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Abstract. Let A = KΓ/(Xk), where KΓ is the path algebra of a cyclic quiver
Γ over a field K, X is the sum of all arrows of Γ and k is a positive integer.
In this paper, we describe the ring structure of the generalized Yoneda algebra⊕

i≥0 ExtiA(A/J l, A/J l) of A with multiplication given by the Yoneda product,
where J denotes the Jacobson radical of A and l is a positive integer with l ≤ k.
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§1. Introduction

Let KΓ be the path algebra over a field K of the cyclic quiver Γ with s
vertices e1, . . . , es and s arrows a1, . . . , as, where s is a positive integer. We set
X = a1 + · · ·+as, A = KΓ/(Xk) with a positive integer k and J the Jacobson
radical of A, that is, the ideal of A generated by X. Let l be a positive integer
with l ≤ k. Then we call the algebra E(A/J l) =

⊕
i≥0 ExtiA(A/J l, A/J l) with

multiplication given by the Yoneda product the generalized Yoneda algebra of
A, because the algebra E(A/J) is the usual Yoneda algebra of A.

A. I. Generalov [4] has determined the ring structure of the usual Yoneda
algebra E(A/J) of A by using the diagrammatic method which is presented by
D. J. Benson and J. F. Carlson in [1] (cf. Remark in Section 3.1). Our purpose
of this paper is to describe the ring structure of the generalized Yoneda algebra
E(A/J l) of A by basic calculations. By the way, a basic self-injective Nakayama
algebra over K is of the form A = KΓ/(Xk) with k ≥ 2 and K. Erdmann and
T. Holm [2] determined the ring structure of the Hochschild cohomology ring
HH∗(A) =

⊕
i≥0 ExtiAe(A,A) of A. Here, Ae denotes the enveloping algebra

A⊗K A◦ of A, where A◦ is the opposite ring of A.
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This paper is organized as follows: In Section 2, we construct an A-
projective resolution of A/J l (Proposition 2.1) and calculate the group
ExtiA(A/J l, A/J l) for i ≥ 0 (Propositions 2.2 and 2.4). In Section 3, we
calculate the Yoneda product in E(A/J l) (Propositions 3.1 and 3.5) and de-
scribe the ring structure of E(A/J l) (Theorems 3.4 and 3.8) by referring to
[3].

§2. Calculation of the group ExtiA(A/J l,A/J l)

Let s be a positive integer, Γ the cyclic quiver with s vertices e1, e2, . . . , es and
s arrows a1, a2, . . . , as such that each ai starts at ei and ends at ei+1, where
we regard the subscripts i of ei modulo s. Let K be a field and KΓ the path
algebra of Γ over K. In KΓ, ai = ei+1aiei holds for each 1 ≤ i ≤ s. Let X
be the sum of all arrows: X = a1 + a2 + · · · + as. Note that X is a non-zero
divisor in KΓ.

We fix a positive integer k, and we denote KΓ/(Xk) by A. Then A is a
finite dimensional algebra, since A =

⊕k−1
p=0

⊕s
q=1KX

peq and dimK A = ks.
Let J = AX = XA = (X)/(Xk), then J is the radical of A because J is a
nilpotent ideal and A/J ' KΓ/(X) '∏s

i=1Kei is semi-simple.
Let l be a fixed positive integer with l ≤ k. In this section, we calculate

the group ExtiA(A/J l, A/J l) for i ≥ 0 in order to consider the generalized
Yoneda algebra E(A/J l) =

⊕
i≥0 ExtiA(A/J l, A/J l) of A. First, we give an

A-projective resolution of A/J l for the calculation.

Proposition 2.1. Let A = KΓ/(Xk), J = XA the radical of A, l a positive
integer with l ≤ k. Then there exists the following periodic right A-projective
resolution of A/J l:

· · · κ−−−−→ A
d−−−−→ A

κ−−−−→ A
d−−−−→ A

π−−−−→ A/J l −−−−→ 0,(2.1)

where π : A → A/J l is the natural right A-epimorphism, d : A → A and
κ : A→ A are the right A-homomorphisms defined by

d(x) = X lx, κ(x) = Xk−lx

for all x ∈ A.

Proof. Since Ker π = J l = X lA = Im d, dκ = 0 and κd = 0, it suffices to
show that Ker d ⊆ Im κ and Ker κ ⊆ Im d.

Let a ∈ Ker d, where a = u + (Xk) for some u ∈ KΓ. Then we have
0 = d(a) = X lu+ (Xk) in A, hence there exists an element v ∈ KΓ such that
X lu = Xkv in KΓ. Since X is a non-zero divisor in KΓ, we have u = Xk−lv.
Hence a = Xk−lv + (Xk) = κ(v + (Xk)) ∈ Im κ, so we have Ker d ⊆ Im κ.
Similarly, we also have Ker κ ⊆ Im d.
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In the rest of this section, we calculate the group ExtiA(A/J l, A/J l). We
denote the functor HomA(−, A/J l) by (−)∗. By applying the functor to the
projective resolution (2.1) ofA/J l, we have the following commutative diagram
of left A/J l-modules:

0 −−−−→ A∗ d∗−−−−→ A∗ κ∗−−−−→ A∗ d∗−−−−→ A∗ κ∗−−−−→ · · ·
µ o
y µ o

y µ o
y µ o

y

0 −−−−→ A/J l
d#−−−−→ A/J l

κ#−−−−→ A/J l
d#−−−−→ A/J l

κ#−−−−→ · · · ,

(2.2)

where we set

µ : A∗ = HomA(A,A/J l) ∼−→ A/J l; φ 7−→ φ(1A),

d# = µd∗µ−1 and κ# = µκ∗µ−1. Note that the inverse µ−1 of µ is given by
µ−1(a+J l)(x) = ax+J l for all x ∈ A and a+J l ∈ A/J l. Since the left A/J l-
module A/J l is generated by 1A + J l, the left A/J l-module HomA(A,A/J l)
is generated by µ−1(1A + J l) = π, that is,

HomA(A,A/J l) = (A/J l)π.

By the left module action of A/J l on HomA(A,A/J l), for a + J l ∈ A/J l, we
have

((a+ J l)π)(x) = (a+ J l)π(x) = (a+ J l)(x+ J l) = ax+ J l

for all x ∈ A. Moreover, for the left A/J l-homomorphisms d∗ and κ∗, we have

d∗ = 0, κ∗(π) = (Xk−l + J l)π,

since d∗(π)(x) = (πd)(x) = X lx+J l = 0 and κ∗(π)(x) = (πκ)(x) = Xk−lx+J l

for all x ∈ A. Hence the left A/J l-homomorphisms d# and κ# satisfy that
d# = 0 and

κ#(1A + J l) = (µκ∗)(π) = µ((Xk−l + J l)π) = Xk−l + J l.(2.3)

If k ≥ 2l then κ∗ = 0, and hence we easily obtain the following proposition.

Proposition 2.2. In the case k ≥ 2l, we have the following isomorphisms of
left A/J l-modules:

ExtiA(A/J l, A/J l) = A∗ ∼−→ A/J l; φ 7−→ φ (1A) ,

for i ≥ 0, where A∗ = HomA(A,A/J l) = (A/J l)π with the natural right A-
epimorphism π : A→ A/J l.
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Next we consider the case k < 2l. We prepare the following lemma in order
to compute the group ExtiA(A/J l, A/J l) for i ≥ 0.

Lemma 2.3. In the case k < 2l, we have the following equations:

Im κ# = Jk−l/J l, Ker κ# = J2l−k/J l,

where κ# is the left A/J l-homomorphism as above and J0 denotes A.

Proof. By the equation (2.3), we have Im κ# = (AXk−l + J l)/J l = Jk−l/J l

and κ#(J2l−k/J l) = (J2l−kXk−l)/J l = 0. Hence it suffices to show that
Ker κ# ⊂ J2l−k/J l.

Let a+ J l ∈ Ker κ#, where a = u+ (Xk) for some u ∈ KΓ. Then we have
0 = κ#(a + J l) = aXk−l + J l, hence there exists an element v ∈ KΓ such
that aXk−l = (v + (Xk))X l. It follows that uXk−l + (Xk) = vX l + (Xk), so
there exists an element w ∈ KΓ such that uXk−l − vX l = wXk. Since X is
a non-zero divisor in KΓ, we have u = vX2l−k + wX l = (v + wXk−l)X2l−k.
Let a′ = v + wXk−l + (Xk) ∈ A, then a = a′X2l−k ∈ J2l−k holds. Therefore
we have a+ J l ∈ J2l−k/J l.

So we have the following theorem by Lemma 2.3 and the commutative
diagram (2.2).

Proposition 2.4. In the case k < 2l, we have the following isomorphisms of
left A/J l-modules:

ExtiA(A/J l, A/J l)

=





A∗ ∼−→ A/J l; φ 7−→ φ(1A) if i = 0,
Ker κ∗ ∼−→ J2l−k/J l; φ 7−→ φ(1A) if i is odd,
A∗/Im κ∗ ∼−→ A/Jk−l; [φ] 7−→ a+ Jk−l if i is even,

where [φ] is the element represented by φ ∈ A∗ and φ(1A) = a + J l for some
a ∈ A.

Proof. For the proof, we use the commutative diagram (2.2) of left A/J l-
modules and Lemma 2.3.

If i = 0, then the left A/J l-isomorphism

µ : Ext0
A(A/J l, A/J l) = A∗ ∼−→ A/J l; φ 7−→ φ(1A),

is the desired isomorphism.
If i is odd, then the left A/J l-isomorphism

ExtiA(A/J l, A/J l) = Ker κ∗ ∼−→ Ker κ# = J2l−k/J l; φ 7−→ φ(1A),
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which is induced by µ is the desired isomorphism.
If i is even, then the left A/J l-isomorphism

ExtiA(A/J l, A/J l) = A∗/Im κ∗ ' (A/J l)/Im κ#

is induced by µ. Since Im κ# = Jk−l/J l, the composition of left A/J l-
isomorphisms

A∗/Im κ∗ ∼−→ (A/J l)/(Jk−l/J l) ∼−→ A/Jk−l;
[φ] 7−→ φ(1A) + Jk−l/J l 7−→ a+ Jk−l,

where φ(1A) = a+ J l for some a ∈ A is the desired isomorphism.

§3. Calculation of the Yoneda product

In this section, we calculate the Yoneda product in the generalized Yoneda
algebra E(A/J l) =

⊕
i≥0 ExtiA(A/J l, A/J l) of A by means of the resolution

(2.1). Then we determine the ring structure of E(A/J l).
We recall the definition of the Yoneda product × in E(A/J l). Denote the

right A-projective resolution (2.1) by

· · · d4−−−−→ A3
d3−−−−→ A2

d2−−−−→ A1
d1−−−−→ A0

π−−−−→ A/J l −−−−→ 0,

where we set Ai = A, d2i+1 = d and d2i+2 = κ for i ≥ 0. Let [φ] ∈
ExtiA(A/J l, A/J l) and [ψ] ∈ ExtjA(A/J l, A/J l) be the elements which are
represented by φ ∈ Ker d∗i+1 and ψ ∈ Ker d∗j+1, respectively. There exists the
following commutative diagram of right A-modules:

· · · di+j+1// Ai+j
di+j //

σi

��

· · · dj+2 // Aj+1
dj+1 //

σ1

��

Aj

σ0

��

ψ

!!DDDDDDDD

· · · di+1 // Ai
di // · · · d2 // A1

d1 // A0
π // A/J l // 0,

where σν (0 ≤ ν ≤ i) are liftings of ψ. Then the Yoneda product [φ] × [ψ] is
given by [φσi] ∈ Exti+jA (A/J l, A/J l).

Define the ring automorphism β : A→ A by

β(ei) = ei−1, β(ai) = ai−1(3.1)

for 1 ≤ i ≤ s. Then it is easily verified that β(X) = X and aXt = Xtβt(a) for
all a ∈ A and t ≥ 0, where β0 denotes the identity map on A. We use these
equations in the following calculations.
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3.1. The case k ≥ 2l

In this subsection, we consider the case k ≥ 2l. In order to clearly describe the
degree of the generalized Yoneda algebra E(A/J l) =

⊕
i≥0 ExtiA(A/J l, A/J l),

by Proposition 2.2, we write ExtiA(A/J l, A/J l) = (A/J l)πi for i ≥ 0, where
πi denotes the natural right A-epimorphism π : A → A/J l. Note that if
φ ∈ ExtiA(A/J l, A/J l) then there exists some a ∈ A such that φ = (a+ J l)πi,
and hence φ(x) = ax+ J l for all x ∈ A.

Proposition 3.1. In the case k ≥ 2l, for (a+ J l)πi ∈ ExtiA(A/J l, A/J l) and
(b + J l)πj ∈ ExtjA(A/J l, A/J l) with a, b ∈ A, the Yoneda product (a + J l) ×
(b+ J l) ∈ Exti+jA (A/J l, A/J l) is given as follows:

(a+ J l)πi × (b+ J l)πj

=





(aβ
i
2
k(b) + J l)πi+j if i = 0 or i is even,

(aβ
i−1

2
k+l(b) + J l)πi+j if i is odd, j = 0 or j is even,

(aXk−2lβ
i+1
2
k−l(b) + J l)πi+j if i is odd, j is odd,

where β is the ring automorphism of A as in (3.1). In particular, π0 is the
identity element of the generalized Yoneda algebra E(A/J l).

Proof. Let φ = (a + J l)πi and ψ = (b + J l)πj , then we have φ(x) = ax + J l

and ψ(x) = bx+ J l for all x ∈ A.
First, we consider the case j = 0 or j is even. Define the right A-

homomorphism σi : Ai+j → Ai by

σi(x) =

{
β
i
2
k(b)x if i = 0 or i is even,

β
i−1

2
k+l(b)x if i is odd,

(3.2)

for x ∈ Ai+j . Then there exists the following commutative diagram of right
A-modules:

· · · di+j+1// Ai+j
di+j //

σi

��

· · · κ // Aj+1
d //

σ1

��

Aj

σ0

��

ψ

!!DDDDDDDD

· · · di+1 // Ai
di // · · · κ // A1

d // A0
π // A/J l // 0.

Indeed, we check this as follows. Since σ0(x) = bx for x ∈ Ai+j , it follows that
πσ0 = ψ. If i = 0 or i is even, then we have

(σid)(x) = β
i
2
k(b)X lx = X lβ

i
2
k+l(b)x = (dσi+1)(x)
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for x ∈ Ai+j+1 If i is odd, then we have

(σiκ)(x) = β
i−1

2
k+l(b)Xk−lx = Xk−lβ

i+1
2
k(b)x = (κσi+1)(x)

for x ∈ Ai+j+1. Therefore σi is a lifting of ψ, and hence we have

(a+J l)πi× (b+J l)πj = φσi =

{
(aβ

i
2
k(b) + J l)πi+j if i = 0 or i is even,

(aβ
i−1
2
k+l(b) + J l)πi+j if i is odd.

Next, we consider the case j is odd. Define the right A-homomorphism
σi : Ai+j → Ai by

σi(x) =

{
β
i
2
k(b)x if i = 0 or i is even,

Xk−2lβ
i+1
2
k−l(b)x if i is odd,

for x ∈ Ai+j . Then there exists the following commutative diagram of right
A-modules:

· · · di+j+1// Ai+j
di+j //

σi

��

· · · d // Aj+1
κ //

σ1

��

Aj

σ0

��

ψ

!!DDDDDDDD

· · · di+1 // Ai
di // · · · κ // A1

d // A0
π // A/J l // 0.

Indeed, we check this as follows. It is clear that πσ0 = ψ. If i = 0 or i is even,
then we have

(σiκ)(x) = β
i
2
k(b)Xk−lx = X lXk−2lβ

i+2
2
k−l(b)x = (dσi+1)(x)

for x ∈ Ai+j+1. If i is odd, then we have

(σid)(x) = Xk−2lβ
i+1
2
k−l(b)X lx = Xk−lβ

i+1
2
k(b)x = (κσi+1)(x)

for x ∈ Ai+j+1. Therefore σi is a lifting of ψ, and hence we have

(a+ J l)πi × (b+ J l)πj

= φσi =

{
(aβ

i
2
k(b) + J l)πi+j if i = 0 or i is even,

(aXk−2lβ
i+1
2
k−l(b) + J l)πi+j if i is odd.

This completes the proof of the proposition.

Then we have the following lemma.
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Lemma 3.2. In the case k ≥ 2l, we have the following equations:

πi =

{
π2

i
2 if i = 0 or i is even,

π1 × π2
i−1

2 if i is odd,

where we set π2
0 = π0.

Proof. We shall show the statement by induction on i. For i = 0, 1, 2, the
equation is true, since we set π2

0 = π0 and π0 is the identity element by
Proposition 3.1. Suppose as the induction hypothesis that the equation is
true for i ≥ 1. If i is odd, then we have

πi+2 = πi × π2 = π1 × π2
i−1
2 × π2 = π1 × π2

i+1
2

by Proposition 3.1 and the induction hypothesis. If i is even, then we also
have

πi+2 = πi × π2 = π2
i
2 × π2 = π2

i+2
2 .

Therefore the equation is true for i+ 2 and hence the statement follows.

By Proposition 3.1, we have

(a+ J l)πi = (a+ J l)π0 × πi
for a + J l ∈ A/J l and i ≥ 0. Hence we have the following lemma by Lemma
3.2.

Lemma 3.3. In the case k ≥ 2l, the set {(a + J l)π0, π1, π2 | a ∈ A} is a
set of generators of the generalized Yoneda algebra E(A/J l) =

⊕
i≥0(A/J l)πi.

Moreover, for (a + J l)π0, (b + J l)π0 ∈ (A/J l)π0, π1 and π2, we have the
following equations:

(a+ J l)π0 × (b+ J l)π0 = (ab+ J l)π0,

π1 × (b+ J l)π0 = (βl(b) + J l)π0 × π1,

π2 × (b+ J l)π0 = (βk(b) + J l)π0 × π2,

π1 × π1 = (Xk−2l + J l)π2,

π2 × π1 = π1 × π2.

The following theorem immediately follows by Lemma 3.3.

Theorem 3.4. In the case k ≥ 2l, the generalized Yoneda algebra E(A/J l) =⊕
i≥0 ExtiA(A/J l, A/J l) is isomorphic to the ring

(A/J l)[ζ, η]
/(

ζη − ηζ, ζ2 − (Xk−2l + J l)η
)
,



A GENERALIZED YONEDA ALGEBRA 223

where deg ζ = 1, deg η = 2, (A/J l)[ζ, η] is the non-commutative polynomial
ring over A/J l with the commutative laws

ζ(b+ J l) = (βl(b) + J l)ζ, η(b+ J l) = (βk(b) + J l)η

for b+ J l ∈ A/J l, and β is the ring automorphism of A as in (3.1).
In particular, if k ≥ 3l then the relation ζ2 = 0 holds in the above, and if

k = 2l then E(A/J l) is isomorphic to the ring (A/J l)[ζ], where deg ζ = 1 and
ζ(b+ J l) = (βl(b) + J l)ζ for b+ J l ∈ A/J l.
Remark. Let l = 1 in the above theorem, then we have the result for the usual
Yoneda algebra E(A/J) =

⊕
i≥0 ExtiA(A/J,A/J) as follows. If k = 2, then

E(A/J) is isomorphic to the ring (A/J l)[ζ], where deg ζ = 1 and ζ(b + J) =
(β(b) + J)ζ for b+ J ∈ A/J . If k ≥ 3, then E(A/J) is isomorphic to the ring

(A/J)[ζ, η]
/

(ζη − ηζ, ζ2),

where deg ζ = 1, deg η = 2, (A/J)[ζ, η] is the non-commutative polynomial
ring over A/J with the commutative laws

ζ(b+ J) = (β(b) + J)ζ, η(b+ J) = (βk(b) + J)η,

for b + J ∈ A/J . This result is equal to that obtained by A. I. Generalov in
[4].

3.2. The case k < 2l

In this subsection, we consider the case k < 2l. In order to clearly describe the
degree of the generalized Yoneda algebra E(A/J l) =

⊕
i≥0 ExtiA(A/J l, A/J l),

by Proposition 2.4, we write

ExtiA(A/J l, A/J l) =





A∗ = (A/J l)π0 if i = 0,
Ker κ∗ = (J2l−k/J l)πi if i is odd,
A∗/Im κ∗ = (A/J l)πi/(Jk−l/J l)πi if i is even,

where πi denotes the natural right A-epimorphism π : A → A/J l. Further-
more, let

εi =





π0 if i = 0,
(X2l−k + J l)πi if i is odd,
[πi] = πi + Im κ∗ if i is even,

then the group ExtiA(A/J l, A/J l) is the left A/J l-module generated by εi, that
is,

ExtiA(A/J l, A/J l) = (A/J l)εi for i ≥ 0.
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Proposition 3.5. In the case k < 2l, for (a+ J l)εi ∈ ExtiA(A/J l, A/J l) and
(b+ J l)εj ∈ ExtjA(A/J l, A/J l) with a, b ∈ A, the Yoneda product (a+ J l)εi ×
(b+ J l)εj ∈ Exti+jA (A/J l, A/J l) is given as follows:

(a+ J l)εi × (b+ J l)εj

=





(aβ
i
2
k(b) + J l)εi+j if i = 0 or i is even,

(aβ
i+1
2
k−l(b) + J l)εi+j if i is odd, j = 0 or j is even,

(aX2l−kβ
i−1

2
k+l(b) + J l)εi+j if i is odd, j is odd.

In particular, ε0 is the identity element of the generalized Yoneda algebra
E(A/J l).

Proof. Let

φi =

{
(a+ J l)πi if i = 0 or i is even,
(aX2l−k + J l)πi if i is odd,

ψj =

{
(b+ J l)πj if j = 0 or j is even,
(bX2l−k + J l)πj if j is odd,

then (a + J l)εi and (b + J l)εj are represented by φi and ψj , respectively.
Therefore, we have (a+ J l)εi = [φi] and (b+ J l)εj = [ψj ].

First, we consider the case j = 0 or j is even. In this case, we can use the
same lifting σi of ψj = (b+ J l)πj as in (3.2). Since

φiσi =

{
(aβ

i
2
k(b) + J l)πi+j if i = 0 or i is even,

(aβ
i+1
2
k−l(b)X2l−k + J l)πi+j if i is odd,

holds and the Yoneda product is given by (a+ J l)εi × (b+ J l)εj = [φiσi], we
have

(a+ J l)εi × (b+ J l)εj =

{
(aβ

i
2
k(b) + J l)εi+j if i = 0 or i is even,

(aβ
i+1
2
k−l(b) + J l)εi+j if i is odd.

Next, we consider the case j is odd. Define the right A-homomorphism
σi : Ai+j → Ai by

σi(x) =

{
β
i
2
k(b)X2l−kx if i = 0 or i is even,

β
i−1

2
k+l(b)x if i is odd,

for x ∈ Ai+j . Then there exists the following commutative diagram of right
A-modules:

· · · di+j+1// Ai+j
di+j //

σi

��

· · · d // Aj+1
κ //

σ1

��

Aj

σ0

��

ψj

!!DDDDDDDD

· · · di+1 // Ai
di // · · · κ // A1

d // A0
π // A/J l // 0.
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Indeed, we check this as follows. It is clear that πσ0 = ψj . If i = 0 or i is
even, then we have

(σiκ)(x) = β
i
2
k(b)X2l−kXk−lx = X lβ

i
2
k+l(b)x = (dσi+1)(x)

for x ∈ Ai+j+1. If i is odd, then we have

(σid)(x) = β
i−1

2
k+l(b)X lx = Xk−lβ

i+1
2
k(b)X2l−kx = (κσi+1)(x)

for x ∈ Ai+j+1. Therefore σi is a lifting of ψj . Since

φiσi =

{
(aβ

i
2
k(b)X2l−k + J l)πi+j if i = 0 or i is even,

(aX2l−kβ
i−1

2
k+l(b) + J l)πi+j if i is odd,

holds and the Yoneda product is given by (a+ J l)εi × (b+ J l)εj = [φiσi], we
have

(a+ J l)εi × (b+ J l)εj =

{
(aβ

i
2
k(b) + J l)εi+j if i = 0 or i is even,

(aX2l−kβ
i−1

2
k+l(b) + J l)εi+j if i is odd.

This completes the proof of the proposition.

Then we have the following lemma by the similar proof to Lemma 3.2.

Lemma 3.6. In the case k < 2l, we have the following equations:

εi =

{
ε2

i
2 if i = 0 or i is even,

ε1 × ε2
i−1

2 if i is odd,

where we set ε2
0 = ε0.

By Proposition 3.5, we have

(a+ J l)εi = (a+ J l)ε0 × εi
for a + J l ∈ A/J l and i ≥ 0. Hence we have the following lemma by Lemma
3.6.

Lemma 3.7. In the case k < 2l, the set {(a + J l)ε0, ε1, ε2 | a ∈ A} is a
set of generators of the generalized Yoneda algebra E(A/J l) =

⊕
i≥0(A/J l)εi.

Moreover, for (a+J l)ε0, (b+J l)ε0 ∈ (A/J l)ε0, ε1 and ε2, we have the following
equations:

(a+ J l)ε0 × (b+ J l)ε0 = (ab+ J l)ε0,

ε1 × (b+ J l)ε0 = (βk−l(b) + J l)ε0 × ε1,

ε2 × (b+ J l)ε0 = (βk(b) + J l)ε0 × ε2,

ε1 × ε1 = (X2l−k + J l)ε2,

ε2 × ε1 = ε1 × ε2.
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The following theorem immediately follows by Lemma 3.7.

Theorem 3.8. In the case k < 2l, the generalized Yoneda algebra E(A/J l) =⊕
i≥0 ExtiA(A/J l, A/J l) is isomorphic to the ring

(A/J l)[ζ, η]
/(

ζη − ηζ, ζ2 − (X2l−k + J l)η
)
,

where deg ζ = 1, deg η = 2, (A/J l)[ζ, η] is the non-commutative polynomial
ring over A/J l with the commutative laws

ζ(b+ J l) = (βk−l(b) + J l)ζ, η(b+ J l) = (βk(b) + J l)η

for b+ J l ∈ A/J l, and β is the ring automorphism of A as in (3.1).
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