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1. Introduction

In this paper, we consider the singular initial value problems
{
y′′(t) = Φ(t)f(t, y, y′), t ∈ (0, T ]
y(0) = y′(0) = 0,

(1.1)

where f(t, y, y′) may change sign and may be singular at y = 0 and y′ = 0.
When f(t, y, y′) > 0 may be singular at t = 0, y = 0 or y′ = 0 and suplinear

at y = +∞, R.P. Agarwal and D. O’Regan considered the existence of positive
solutions to (1.1) in [1]. Also, in [4], H.Wang and W.Ge presented the existence
of positive solutions to (1.1) by improving the work in [1] when f(t, y, y′) is
nonnegative. In [5, 6], G.Yang considered the existence of positive solutions
to (1.1) (T = 1) when f(t, y, y′) > 0 is singular at y = 0 and y′ = 0, but the
boundedness of f(t, y, y′) at +∞ is necessary. In this paper, f(t, y, y′) changes
sign and may be singular at y = 0 and y′ = 0 and f(t, y, y′) may be superlinear
at y = +∞.

There are main two sections in our paper. In section 3, using the theory
of fixed point index on a cone (see [3]) we discuss the existence of positive
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solutions to (1.1) when f(t, y, y′) is singular at y′ = 0 but not y = 0 and when
f may change sign. In section 4, we discuss the existence of positive solutions
to (1.1) when f(t, y, y′) is singular at y′ = 0 and y = 0 and when f may change
sign. Some ideas come from [2] and [7].

2. Preliminaries

Let

C1[0, T ] = {y : [0, T ]→ R | y(t) is continuously differentiable on [0, T ]}

with norm ‖ y ‖= max{maxt∈[0,T ] |y(t)|,maxt∈[0,T ] |y′(t)|} and

P = {y ∈ C1[0, T ] : y(t) ≥ 0 and y′(t) ≥ 0, ∀t ∈ [0, T ]}.

Obviously, C1[0, T ] is a Banach space and P is a cone in C1[0, T ].
The following lemma is needed later.

Lemma 2.1. Let Ω be a bounded open set in real Banach space E, P be a
cone of E, θ ∈ Ω, Ω ∩ P is a relatively open set in P and A : Ω̄

⋂
P −→ P be

continuous and compact. Suppose

λAx 6= x, ∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1]. (2.1)

Then
i(A,Ω ∩ P, P ) = 1.

Suppose the following condition holds:

Φ ∈ C[0, T ] ∩ L1[0, T ] for t ∈ (0, T ], and f ∈ C([0, T ]× [0,∞)× [0,∞), R).
(2.2)

For y ∈ P , define an operator by

(Ay)(t) =
∫ t

0
max

{
0,
∫ s

0
Φ(τ)f(τ, y(τ), y′(τ))dτ

}
ds, ∀t ∈ [0, T ]. (2.3)

A standard argument in the literature [1, 4] yields:

Lemma 2.2 Suppose that (2.2) holds. Then A : P → P is continuous and
completely continuous.
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3. Singularities at y′ = 0 but not y = 0

In this section our nonlinearity f may be singular at y′ = 0, but not at y = 0.
Throughout this section we will assume that the following conditions hold:

(H1) Φ ∈ C[0, T ] with Φ(t) > 0 on (0, T ];
(H2) f : [0, T ] × [0,+∞) × (0,+∞) → R is continuous with |f(t, x, y)| ≤

h(x)[g(y) + r(y)] on [0, T ]× [0,+∞)× (0,+∞) with g(y) > 0 continuous and
nonincreasing on (0,+∞), and h(x) ≥ 0, r(y) ≥ 0 continuous and nondecreas-
ing on [0,∞);

(H3)
sup

c∈(0,+∞)

c

max{1, T}I−1(|Φ|0
∫ c

0 h(x)dx)
> 1,

where I(z) =
∫ z

0
udu

g(u)+r(u) , z ∈ (0,+∞), and |Φ|0 = maxt∈[0,T ] |Φ(t)|;
(H4) there is a β ∈ C((0, T ), (0,+∞)) and constants δ > 0 and 1 > γ ≥ 0

such that

f(t, x, y) ≥ β(t)xγ , ∀(t, x, y) ∈ (0, T )× [0,+∞)× (0, δ].

For y ∈ P and each n ∈ {1, 2, · · · }, define operators by

(Any)(t) =
∫ t

0
max

{
0,
∫ s

0
Φ(τ)f(τ, y(τ) +

τ

n
, y′(τ) +

1
n

)dτ
}
ds, ∀ t ∈ [0, T ].

(3.1)n

Theorem 3.1 Suppose that (H1) − (H4) hold. Then (1.1) has at least one
nonnegative solution y0 ∈ C1[0, T ] ∩ C2(0, T ) with y0(t) > 0 on (0, T ].

Proof. From (H3), choose R1 > 0 with

R1

max{1, T}I−1(|Φ|0
∫ R1

0 h(x)dx)
> 1.

From the continuity of I−1, I and
∫ z

0 h(u)du, we can choose ε > 0 and ε < R1

such that
R1

max{1, T}I−1(|Φ|0
∫ R1+ε

0 h(x)dx+ I(ε))
> 1. (3.2)

Let n0 ∈ {1, 2, · · · } be chosen so that 1
n0

< δ/2 , T
n0

< ε and let N0 =
{n0, n0 + 1, · · · }. Now (H1), (H2) and Lemma 2.2 guarantee that for each
n ∈ N0, An : P → P is continuous and completely continuous. Now let

Ω1 = {y ∈ C1[0, T ] : ‖ y ‖< R1}.
We now show that

y 6= µAny,∀y ∈ P ∩ ∂Ω1, µ ∈ (0, 1], n ∈ N0. (3.3)
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Suppose there exist a y0 ∈ P ∩∂Ω1 and a µ0 ∈ (0, 1] such that y0 = µ0Any0,
i.e.,

y0(t) = µ0

∫ t

0
max

{
0,
∫ s

0
Φ(τ)f

(
τ, y0(τ) +

τ

n
, y′0(τ) +

1
n

)
dτ

}
ds, t ∈ [0, T ],

which yields

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}
, t ∈ [0, T ].

Obviously, y′0(t) ≥ 0, t ∈ (0, T ] and lim
t→0+

y′0(t) = 0. Then, from 1
n < δ/2,

there is a t0 > 0 such that 0 ≤ y′0(t) + 1
n ≤ δ for all t ∈ (0, t0]. (H4) implies

f(t, y0(t) + t
n , y
′
0(t) + 1

n) ≥ β(t)(y0(t) + t
n)γ > 0 for all t ∈ (0, t0], which means

that

max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}

≥ max
{

0,
∫ t

0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds

}

=
∫ t

0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds > 0, t ∈ (0, t0].

and

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}

≥ µ0 max
{

0,
∫ t

0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds

}

= µ0

∫ t

0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds > 0, t ∈ (0, t0].

Let t∗ = sup{t ∈ (0, T ] | y′0(s) > 0 for all s ∈ (0, t]}. Then, we claim that
t∗ = T , which means that y′0(t) > 0 for all t ∈ (0, T ), and so

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}
> 0, ∀t ∈ (0, T ).

Hence

y′0(t) = µ0

∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds, t ∈ (0, T ). (3.4)
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Suppose that t∗ < T , which means y′0(t∗) = 0 and y′0(t) > 0 for all t ∈ (0, t∗)
and

0 < y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}

= µ0

∫ t

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds, t ∈ (0, t∗). (3.5)

The continuity of y′0(t) at t∗ and 1
n < δ/2 guarantee that there is a t∗0 ∈

(0, t∗) such that 0 < y′0(t) + 1
n ≤ δ for all t ∈ [t∗0, t

∗], which implies that
f(t, y0(t)+ t

n , y
′
0(t)+ 1

n) ≥ β(t)(y0(t)+ t
n)γ for all t ∈ [t∗0, t

∗]. Thus, from (3.5),
we have

y′0(t∗0) = µ0

∫ t∗0

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

and

0 = y′0(t∗)

= µ0 max

{
0,
∫ t∗

0
Φ(s)f(s, y0(s) +

s

n
, y′0(s) +

1
n

)ds

}

= µ0 max

{
0,
∫ t∗

t∗0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

+
∫ t∗0

0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds

}

= µ0 max

{
0,
∫ t∗

t∗0
Φ(s)f

(
s, y0(s) +

s

n
, y′0(s) +

1
n

)
ds+

1
µ0
y′0(t∗0)

}

≥ µ0 max

{
0,
∫ t∗

t∗0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds+

1
µ0
y′0(t∗0)

}

= µ0

∫ t∗

t∗0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds+ y′0(t∗0) > 0.

This is a contradiction.
Consequently, t∗ = T and (3.4) is true. Since y0(0) = 0, one has y0(t) > 0

for all t ∈ (0, T ]. And by direct differentiation, (3.4) yields

{
y′′0(t) = µ0Φ(t)f(t, y0(t) + t

n , y
′
0(t) + 1

n), t ∈ (0, T ),
y0(0) = 0, y′0(0) = 0.

(3.6)
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Therefore,

y′′0(t) = µ0Φ(t)f
(
t, y0(t) +

t

n
, y′0(t) +

1
n

)

≤ Φ(t)
∣∣∣∣f
(
t, y0(t) +

t

n
, y′0(t) +

1
n

)∣∣∣∣

≤ Φ(t)h
(
y0(t) +

t

n

)(
g

(
y′0(t) +

1
n

)
+ r

(
y′0(t) +

1
n

))
, ∀t ∈ (0, T ),

which means that

y′′0(t)(y′0(t) + 1
n)

g(y′0(t) + 1
n) + r(y′0(t) + 1

n)
≤ Φ(t)h

(
y0(t) +

t

n

)(
y′0(t) +

1
n

)
, ∀t ∈ (0, T ).

Integration from 0 to t yields

I

(
y′0(t) +

1
n

)
≤ I(ε) +

∫ t

0
Φ(s)h

(
y0(s) +

s

n

)
d
(
y0(s) +

s

n

)

≤ |Φ|0
∫ y0(t)+ t

n

0
h(x)dx+ I(ε).

Thus

y′0(t) ≤ I−1

(
|Φ|0

∫ y0(t)+ t
n

0
h(x)dx+ I(ε)

)

≤ I−1

(
|Φ|0

∫ R1+ε

0
h(x)dx+ I(ε)

)
, t ∈ (0, T ).

Integration from 0 to T yields

y0(T )− y0(0) = y0(T ) ≤
∫ T

0
I−1

(
|Φ|0

∫ R1+ε

0
h(x)dx+ I(ε)

)
dt

= TI−1

(
|Φ|0

∫ R1+ε

0
h(x)dx+ I(ε)

)

Then we have

R1 = ‖y0‖ ≤ max{1, T}I−1

(
|Φ|0

∫ R1+ε

0
h(x)dx+ I(ε)

)
,

which means that

R1

max{1, T}I−1(|Φ|0
∫ R1+ε

0 h(x)dx+ I(ε))
≤ 1.
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This is a contradiction to (3.2). Thus (3.3) is true.
From Lemma 2.1, for each n ∈ N0, we have

i(An, P ∩ Ω1, P ) = 1. (3.7)

As a result, for each n ∈ N0, there exists an yn ∈ P ∩ Ω1 such that
yn = Anyn, i.e. ,

yn(t) = (Anyn)(t)

=
∫ t

0
max

{
0,
∫ s

0
Φ(τ)f

(
τ, yn(τ) +

τ

n
, y′(τ) +

1
n

)
dτ

}
ds, t ∈ [0, T ].

A similar argument to show (3.4) yileds

y′n(t) > 0, and y′n(t) =
∫ t

0
Φ(s)f

(
s, yn(s) +

s

n
, y′n(s) +

1
n

)
ds, t ∈ (0, T ), n ∈ N0.

Now we consider {yn}n∈N0 . Since ‖yn‖ ≤ R1, obviously

the functions belonging to {yn(t)} are uniformly bounded on [0, T ] (3.8)

and

the functions belonging to {y′n(t)} are uniformly bounded on [0, T ]. (3.9)

And moreover, (3.9) guarantees that

the functions belonging to {yn(t)} are equicontnuous on [0, T ]. (3.10)

A similar argument to show (3.6) yields that
{
y′′n(t) = Φ(t)f(t, yn(t) + t

n , y
′
n(t) + 1

n), t ∈ (0, T ),
yn(0) = 0, y′n(0) = 0.

And then,

y′′n(t) = Φ(t)f
(
t, yn(t) +

t

n
, y′n(t) +

1
n

)

≤ Φ(t)
∣∣∣∣f
(
t, yn(t) +

t

n
, y′n(t) +

1
n

)∣∣∣∣

≤ Φ(t)h
(
yn(t) +

t

n

)(
g

(
y′n(t) +

1
n

)
+ r

(
y′n(t) +

1
n

))
, ∀t ∈ (0, T ),

(3.11)
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which means that

(y′n(t) + 1
n)′(y′n(t) + 1

n)
g(y′n(t) + 1

n) + r(y′n(t) + 1
n)
≤ Φ(t)h

(
yn(t) +

t

n

)(
y′n(t) +

1
n

)
, ∀t ∈ (0, T ).

(3.12)
Therefore, for any t1, t2 ∈ [0, T ], t1 < t2, one has

I

(
y′n(t2) +

1
n

)
− I

(
y′n(t1) +

1
n

)
≤
∫ t2

t1

Φ(s)h
(
yn(s) +

s

n

)
d
(
yn(s) +

s

n

)

≤ |Φ|0
∫ yn(t2)+

t2
n

yn(t1)+
t1
n

h(x)dx. (3.13)

On the other hand

−y′′n(t) = −Φ(t)f
(
t, yn(t) +

t

n
, y′n(t) +

1
n

)

≤ Φ(t)
∣∣∣∣f
(
t, yn(t) +

t

n
, y′n(t) +

1
n

)∣∣∣∣

≤ Φ(t)h
(
yn(t) +

t

n

)(
g

(
y′n(t) +

1
n

)
+ r

(
y′n(t) +

1
n

))
, ∀t ∈ (0, T ).

(3.14)

Therefore, for any t1, t2 ∈ [0, T ], t1 < t2, one has

I

(
y′n(t1) +

1
n

)
− I

(
y′n(t2) +

1
n

)
≤ |Φ|0

∫ yn(t2)+
t2
n

yn(t1)+
t1
n

h(x)dx. (3.15)

(3.13) and (3.15) imply that

∣∣∣∣I
(
y′n(t1) +

1
n

)
− I

(
y′n(t2) +

1
n

)∣∣∣∣ ≤ |Φ|0
∣∣∣∣∣
∫ yn(t2)+

t2
n

yn(t1)+
t1
n

h(x)dx

∣∣∣∣∣ ,

which together with (3.10) implies that

the functions belonging to
{
I

(
y′n(t) +

1
n

)}
are equicontinuous on [0, T ].

(3.16)
Since I−1 are uniformly continuous on [0, I(R1 + ε)], for any ε̃ > 0, there is a
ε′ > 0 such that

|I−1(s1)− I−1(s2)| < ε̃, ∀|s1 − s1| < ε′, s1, s2 ∈ [0, I(R1 + ε)]. (3.17)
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From (3.16), for ε′ > 0, there is a δ′ > 0 such that
∣∣∣∣I
(
y′n(t1) +

1
n

)
− I

(
y′n(t2) +

1
n

)∣∣∣∣ < ε′, ∀|t1 − t2| < δ′, t1, t1 ∈ [0, T ].

(3.18)
(3.17) and (3.18) yield that

|y′n(t1)− y′n(t2)| =
∣∣∣∣y′n(t1) +

1
n
−
(
y′n(t2) +

1
n

)∣∣∣∣

=
∣∣∣∣I−1

(
I

(
y′n(t1) +

1
n

))
− I−1

(
I

(
y′n(t2) +

1
n

))∣∣∣∣
< ε̃, ∀|t1 − t2| < δ′, t1, t2 ∈ [0, T ], n ∈ N0,

which means that

the functions belonging to {y′n(t)} are equicontinuous on [0, T ]. (3.19)

Consequently, from (3.8), (3.9), (3.10) and (3.19), the Arzela-Ascoli Theorem
guarantees that {yn(t)} and {y′n(t)} are relatively compact in C[0, T ], i.e.,
there is a function y0 ∈ C1[0, T ], and a subsequence {ynj} of {yn} such that

lim
j→+∞

max
t∈[0,T ]

|ynj (t)− y0(t)| = 0, lim
j→+∞

max
t∈[0,T ]

|y′nj (t)− y′0(t)| = 0.

Since ynj (0) = 0 and y′nj (0) = 0, ynj (t) > 0, y′nj (t) > 0, t ∈ (0, T ), j ∈
{1, 2, · · · }, one has

y0(0) = 0, y′0(0) = 0, y0(t) ≥ 0, y′0(t) ≥ 0, ∀ t ∈ (0, T ). (3.20)

Following we show that y′0(t) > 0, t ∈ (0, T ). By the continuity of y′0(t) at
t = 0, there is a t0 < T such that y′0(t) ≤ 1

2δ for all t ∈ [0, t0]. By

lim
j→+∞

max
t∈[0,T ]

|y′nj (t)− y′0(t)| = 0,

there is a j0 > 0 such that 0 < y′nj (t) + 1
nj
≤ δ for all t ∈ [0, t0], j ≥ j0. Thus,

(H4) implies

f

(
t, ynj (t) +

t

nj
, y′nj (t) +

1
nj

)
≥ β(t)

(
y0(t) +

t

n

)γ
, t ∈ [0, t0],

which yields

y′nj (t) =
∫ t

0
Φ(s)f

(
s, ynj (s) +

s

nj
, y′nj (s) +

1
nj

)
ds

≥
∫ t

0
Φ(s)β(s)

(
y0(s) +

s

n

)γ
ds > 0, t ∈ [0, t0], j ∈ {j0, j0 + 1, · · · }.
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Therefore, y′0(t) ≥ ∫ t0 Φ(s)β(s)ds > 0, t ∈ [0, t0]. Let t∗ = sup{t ∈ (0, T ]|y′0(s) >
0 for all s ∈ (0, t]}. We claim that t∗ = T .

Suppose that t∗ < T , which means y′0(t∗) = 0 and y′0(t) > 0 for all t ∈
(0, t∗). The continuity of y′0(t) at t∗ guarantees that there is a 0 < t∗0 < t∗

such that 0 < y′0(t) ≤ 1
2δ for all t ∈ [t∗0, t

∗]. And the uniform convergence of
{y′nj (t)} on [0, T ] guarantees that there is a j0 > 0 such that 0 < y′nj (t)+ 1

nj
≤

δ, t ∈ [t∗0, t
∗], j ≥ j0. Therefore, for t ∈ [t∗0, t

∗],

f

(
t, ynj (t) +

t

nj
, y′nj (t) +

1
nj

)
≥ β(t), t ∈ [t∗0, t

∗],

which implies that

0 = y′nj (t
∗) =

∫ t∗

0
Φ(s)f

(
s, ynj (s) +

s

nj
(t), y′nj (s) +

1
nj

)
ds

=
∫ t∗

t∗0
Φ(s)f

(
s, ynj (s) +

s

nj
(t), y′nj (s) +

1
nj

)
ds

+
∫ t∗0

0
Φ(s)f

(
s, ynj (s) +

s

nj
(t), y′nj (s) +

1
nj

)
ds

≥
∫ t∗

t∗0
Φ(s)β(s)ds+

∫ t∗0

0
Φ(s)f

(
s, ynj (s) +

s

nj
, y′nj (s) +

1
nj

)
ds

= y′nj (t
∗
0) +

∫ t∗

t∗0
Φ(s)β(s)ds > 0, j ∈ {j0, j0 + 1, · · · }.

Letting j → +∞, one has 0 = y′0(t∗) ≥ y′0(t∗0)+
∫ t∗
t∗0

Φ(s)β(s)ds, a contradiction.
Consequently, t∗ = T and y′0(t) > 0 for all t ∈ (0, T ). In addition to

y0(0) = 0, one has y0(t) > 0 for all t ∈ (0, T ]. Therefore,

min
s∈[T

2
,t]
y′0(s) > 0, for all t ∈

[
T

2
, T

]
and min

s∈[t,T
2

]
y′0(s) > 0, for all t ∈

(
0,
T

2

]
.

Since

y′nj (t)− y′nj
(
T

2

)
=
∫ t

T
2

Φ(s)f
(
s, ynj (s) +

s

nj
, y′nj (s) +

1
nj

)
ds, t ∈ (0, T ),

letting j → +∞, the Lebesgue Dominated Convergence Theorem guarantees
that

y′0(t)− y′0
(
T

2

)
=
∫ t

T
2

Φ(s)f(s, y0(s), y′0(s))ds, t ∈ (0, T ).

By direct differentiation, we have

y′′0(t) = Φ(t)f(t, y0(t), y′0(t)), t ∈ (0, T ).
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In addition to (3.20), y0 ∈ C1[0, T ] ∩ C2(0, T ) is a nonnegative solution to
(1.1) with y0(t) > 0 for all t ∈ (0, 1].

Example 3.1 Consider the initial value problem
{
y′′(t) = µ[cos 1

t − (y′)e + (y′)−a][1 + yb], t ∈ (0, T ),
y′(0) = 0, y(0) = 0

(3.21)

with a > 0, e ≥ 0, b ≥ 0 and µ > 0. Then there is a µ0 > 0 such that (3.21)
has at least one nonnegative solution y0 ∈ C1[0, T ] ∩ C2(0, T ) with y0(t) > 0
on (0,T] for all 0 < µ < µ0.

To see that (3.21) has at least one nonnegative solution, we will apply
Theorem 3.1 with Φ(t) ≡ µ, g(y′) = (y′)−a, r(y′) = 1 + (y′)e, h(y) = 1 +
yb. Clearly, (H1), (H2) and (H4) (β(t) ≡ 1 and δ = (1

3)1/a) hold. Since
lim
z→0+

I−1(z) = 0, there is a µ0 > 0 such that

1
max{1, T}I−1(2µ0)

≥ 1,

and so

sup
c∈(0,+∞)

c

max{1, T}I−1(|Φ|0
∫ c

0 h(x)dx)

≥ sup
c∈(0,+∞)

c

max{1, T}I−1
1 (µ(1 + cb))

> 1, ∀0 < µ < µ0,

which guarantees that (H3) holds.

4. Singularities at y′ = 0 and y = 0

In this section our nonlinearity f may be singular at y′ = 0 and y = 0.
Throughout this section we will assume that the following conditions hold:

(P1) Φ ∈ C[0, T ], with Φ(t) > 0 on (0, T );
(P2) f : [0, T ] × (0,+∞) × (0,+∞) → R is continuous with |f(t, x, y)| ≤

[h(x)+w(x)][g(y)+r(y)] on [0, T ]×(0,+∞)×(0,+∞) with w(x) > 0, g(y) > 0
continuous and nonincreasing on (0,+∞) and w ∈ L1[0, T ], h(x) ≥ 0, r(y) ≥
0 continuous and nondecreasing on (0,∞) ;

(P3) there is a β ∈ C((0, T ), (0,+∞)) and a constant δ > 0 such that
f(t, x, y) ≥ β(t), ∀(t, x, y) ∈ (0, T )× (0,+∞)× (0, δ];

(P4)

sup
c∈(0,+∞)

c

max{1, T}I−1(ch(c)|Φ|0 + |Φ|0
∫ c

0 w(s)ds)
> 1,

where I(z) =
∫ z

0

u

g(u) + r(u)
du, z ∈ (0,+∞), |Φ|0 = max

t∈[0,T ]
|Φ(t)|.
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For y ∈ P and each n ∈ {1, 2, · · · }, define operators by

(Any)(t) =
∫ t

0
max{0,

∫ s

0
Φ(τ)f(τ, y(τ)+

1
n
τ+

1
n
, y′(τ)+

1
n

)dτ}ds, ∀t ∈ [0, T ].

(4.1)n

Theorem 4.1 Suppose (P1)− (P4) hold. Then equation (1.1) has at least one
nonnegative solution y0 ∈ C1[0, T ] ∩ C2(0, T ) with y0(t) > 0 on (0, T ].
Proof. From (P4), choose R1 > 0 such that

R1

max{1, T}I−1(R1h(R1)|Φ|0 + |Φ|0
∫ R1

0 w(s)ds)
> 1.

Since I−1, I, h and
∫ z

0 h(u)du are continuous, we choose a R1
2 > ε > 0 small

enough such that

R1

max{1, T}I−1((R1 + ε)h(R+ ε)|Φ|0 + |Φ|0
∫ R+ε

0 w(s)ds+ I(ε))
> 1. (4.2)

Let n0 ∈ {1, 2, · · · } be chosen so that 1
n0

< δ/2 and 1+T
n0

< ε. Let N0 =
{n0, n0 + 1, · · · }.

From (P1) and (P2), Lemma 2.2 guarantees that for each n ∈ N0, An : P →
P is continuous and completely continuous .

Now let
Ω1 = {y ∈ C1[0, T ] : ‖y‖ < R1}.

We show that

y 6= µAny, ∀y ∈ P ∩ ∂Ω1, µ ∈ (0, 1], n ∈ N0. (4.3)

Suppose there exist a y0 ∈ P ∩∂Ω1 and a µ0 ∈ (0, 1] such that y0 = µ0Any0,
i.e.,
y0(t) = µ0

∫ t
0 max{0, ∫ s0 Φ(τ)f(τ, y0(τ) + 1

nτ + 1
n , y
′
0(τ) + 1

n)dτ}ds, t ∈ [0, T ],
which yields

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}
, t ∈ [0, T ].

Obviously, y′0(t) ≥ 0, t ∈ (0, T ) and lim
t→0+

y′0(t) = 0. Then, since 1
n < δ/2,

there is a t0 > 0 such that 0 ≤ y′0(t) + 1
n ≤ δ for all t ∈ (0, t0]. From (P3), one

has f(t, y0(t) + 1
n t + 1

n , y
′
0(t) + 1

n) ≥ β(t) > 0 for all t ∈ (0, t0], which implies
that

max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}

≥
∫ t

0
Φ(s)β(s)ds > 0, t ∈ (0, t0]
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and

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}

≥ µ0 max
{

0,
∫ t

0
Φ(s)β(s)ds

}

= µ0

∫ t

0
Φ(s)β(s)ds > 0, t ∈ (0, t0].

Let t∗ = sup{t ∈ (0, T ]|y′0(s) > 0 for all s ∈ (0, t]}. We claim that t∗ = T ,
which means that y′0(t) > 0 for all t ∈ (0, T ), and so

y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}
> 0, ∀t ∈ (0, T ).

Hence

y′0(t) = µ0

∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

= µ0

∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds, t ∈ (0, T ). (4.4)

Suppose that t∗ < T , then y′0(t∗) = 0 and y′0(t) > 0 for all t ∈ (0, t∗) and

0 < y′0(t) = µ0 max
{

0,
∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}

= µ0

∫ t

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds, t ∈ (0, t∗0). (4.5)

Hence, since 1
n < δ/2, there is a 0 < t∗0 < t∗ such that 0 < y′0(t) + 1

n ≤ δ for
all t ∈ [t∗0, t

∗], which implies that f(t, y0(t) + 1
n t + 1

n , y
′
0(t) + 1

n) ≥ β(t) for all
t ∈ [t∗0, t

∗]. Thus, from (4.5), we have

y′0(t∗0) = µ0

∫ t∗0

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds
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and

0 = y′0(t∗)

= µ0 max

{
0,
∫ t∗

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}

= µ0 max

{
0,
∫ t∗

t∗0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

+
∫ t∗0

0
Φ(s)f

(
s, y0(s) +

1
n
s+

1
n
, y′0(s) +

1
n

)
ds

}

≥ µ0 max

{
0,
∫ t∗

t∗0
Φ(s)β(s)ds+

1
µ0
y′0(t∗0)

}

= µ0

∫ t∗

t∗0
Φ(s)β(s)ds+ y′0(t∗0) > 0.

This is a contradiction. Consequently, t∗ = T and (4.4) is true.
Since y′0(0) = 0, one has y0(t) > 0 for all t ∈ (0, T ). By direct differentia-

tion, we have
{
y′′0(t) = µ0Φ(t)f(t, y0(t) + 1

n t+ 1
n , y
′
0(t) + 1

n), t ∈ (0, T ),
y0(0) = 0, y′0(0) = 0.

(4.6)

Therefore,

y′′0(t)

= µ0Φ(t)f
(
t, y0(t) +

1
n
t+

1
n
, y′0(t) +

1
n

)

≤ Φ(t)
∣∣∣∣f
(
t, y0(t) +

1
n
t+

1
n
, y′0(t) +

1
n

)∣∣∣∣

≤ Φ(t)
[
h

(
y0(t) +

1
n
t+

1
n

)
+ w

(
y0(t) +

1
n
t+

1
n

)]

·
[
g

(
y′0(t) +

1
n

)
+ r

(
y′0(t) +

1
n

)]
, ∀t ∈ (0, T ),

which means that
y′′0(t)

g(y′0(t) + 1
n) + r(y′0(t) + 1

n)

≤ Φ(t)
[
h

(
y0(t) +

1
n
t+

1
n

)
+ w

(
y0(t) +

1
n
t+

1
n

)]
, ∀t ∈ (0, T )
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and
(y′0(t) + 1

n)y′′0(t)
g(y′0(t) + 1

n) + r(y′0(t) + 1
n)

≤ Φ(t)
[
h

(
y0(t) +

1
n
t+

1
n

)
+ w

(
y0(t) +

1
n
t+

1
n

)](
y′0(t) +

1
n

)
, ∀t ∈ (0, T ).

Integration from 0 to t yields

I(y′0(t) +
1
n

)− I(
1
n

)

≤ |Φ|0[h(R1 + ε)(R1 + ε) +
∫ T

0
w(y0(s) +

1
n
s+

1
n

)]d(y0(s) +
1
n
s+

1
n

)]

≤ |Φ|0[h(R1 + ε)(R1 + ε) +
∫ R1+ε

0
w(s)ds],

and so

I

(
y′0(t) +

1
n

)
≤ I(ε) + |Φ|0

[
h(R1 + ε)(R1 + ε) +

∫ R1+ε

0
w(s)ds

]
.

Thus

y′0(t) ≤ I−1

(
I(ε) + |Φ|0

[
h(R1 + ε)(R1 + ε) +

∫ R1+ε

0
w(s)ds

])
, ∀t ∈ [0, T ].

(4.7)
Integrate from 0 to T to obtain

y0(T ) = y0(T )−y0(0) ≤ I−1

(
I(ε) + |Φ|0

[
h(R1 + ε)(R1 + ε) +

∫ R1+ε

0
w(s)ds

])
T.

(4.8)
(4.7) and (4.8) guarantee that

R1 = ‖y0‖ ≤ max{1, T}I−1

(
I(ε) + |Φ|0

[
h(R1 + ε)(R1 + ε) +

∫ R1+ε

0
w(s)ds

])
,

which means

R1

max{1, T}I−1(I(ε) + |Φ|0[h(R1 + ε)(R1 + ε) +
∫ R1+ε

0 w(s)ds])
≤ 1.

This is a contradiction to (4.2). Thus (4.3) is true.
From Lemma 2.1, for each n ∈ N0, we have

i(An, P ∩ Ω1, P ) = 1. (4.9)
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As a result, for each n ∈ N0, there exists a yn ∈ P ∩Ω1 such that yn = Anyn,
i.e.,

yn(t) = (Anyn)(t)

=
∫ t

0
max

{
0,
∫ s

0
Φ(τ)f

(
τ, yn(τ) +

1
n
τ +

1
n
, y′n(τ) +

1
n

)
dτ

}
ds, t ∈ [0, T ].

A similar to show (4.4) yields that

y′n(t) > 0, y′n(t) =
∫ t

0
Φ(s)f(s, yn(s)+

1
n
s+

1
n
, y′n(s)+

1
n

)ds, t ∈ (0, T ), n ∈ N0.

Now we consider {yn}n∈N0 . Since ‖yn‖ ≤ R1, obviously

the functions belonging to {yn(t)} are uniformly bounded on [0, T ] (4.10)

and

the functions belonging to {y′n(t)} are uniformly bounded on [0, T ]. (4.11)

And moreover, (4.11) yields that

the functions belonging to {yn(t)} are equicontinuous on [0, T ]. (4.12)

Similarly as (4.6), one has
{
y′′n(t) = Φ(t)f(t, yn(t) + 1

n t+ 1
n , y
′
n(t) + 1

n), t ∈ (0, T )
yn(0) = 0, y′n(0) = 0.

Then,

±y′′n(t) = ±Φ(t)f
(
t, yn(t) +

1
n
t+

1
n
, y′n(t) +

1
n

)

≤ Φ(t)
∣∣∣∣f
(
t, yn(t) +

1
n
t+

1
n
, y′n(t) +

1
n

)∣∣∣∣

≤ Φ(t)
[
h

(
yn(t) +

1
n
t+

1
n

)
+ w

(
yn(t) +

1
n
t+

1
n

)]

·
[
g

(
y′n(t) +

1
n

)
+ r

(
y′n(t) +

1
n

)]
, ∀t ∈ (0, T ),

which means that
±(y′0(t) + 1

n)y′′n(t)
g(y′n(t) + 1

n) + r(y′n(t) + 1
n)

≤ Φ(t)[h(yn(t)+
1
n
t+

1
n

)+w(yn(t)+
1
n
t+

1
n

)](y′0(t)+
1
n

), ∀t ∈ (0, T ). (4.13)
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For any t1, t2 ∈ [0, T ], integration from t1 to t2 yields that
∣∣∣∣I
(
y′n(t1) +

1
n

)
− I

(
y′n(t2) +

1
n

)∣∣∣∣

≤ |Φ|0
∣∣∣∣
∫ t2

t1

[
h(yn(s) +

1
n
s+

1
n

) + w(yn(s) +
1
n
s+

1
n

)
]
d(yn(s) +

1
n
s+

1
n

)
∣∣∣∣

= |Φ|0
∣∣∣∣∣
∫ yn(t2)+ 1

n
t2+ 1

n

yn(t1)+ 1
n
t1+ 1

n

[h(s) + w(s)]ds

∣∣∣∣∣ .

Since I−1 is uniformly continuous on [0, I(R1 + ε)], for any ε′ > 0, there is a
δ′ > 0 such that

|I−1(s1)− I−1(s2)| < ε′, ∀|s1 − s2| < δ′, s1, s2 ∈ [0, I(R1 + ε)]. (4.14)

Since
∫ z

0 (h(s)+w(s))ds is uniformly continuous on [0, R1 +ε], there is a δ′′ > 0
such that
∣∣∣∣
∫ u2

u1

(h(s) + w(s))ds
∣∣∣∣ <

δ′

|Φ|0 , ∀|u1 − u2| < δ′′, u1, u2 ∈ [0, R1 + ε]. (4.15)

From (4.12), there is a δ̃ > 0 such that

|(yn(t1) + t1)− (yn(t2) + t2)| < δ′′, ∀|t1 − t2| < δ̃, t1, t2 ∈ [0, T ]. (4.16)

(4.15) and (4.16) yield that
∣∣∣∣I
(
y′n(t1) +

1
n

)
− I

(
y′n(t2) +

1
n

)∣∣∣∣

≤ |Φ|0
∣∣∣∣∣
∫ yn(t2)+ 1

n
t2+ 1

n

yn(t1)+ 1
n
t1+ 1

n

[h(s) + w(s)]ds

∣∣∣∣∣

< |Φ|0 δ′

|Φ|0 = δ′, |t1 − t2| < δ̃, t1, t2 ∈ [0, T ], n ∈ N0. (4.17)

From (4.14) and (4.17), we have

|y′n(t1)− y′n(t2)| =
∣∣∣∣y′n(t1) +

1
n
−
(
y′n(t2) +

1
n

)∣∣∣∣

=
∣∣∣∣I−1

(
I

(
y′n(t1) +

1
n

))
− I−1

(
I

(
y′n(t2) +

1
n

))∣∣∣∣
< ε′, ∀|t1 − t2| < δ̃, t1, t2 ∈ [0, T ], n ∈ N0,

which means that

the functions belonging to {y′n(t)} are equicontinuous on [0, T ]. (4.18)
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Consequently, from (4.10), (4.11), (4.12) and (4.18), the Arzela-Ascoli The-
orem guarantees that {yn(t)} and {y′n(t)} are relatively compact in C[0, T ],
i.e., there is a y0 ∈ C1[0, T ] and a subsequence {ynj} of {yn} such that

lim
j→+∞

max
t∈[0,T ]

|ynj (t)− y0(t)| = 0, lim
j→+∞

max
t∈[0,T ]

|y′nj (t)− y′0(t)| = 0.

Since ynj (0) = 0, y′nj (0) = 0, ynj (t) > 0, y′nj (t) > 0, t ∈ (0, T ),

y0(0) = 0, y′0(0) = 0, y0(t) ≥ 0, y′0(t) ≥ 0, t ∈ (0, T ). (4.19)

Following we show that y′0(t) > 0, t ∈ (0, T ). Since y′0(t) is right continuous
at t = 0 and y′0(0) = 0, there is a 0 < t0 < 1 such that y′0(t) ≤ 1

2δ for all
t ∈ [0, t0]. By

lim
j→+∞

max
t∈[0,T ]

|y′nj (t)− y′0(t)| = 0,

there is a j0 > 0 such that 0 < y′nj (t) + 1
nj
≤ δ for all t ∈ [0, t0], j ≥ j0. Thus,

(H3) implies

f

(
t, ynj (t) +

1
nj
t+

1
nj
, y′nj (t) +

1
nj

)
≥ β(t), t ∈ [0, t0],

which yields

y′nj (t) =
∫ t

0
Φ(s)f

(
s, ynj (s) +

1
nj
s+

1
nj
, y′nj (s) +

1
nj

)
ds

≥
∫ t

0
Φ(s)β(s)ds > 0, t ∈ [0, t0], j ∈ {j0, j0 + 1, · · · }.

Therefore, y′0(t) ≥ ∫ t0 Φ(s)β(s)ds > 0, t ∈ [0, t0].
Let t∗ = sup{t ∈ (0, T )|y′0(s) > 0 for all s ∈ (0, t]}. Then, we claim

that t∗ = T . Suppose that t∗ < T , which means y′0(t∗) = 0 and y′0(t) > 0
for all t ∈ (0, t∗). The continuity of y′0(t) at t∗ guarantees that there is a
0 < t∗0 < t∗ such that 0 < y′0(t) ≤ 1

2δ for all t ∈ [t∗0, t
∗]. And the uniform

convergence of {y′nj (t)} on [0, T ] guarantees that there is a j0 > 0 such that
0 < y′nj (t) + 1

nj
≤ δ, t ∈ [t∗0, t

∗], j ≥ j0. Then, for t ∈ [t∗0, t
∗],

f

(
t, ynj (t) +

1
nj
t+

1
nj
, y′nj (t) +

1
nj

)
≥ β(t),
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which implies that

y′nj (t
∗) =

∫ t∗

0
Φ(s)f

(
s, ynj (s) +

1
nj
s+

1
nj
, y′nj (s) +

1
nj

)
ds

=
∫ t∗

t∗0
Φ(s)f

(
s, ynj (s) +

1
nj
s+

1
nj
, y′nj (s) +

1
nj

)
ds

+
∫ t∗0

0
Φ(s)f

(
s, ynj (s) +

1
nj
s+

1
nj
, y′nj (s) +

1
nj

)
ds

≥
∫ t∗

t∗0
Φ(s)β(s)ds+ y′nj (t

∗
0)

>

∫ t∗

t∗0
Φ(s)β(s)ds, j ∈ {j0, j0 + 1, · · · }.

Hence, letting j → +∞, we have y′0(t∗) ≥ ∫ t∗t∗0 Φ(s)β(s)ds > 0, a contradiction.
Consequently, t∗ = T and y′0(t) > 0 for all t ∈ (0, T ). In addition to

y0(0) = 0, one has y0(t) > 0 for all t ∈ (0, T ]. Therefore,

min{ min
s∈[T

2
,t]
y0(s), min

s∈[T
2
,t]
y′0(s)} > 0, for all t ∈

[
T

2
, T

]
,

and

min{ min
s∈[t,T

2
]
y0(s), min

s∈[t,T
2

]
y′0(s)} > 0, for all t ∈

(
0,
T

2

]
.

Since

y′nj (t)−y′nj
(
T

2

)
=
∫ t

T
2

Φ(s)f
(
s, ynj (s) +

1
nj
s+

1
nj
, y′nj (s) +

1
nj

)
ds, t ∈ (0, T ),

letting j → +∞, the Lebesgue Dominated Convergence Theorem guarantees
that

y′0(t)− y′0
(
T

2

)
=
∫ t

T
2

Φ(s)f(s, y0(s), y′0(s))ds, t ∈ (0, T ).

By direct differentiation, we have

y′′0(t) = Φ(t)f(t, y0(t), y′0(t)), t ∈ (0, T ).

In addition to (4.19), y0 ∈ C1[0, T ] ∩ C2(0, T ) is a nonnegative solution to
equation (1.1) with y0(t) > 0 for all t ∈ (0, 1].

Example 4.1 Consider the initial value problems
{
y′′(t) = µ[sin 1

t − (y′)e + (y′)−a][1 + yb + y−d], t ∈ (0, T ),
y′(0) = 0, y(0) = 0

(4.20)
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with a > 0, e ≥ 0, b ≥ 0, 0 < d < 1 and µ > 0. Then there is a µ0 > 0 such
that (4.20) has at least one nonnegative solution y0 ∈ C1[0, T ]∩C2(0, T ) with
y0(t) > 0 on (0, T ] for all 0 < µ < µ0.

To see that (4.20) has at least one nonnegative solution, we will apply
Theorem 4.1 with Φ(t) ≡ µ, g(y′) = (y′)−a, r(y′) = 1 + (y′)e, h(y) = 1 + yb,
w(y) = y−d. Clearly, (P1), (P2) and (P3) (β(t) ≡ 1 and δ = (1

3)1/a) hold.
Since lim

z→0+
I−1(z) = 0 there is a µ0 > 0 such that

1
max{1, T}I−1[µ(2 + 1/(1 + d))]

≥ 1

and so
sup

c∈(0,+∞)

c

max{1, T}I−1(ch(c)|Φ|0 + |Φ|0
∫ c

0 w(s)ds)
> 1,

which guarantees that (P4) holds.
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