

Suppose that $t^* < T$, which means $y'_0(t^*) = 0$ and $y'_0(t) > 0$ for all $t \in (0, t^*)$. The continuity of $y'_0(t)$ at t^* guarantees that there is a $0 < t^*_0 < t^*$ such that $0 < y'_0(t) \le \frac{1}{2}\delta$ for all $t \in [t^*_0, t^*]$. And the uniform convergence of $\{y'_{n_j}(t)\}$ on [0, T] guarantees that there is a $j_0 > 0$ such that $0 < y'_{n_j}(t) + \frac{1}{n_j} \le \delta$, $t \in [t^*_0, t^*], j \ge j_0$. Therefore, for $t \in [t^*_0, t^*]$,

$$f\left(t, y_{n_j}(t) + \frac{t}{n_j}, y'_{n_j}(t) + \frac{1}{n_j}\right) \ge \beta(t), \ t \in [t_0^*, t^*],$$

which implies that

$$\begin{split} 0 &= y_{n_j}'(t^*) = \int_0^{t^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}(t), y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &= \int_{t_0^*}^{t^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}(t), y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &+ \int_0^{t_0^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}(t), y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &\geq \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds + \int_0^{t_0^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &= y_{n_j}'(t_0^*) + \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds > 0, \ j \in \{j_0, j_0 + 1, \cdots\}. \end{split}$$

Letting $j \to +\infty$, one has $0 = y'_0(t^*) \ge y'_0(t^*_0) + \int_{t^*_0}^{t^*} \Phi(s)\beta(s)ds$, a contradiction. Consequently, $t^* = T$ and $y'_0(t) > 0$ for all $t \in (0,T)$. In addition to

Consequently, $t^* = T$ and $y_0(t) > 0$ for all $t \in (0, T)$. In addition to $y_0(0) = 0$, one has $y_0(t) > 0$ for all $t \in (0, T]$. Therefore,

$$\min_{s \in [\frac{T}{2}, t]} y'_0(s) > 0, \text{ for all } t \in \left[\frac{T}{2}, T\right] \text{ and } \min_{s \in [t, \frac{T}{2}]} y'_0(s) > 0, \text{ for all } t \in \left(0, \frac{T}{2}\right].$$

Since

$$y_{n_j}'(t) - y_{n_j}'\left(\frac{T}{2}\right) = \int_{\frac{T}{2}}^t \Phi(s) f\left(s, y_{n_j}(s) + \frac{s}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds, \ t \in (0, T),$$

letting $j \to +\infty$, the Lebesgue Dominated Convergence Theorem guarantees that

$$y_0'(t) - y_0'\left(\frac{T}{2}\right) = \int_{\frac{T}{2}}^t \Phi(s)f(s, y_0(s), y_0'(s))ds, \ t \in (0, T).$$

By direct differentiation, we have

$$y_0''(t) = \Phi(t)f(t, y_0(t), y_0'(t)), \quad t \in (0, T).$$

In addition to (3.20), $y_0 \in C^1[0,T] \cap C^2(0,T)$ is a nonnegative solution to (1.1) with $y_0(t) > 0$ for all $t \in (0,1]$.

Example 3.1 Consider the initial value problem

$$\begin{cases} y''(t) = \mu [\cos \frac{1}{t} - (y')^e + (y')^{-a}] [1 + y^b], t \in (0, T), \\ y'(0) = 0, \ y(0) = 0 \end{cases}$$
(3.21)

with a > 0, $e \ge 0$, $b \ge 0$ and $\mu > 0$. Then there is a $\mu_0 > 0$ such that (3.21) has at least one nonnegative solution $y_0 \in C^1[0,T] \cap C^2(0,T)$ with $y_0(t) > 0$ on (0,T] for all $0 < \mu < \mu_0$.

To see that (3.21) has at least one nonnegative solution, we will apply Theorem 3.1 with $\Phi(t) \equiv \mu$, $g(y') = (y')^{-a}$, $r(y') = 1 + (y')^e$, $h(y) = 1 + y^b$. Clearly, (H_1) , (H_2) and (H_4) ($\beta(t) \equiv 1$ and $\delta = (\frac{1}{3})^{1/a}$) hold. Since $\lim_{z \to 0+} I^{-1}(z) = 0$, there is a $\mu_0 > 0$ such that

$$\frac{1}{\max\{1,T\}I^{-1}(2\mu_0)} \ge 1,$$

and so

$$\sup_{c \in (0,+\infty)} \frac{c}{\max\{1,T\}I^{-1}(|\Phi|_0 \int_0^c h(x)dx)} \ge \sup_{c \in (0,+\infty)} \frac{c}{\max\{1,T\}I_1^{-1}(\mu(1+c^b))} > 1, \ \forall 0 < \mu < \mu_0,$$

which guarantees that (H_3) holds.

4. Singularities at y' = 0 and y = 0

In this section our nonlinearity f may be singular at y' = 0 and y = 0. Throughout this section we will assume that the following conditions hold:

 $(P_1) \Phi \in C[0,T]$, with $\Phi(t) > 0$ on (0,T);

 $\begin{array}{l} (P_2) \ f : [0,T] \times (0,+\infty) \times (0,+\infty) \to R \text{ is continuous with } |f(t,x,y)| \leq \\ [h(x)+w(x)][g(y)+r(y)] \text{ on } [0,T] \times (0,+\infty) \times (0,+\infty) \text{ with } w(x) > 0, g(y) > 0 \\ \text{continuous and nonincreasing on } (0,+\infty) \text{ and } w \in L^1[0,T], h(x) \geq 0, \ r(y) \geq \\ 0 \ \text{ continuous and nondecreasing on } (0,\infty); \end{array}$

 $\begin{array}{l} (P_3) \text{ there is a } \beta \in C((0,T),(0,+\infty)) \text{ and a constant } \delta > 0 \text{ such that} \\ f(t,x,y) \geq \beta(t), \ \forall (t,x,y) \in (0,T) \times (0,+\infty) \times (0,\delta]; \\ (P_4) \end{array}$

$$\begin{split} \sup_{c \in (0,+\infty)} \frac{c}{\max\{1,T\}I^{-1}(ch(c)|\Phi|_0 + |\Phi|_0 \int_0^c w(s)ds)} > 1, \\ \text{where } I(z) &= \int_0^z \frac{u}{g(u) + r(u)} du, \ z \in (0,+\infty), |\Phi|_0 = \max_{t \in [0,T]} |\Phi(t)|. \end{split}$$

L. ZHANG AND B. YAN

For $y \in P$ and each $n \in \{1, 2, \dots\}$, define operators by

$$(A_n y)(t) = \int_0^t \max\{0, \int_0^s \Phi(\tau) f(\tau, y(\tau) + \frac{1}{n}\tau + \frac{1}{n}, y'(\tau) + \frac{1}{n})d\tau\}ds, \quad \forall t \in [0, T].$$

$$(4.1)_n$$

Theorem 4.1 Suppose $(P_1) - (P_4)$ hold. Then equation (1.1) has at least one nonnegative solution $y_0 \in C^1[0,T] \cap C^2(0,T)$ with $y_0(t) > 0$ on (0,T]. *Proof.* From (P_4) , choose $R_1 > 0$ such that

$$\frac{R_1}{\max\{1,T\}I^{-1}(R_1h(R_1)|\Phi|_0+|\Phi|_0\int_0^{R_1}w(s)ds)}>1.$$

Since I^{-1} , I, h and $\int_0^z h(u) du$ are continuous, we choose a $\frac{R_1}{2} > \varepsilon > 0$ small enough such that

$$\frac{R_1}{\max\{1,T\}I^{-1}((R_1+\varepsilon)h(R+\varepsilon)|\Phi|_0+|\Phi|_0\int_0^{R+\varepsilon}w(s)ds+I(\varepsilon))} > 1. \quad (4.2)$$

Let $n_0 \in \{1, 2, \dots\}$ be chosen so that $\frac{1}{n_0} < \delta/2$ and $\frac{1+T}{n_0} < \varepsilon$. Let $N_0 = \{n_0, n_0 + 1, \dots\}$.

From (P_1) and (P_2) , Lemma 2.2 guarantees that for each $n \in N_0$, $A_n : P \to P$ is continuous and completely continuous.

Now let

$$\Omega_1 = \{ y \in C^1[0,T] : \|y\| < R_1 \}.$$

We show that

$$y \neq \mu A_n y, \quad \forall y \in P \cap \partial \Omega_1, \ \mu \in (0, 1], \ n \in N_0.$$
 (4.3)

Suppose there exist a $y_0 \in P \cap \partial \Omega_1$ and a $\mu_0 \in (0, 1]$ such that $y_0 = \mu_0 A_n y_0$, i.e., $y_0(t) = \mu_0 \int_0^t \max\{0, \int_0^s \Phi(\tau) f(\tau, y_0(\tau) + \frac{1}{n}\tau + \frac{1}{n}, y_0'(\tau) + \frac{1}{n})d\tau\}ds, t \in [0, T],$ which yields

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\}, \ t \in [0, T].$$

Obviously, $y'_0(t) \ge 0$, $t \in (0,T)$ and $\lim_{t\to 0+} y'_0(t) = 0$. Then, since $\frac{1}{n} < \delta/2$, there is a $t_0 > 0$ such that $0 \le y'_0(t) + \frac{1}{n} \le \delta$ for all $t \in (0, t_0]$. From (P_3) , one has $f(t, y_0(t) + \frac{1}{n}t + \frac{1}{n}, y'_0(t) + \frac{1}{n}) \ge \beta(t) > 0$ for all $t \in (0, t_0]$, which implies that

$$\max\left\{0, \int_{0}^{t} \Phi(s) f\left(s, y_{0}(s) + \frac{1}{n}s + \frac{1}{n}, y_{0}'(s) + \frac{1}{n}\right) ds\right\}$$
$$\geq \int_{0}^{t} \Phi(s)\beta(s) ds > 0, \ t \in (0, t_{0}]$$

and

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\}$$

$$\geq \mu_0 \max\left\{0, \int_0^t \Phi(s)\beta(s) ds\right\}$$

$$= \mu_0 \int_0^t \Phi(s)\beta(s) ds > 0, \ t \in (0, t_0].$$

Let $t^* = \sup\{t \in (0,T] | y'_0(s) > 0 \text{ for all } s \in (0,t]\}$. We claim that $t^* = T$, which means that $y'_0(t) > 0$ for all $t \in (0,T)$, and so

$$y_0'(t) = \mu_0 \max\left\{0, \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\} > 0, \ \forall t \in (0, T).$$

Hence

$$y_0'(t) = \mu_0 \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds$$

= $\mu_0 \int_0^t \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds, \ t \in (0, T).$ (4.4)

Suppose that $t^* < T$, then $y'_0(t^*) = 0$ and $y'_0(t) > 0$ for all $t \in (0, t^*)$ and

$$0 < y'_{0}(t) = \mu_{0} \max\left\{0, \int_{0}^{t} \Phi(s) f\left(s, y_{0}(s) + \frac{1}{n}s + \frac{1}{n}, y'_{0}(s) + \frac{1}{n}\right) ds\right\}$$
$$= \mu_{0} \int_{0}^{t} \Phi(s) f\left(s, y_{0}(s) + \frac{1}{n}s + \frac{1}{n}, y'_{0}(s) + \frac{1}{n}\right) ds, \ t \in (0, t_{0}^{*}).$$
(4.5)

Hence, since $\frac{1}{n} < \delta/2$, there is a $0 < t_0^* < t^*$ such that $0 < y'_0(t) + \frac{1}{n} \le \delta$ for all $t \in [t_0^*, t^*]$, which implies that $f(t, y_0(t) + \frac{1}{n}t + \frac{1}{n}, y'_0(t) + \frac{1}{n}) \ge \beta(t)$ for all $t \in [t_0^*, t^*]$. Thus, from (4.5), we have

$$y_0'(t_0^*) = \mu_0 \int_0^{t_0^*} \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds$$

and

$$\begin{split} 0 &= y_0'(t^*) \\ &= \mu_0 \max\left\{0, \int_0^{t^*} \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\} \\ &= \mu_0 \max\left\{0, \int_{t_0^*}^{t^*} \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds \\ &+ \int_0^{t_0^*} \Phi(s) f\left(s, y_0(s) + \frac{1}{n}s + \frac{1}{n}, y_0'(s) + \frac{1}{n}\right) ds\right\} \\ &\geq \mu_0 \max\left\{0, \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds + \frac{1}{\mu_0} y_0'(t_0^*)\right\} \\ &= \mu_0 \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds + y_0'(t_0^*) > 0. \end{split}$$

This is a contradiction. Consequently, $t^* = T$ and (4.4) is true.

Since $y'_0(0) = 0$, one has $y_0(t) > 0$ for all $t \in (0, T)$. By direct differentiation, we have

$$\begin{cases} y_0''(t) = \mu_0 \Phi(t) f(t, y_0(t) + \frac{1}{n}t + \frac{1}{n}, y_0'(t) + \frac{1}{n}), & t \in (0, T), \\ y_0(0) = 0, & y_0'(0) = 0. \end{cases}$$
(4.6)

Therefore,

$$\begin{split} y_0''(t) \\ &= \mu_0 \Phi(t) f\left(t, y_0(t) + \frac{1}{n}t + \frac{1}{n}, y_0'(t) + \frac{1}{n}\right) \\ &\leq \Phi(t) \left| f\left(t, y_0(t) + \frac{1}{n}t + \frac{1}{n}, y_0'(t) + \frac{1}{n}\right) \right| \\ &\leq \Phi(t) \left[h\left(y_0(t) + \frac{1}{n}t + \frac{1}{n}\right) + w\left(y_0(t) + \frac{1}{n}t + \frac{1}{n}\right) \right] \\ &\cdot \left[g\left(y_0'(t) + \frac{1}{n}\right) + r\left(y_0'(t) + \frac{1}{n}\right) \right], \ \forall t \in (0, T), \end{split}$$

which means that

$$\frac{y_0''(t)}{g(y_0'(t) + \frac{1}{n}) + r(y_0'(t) + \frac{1}{n})} \le \Phi(t) \left[h\left(y_0(t) + \frac{1}{n}t + \frac{1}{n} \right) + w\left(y_0(t) + \frac{1}{n}t + \frac{1}{n} \right) \right], \quad \forall t \in (0,T)$$

and

and

$$\frac{(y_0'(t) + \frac{1}{n})y_0''(t)}{g(y_0'(t) + \frac{1}{n}) + r(y_0'(t) + \frac{1}{n})}$$

$$\leq \Phi(t) \left[h\left(y_0(t) + \frac{1}{n}t + \frac{1}{n} \right) + w\left(y_0(t) + \frac{1}{n}t + \frac{1}{n} \right) \right] \left(y_0'(t) + \frac{1}{n} \right), \quad \forall t \in (0, T).$$
Integration from 0 to t yields

Integration from 0 to t yields

$$\begin{split} &I(y_0'(t) + \frac{1}{n}) - I(\frac{1}{n}) \\ &\leq |\Phi|_0 [h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^T w(y_0(s) + \frac{1}{n}s + \frac{1}{n})]d(y_0(s) + \frac{1}{n}s + \frac{1}{n})] \\ &\leq |\Phi|_0 [h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^{R_1 + \varepsilon} w(s)ds], \end{split}$$

and so

$$I\left(y_0'(t) + \frac{1}{n}\right) \le I(\varepsilon) + |\Phi|_0 \left[h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^{R_1 + \varepsilon} w(s)ds\right].$$

Thus

$$y_0'(t) \le I^{-1} \left(I(\varepsilon) + |\Phi|_0 \left[h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^{R_1 + \varepsilon} w(s) ds \right] \right), \quad \forall t \in [0, T].$$

$$(4.7)$$

Integrate from 0 to T to obtain

$$y_0(T) = y_0(T) - y_0(0) \le I^{-1} \left(I(\varepsilon) + |\Phi|_0 \left[h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^{R_1 + \varepsilon} w(s) ds \right] \right) T.$$

$$(4.8)$$

(4.7) and (4.8) guarantee that

$$R_1 = \|y_0\| \le \max\{1, T\}I^{-1}\left(I(\varepsilon) + |\Phi|_0 \left[h(R_1 + \varepsilon)(R_1 + \varepsilon) + \int_0^{R_1 + \varepsilon} w(s)ds\right]\right),$$

which means

$$\frac{R_1}{\max\{1,T\}I^{-1}(I(\varepsilon)+|\Phi|_0[h(R_1+\varepsilon)(R_1+\varepsilon)+\int_0^{R_1+\varepsilon}w(s)ds])}\leq 1.$$

This is a contradiction to (4.2). Thus (4.3) is true.

From Lemma 2.1, for each $n \in N_0$, we have

$$i(A_n, P \cap \Omega_1, P) = 1. \tag{4.9}$$

L. ZHANG AND B. YAN

As a result, for each $n \in N_0$, there exists a $y_n \in P \cap \Omega_1$ such that $y_n = A_n y_n$, i.e., $y_n(t) = (A_n y_n)(t)$

$$y_n(t) = (A_n y_n)(t)$$

$$= \int_0^t \max\left\{0, \int_0^s \Phi(\tau) f\left(\tau, y_n(\tau) + \frac{1}{n}\tau + \frac{1}{n}, y_n'(\tau) + \frac{1}{n}\right) d\tau\right\} ds, \ t \in [0, T].$$

A similar to show (4.4) yields that

$$y'_{n}(t) > 0, \ y'_{n}(t) = \int_{0}^{t} \Phi(s)f(s, y_{n}(s) + \frac{1}{n}s + \frac{1}{n}, y'_{n}(s) + \frac{1}{n})ds, \ t \in (0, T), \ n \in N_{0}$$

Now we consider $\{y_n\}_{n\in N_0}$. Since $||y_n|| \leq R_1$, obviously

the functions belonging to $\{y_n(t)\}\$ are uniformly bounded on [0,T] (4.10) and

the functions belonging to $\{y'_n(t)\}$ are uniformly bounded on [0, T]. (4.11) And moreover, (4.11) yields that

the functions belonging to $\{y_n(t)\}\$ are equicontinuous on [0, T]. (4.12) Similarly as (4.6), one has

$$\begin{cases} y_n''(t) = \Phi(t)f(t, y_n(t) + \frac{1}{n}t + \frac{1}{n}, y_n'(t) + \frac{1}{n}), \ t \in (0, T) \\ y_n(0) = 0, \ y_n'(0) = 0. \end{cases}$$

Then,

$$\begin{aligned} \pm y_n''(t) &= \pm \Phi(t) f\left(t, y_n(t) + \frac{1}{n}t + \frac{1}{n}, y_n'(t) + \frac{1}{n}\right) \\ &\leq \Phi(t) \left| f\left(t, y_n(t) + \frac{1}{n}t + \frac{1}{n}, y_n'(t) + \frac{1}{n}\right) \right| \\ &\leq \Phi(t) \left[h\left(y_n(t) + \frac{1}{n}t + \frac{1}{n}\right) + w\left(y_n(t) + \frac{1}{n}t + \frac{1}{n}\right) \right] \\ &\cdot \left[g\left(y_n'(t) + \frac{1}{n}\right) + r\left(y_n'(t) + \frac{1}{n}\right) \right], \ \forall t \in (0, T), \end{aligned}$$

which means that

$$\frac{\pm (y_0'(t) + \frac{1}{n})y_n''(t)}{g(y_n'(t) + \frac{1}{n}) + r(y_n'(t) + \frac{1}{n})} \le \Phi(t)[h(y_n(t) + \frac{1}{n}t + \frac{1}{n}) + w(y_n(t) + \frac{1}{n}t + \frac{1}{n})](y_0'(t) + \frac{1}{n}), \quad \forall t \in (0, T). \quad (4.13)$$

For any $t_1, t_2 \in [0, T]$, integration from t_1 to t_2 yields that

$$\begin{aligned} \left| I\left(y_n'(t_1) + \frac{1}{n}\right) - I\left(y_n'(t_2) + \frac{1}{n}\right) \right| \\ &\leq |\Phi|_0 \left| \int_{t_1}^{t_2} \left[h(y_n(s) + \frac{1}{n}s + \frac{1}{n}) + w(y_n(s) + \frac{1}{n}s + \frac{1}{n}) \right] d(y_n(s) + \frac{1}{n}s + \frac{1}{n}) \right| \\ &= |\Phi|_0 \left| \int_{y_n(t_1) + \frac{1}{n}t_1 + \frac{1}{n}}^{y_n(t_2) + \frac{1}{n}t_2 + \frac{1}{n}} [h(s) + w(s)] ds \right|. \end{aligned}$$

Since I^{-1} is uniformly continuous on $[0, I(R_1 + \varepsilon)]$, for any $\varepsilon' > 0$, there is a $\delta' > 0$ such that

$$|I^{-1}(s_1) - I^{-1}(s_2)| < \varepsilon', \ \forall |s_1 - s_2| < \delta', \ s_1, s_2 \in [0, I(R_1 + \varepsilon)].$$
(4.14)

Since $\int_0^z (h(s) + w(s)) ds$ is uniformly continuous on $[0, R_1 + \varepsilon]$, there is a $\delta'' > 0$ such that

$$\left| \int_{u_1}^{u_2} (h(s) + w(s)) ds \right| < \frac{\delta'}{|\Phi|_0}, \quad \forall |u_1 - u_2| < \delta'', u_1, u_2 \in [0, R_1 + \varepsilon].$$
(4.15)

From (4.12), there is a $\tilde{\delta} > 0$ such that

$$|(y_n(t_1) + t_1) - (y_n(t_2) + t_2)| < \delta'', \quad \forall |t_1 - t_2| < \tilde{\delta}, \ t_1, t_2 \in [0, T].$$
(4.16)

(4.15) and (4.16) yield that

$$\left| I\left(y'_{n}(t_{1}) + \frac{1}{n}\right) - I\left(y'_{n}(t_{2}) + \frac{1}{n}\right) \right|$$

$$\leq |\Phi|_{0} \left| \int_{y_{n}(t_{1}) + \frac{1}{n}t_{1} + \frac{1}{n}}^{y_{n}(t_{2}) + \frac{1}{n}t_{2} + \frac{1}{n}} [h(s) + w(s)] ds \right|$$

$$< |\Phi|_{0} \frac{\delta'}{|\Phi|_{0}} = \delta', \quad |t_{1} - t_{2}| < \tilde{\delta}, \quad t_{1}, t_{2} \in [0, T], \quad n \in N_{0}.$$
(4.17)

From (4.14) and (4.17), we have

$$\begin{aligned} |y'_n(t_1) - y'_n(t_2)| &= \left| y'_n(t_1) + \frac{1}{n} - \left(y'_n(t_2) + \frac{1}{n} \right) \right| \\ &= \left| I^{-1} \left(I \left(y'_n(t_1) + \frac{1}{n} \right) \right) - I^{-1} \left(I \left(y'_n(t_2) + \frac{1}{n} \right) \right) \right| \\ &< \varepsilon', \ \forall |t_1 - t_2| < \tilde{\delta}, \ t_1, t_2 \in [0, T], \ n \in N_0, \end{aligned}$$

which means that

the functions belonging to $\{y'_n(t)\}\$ are equicontinuous on [0, T]. (4.18)

Consequently, from (4.10), (4.11), (4.12) and (4.18), the Arzela-Ascoli Theorem guarantees that $\{y_n(t)\}$ and $\{y'_n(t)\}$ are relatively compact in C[0,T], i.e., there is a $y_0 \in C^1[0,T]$ and a subsequence $\{y_{n_i}\}$ of $\{y_n\}$ such that

$$\lim_{j \to +\infty} \max_{t \in [0,T]} |y_{n_j}(t) - y_0(t)| = 0, \quad \lim_{j \to +\infty} \max_{t \in [0,T]} |y'_{n_j}(t) - y'_0(t)| = 0.$$

Since $y_{n_j}(0) = 0, y'_{n_j}(0) = 0, y_{n_j}(t) > 0, y'_{n_j}(t) > 0, t \in (0,T),$

$$y_0(0) = 0, \ y'_0(0) = 0, \ y_0(t) \ge 0, \ y'_0(t) \ge 0, \ t \in (0, T).$$
 (4.19)

Following we show that $y'_0(t) > 0$, $t \in (0,T)$. Since $y'_0(t)$ is right continuous at t = 0 and $y'_0(0) = 0$, there is a $0 < t_0 < 1$ such that $y'_0(t) \le \frac{1}{2}\delta$ for all $t \in [0, t_0]$. By

$$\lim_{j \to +\infty} \max_{t \in [0,T]} |y'_{n_j}(t) - y'_0(t)| = 0,$$

there is a $j_0 > 0$ such that $0 < y'_{n_j}(t) + \frac{1}{n_j} \leq \delta$ for all $t \in [0, t_0], j \geq j_0$. Thus, (H_3) implies

$$f\left(t, y_{n_j}(t) + \frac{1}{n_j}t + \frac{1}{n_j}, y_{n_j}'(t) + \frac{1}{n_j}\right) \ge \beta(t), \ t \in [0, t_0],$$

which yields

$$y_{n_j}'(t) = \int_0^t \Phi(s) f\left(s, y_{n_j}(s) + \frac{1}{n_j}s + \frac{1}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds$$

$$\geq \int_0^t \Phi(s)\beta(s) ds > 0, \ t \in [0, t_0], \ j \in \{j_0, j_0 + 1, \cdots\}.$$

Therefore, $y'_0(t) \ge \int_0^t \Phi(s)\beta(s)ds > 0, t \in [0, t_0].$

Let $t^* = \sup\{t \in (0,T) | y'_0(s) > 0 \text{ for all } s \in (0,t]\}$. Then, we claim that $t^* = T$. Suppose that $t^* < T$, which means $y'_0(t^*) = 0$ and $y'_0(t) > 0$ for all $t \in (0,t^*)$. The continuity of $y'_0(t)$ at t^* guarantees that there is a $0 < t^*_0 < t^*$ such that $0 < y'_0(t) \le \frac{1}{2}\delta$ for all $t \in [t^*_0, t^*]$. And the uniform convergence of $\{y'_{n_j}(t)\}$ on [0,T] guarantees that there is a $j_0 > 0$ such that $0 < y'_{n_j}(t) + \frac{1}{n_j} \le \delta, t \in [t^*_0, t^*], j \ge j_0$. Then, for $t \in [t^*_0, t^*]$,

$$f\left(t, y_{n_j}(t) + \frac{1}{n_j}t + \frac{1}{n_j}, y'_{n_j}(t) + \frac{1}{n_j}\right) \ge \beta(t),$$

which implies that

$$\begin{split} y_{n_j}'(t^*) &= \int_0^{t^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{1}{n_j}s + \frac{1}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &= \int_{t_0^*}^{t^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{1}{n_j}s + \frac{1}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &+ \int_0^{t_0^*} \Phi(s) f\left(s, y_{n_j}(s) + \frac{1}{n_j}s + \frac{1}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds \\ &\geq \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds + y_{n_j}'(t_0^*) \\ &> \int_{t_0^*}^{t^*} \Phi(s) \beta(s) ds, \ j \in \{j_0, j_0 + 1, \cdots\}. \end{split}$$

Hence, letting $j \to +\infty$, we have $y'_0(t^*) \ge \int_{t_0^*}^{t^*} \Phi(s)\beta(s)ds > 0$, a contradiction. Consequently, $t^* = T$ and $y'_0(t) > 0$ for all $t \in (0,T)$. In addition to $y_0(0) = 0$, one has $y_0(t) > 0$ for all $t \in (0, T]$. Therefore,

$$\min\{\min_{s\in[\frac{T}{2},t]}y_0(s),\min_{s\in[\frac{T}{2},t]}y'_0(s)\}>0, \text{ for all } t\in\left\lfloor\frac{T}{2},T\right\rfloor,$$

and

$$\min\{\min_{s\in[t,\frac{T}{2}]}y_0(s),\min_{s\in[t,\frac{T}{2}]}y_0'(s)\}>0, \text{ for all } t\in\left(0,\frac{T}{2}\right]$$

Since

$$y_{n_j}'(t) - y_{n_j}'\left(\frac{T}{2}\right) = \int_{\frac{T}{2}}^t \Phi(s) f\left(s, y_{n_j}(s) + \frac{1}{n_j}s + \frac{1}{n_j}, y_{n_j}'(s) + \frac{1}{n_j}\right) ds, \ t \in (0, T),$$

letting $j \to +\infty$, the Lebesgue Dominated Convergence Theorem guarantees that ,

$$y_0'(t) - y_0'\left(\frac{T}{2}\right) = \int_{\frac{T}{2}}^t \Phi(s) f(s, y_0(s), y_0'(s)) ds, \ t \in (0, T).$$

By direct differentiation, we have

$$y_0''(t) = \Phi(t)f(t, y_0(t), y_0'(t)), \quad t \in (0, T)$$

In addition to (4.19), $y_0 \in C^1[0,T] \cap C^2(0,T)$ is a nonnegative solution to equation (1.1) with $y_0(t) > 0$ for all $t \in (0, 1]$.

Example 4.1 Consider the initial value problems

$$\begin{cases} y''(t) = \mu[\sin\frac{1}{t} - (y')^e + (y')^{-a}][1 + y^b + y^{-d}], \ t \in (0, T), \\ y'(0) = 0, \ y(0) = 0 \end{cases}$$
(4.20)

with a > 0, $e \ge 0$, $b \ge 0$, 0 < d < 1 and $\mu > 0$. Then there is a $\mu_0 > 0$ such that (4.20) has at least one nonnegative solution $y_0 \in C^1[0,T] \cap C^2(0,T)$ with $y_0(t) > 0$ on (0,T] for all $0 < \mu < \mu_0$.

To see that (4.20) has at least one nonnegative solution, we will apply Theorem 4.1 with $\Phi(t) \equiv \mu$, $g(y') = (y')^{-a}$, $r(y') = 1 + (y')^e$, $h(y) = 1 + y^b$, $w(y) = y^{-d}$. Clearly, (P_1) , (P_2) and (P_3) ($\beta(t) \equiv 1$ and $\delta = (\frac{1}{3})^{1/a}$) hold. Since $\lim_{z \to 0+} I^{-1}(z) = 0$ there is a $\mu_0 > 0$ such that

$$\frac{1}{\max\{1,T\}I^{-1}[\mu(2+1/(1+d))]} \ge 1$$

and so

$$\sup_{c \in (0,+\infty)} \frac{c}{\max\{1,T\}I^{-1}(ch(c)|\Phi|_0 + |\Phi|_0 \int_0^c w(s)ds)} > 1,$$

which guarantees that (P_4) holds.

Acknowledgement

The project is supported by the fund of National Natural Science(10571111) and the fund of Shandong Education Committee(J07WH08).

References

- R.P.Agarwal, D.O'Regan, Second-order initial value problems of singular type, Journal of Math. Anal. Appl., 229(1999), pp414–430.
- [2] R.P.Agarwal, D.O'Regan, Second order boundary value problems of singular type, Journal of Mathematical Analysis and Applications, 226(1998), pp414– 430.
- [3] D. Guo and V.Lakshmikantham, "Nonlinear problems in abstract cones", Academic Press. Inc., New York, 1988.
- [4] H. Wang and W.Ge, Positive solutions of second-order singular initial value problems, Acta Mathematica Sinica, 44(2001), pp227–232.
- [5] G.Yang, Minimal positive solutions to some singular second order differential equations, J. math. Anal. Appl. 266(2002), pp479–491.
- [6] G.Yang, Positive solutions of some second-order nonlinear singular differential equations, *Computer and Mathematics with Applications*, **45**(2003), pp605–614.
- [7] G.Yang, Second order singular boundary value problems with sign-changing nonlinearities on infinity intervals. *Nonlinear Analysis Forum*, **9**(2004), pp169–174.

Lili Zhang, Department of Mathematics, Shandong Normal University Jinan, 250014, P.R. China

Baoqiang Yan, Department of Mathematics, Shandong Normal University Jinan, 250014, P.R. China *E-mail*: yanbqcn@yahoo.com.cn