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Abstract. Let G be a finite graph, with V (G) and E(G) the vertex-set and
edge-set of G, respectively. An edge-magic total labeling is a one-to-one mapping
f from V (G) ∪ E(G) onto {1, 2, 3, · · · , |V (G)|+ |E(G)|} such that there exists
a constant c satisfying f(u) + f(uv) + f(v) = c, for each uv ∈ E(G). Such a
labeling is called a super edge-magic total labeling if all vertices of G receive all
smallest labels. In this paper, we consider (super) edge-magic total labeling for
subdivision of a star K1,3.
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§1. Introduction

All graphs considered here are finite and simple. The graph G has the vertex-
set V (G) and the edge-set E(G).

Let p = |V (G)| and q = |E(G)|. A bijection f : V (G)∪E(G)→ {1, 2, 3, · · · ,
p + q} is called an edge-magic total labeling of G if f(x) + f(xy) + f(y) is a
constant c (called the magic constant of f) for every edge xy of G. The
graph that admits such a labeling is called an edge-magic graph. An edge-
magic total labeling f is called a super edge-magic total labeling if f(V (G)) =
{1, 2, 3, · · · , p}. A graph that admits a super edge-magic total labeling is called
a super edge-magic graph. The edge-magic and super edge-magic concepts were
first introduced by Kotzig and Rosa [7] and Enomoto, Lladó, Nakamigawa and
Ringel [3], respectively.

Given a total labeling f , the dual labeling, which Kotzig and Rosa [7] called
the complementary labeling, f ′ is defined as follows,

f ′(x) = p+ q + 1− f(x) for every x ∈ E(G) ∪ V (G).
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If f is an edge-magic total labeling with magic-constant c, then f ′ is an edge-
magic total labeling with magic-constant c′ = 3(p+q+1)−c. Notice that this
dual labeling does not preserve super edge-magic total labeling unless G = Kn.

Another definition of a dual labeling was also introduced in [1]. By this
definition the dual labeling preserves the property of super edge-magicness.

Lemma 1. [1] If g is a super edge-magic total labeling of G with the magic
constant c, then the function g′ : V (G) ∪ E(G) → {1, 2, 3, · · · , p + q} defined
by

g′(x) =
{
p+ 1− g(x), if x ∈ V (G),
2p+ q + 1− g(x), if x ∈ E(G),

is also a super edge-magic total labeling of G with the magic constant c′ =
4p+ q + 3− c.

The labeling g′ defined in Lemma 1 is called a dual super labeling of g.
In the original papers about (super) edge-magic total labeling, Kotzig and

Rosa [7], and Enomoto et al. [3] conjectured that every tree is edge-magic and
every tree is super edge-magic, respectively. These conjectures have become
very popular in the area of graph labeling. Some classes of tree have been
proved to admit a (super) edge-magic labelings, such as paths, caterpillars
[7], stars [4, 11], tree with at most 17 vertices [9], and path-like trees [2].
Additionally, Fukuchi [6] gives recursive formula for constructing super edge-
magic trees. However, the conjectures are still remain open.

In this paper, we prove that a particular type of tree, namely a subdivision
of a star K1,3 is (super) edge-magic. These results provide more examples to
support the correctness of the two conjectures on trees.

§2. The Results

For m,n, k ≥ 1, let T (m,n, k) be a graph obtained by inserting m− 1, n− 1,
and k − 1 vertices to the first, second, and third edges, respectively, of a star
K1,3. Thus, the star K1,3 can be written as T (1, 1, 1). We define the the
vertex-set and the edge-set of graph T (m,n, k) as follows.

V (T (m,n, k)) = {w} ∪ {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ n} ∪ {zi : 1 ≤ i ≤ k},

and

E(T (m,n, k)) = {wx1, wy1, wz1} ∪ {xixi+1 : 1 ≤ i ≤ m− 1}
∪{yiyi+1 : 1 ≤ i ≤ n− 1} ∪ {zizi+1 : 1 ≤ i ≤ k − 1}.
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Clearly, a graph T (m,n, k) has m + n + k + 1 vertices and m + n + k edges.
Among these vertices, one vertex has degree three, three vertices have degree
one, and the remaining vertices have degree two. As an example, Figure 1
shows the graph T (4, 5, 7).

Figure 1: A tree T (4, 5, 7)

Lu [12, 13] called the graph T (m,n, k) as a three-path trees and proved that
T (m,n, k) is super edge-magic if n and k are odd, or k = n+ 1, or k = n+ 2.
In this paper, we prove that T (m,n, k) is also super edge-magic if k = n+ 3,
and k = n+ 4.

In proving the main results, the following lemma will be frequently used.

Lemma 2. [4] A graph G with p vertices and q edges is super edge-magic if
and only if there exists a bijective function f : V (G)→ {1, 2, · · · , p} such that
the set S = {f(x) + f(y) : xy ∈ E(G)} consists of q consecutive integers. In
such a case, f extends to a super edge-magic total labeling of G with the magic
constant c = p+ q +min(S).

Suppose T (m,n, k) has an edge-magic total labeling with the magic con-
stant c. Then tc, where t = m + n + k, cannot be smaller than the sum
obtained by assigning the smallest labels to the vertex of degree 3, the t − 3
next smallest labels to the vertices of degree 2, and three next smallest labels
to the vertices of degree 1; in other words

tc ≥ 3 + 2
t−2∑

i=2

i+
t+1∑

i=t−1

i+
2t+1∑

i=t+2

i.

An upper bound for tc is achieved by giving the the largest labels to the
vertices of degree 3, and the t− 3 next largest labels to the vertices of degree
2, and 3 next largest labels to the rest of vertices; namely

tc ≤ 3(2t+ 1) + 2
2t∑

i=t+4

i+
t+3∑

i=t+1

i+
t∑

i=1

i.

Thus, we have the following result.

Lemma 3. If a T (m,n, k) is an edge-magic graph, then magic constant c is
in the following interval:
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1
2t(5t

2 + 3t+ 6) ≤ c ≤ 1
2t(7t

2 + 9t− 6).

By a similar argument, it is easy to verify that the following lemma holds.

Lemma 4. If a T (m,n, k) is a super edge-magic graph, then magic constant
c is in the following interval:

1
2t(5t

2 + 3t+ 6) ≤ c ≤ 1
2t(5t

2 + 11t− 6).

In the next two theorems, we will show that T (m,n, k), for k = n+ 3 and
k = n + 4, is super edge-magic. First, we introduce two constants α and β
used in the proposed labeling of graph T (m,n, k) as follows:

α =
{

0, if n ≡ 2 (mod 4),
1, if n ≡ 0, 1, 3 (mod 4),

and

β =
{ d1

2(m− 4)e, if n ≡ 0 (mod 2),
d1

2(m− 2)e, if n ≡ 1 (mod 2).

Theorem 1. For all integers m,n ≥ 1, T (m,n, n+ 3) is a super edge-magic
graph.

Proof. Consider the vertex labeling f : V (T (m,n, n+ 3))→ {1, 2, 3, · · · ,m+
2n+ 4} defined as follows.

f(u) =





m+ n+ 3, if u = w,
dm2 e − 1

2(i− 1), if u = xi for i ≡ 1 (mod 2),
m+ n+ 3− 1

2 i, if u = xi for i ≡ 0 (mod 2),
dm2 e+ 1− α+ 1

2(i+ 1), if u = yi for i ≡ 1 (mod 2),
m+ n+ 3 + 1

2 i, if u = yi for i ≡ 0 (mod 2).

For the remaining vertices, we consider the following four cases.
Case 1. n ≡ 0 mod 4,

f(zi) =





dm2 e+ n+ 1− 1
2(i− 1), for i ≡ 1 (mod 4),

dm2 e+ n+ 3− 1
2(i− 1), for i ≡ 3 (mod 4),

m+ 2n+ 4− 1
2 i, for i ≡ 2 (mod 4), i 6= n+ 2,

m+ 2n+ 6− 1
2 i, for i ≡ 0 (mod 4),

m+ 3
2n+ 4, for i = n+ 2.

Case 2. n ≡ 1 mod 4,

f(zi) =





dm2 e+ n+ 1− 1
2(i− 1), for i ≡ 1 (mod 4),

dm2 e+ n+ 3− 1
2(i− 1), for i ≡ 3 (mod 4),

m+ 2n+ 4− 1
2 i, for i ≡ 2 (mod 4),

m+ 2n+ 6− 1
2 i, for i ≡ 0 (mod 4).
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Case 3. n ≡ 2 mod 4,

f(zi) =




dm2 e+ 1, for i = 1,
dm2 e+ n+ 3− 1

2(i− 1), for i ≡ 1 (mod 2), i 6= 1,
m+ 2n+ 5− 1

2 i, for i ≡ 0 (mod 2).

Case 4. n ≡ 3 mod 4,

f(zi) =





dm2 e+ n+ 1− 1
2(i− 1), for i ≡ 1 (mod 4), i 6= n+ 2,

dm2 e+ n+ 3− 1
2(i− 1), for i ≡ 3 (mod 4),

m+ 2n+ 4− 1
2 i, for i ≡ 2 (mod 4), i 6= n− 1,

m+ 2n+ 6− 1
2 i, for i ≡ 0 (mod 4), i 6= n+ 1,

m+ 5 + 1
2(3n+ 1), for i = n− 1,

m+ 3 + 1
2(3n+ 1), for i = n+ 1,

dm2 e+ dn2 e+ 1, for i = n+ 2,
m+ 4 + 1

2(3n+ 1), for i = n+ 3.

Under the vertex labeling f , we have the following sums of labels of two
adjacent vertices.

f(w) + f(x1) = m+
⌈m

2

⌉
+ n+ 3,

f(w) + f(y1) = m+
⌈m

2

⌉
+ n+ 5− α,

f(w) + f(z1) =
{
m+ dm2 e+ n+ 4, if n ≡ 2 (mod 4),
m+ dm2 e+ 2n+ 4, if n ≡ 0, 1, 3 (mod 4),

{f(xi) + f(xi+1) : 1 ≤ i ≤ m− 1}
= {dm2 e+ n+ 4, dm2 e+ n+ 5, · · · ,m+ dm2 e+ n+ 2},
{f(yi) + f(yi+1) : 1 ≤ i ≤ n− 1}

= {m+ dm2 e+ n+ 6−α,m+ dm2 e+ n+ 7−α, · · · ,m+ dm2 e+ 2n+ 4−α},
{f(zi) + f(zi+1) : 1 ≤ i ≤ n+ 2}

= {m+ dm2 e+ 2n+ 5,m+ dm2 e+ 2n+ 6, · · · ,m+ dm2 e+ 3n+ 6}.
Thus, the set S = {f(v) + f(w) : vw ∈ E

(
T (m,n, n + 3)

)} consists of
consecutive integers with max(S) = m + dm2 e + 3n + 6. By Lemma 2, f
extends to a super edge-magic total labeling of T (m,n, n + 3) with magic
constant c = 2m+ dm2 e+ 5n+ 11. �

Figure 2 shows the vertex labeling of a super edge-magic tree T (4, 6, 9).

Theorem 2. For all integers m,n ≥ 1, T (m,n, n+ 4) is a super edge-magic
graph.
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Figure 2: A super edge-magic tree T (4, 6, 9)

Proof. Label the vertices of T (m,n, n+ 4) in the following way. We consider
2 cases, where n is even and odd.

Case 1. n ≡ 0 mod 2,

g(u) = f(u), for u = w, xi‘s, and yi‘s,

where f is the vertex labeling in the proof of Theorem 1 with α = 1.
Subcase 1.1. n ≡ 0 mod 4,

g(zi) =





dm2 e+ n+ 1− 1
2(i− 1), for i ≡ 1 (mod 4),

dm2 e+ n+ 3− 1
2(i− 1), for i ≡ 3 (mod 4),

m+ 2n+ 5− 1
2 i, for i ≡ 2 (mod 4),

m+ 2n+ 7− 1
2 i, for i ≡ 0 (mod 4).

Subcase 1.2. n ≡ 2 mod 4,

g(zi) =





dm2 e+ n+ 1− 1
2(i− 1), for i ≡ 1 (mod 4), i 6= n+ 3,

dm2 e+ n+ 3− 1
2(i− 1), for i ≡ 3 (mod 4),

m+ 2n+ 5− 1
2 i, for i ≡ 2 (mod 4), i 6= n, n+ 4,

m+ 2n+ 7− 1
2 i, for i ≡ 0 (mod 4), i 6= n+ 2,

m+ 6 + 3
2n, for i = n,

m+ 4 + 3
2n, for i = n+ 2,

dm+n
2 e+ 1, for i = n+ 3,

m+ 5 + 3
2n, for i = n+ 4.

Case 2. n ≡ 1 mod 2,

g(u) =





m+ n+ 4, if u = w,
dm2 e − 1

2(i− 1), if u = xi for i ≡ 1 (mod 2),
m+ n+ 4− 1

2 i, if u = xi for i ≡ 0 (mod 2),
dm2 e+ 2 + 1

2(i− 1), if u = yi for i ≡ 1 (mod 2),
m+ n+ 4 + 1

2 i, if u = yi for i ≡ 0 (mod 2).

g(zi) =




dm2 e+ 1, for i = 1,
dm2 e+ n+ 4− 1

2(i− 1), for i ≡ 1 (mod 2), i 6= 1,
m+ 2n+ 6− 1

2 i, for i ≡ 0 (mod 2).
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It is a routine procedure to verify that g is a vertex labeling of T (m,n, n+4).
Under the vertex labeling g, for each case of n, we can count the sums of labels
of two adjacent vertices as follows.
Case 1. n ≡ 0 mod 2,

g(w) + g(x1) = m+
⌈m

2

⌉
+ n+ 3,

g(w) + g(y1) = m+
⌈m

2

⌉
+ n+ 4,

g(w) + g(z1) = m+
⌈m

2

⌉
+ 2n+ 4,

{g(xi) + g(xi+1) : 1 ≤ i ≤ m− 1}
= {dm2 e+ n+ 4, dm2 e+ n+ 5, · · · ,m+ dm2 e+ n+ 2},

{g(yi) + g(yi+1) : 1 ≤ i ≤ n− 1}
= {m+ dm2 e+ n+ 5,m+ dm2 e+ n+ 6, · · · ,m+ dm2 e+ 2n+ 3},

{g(zi) + g(zi+1) : 1 ≤ i ≤ n+ 3}
= {m+ dm2 e+ 2n+ 5,m+ dm2 e+ 2n+ 6, · · · ,m+ dm2 e+ 3n+ 7}.

Case 2. n ≡ 1 mod 2,

g(w) + g(x1) = m+
⌈m

2

⌉
+ n+ 4,

g(w) + g(y1) = m+
⌈m

2

⌉
+ n+ 6,

g(w) + g(z1) = m+
⌈m

2

⌉
+ n+ 5,

{g(xi) + g(xi+1) : 1 ≤ i ≤ m− 1}
= {dm2 e+ n+ 5, dm2 e+ n+ 6, · · · ,m+ dm2 e+ n+ 3},

{g(yi) + g(yi+1) : 1 ≤ i ≤ n− 1}
= {m+ dm2 e+ n+ 7,m+ dm2 e+ n+ 8, · · · ,m+ dm2 e+ 2n+ 5},

{g(zi) + g(zi+1) : 1 ≤ i ≤ n+ 3}
= {m+ dm2 e+ 2n+ 6,m+ dm2 e+ 2n+ 7, · · · ,m+ dm2 e+ 3n+ 8}.

Hence, the set S = {g(v) + g(w) : vw ∈ E(T (m,n, n + 4))} is a set of
consecutive integers with max(S) = m+ 3n+ 9 + β. By Lemma 2, g extends
to a super edge-magic total labeling of T (m,n, n + 4) with magic constant
c = 2m+ 5n+ 15 + β. �

Figure 3 shows the vertex labeling of a super edge-magic tree T (3, 6, 10).
By the dual super property (Lemma 1), T (m,n, n+ 3) and T (m,n, n+ 4)

also have a super edge-magic total labeling with magic constant as in the
following corollaries.
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Figure 3: A super edge-magic tree T (3, 6, 10)

Corollary 1. For all integers m,n ≥ 1, T (m,n, n+3) has a super edge-magic
total labeling with magic constants c = 3m− dm2 e+ 5n+ 11. �

Corollary 2. For all integers m,n ≥ 1, T (m,n, n+4) has a super edge-magic
total labeling with magic constants c = 3m+ 5n+ 12− β. �

Additionally, by applying the duality property to Theorems 1 and 2, and
Corollaries 1 and 2, we have the following results.

Corollary 3. For all integers m,n ≥ 1, T (m,n, n + 3) has edge-magic total
labelings with magic constants c = 4m− dm2 e+ 7n+ 13 and c = 3m+ dm2 e+
7n+ 13. �

Corollary 4. For all integers m,n ≥ 1, T (m,n, n + 4) has edge-magic total
labelings with magic constants c = 4m+7n+15−β and c = 3m+7n+18+β.
�

We can also construct an edge-magic total labeling of T (m,n, n + 3) and
T (m,n, n+ 4) for which all the odd labels are on the vertices, as follows.

Theorem 3. For all integers m,n ≥ 1, T (m,n, n+3) has an edge-magic total
labeling with all vertices receive odd labels. This labeling has magic constant
c = 2m+ 2dm2 e+ 6n+ 12 and the dual has magic constant c = 4m− 2dm2 e+
6n+ 12.

Proof. Define a labeling h of T (m,n, n+ 3) as follows.

h(v) = 2f(v)− 1, for all v ∈ V (T (m,n, n+ 3)
)
,

where f is the vertex labeling in the proof of Theorem 1. It is not difficult to
verify that all vertices receive odd labels, and

S = {h(u) + h(v) : uv ∈ E(T (m,n, n+ 3)
)}

forms an arithmetic progression with initial term 2n+2dm2 e+6 having common
difference 2. If we define

h(uv) = 2m+ 2
⌈m

2

⌉
+ 6n+ 12− h(u)− h(v),
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then h is an edge-magic total labeling of T (m,n, n + 3) with magic constant
c = 2m+ 2dm2 e+ 6n+ 12. By the duality property, it also has an edge-magic
total labeling with magic constant c = 4m− 2dm2 e+ 6n+ 12. �

A similar result for T (m,n, n+ 4) can be stated in the next theorem.

Theorem 4. For all integers m,n ≥ 1, T (m,n, n+4) has an edge-magic total
labeling with all vertices receive odd labels. This labeling has magic constant
c = 2m+6n+18+2β and the dual has magic constant c = 4m+6n+12−2β,
where β is a constant as defined before.

We have proved the super edge-magicness of T (m,n, k) only for k = n +
3 and k = n + 4 (not for any value of k). Additionally, we proved that
T (m,n, n+ 3) and T (m,n, n+ 4) are (super) edge-magic for several values of
magic constants c but not for all possible values of c. So, we have the following
open problems.

Open problem 1. Find a (super) edge-magic total labeling of T (m,n, k) for
any remaining values of m,n and k.

Open problem 2. Find a (super) edge-magic total labeling of T (m,n, n+ 3)
and T (m,n, n+ 4) for other values of magic constants c.
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