A generalized Yoneda algebra of an algebra associated with a cyclic quiver

Ryouichirou Sasaki, Manabu Suda and Takahiko Furuya

(Received August 7, 2007)

Abstract

Let $A=K \Gamma /\left(X^{k}\right)$, where $K \Gamma$ is the path algebra of a cyclic quiver Γ over a field K, X is the sum of all arrows of Γ and k is a positive integer. In this paper, we describe the ring structure of the generalized Yoneda algebra $\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ of A with multiplication given by the Yoneda product, where J denotes the Jacobson radical of A and l is a positive integer with $l \leq k$.

AMS 2000 Mathematics Subject Classification. 16E40, 16G20.
Key words and phrases. Ext-algebra, Yoneda algebra, cyclic quiver.

§1. Introduction

Let $K \Gamma$ be the path algebra over a field K of the cyclic quiver Γ with s vertices e_{1}, \ldots, e_{s} and s arrows a_{1}, \ldots, a_{s}, where s is a positive integer. We set $X=a_{1}+\cdots+a_{s}, A=K \Gamma /\left(X^{k}\right)$ with a positive integer k and J the Jacobson radical of A, that is, the ideal of A generated by X. Let l be a positive integer with $l \leq k$. Then we call the algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ with multiplication given by the Yoneda product the generalized Yoneda algebra of A, because the algebra $\mathcal{E}(A / J)$ is the usual Yoneda algebra of A.
A. I. Generalov [4] has determined the ring structure of the usual Yoneda algebra $\mathcal{E}(A / J)$ of A by using the diagrammatic method which is presented by D. J. Benson and J. F. Carlson in [1] (cf. Remark in Section 3.1). Our purpose of this paper is to describe the ring structure of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)$ of A by basic calculations. By the way, a basic self-injective Nakayama algebra over K is of the form $A=K \Gamma /\left(X^{k}\right)$ with $k \geq 2$ and K. Erdmann and T. Holm [2] determined the ring structure of the Hochschild cohomology ring $\operatorname{HH}^{*}(A)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A^{e}}^{i}(A, A)$ of A. Here, A^{e} denotes the enveloping algebra $A \otimes_{K} A^{\circ}$ of A, where A° is the opposite ring of A.

This paper is organized as follows: In Section 2, we construct an A projective resolution of A / J^{l} (Proposition 2.1) and calculate the group $\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ for $i \geq 0$ (Propositions 2.2 and 2.4). In Section 3, we calculate the Yoneda product in $\mathcal{E}\left(A / J^{l}\right)$ (Propositions 3.1 and 3.5) and describe the ring structure of $\mathcal{E}\left(A / J^{l}\right)$ (Theorems 3.4 and 3.8) by referring to [3].

§2. Calculation of the group $\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$

Let s be a positive integer, Γ the cyclic quiver with s vertices $e_{1}, e_{2}, \ldots, e_{s}$ and s arrows $a_{1}, a_{2}, \ldots, a_{s}$ such that each a_{i} starts at e_{i} and ends at e_{i+1}, where we regard the subscripts i of e_{i} modulo s. Let K be a field and $K \Gamma$ the path algebra of Γ over K. In $K \Gamma, a_{i}=e_{i+1} a_{i} e_{i}$ holds for each $1 \leq i \leq s$. Let X be the sum of all arrows: $X=a_{1}+a_{2}+\cdots+a_{s}$. Note that X is a non-zero divisor in $K \Gamma$.

We fix a positive integer k, and we denote $K \Gamma /\left(X^{k}\right)$ by A. Then A is a finite dimensional algebra, since $A=\bigoplus_{p=0}^{k-1} \bigoplus_{q=1}^{s} K X^{p} e_{q}$ and $\operatorname{dim}_{K} A=k s$. Let $J=A X=X A=(X) /\left(X^{k}\right)$, then J is the radical of A because J is a nilpotent ideal and $A / J \simeq K \Gamma /(X) \simeq \prod_{i=1}^{s} K e_{i}$ is semi-simple.

Let l be a fixed positive integer with $l \leq k$. In this section, we calculate the group $\operatorname{Ext}^{i}{ }_{A}\left(A / J^{l}, A / J^{l}\right)$ for $i \geq 0$ in order to consider the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ of A. First, we give an A-projective resolution of A / J^{l} for the calculation.
Proposition 2.1. Let $A=K \Gamma /\left(X^{k}\right), J=X A$ the radical of A, l a positive integer with $l \leq k$. Then there exists the following periodic right A-projective resolution of \bar{A} / J^{l} :

$$
\begin{equation*}
\cdots \xrightarrow{\kappa} A \xrightarrow{d} A \xrightarrow{\kappa} A \xrightarrow{d} A \xrightarrow{\pi} A / J^{l} \longrightarrow 0, \tag{2.1}
\end{equation*}
$$

where $\pi: A \rightarrow A / J^{l}$ is the natural right A-epimorphism, $d: A \rightarrow A$ and $\kappa: A \rightarrow A$ are the right A-homomorphisms defined by

$$
d(x)=X^{l} x, \quad \kappa(x)=X^{k-l} x
$$

for all $x \in A$.
Proof. Since Ker $\pi=J^{l}=X^{l} A=\operatorname{Im} d, d \kappa=0$ and $\kappa d=0$, it suffices to show that Ker $d \subseteq \operatorname{Im} \kappa$ and Ker $\kappa \subseteq \operatorname{Im} d$.

Let $a \in \operatorname{Ker} d$, where $a=u+\left(X^{k}\right)$ for some $u \in K \Gamma$. Then we have $0=d(a)=X^{l} u+\left(X^{k}\right)$ in A, hence there exists an element $v \in K \Gamma$ such that $X^{l} u=X^{k} v$ in $K \Gamma$. Since X is a non-zero divisor in $K \Gamma$, we have $u=X^{k-l} v$. Hence $a=X^{k-l} v+\left(X^{k}\right)=\kappa\left(v+\left(X^{k}\right)\right) \in \operatorname{Im} \kappa$, so we have Ker $d \subseteq \operatorname{Im} \kappa$. Similarly, we also have Ker $\kappa \subseteq \operatorname{Im} d$.

In the rest of this section, we calculate the group $\operatorname{Ext}^{i}{ }_{A}\left(A / J^{l}, A / J^{l}\right)$. We denote the functor $\operatorname{Hom}_{A}\left(-, A / J^{l}\right)$ by $(-)^{*}$. By applying the functor to the projective resolution (2.1) of A / J^{l}, we have the following commutative diagram of left A / J^{l}-modules:

where we set

$$
\mu: A^{*}=\operatorname{Hom}_{A}\left(A, A / J^{l}\right) \xrightarrow{\sim} A / J^{l} ; \quad \phi \longmapsto \phi\left(1_{A}\right),
$$

$d^{\#}=\mu d^{*} \mu^{-1}$ and $\kappa^{\#}=\mu \kappa^{*} \mu^{-1}$. Note that the inverse μ^{-1} of μ is given by $\mu^{-1}\left(a+J^{l}\right)(x)=a x+J^{l}$ for all $x \in A$ and $a+J^{l} \in A / J^{l}$. Since the left $A / J^{l}-$ module A / J^{l} is generated by $1_{A}+J^{l}$, the left A / J^{l}-module $\operatorname{Hom}_{A}\left(A, A / J^{l}\right)$ is generated by $\mu^{-1}\left(1_{A}+J^{l}\right)=\pi$, that is,

$$
\operatorname{Hom}_{A}\left(A, A / J^{l}\right)=\left(A / J^{l}\right) \pi
$$

By the left module action of A / J^{l} on $\operatorname{Hom}_{A}\left(A, A / J^{l}\right)$, for $a+J^{l} \in A / J^{l}$, we have

$$
\left(\left(a+J^{l}\right) \pi\right)(x)=\left(a+J^{l}\right) \pi(x)=\left(a+J^{l}\right)\left(x+J^{l}\right)=a x+J^{l}
$$

for all $x \in A$. Moreover, for the left A / J^{l}-homomorphisms d^{*} and κ^{*}, we have

$$
d^{*}=0, \quad \kappa^{*}(\pi)=\left(X^{k-l}+J^{l}\right) \pi
$$

since $d^{*}(\pi)(x)=(\pi d)(x)=X^{l} x+J^{l}=0$ and $\kappa^{*}(\pi)(x)=(\pi \kappa)(x)=X^{k-l} x+J^{l}$ for all $x \in A$. Hence the left A / J^{l}-homomorphisms $d^{\#}$ and $\kappa^{\#}$ satisfy that $d^{\#}=0$ and

$$
\begin{equation*}
\kappa^{\#}\left(1_{A}+J^{l}\right)=\left(\mu \kappa^{*}\right)(\pi)=\mu\left(\left(X^{k-l}+J^{l}\right) \pi\right)=X^{k-l}+J^{l} \tag{2.3}
\end{equation*}
$$

If $k \geq 2 l$ then $\kappa^{*}=0$, and hence we easily obtain the following proposition.
Proposition 2.2. In the case $k \geq 2 l$, we have the following isomorphisms of left A / J^{l}-modules:

$$
\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)=A^{*} \xrightarrow{\sim} A / J^{l} ; \quad \phi \longmapsto \phi\left(1_{A}\right),
$$

for $i \geq 0$, where $A^{*}=\operatorname{Hom}_{A}\left(A, A / J^{l}\right)=\left(A / J^{l}\right) \pi$ with the natural right A epimorphism $\pi: A \rightarrow A / J^{l}$.

Next we consider the case $k<2 l$. We prepare the following lemma in order to compute the group $\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ for $i \geq 0$.

Lemma 2.3. In the case $k<2 l$, we have the following equations:

$$
\operatorname{Im} \kappa^{\#}=J^{k-l} / J^{l}, \quad \text { Ker } \kappa^{\#}=J^{2 l-k} / J^{l},
$$

where $\kappa^{\#}$ is the left A / J^{l}-homomorphism as above and J^{0} denotes A.
Proof. By the equation (2.3), we have $\operatorname{Im} \kappa^{\#}=\left(A X^{k-l}+J^{l}\right) / J^{l}=J^{k-l} / J^{l}$ and $\kappa^{\#}\left(J^{2 l-k} / J^{l}\right)=\left(J^{2 l-k} X^{k-l}\right) / J^{l}=0$. Hence it suffices to show that Ker $\kappa^{\#} \subset J^{2 l-k} / J^{l}$.

Let $a+J^{l} \in \operatorname{Ker} \kappa^{\#}$, where $a=u+\left(X^{k}\right)$ for some $u \in K \Gamma$. Then we have $0=\kappa^{\#}\left(a+J^{l}\right)=a X^{k-l}+J^{l}$, hence there exists an element $v \in K \Gamma$ such that $a X^{k-l}=\left(v+\left(X^{k}\right)\right) X^{l}$. It follows that $u X^{k-l}+\left(X^{k}\right)=v X^{l}+\left(X^{k}\right)$, so there exists an element $w \in K \Gamma$ such that $u X^{k-l}-v X^{l}=w X^{k}$. Since X is a non-zero divisor in $K \Gamma$, we have $u=v X^{2 l-k}+w X^{l}=\left(v+w X^{k-l}\right) X^{2 l-k}$. Let $a^{\prime}=v+w X^{k-l}+\left(X^{k}\right) \in A$, then $a=a^{\prime} X^{2 l-k} \in J^{2 l-k}$ holds. Therefore we have $a+J^{l} \in J^{2 l-k} / J^{l}$.

So we have the following theorem by Lemma 2.3 and the commutative diagram (2.2).

Proposition 2.4. In the case $k<2 l$, we have the following isomorphisms of left A / J^{l}-modules:

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right) \\
& \quad=\left\{\begin{array}{llll}
A^{*} & \xrightarrow{\sim} A / J^{l} ; & \phi \longmapsto \phi\left(1_{A}\right) & \text { if } i=0, \\
\text { Ker } \kappa^{*} & \xrightarrow{\sim} J^{2 l-k} / J^{l} ; & \phi \longmapsto \phi\left(1_{A}\right) & \text { if } i \text { is odd, } \\
A^{*} / \operatorname{Im} \kappa^{*} & \xrightarrow{\sim} A / J^{k-l} ; & {[\phi] \longmapsto a+J^{k-l}} & \text { if } i \text { is even, }
\end{array}\right.
\end{aligned}
$$

where $[\phi]$ is the element represented by $\phi \in A^{*}$ and $\phi\left(1_{A}\right)=a+J^{l}$ for some $a \in A$.

Proof. For the proof, we use the commutative diagram (2.2) of left A / J^{l} modules and Lemma 2.3.

If $i=0$, then the left A / J^{l}-isomorphism

$$
\mu: \operatorname{Ext}_{A}^{0}\left(A / J^{l}, A / J^{l}\right)=A^{*} \xrightarrow{\sim} A / J^{l} ; \quad \phi \longmapsto \phi\left(1_{A}\right),
$$

is the desired isomorphism.
If i is odd, then the left A / J^{l}-isomorphism

$$
\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)=\operatorname{Ker} \kappa^{*} \xrightarrow{\sim} \operatorname{Ker} \kappa^{\#}=J^{2 l-k} / J^{l} ; \quad \phi \longmapsto \phi\left(1_{A}\right),
$$

which is induced by μ is the desired isomorphism.
If i is even, then the left A / J^{l}-isomorphism

$$
\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)=A^{*} / \operatorname{Im} \kappa^{*} \simeq\left(A / J^{l}\right) / \operatorname{Im} \kappa^{\#}
$$

is induced by μ. Since $\operatorname{Im} \kappa^{\#}=J^{k-l} / J^{l}$, the composition of left A / J^{l} isomorphisms

$$
\begin{aligned}
& A^{*} / \operatorname{Im} \kappa^{*} \sim\left(A / J^{l}\right) /\left(J^{k-l} / J^{l}\right) \\
& {[\phi] } \longmapsto \phi\left(1_{A}\right)+J^{k-l} / J^{l} \\
& \longmapsto a / J^{k-l} ; \\
& \longmapsto \longmapsto J^{k-l},
\end{aligned}
$$

where $\phi\left(1_{A}\right)=a+J^{l}$ for some $a \in A$ is the desired isomorphism.

§3. Calculation of the Yoneda product

In this section, we calculate the Yoneda product in the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ of A by means of the resolution (2.1). Then we determine the ring structure of $\mathcal{E}\left(A / J^{l}\right)$.

We recall the definition of the Yoneda product \times in $\mathcal{E}\left(A / J^{l}\right)$. Denote the right A-projective resolution (2.1) by

$$
\cdots \xrightarrow{d_{4}} A_{3} \xrightarrow{d_{3}} A_{2} \xrightarrow{d_{2}} A_{1} \xrightarrow{d_{1}} A_{0} \xrightarrow{\pi} A / J^{l} \longrightarrow 0,
$$

where we set $A_{i}=A, d_{2 i+1}=d$ and $d_{2 i+2}=\kappa$ for $i \geq 0$. Let $[\phi] \in$ $\operatorname{Ext}^{i}{ }_{A}\left(A / J^{l}, A / J^{l}\right)$ and $[\psi] \in \operatorname{Ext}_{A}^{j}\left(A / J^{l}, A / J^{l}\right)$ be the elements which are represented by $\phi \in \operatorname{Ker} d_{i+1}^{*}$ and $\psi \in \operatorname{Ker} d_{j+1}^{*}$, respectively. There exists the following commutative diagram of right A-modules:

where $\sigma_{\nu}(0 \leq \nu \leq i)$ are liftings of ψ. Then the Yoneda product $[\phi] \times[\psi]$ is given by $\left[\phi \sigma_{i}\right] \in \operatorname{Ext}_{A}^{i+j}\left(A / J^{l}, A / J^{l}\right)$.

Define the ring automorphism $\beta: A \rightarrow A$ by

$$
\begin{equation*}
\beta\left(e_{i}\right)=e_{i-1}, \quad \beta\left(a_{i}\right)=a_{i-1} \tag{3.1}
\end{equation*}
$$

for $1 \leq i \leq s$. Then it is easily verified that $\beta(X)=X$ and $a X^{t}=X^{t} \beta^{t}(a)$ for all $a \in A$ and $t \geq 0$, where β^{0} denotes the identity map on A. We use these equations in the following calculations.

3.1. The case $k \geq 2 l$

In this subsection, we consider the case $k \geq 2 l$. In order to clearly describe the degree of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i>0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$, by Proposition 2.2, we write $\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)=\left(A / J^{l}\right) \pi_{i}$ for $i \geq 0$, where π_{i} denotes the natural right A-epimorphism $\pi: A \rightarrow A / J^{l}$. Note that if $\phi \in \operatorname{Ext}^{i}{ }_{A}\left(A / J^{l}, A / J^{l}\right)$ then there exists some $a \in A$ such that $\phi=\left(a+J^{l}\right) \pi_{i}$, and hence $\phi(x)=a x+J^{l}$ for all $x \in A$.

Proposition 3.1. In the case $k \geq 2 l$, for $\left(a+J^{l}\right) \pi_{i} \in \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ and $\left(b+J^{l}\right) \pi_{j} \in \operatorname{Ext}_{A}^{j}\left(A / J^{l}, A / J^{l}\right)$ with $a, b \in A$, the Yoneda product $\left(a+J^{l}\right) \times$ $\left(b+J^{l}\right) \in \operatorname{Ext}_{A}^{i+j}\left(A / J^{l}, A / J^{l}\right)$ is given as follows:

$$
\begin{aligned}
& \left(a+J^{l}\right) \pi_{i} \times\left(b+J^{l}\right) \pi_{j} \\
& = \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \pi_{i+j} & \text { if } i=0 \text { or } i \text { is even, } \\
\left(a \beta^{\frac{-1}{2} k+l}(b)+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd, } j=0 \text { or } j \text { is even, } \\
\left(a X^{k-2 l} \beta^{\frac{i+1}{2} k-l}(b)+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd, } j \text { is odd, }\end{cases}
\end{aligned}
$$

where β is the ring automorphism of A as in (3.1). In particular, π_{0} is the identity element of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)$.

Proof. Let $\phi=\left(a+J^{l}\right) \pi_{i}$ and $\psi=\left(b+J^{l}\right) \pi_{j}$, then we have $\phi(x)=a x+J^{l}$ and $\psi(x)=b x+J^{l}$ for all $x \in A$.

First, we consider the case $j=0$ or j is even. Define the right A homomorphism $\sigma_{i}: A_{i+j} \rightarrow A_{i}$ by

$$
\sigma_{i}(x)= \begin{cases}\beta^{\frac{i}{2} k}(b) x & \text { if } i=0 \text { or } i \text { is even, } \tag{3.2}\\ \beta^{\frac{i-1}{2} k+l}(b) x & \text { if } i \text { is odd }\end{cases}
$$

for $x \in A_{i+j}$. Then there exists the following commutative diagram of right A-modules:

Indeed, we check this as follows. Since $\sigma_{0}(x)=b x$ for $x \in A_{i+j}$, it follows that $\pi \sigma_{0}=\psi$. If $i=0$ or i is even, then we have

$$
\left(\sigma_{i} d\right)(x)=\beta^{\frac{i}{2} k}(b) X^{l} x=X^{l} \beta^{\frac{i}{2} k+l}(b) x=\left(d \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$ If i is odd, then we have

$$
\left(\sigma_{i} \kappa\right)(x)=\beta^{\frac{i-1}{2} k+l}(b) X^{k-l} x=X^{k-l} \beta^{\frac{i+1}{2} k}(b) x=\left(\kappa \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$. Therefore σ_{i} is a lifting of ψ, and hence we have
$\left(a+J^{l}\right) \pi_{i} \times\left(b+J^{l}\right) \pi_{j}=\phi \sigma_{i}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \pi_{i+j} & \text { if } i=0 \text { or } i \text { is even, } \\ \left(a \beta^{\frac{i-1}{2} k+l}(b)+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd. }\end{cases}$
Next, we consider the case j is odd. Define the right A-homomorphism $\sigma_{i}: A_{i+j} \rightarrow A_{i}$ by

$$
\sigma_{i}(x)= \begin{cases}\beta^{\frac{i}{2} k}(b) x & \text { if } i=0 \text { or } i \text { is even } \\ X^{k-2 l} \beta^{\frac{i+1}{2} k-l}(b) x & \text { if } i \text { is odd }\end{cases}
$$

for $x \in A_{i+j}$. Then there exists the following commutative diagram of right A-modules:

Indeed, we check this as follows. It is clear that $\pi \sigma_{0}=\psi$. If $i=0$ or i is even, then we have

$$
\left(\sigma_{i} \kappa\right)(x)=\beta^{\frac{i}{2} k}(b) X^{k-l} x=X^{l} X^{k-2 l} \beta^{\frac{i+2}{2} k-l}(b) x=\left(d \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$. If i is odd, then we have

$$
\left(\sigma_{i} d\right)(x)=X^{k-2 l} \beta^{\frac{i+1}{2} k-l}(b) X^{l} x=X^{k-l} \beta^{\frac{i+1}{2} k}(b) x=\left(\kappa \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$. Therefore σ_{i} is a lifting of ψ, and hence we have

$$
\begin{aligned}
& \left(a+J^{l}\right) \pi_{i} \times\left(b+J^{l}\right) \pi_{j} \\
& \quad=\phi \sigma_{i}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \pi_{i+j} & \text { if } i=0 \text { or } i \text { is even, } \\
\left(a X^{k-2 l} \beta^{\frac{i+1}{2} k-l}(b)+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd. }\end{cases}
\end{aligned}
$$

This completes the proof of the proposition.
Then we have the following lemma.

Lemma 3.2. In the case $k \geq 2 l$, we have the following equations:

$$
\pi_{i}= \begin{cases}\pi_{2} \frac{i}{2} & \text { if } i=0 \text { or } i \text { is even }, \\ \pi_{1} \times \pi_{2} \frac{i-1}{2} & \text { if } i \text { is odd },\end{cases}
$$

where we set $\pi_{2}{ }^{0}=\pi_{0}$.
Proof. We shall show the statement by induction on i. For $i=0,1,2$, the equation is true, since we set $\pi_{2}{ }^{0}=\pi_{0}$ and π_{0} is the identity element by Proposition 3.1. Suppose as the induction hypothesis that the equation is true for $i \geq 1$. If i is odd, then we have

$$
\pi_{i+2}=\pi_{i} \times \pi_{2}=\pi_{1} \times \pi_{2} \frac{i-1}{2} \times \pi_{2}=\pi_{1} \times \pi_{2} \frac{i+1}{2}
$$

by Proposition 3.1 and the induction hypothesis. If i is even, then we also have

$$
\pi_{i+2}=\pi_{i} \times \pi_{2}=\pi_{2}^{\frac{i}{2}} \times \pi_{2}=\pi_{2}^{\frac{i+2}{2}}
$$

Therefore the equation is true for $i+2$ and hence the statement follows.
By Proposition 3.1, we have

$$
\left(a+J^{l}\right) \pi_{i}=\left(a+J^{l}\right) \pi_{0} \times \pi_{i}
$$

for $a+J^{l} \in A / J^{l}$ and $i \geq 0$. Hence we have the following lemma by Lemma 3.2.

Lemma 3.3. In the case $k \geq 2 l$, the set $\left\{\left(a+J^{l}\right) \pi_{0}, \pi_{1}, \pi_{2} \mid a \in A\right\}$ is a set of generators of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0}\left(A / J^{l}\right) \pi_{i}$. Moreover, for $\left(a+J^{l}\right) \pi_{0},\left(b+J^{l}\right) \pi_{0} \in\left(A / J^{l}\right) \pi_{0}, \pi_{1}$ and π_{2}, we have the following equations:

$$
\begin{aligned}
\left(a+J^{l}\right) \pi_{0} \times\left(b+J^{l}\right) \pi_{0} & =\left(a b+J^{l}\right) \pi_{0}, \\
\pi_{1} \times\left(b+J^{l}\right) \pi_{0} & =\left(\beta^{l}(b)+J^{l}\right) \pi_{0} \times \pi_{1}, \\
\pi_{2} \times\left(b+J^{l}\right) \pi_{0} & =\left(\beta^{k}(b)+J^{l}\right) \pi_{0} \times \pi_{2}, \\
\pi_{1} \times \pi_{1} & =\left(X^{k-2 l}+J^{l}\right) \pi_{2}, \\
\pi_{2} \times \pi_{1} & =\pi_{1} \times \pi_{2} .
\end{aligned}
$$

The following theorem immediately follows by Lemma 3.3.
Theorem 3.4. In the case $k \geq 2 l$, the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=$ $\oplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ is isomorphic to the ring

$$
\left(A / J^{l}\right)[\zeta, \eta] /\left(\zeta \eta-\eta \zeta, \zeta^{2}-\left(X^{k-2 l}+J^{l}\right) \eta\right),
$$

where $\operatorname{deg} \zeta=1$, $\operatorname{deg} \eta=2,\left(A / J^{l}\right)[\zeta, \eta]$ is the non-commutative polynomial ring over A / J^{l} with the commutative laws

$$
\zeta\left(b+J^{l}\right)=\left(\beta^{l}(b)+J^{l}\right) \zeta, \quad \eta\left(b+J^{l}\right)=\left(\beta^{k}(b)+J^{l}\right) \eta
$$

for $b+J^{l} \in A / J^{l}$, and β is the ring automorphism of A as in (3.1).
In particular, if $k \geq 3 l$ then the relation $\zeta^{2}=0$ holds in the above, and if $k=2 l$ then $\mathcal{E}\left(A / J^{l}\right)$ is isomorphic to the ring $\left(A / J^{l}\right)[\zeta]$, where $\operatorname{deg} \zeta=1$ and $\zeta\left(b+J^{l}\right)=\left(\beta^{l}(b)+J^{l}\right) \zeta$ for $b+J^{l} \in A / J^{l}$.
Remark. Let $l=1$ in the above theorem, then we have the result for the usual Yoneda algebra $\mathcal{E}(A / J)=\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}(A / J, A / J)$ as follows. If $k=2$, then $\mathcal{E}(A / J)$ is isomorphic to the ring $\left(A / J^{l}\right)[\zeta]$, where $\operatorname{deg} \zeta=1$ and $\zeta(b+J)=$ $(\beta(b)+J) \zeta$ for $b+J \in A / J$. If $k \geq 3$, then $\mathcal{E}(A / J)$ is isomorphic to the ring

$$
(A / J)[\zeta, \eta] /\left(\zeta \eta-\eta \zeta, \zeta^{2}\right)
$$

where $\operatorname{deg} \zeta=1, \operatorname{deg} \eta=2,(A / J)[\zeta, \eta]$ is the non-commutative polynomial ring over A / J with the commutative laws

$$
\zeta(b+J)=(\beta(b)+J) \zeta, \quad \eta(b+J)=\left(\beta^{k}(b)+J\right) \eta
$$

for $b+J \in A / J$. This result is equal to that obtained by A. I. Generalov in [4].

3.2. The case $k<2 l$

In this subsection, we consider the case $k<2 l$. In order to clearly describe the degree of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0} \operatorname{Ext}^{i}\left(A / J^{l}, A / J^{l}\right)$, by Proposition 2.4, we write

$$
\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)= \begin{cases}A^{*}=\left(A / J^{l}\right) \pi_{0} & \text { if } i=0 \\ \operatorname{Ker} \kappa^{*}=\left(J^{2 l-k} / J^{l}\right) \pi_{i} & \text { if } i \text { is odd } \\ A^{*} / \operatorname{Im} \kappa^{*}=\left(A / J^{l}\right) \pi_{i} /\left(J^{k-l} / J^{l}\right) \pi_{i} & \text { if } i \text { is even }\end{cases}
$$

where π_{i} denotes the natural right A-epimorphism $\pi: A \rightarrow A / J^{l}$. Furthermore, let

$$
\varepsilon_{i}= \begin{cases}\pi_{0} & \text { if } i=0 \\ \left(X^{2 l-k}+J^{l}\right) \pi_{i} & \text { if } i \text { is odd } \\ {\left[\pi_{i}\right]=\pi_{i}+\operatorname{Im} \kappa^{*}} & \text { if } i \text { is even }\end{cases}
$$

then the group $\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ is the left A / J^{l}-module generated by ε_{i}, that is,

$$
\operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)=\left(A / J^{l}\right) \varepsilon_{i} \quad \text { for } i \geq 0
$$

Proposition 3.5. In the case $k<2 l$, for $\left(a+J^{l}\right) \varepsilon_{i} \in \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ and $\left(b+J^{l}\right) \varepsilon_{j} \in \operatorname{Ext}_{A}^{j}\left(A / J^{l}, A / J^{l}\right)$ with $a, b \in A$, the Yoneda product $\left(a+J^{l}\right) \varepsilon_{i} \times$ $\left(b+J^{l}\right) \varepsilon_{j} \in \operatorname{Ext}_{A}^{i+j}\left(A / J^{l}, A / J^{l}\right)$ is given as follows:

$$
\begin{aligned}
& \left(a+J^{l}\right) \varepsilon_{i} \times\left(b+J^{l}\right) \varepsilon_{j} \\
& = \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i=0 \text { or } i \text { is even, } \\
\left(a \beta^{\frac{i+1}{2} k-l}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i \text { is odd, } j=0 \text { or } j \text { is even, } \\
\left(a X^{2 l-k} \beta^{\frac{i-1}{2} k+l}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i \text { is odd, } j \text { is odd. }\end{cases}
\end{aligned}
$$

In particular, ε_{0} is the identity element of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)$.
Proof. Let

$$
\begin{aligned}
& \phi_{i}= \begin{cases}\left(a+J^{l}\right) \pi_{i} & \text { if } i=0 \text { or } i \text { is even, } \\
\left(a X^{2 l-k}+J^{l}\right) \pi_{i} & \text { if } i \text { is odd, }\end{cases} \\
& \psi_{j}= \begin{cases}\left(b+J^{l}\right) \pi_{j} & \text { if } j=0 \text { or } j \text { is even, } \\
\left(b X^{2 l-k}+J^{l}\right) \pi_{j} & \text { if } j \text { is odd, }\end{cases}
\end{aligned}
$$

then $\left(a+J^{l}\right) \varepsilon_{i}$ and $\left(b+J^{l}\right) \varepsilon_{j}$ are represented by ϕ_{i} and ψ_{j}, respectively. Therefore, we have $\left(a+J^{l}\right) \varepsilon_{i}=\left[\phi_{i}\right]$ and $\left(b+J^{l}\right) \varepsilon_{j}=\left[\psi_{j}\right]$.

First, we consider the case $j=0$ or j is even. In this case, we can use the same lifting σ_{i} of $\psi_{j}=\left(b+J^{l}\right) \pi_{j}$ as in (3.2). Since

$$
\phi_{i} \sigma_{i}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \pi_{i+j} & \text { if } i=0 \text { or } i \text { is even, } \\ \left(a \beta^{\frac{i+1}{2} k-l}(b) X^{2 l-k}+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd }\end{cases}
$$

holds and the Yoneda product is given by $\left(a+J^{l}\right) \varepsilon_{i} \times\left(b+J^{l}\right) \varepsilon_{j}=\left[\phi_{i} \sigma_{i}\right]$, we have

$$
\left(a+J^{l}\right) \varepsilon_{i} \times\left(b+J^{l}\right) \varepsilon_{j}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i=0 \text { or } i \text { is even } \\ \left(a \beta^{\frac{i+1}{2} k-l}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i \text { is odd }\end{cases}
$$

Next, we consider the case j is odd. Define the right A-homomorphism $\sigma_{i}: A_{i+j} \rightarrow A_{i}$ by

$$
\sigma_{i}(x)= \begin{cases}\beta^{\frac{i}{2} k}(b) X^{2 l-k} x & \text { if } i=0 \text { or } i \text { is even } \\ \beta^{\frac{i-1}{2} k+l}(b) x & \text { if } i \text { is odd }\end{cases}
$$

for $x \in A_{i+j}$. Then there exists the following commutative diagram of right A-modules:

Indeed, we check this as follows. It is clear that $\pi \sigma_{0}=\psi_{j}$. If $i=0$ or i is even, then we have

$$
\left(\sigma_{i} \kappa\right)(x)=\beta^{\frac{i}{2} k}(b) X^{2 l-k} X^{k-l} x=X^{l} \beta^{\frac{i}{2} k+l}(b) x=\left(d \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$. If i is odd, then we have

$$
\left(\sigma_{i} d\right)(x)=\beta^{\frac{i-1}{2} k+l}(b) X^{l} x=X^{k-l} \beta^{\frac{i+1}{2} k}(b) X^{2 l-k} x=\left(\kappa \sigma_{i+1}\right)(x)
$$

for $x \in A_{i+j+1}$. Therefore σ_{i} is a lifting of ψ_{j}. Since

$$
\phi_{i} \sigma_{i}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b) X^{2 l-k}+J^{l}\right) \pi_{i+j} & \text { if } i=0 \text { or } i \text { is even } \\ \left(a X^{2 l-k} \beta^{\frac{i-1}{2} k+l}(b)+J^{l}\right) \pi_{i+j} & \text { if } i \text { is odd }\end{cases}
$$

holds and the Yoneda product is given by $\left(a+J^{l}\right) \varepsilon_{i} \times\left(b+J^{l}\right) \varepsilon_{j}=\left[\phi_{i} \sigma_{i}\right]$, we have

$$
\left(a+J^{l}\right) \varepsilon_{i} \times\left(b+J^{l}\right) \varepsilon_{j}= \begin{cases}\left(a \beta^{\frac{i}{2} k}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i=0 \text { or } i \text { is even } \\ \left(a X^{2 l-k} \beta^{\frac{i-1}{2} k+l}(b)+J^{l}\right) \varepsilon_{i+j} & \text { if } i \text { is odd }\end{cases}
$$

This completes the proof of the proposition.
Then we have the following lemma by the similar proof to Lemma 3.2.
Lemma 3.6. In the case $k<2 l$, we have the following equations:

$$
\varepsilon_{i}= \begin{cases}\varepsilon_{2}^{\frac{i}{2}} & \text { if } i=0 \text { or } i \text { is even } \\ \varepsilon_{1} \times \varepsilon_{2}^{\frac{i-1}{2}} & \text { if } i \text { is odd }\end{cases}
$$

where we set $\varepsilon_{2}{ }^{0}=\varepsilon_{0}$.
By Proposition 3.5, we have

$$
\left(a+J^{l}\right) \varepsilon_{i}=\left(a+J^{l}\right) \varepsilon_{0} \times \varepsilon_{i}
$$

for $a+J^{l} \in A / J^{l}$ and $i \geq 0$. Hence we have the following lemma by Lemma 3.6.

Lemma 3.7. In the case $k<2 l$, the set $\left\{\left(a+J^{l}\right) \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \mid a \in A\right\}$ is a set of generators of the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=\bigoplus_{i \geq 0}\left(A / J^{l}\right) \varepsilon_{i}$. Moreover, for $\left(a+J^{l}\right) \varepsilon_{0},\left(b+J^{l}\right) \varepsilon_{0} \in\left(A / J^{l}\right) \varepsilon_{0}, \varepsilon_{1}$ and ε_{2}, we have the following equations:

$$
\begin{aligned}
\left(a+J^{l}\right) \varepsilon_{0} \times\left(b+J^{l}\right) \varepsilon_{0} & =\left(a b+J^{l}\right) \varepsilon_{0} \\
\varepsilon_{1} \times\left(b+J^{l}\right) \varepsilon_{0} & =\left(\beta^{k-l}(b)+J^{l}\right) \varepsilon_{0} \times \varepsilon_{1} \\
\varepsilon_{2} \times\left(b+J^{l}\right) \varepsilon_{0} & =\left(\beta^{k}(b)+J^{l}\right) \varepsilon_{0} \times \varepsilon_{2} \\
\varepsilon_{1} \times \varepsilon_{1} & =\left(X^{2 l-k}+J^{l}\right) \varepsilon_{2} \\
\varepsilon_{2} \times \varepsilon_{1} & =\varepsilon_{1} \times \varepsilon_{2}
\end{aligned}
$$

The following theorem immediately follows by Lemma 3.7.
Theorem 3.8. In the case $k<2 l$, the generalized Yoneda algebra $\mathcal{E}\left(A / J^{l}\right)=$ $\bigoplus_{i \geq 0} \operatorname{Ext}_{A}^{i}\left(A / J^{l}, A / J^{l}\right)$ is isomorphic to the ring

$$
\left(A / J^{l}\right)[\zeta, \eta] /\left(\zeta \eta-\eta \zeta, \zeta^{2}-\left(X^{2 l-k}+J^{l}\right) \eta\right),
$$

where $\operatorname{deg} \zeta=1$, $\operatorname{deg} \eta=2,\left(A / J^{l}\right)[\zeta, \eta]$ is the non-commutative polynomial ring over A / J^{l} with the commutative laws

$$
\zeta\left(b+J^{l}\right)=\left(\beta^{k-l}(b)+J^{l}\right) \zeta, \quad \eta\left(b+J^{l}\right)=\left(\beta^{k}(b)+J^{l}\right) \eta
$$

for $b+J^{l} \in A / J^{l}$, and β is the ring automorphism of A as in (3.1).

Acknowledgments

The authors would like to express their gratitude to Professor Katsunori Sanada for many valuable comments and discussions. Also the authors would like to thank the referee and the editor for many comments and suggestions.

References

[1] D. J. Benson and J. F. Carlson, Diagrammatic methods for modular representations and cohomology, Comm. Algebra 15 (1987), 53-121.
[2] K. Erdmann and T. Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_{n}, Forum Math. 11 (1999), 177-201.
[3] T. Furuya and K. Sanada, Hochschild cohomology of an algebra associated with a circular quiver, Comm. Algebra 34 (2006), 2019-2037.
[4] A. I. Generalov, The Yoneda algebras of serial $Q F$-algebras, J. Math. Sci. 112 (2002), 4313-4317.

Ryouichirou Sasaki
Department of Mathematics, Tokyo University of Science Wakamiya 26, Shinjuku, Tokyo 162-0827, Japan

Manabu Suda
Department of Mathematics, Tokyo University of Science Wakamiya 26, Shinjuku, Tokyo 162-0827, Japan
E-mail: suda@ma.kagu.tus.ac.jp
Takahiko Furuya
Department of Mathematics, Tokyo University of Science Wakamiya 26, Shinjuku, Tokyo 162-0827, Japan
E-mail: furuya@ma.kagu.tus.ac.jp

