# On (Super) Edge-Magic Total Labeling of Subdivision of $\boldsymbol{K}_{1,3}$ 

Anak Agung Gede Ngurah, Rinovia Simanjuntak and Edy Tri Baskoro

(Received August 31, 2006)


#### Abstract

Let $G$ be a finite graph, with $V(G)$ and $E(G)$ the vertex-set and edge-set of $G$, respectively. An edge-magic total labeling is a one-to-one mapping $f$ from $V(G) \cup E(G)$ onto $\{1,2,3, \cdots,|V(G)|+|E(G)|\}$ such that there exists a constant $c$ satisfying $f(u)+f(u v)+f(v)=c$, for each $u v \in E(G)$. Such a labeling is called a super edge-magic total labeling if all vertices of $G$ receive all smallest labels. In this paper, we consider (super) edge-magic total labeling for subdivision of a star $K_{1,3}$.

AMS 2000 Mathematics Subject Classification. 05C78. Key words and phrases. (Super) Edge-magic total labeling, subdivision of $K_{1,3}$.


## §1. Introduction

All graphs considered here are finite and simple. The graph $G$ has the vertexset $V(G)$ and the edge-set $E(G)$.

Let $p=|V(G)|$ and $q=|E(G)|$. A bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \cdots$, $p+q\}$ is called an edge-magic total labeling of $G$ if $f(x)+f(x y)+f(y)$ is a constant $c$ (called the magic constant of $f$ ) for every edge $x y$ of $G$. The graph that admits such a labeling is called an edge-magic graph. An edgemagic total labeling $f$ is called a super edge-magic total labeling if $f(V(G))=$ $\{1,2,3, \cdots, p\}$. A graph that admits a super edge-magic total labeling is called a super edge-magic graph. The edge-magic and super edge-magic concepts were first introduced by Kotzig and Rosa [7] and Enomoto, Lladó, Nakamigawa and Ringel [3], respectively.

Given a total labeling $f$, the dual labeling, which Kotzig and Rosa [7] called the complementary labeling, $f^{\prime}$ is defined as follows,

$$
f^{\prime}(x)=p+q+1-f(x) \text { for every } x \in E(G) \cup V(G)
$$

If $f$ is an edge-magic total labeling with magic-constant $c$, then $f^{\prime}$ is an edgemagic total labeling with magic-constant $c^{\prime}=3(p+q+1)-c$. Notice that this dual labeling does not preserve super edge-magic total labeling unless $G=\overline{K_{n}}$.

Another definition of a dual labeling was also introduced in [1]. By this definition the dual labeling preserves the property of super edge-magicness.

Lemma 1. [1] If $g$ is a super edge-magic total labeling of $G$ with the magic constant $c$, then the function $g^{\prime}: V(G) \cup E(G) \rightarrow\{1,2,3, \cdots, p+q\}$ defined by

$$
g^{\prime}(x)= \begin{cases}p+1-g(x), & \text { if } x \in V(G), \\ 2 p+q+1-g(x), & \text { if } x \in E(G),\end{cases}
$$

is also a super edge-magic total labeling of $G$ with the magic constant $c^{\prime}=$ $4 p+q+3-c$.

The labeling $g^{\prime}$ defined in Lemma 1 is called a dual super labeling of $g$.
In the original papers about (super) edge-magic total labeling, Kotzig and Rosa [7], and Enomoto et al. [3] conjectured that every tree is edge-magic and every tree is super edge-magic, respectively. These conjectures have become very popular in the area of graph labeling. Some classes of tree have been proved to admit a (super) edge-magic labelings, such as paths, caterpillars $[7]$, stars $[4,11]$, tree with at most 17 vertices [9], and path-like trees [2]. Additionally, Fukuchi [6] gives recursive formula for constructing super edgemagic trees. However, the conjectures are still remain open.

In this paper, we prove that a particular type of tree, namely a subdivision of a star $K_{1,3}$ is (super) edge-magic. These results provide more examples to support the correctness of the two conjectures on trees.

## §2. The Results

For $m, n, k \geq 1$, let $T(m, n, k)$ be a graph obtained by inserting $m-1, n-1$, and $k-1$ vertices to the first, second, and third edges, respectively, of a star $K_{1,3}$. Thus, the star $K_{1,3}$ can be written as $T(1,1,1)$. We define the the vertex-set and the edge-set of graph $T(m, n, k)$ as follows.

$$
V(T(m, n, k))=\{w\} \cup\left\{x_{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i}: 1 \leq i \leq n\right\} \cup\left\{z_{i}: 1 \leq i \leq k\right\},
$$

and

$$
\begin{aligned}
E(T(m, n, k))= & \left\{w x_{1}, w y_{1}, w z_{1}\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq m-1\right\} \\
& \cup\left\{y_{i} y_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{z_{i} z_{i+1}: 1 \leq i \leq k-1\right\} .
\end{aligned}
$$

Clearly, a graph $T(m, n, k)$ has $m+n+k+1$ vertices and $m+n+k$ edges. Among these vertices, one vertex has degree three, three vertices have degree one, and the remaining vertices have degree two. As an example, Figure 1 shows the graph $T(4,5,7)$.


Figure 1: A tree $T(4,5,7)$
$\mathrm{Lu}[12,13]$ called the graph $T(m, n, k)$ as a three-path trees and proved that $T(m, n, k)$ is super edge-magic if $n$ and $k$ are odd, or $k=n+1$, or $k=n+2$. In this paper, we prove that $T(m, n, k)$ is also super edge-magic if $k=n+3$, and $k=n+4$.

In proving the main results, the following lemma will be frequently used.
Lemma 2. [4] A graph $G$ with $p$ vertices and $q$ edges is super edge-magic if and only if there exists a bijective function $f: V(G) \rightarrow\{1,2, \cdots, p\}$ such that the set $S=\{f(x)+f(y): x y \in E(G)\}$ consists of $q$ consecutive integers. In such a case, $f$ extends to a super edge-magic total labeling of $G$ with the magic constant $c=p+q+\min (S)$.

Suppose $T(m, n, k)$ has an edge-magic total labeling with the magic constant $c$. Then $t c$, where $t=m+n+k$, cannot be smaller than the sum obtained by assigning the smallest labels to the vertex of degree 3 , the $t-3$ next smallest labels to the vertices of degree 2 , and three next smallest labels to the vertices of degree 1 ; in other words

$$
t c \geq 3+2 \sum_{i=2}^{t-2} i+\sum_{i=t-1}^{t+1} i+\sum_{i=t+2}^{2 t+1} i
$$

An upper bound for $t c$ is achieved by giving the the largest labels to the vertices of degree 3 , and the $t-3$ next largest labels to the vertices of degree 2 , and 3 next largest labels to the rest of vertices; namely

$$
t c \leq 3(2 t+1)+2 \sum_{i=t+4}^{2 t} i+\sum_{i=t+1}^{t+3} i+\sum_{i=1}^{t} i
$$

Thus, we have the following result.
Lemma 3. If a $T(m, n, k)$ is an edge-magic graph, then magic constant $c$ is in the following interval:

$$
\frac{1}{2 t}\left(5 t^{2}+3 t+6\right) \leq c \leq \frac{1}{2 t}\left(7 t^{2}+9 t-6\right)
$$

By a similar argument, it is easy to verify that the following lemma holds.
Lemma 4. If a $T(m, n, k)$ is a super edge-magic graph, then magic constant $c$ is in the following interval:

$$
\frac{1}{2 t}\left(5 t^{2}+3 t+6\right) \leq c \leq \frac{1}{2 t}\left(5 t^{2}+11 t-6\right)
$$

In the next two theorems, we will show that $T(m, n, k)$, for $k=n+3$ and $k=n+4$, is super edge-magic. First, we introduce two constants $\alpha$ and $\beta$ used in the proposed labeling of graph $T(m, n, k)$ as follows:

$$
\alpha= \begin{cases}0, & \text { if } n \equiv 2(\bmod 4) \\ 1, & \text { if } n \equiv 0,1,3(\bmod 4)\end{cases}
$$

and

$$
\beta= \begin{cases}\left\lceil\frac{1}{2}(m-4)\right\rceil, & \text { if } n \equiv 0(\bmod 2) \\ \left\lceil\frac{1}{2}(m-2)\right\rceil, & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

Theorem 1. For all integers $m, n \geq 1, T(m, n, n+3)$ is a super edge-magic graph.

Proof. Consider the vertex labeling $f: V(T(m, n, n+3)) \rightarrow\{1,2,3, \cdots, m+$ $2 n+4\}$ defined as follows.

$$
f(u)= \begin{cases}m+n+3, & \text { if } u=w, \\ \left\lceil\frac{m}{2}\right\rceil-\frac{1}{2}(i-1), & \text { if } u=x_{i} \text { for } i \equiv 1(\bmod 2), \\ m+n+3-\frac{1}{2} i, & \text { if } u=x_{i} \text { for } i \equiv 0(\bmod 2), \\ \left\lceil\frac{m}{2}\right\rceil+1-\alpha+\frac{1}{2}(i+1), & \text { if } u=y_{i} \text { for } i \equiv 1(\bmod 2), \\ m+n+3+\frac{1}{2} i, & \text { if } u=y_{i} \text { for } i \equiv 0(\bmod 2)\end{cases}
$$

For the remaining vertices, we consider the following four cases.
Case 1. $n \equiv 0 \bmod 4$,

$$
f\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+n+1-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 4), \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 3(\bmod 4), \\ m+2 n+4-\frac{1}{2} i, & \text { for } i \equiv 2(\bmod 4), i \neq n+2, \\ m+2 n+6-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 4), \\ m+\frac{3}{2} n+4, & \text { for } i=n+2\end{cases}
$$

Case 2. $n \equiv 1 \bmod 4$,

$$
f\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+n+1-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 4) \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 3(\bmod 4), \\ m+2 n+4-\frac{1}{2} i, & \text { for } i \equiv 2(\bmod 4) \\ m+2 n+6-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 4)\end{cases}
$$

Case 3. $n \equiv 2 \bmod 4$,

$$
f\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+1, & \text { for } i=1 \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 2), i \neq 1 \\ m+2 n+5-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 2)\end{cases}
$$

Case 4. $n \equiv 3 \bmod 4$,

$$
f\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+n+1-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 4), i \neq n+2, \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 3(\bmod 4), \\ m+2 n+4-\frac{1}{2} i, & \text { for } i \equiv 2(\bmod 4), i \neq n-1, \\ m+2 n+6-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 4), i \neq n+1, \\ m+5+\frac{1}{2}(3 n+1), & \text { for } i=n-1, \\ m+3+\frac{1}{2}(3 n+1), & \text { for } i=n+1, \\ \left\lceil\frac{m}{2}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+1, & \text { for } i=n+2, \\ m+4+\frac{1}{2}(3 n+1), & \text { for } i=n+3 .\end{cases}
$$

Under the vertex labeling $f$, we have the following sums of labels of two adjacent vertices.

$$
\begin{gathered}
f(w)+f\left(x_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+3 \\
f(w)+f\left(y_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+5-\alpha \\
f(w)+f\left(z_{1}\right)=\left\{\begin{array}{l}
m+\left\lceil\frac{m}{2}\right\rceil+n+4, \\
m+\left\lceil\frac{m}{2}\right\rceil+2 n+4, \\
\text { if } n \equiv 2(\bmod 4), \\
m, 1,3(\bmod 4)
\end{array}\right.
\end{gathered}
$$

$$
\left\{f\left(x_{i}\right)+f\left(x_{i+1}\right): 1 \leq i \leq m-1\right\}
$$

$$
=\left\{\left\lceil\frac{m}{2}\right\rceil+n+4,\left\lceil\frac{m}{2}\right\rceil+n+5, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+n+2\right\},
$$

$$
\left\{f\left(y_{i}\right)+f\left(y_{i+1}\right): 1 \leq i \leq n-1\right\}
$$

$$
=\left\{m+\left\lceil\frac{m}{2}\right\rceil+n+6-\alpha, m+\left\lceil\frac{m}{2}\right\rceil+n+7-\alpha, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+2 n+4-\alpha\right\}
$$

$$
\left\{f\left(z_{i}\right)+f\left(z_{i+1}\right): 1 \leq i \leq n+2\right\}
$$

$$
=\left\{m+\left\lceil\frac{m}{2}\right\rceil+2 n+5, m+\left\lceil\frac{m}{2}\right\rceil+2 n+6, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+3 n+6\right\}
$$

Thus, the set $S=\{f(v)+f(w): v w \in E(T(m, n, n+3))\}$ consists of consecutive integers with $\max (S)=m+\left\lceil\frac{m}{2}\right\rceil+3 n+6$. By Lemma 2 , $f$ extends to a super edge-magic total labeling of $T(m, n, n+3)$ with magic constant $c=2 m+\left\lceil\frac{m}{2}\right\rceil+5 n+11$.

Figure 2 shows the vertex labeling of a super edge-magic tree $T(4,6,9)$.

Theorem 2. For all integers $m, n \geq 1, T(m, n, n+4)$ is a super edge-magic graph.


Figure 2: A super edge-magic tree $T(4,6,9)$

Proof. Label the vertices of $T(m, n, n+4)$ in the following way. We consider 2 cases, where $n$ is even and odd.

Case 1. $n \equiv 0 \bmod 2$,

$$
g(u)=f(u), \text { for } u=w, x_{i}{ }^{6} s, \text { and } y_{i}{ }^{`} s,
$$

where $f$ is the vertex labeling in the proof of Theorem 1 with $\alpha=1$.
Subcase 1.1. $n \equiv 0 \bmod 4$,

$$
g\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+n+1-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 4), \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 3(\bmod 4), \\ m+2 n+5-\frac{1}{2} i, & \text { for } i \equiv 2(\bmod 4), \\ m+2 n+7-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 4) .\end{cases}
$$

Subcase 1.2. $n \equiv 2 \bmod 4$,

$$
g\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+n+1-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 4), i \neq n+3, \\ \left\lceil\frac{m}{2}\right\rceil+n+3-\frac{1}{2}(i-1), & \text { for } i \equiv 3(\bmod 4), \\ m+2 n+5-\frac{1}{2} i, & \text { for } i \equiv 2(\bmod 4), i \neq n, n+4, \\ m+2 n+7-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 4), i \neq n+2, \\ m+6+\frac{3}{2} n, & \text { for } i=n, \\ m+4+\frac{3}{2} n, & \text { for } i=n+2, \\ \left\lceil\frac{m+n}{2}\right\rceil+1, & \text { for } i=n+3, \\ m+5+\frac{3}{2} n, & \text { for } i=n+4 .\end{cases}
$$

Case 2. $n \equiv 1 \bmod 2$,

$$
\begin{aligned}
& g(u)= \begin{cases}m+n+4, & \text { if } u=w, \\
\left\lceil\frac{m}{2}\right\rceil-\frac{1}{2}(i-1), & \text { if } u=x_{i} \text { for } i \equiv 1(\bmod 2), \\
m+n+4-\frac{1}{2} i, & \text { if } u=x_{i} \text { for } i \equiv 0(\bmod 2), \\
\left\lceil\frac{m}{2}\right\rceil+2+\frac{1}{2}(i-1), & \text { if } u=y_{i} \text { for } i \equiv 1(\bmod 2), \\
m+n+4+\frac{1}{2} i, & \text { if } u=y_{i} \text { for } i \equiv 0(\bmod 2) .\end{cases} \\
& g\left(z_{i}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil+1, & \text { for } i=1, \\
\left\lceil\frac{m}{2}\right\rceil+n+4-\frac{1}{2}(i-1), & \text { for } i \equiv 1(\bmod 2), i \neq 1, \\
m+2 n+6-\frac{1}{2} i, & \text { for } i \equiv 0(\bmod 2) .\end{cases}
\end{aligned}
$$

It is a routine procedure to verify that $g$ is a vertex labeling of $T(m, n, n+4)$. Under the vertex labeling $g$, for each case of $n$, we can count the sums of labels of two adjacent vertices as follows.
Case 1. $n \equiv 0 \bmod 2$,

$$
\begin{gathered}
g(w)+g\left(x_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+3 \\
g(w)+g\left(y_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+4, \\
g(w)+g\left(z_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+2 n+4, \\
\left\{g\left(x_{i}\right)+g\left(x_{i+1}\right): 1 \leq i \leq m-1\right\} \\
\quad=\left\{\left\lceil\frac{m}{2}\right\rceil+n+4,\left\lceil\frac{m}{2}\right\rceil+n+5, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+n+2\right\} \\
\left\{g\left(y_{i}\right)+g\left(y_{i+1}\right): 1 \leq i \leq n-1\right\} \\
\quad=\left\{m+\left\lceil\frac{m}{2}\right\rceil+n+5, m+\left\lceil\frac{m}{2}\right\rceil+n+6, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+2 n+3\right\} \\
\left\{g\left(z_{i}\right)+g\left(z_{i+1}\right): 1 \leq i \leq n+3\right\} \\
\quad=\left\{m+\left\lceil\frac{m}{2}\right\rceil+2 n+5, m+\left\lceil\frac{m}{2}\right\rceil+2 n+6, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+3 n+7\right\} .
\end{gathered}
$$

Case 2. $n \equiv 1 \bmod 2$,

$$
\begin{gathered}
g(w)+g\left(x_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+4, \\
g(w)+g\left(y_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+6, \\
g(w)+g\left(z_{1}\right)=m+\left\lceil\frac{m}{2}\right\rceil+n+5, \\
\left\{g\left(x_{i}\right)+g\left(x_{i+1}\right): 1 \leq i \leq m-1\right\} \\
=\left\{\left\lceil\frac{m}{2}\right\rceil+n+5,\left\lceil\frac{m}{2}\right\rceil+n+6, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+n+3\right\} \\
\left\{g\left(y_{i}\right)+g\left(y_{i+1}\right): 1 \leq i \leq n-1\right\} \\
\quad=\left\{m+\left\lceil\frac{m}{2}\right\rceil+n+7, m+\left\lceil\frac{m}{2}\right\rceil+n+8, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+2 n+5\right\} \\
\left\{g\left(z_{i}\right)+g\left(z_{i+1}\right): 1 \leq i \leq n+3\right\} \\
\quad=\left\{m+\left\lceil\frac{m}{2}\right\rceil+2 n+6, m+\left\lceil\frac{m}{2}\right\rceil+2 n+7, \cdots, m+\left\lceil\frac{m}{2}\right\rceil+3 n+8\right\}
\end{gathered}
$$

Hence, the set $S=\{g(v)+g(w): v w \in E(T(m, n, n+4))\}$ is a set of consecutive integers with $\max (S)=m+3 n+9+\beta$. By Lemma $2, g$ extends to a super edge-magic total labeling of $T(m, n, n+4)$ with magic constant $c=2 m+5 n+15+\beta$.

Figure 3 shows the vertex labeling of a super edge-magic tree $T(3,6,10)$.
By the dual super property (Lemma 1$), T(m, n, n+3)$ and $T(m, n, n+4)$ also have a super edge-magic total labeling with magic constant as in the following corollaries.


Figure 3: A super edge-magic tree $T(3,6,10)$

Corollary 1. For all integers $m, n \geq 1, T(m, n, n+3)$ has a super edge-magic total labeling with magic constants $c=3 m-\left\lceil\frac{m}{2}\right\rceil+5 n+11$.

Corollary 2. For all integers $m, n \geq 1, T(m, n, n+4)$ has a super edge-magic total labeling with magic constants $c=3 m+5 n+12-\beta$.

Additionally, by applying the duality property to Theorems 1 and 2 , and Corollaries 1 and 2 , we have the following results.

Corollary 3. For all integers $m, n \geq 1, T(m, n, n+3)$ has edge-magic total labelings with magic constants $c=4 m-\left\lceil\frac{m}{2}\right\rceil+7 n+13$ and $c=3 m+\left\lceil\frac{m}{2}\right\rceil+$ $7 n+13$.

Corollary 4. For all integers $m, n \geq 1, T(m, n, n+4)$ has edge-magic total labelings with magic constants $c=4 m+7 n+15-\beta$ and $c=3 m+7 n+18+\beta$.

We can also construct an edge-magic total labeling of $T(m, n, n+3)$ and $T(m, n, n+4)$ for which all the odd labels are on the vertices, as follows.

Theorem 3. For all integers $m, n \geq 1, T(m, n, n+3)$ has an edge-magic total labeling with all vertices receive odd labels. This labeling has magic constant $c=2 m+2\left\lceil\frac{m}{2}\right\rceil+6 n+12$ and the dual has magic constant $c=4 m-2\left\lceil\frac{m}{2}\right\rceil+$ $6 n+12$.

Proof. Define a labeling $h$ of $T(m, n, n+3)$ as follows.

$$
h(v)=2 f(v)-1, \text { for all } v \in V(T(m, n, n+3)),
$$

where $f$ is the vertex labeling in the proof of Theorem 1. It is not difficult to verify that all vertices receive odd labels, and

$$
S=\{h(u)+h(v): u v \in E(T(m, n, n+3))\}
$$

forms an arithmetic progression with initial term $2 n+2\left\lceil\frac{m}{2}\right\rceil+6$ having common difference 2 . If we define

$$
h(u v)=2 m+2\left\lceil\frac{m}{2}\right\rceil+6 n+12-h(u)-h(v),
$$

then $h$ is an edge-magic total labeling of $T(m, n, n+3)$ with magic constant $c=2 m+2\left\lceil\frac{m}{2}\right\rceil+6 n+12$. By the duality property, it also has an edge-magic total labeling with magic constant $c=4 m-2\left\lceil\frac{m}{2}\right\rceil+6 n+12$.

A similar result for $T(m, n, n+4)$ can be stated in the next theorem.
Theorem 4. For all integers $m, n \geq 1, T(m, n, n+4)$ has an edge-magic total labeling with all vertices receive odd labels. This labeling has magic constant $c=2 m+6 n+18+2 \beta$ and the dual has magic constant $c=4 m+6 n+12-2 \beta$, where $\beta$ is a constant as defined before.

We have proved the super edge-magicness of $T(m, n, k)$ only for $k=n+$ 3 and $k=n+4$ (not for any value of $k$ ). Additionally, we proved that $T(m, n, n+3)$ and $T(m, n, n+4)$ are (super) edge-magic for several values of magic constants $c$ but not for all possible values of $c$. So, we have the following open problems.

Open problem 1. Find a (super) edge-magic total labeling of $T(m, n, k)$ for any remaining values of $m, n$ and $k$.

Open problem 2. Find a (super) edge-magic total labeling of $T(m, n, n+3)$ and $T(m, n, n+4)$ for other values of magic constants $c$.

## Acknowledgement

The authors would like to thank the referee for his/her valuable comments.

## References

[1] E. T. Baskoro, I. W. Sudarsana and Y. M. Cholily, How to construct new super edge-magic graphs from some old ones, J. Indones. Math. Soc. (MIHMI), 11:2 (2005), 155-162.
[2] M. Baca, Y. Lin and F. A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Utilitas Math., to appear.
[3] H. Enomoto, A. Lladó, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT J. Math., 34 (1998), 105-109.
[4] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math., 231 (2001), 153-168.
[5] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, On edge-magic labelings of certain disjoint union graphs, Australas. J. Combin., 32 (2005), 225242.
[6] Y. Fukuchi, A recursive theorems for super edge-magic labelings of trees, SUT J. Math., 36:2 (2000), 279-285.
[7] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., Vol. 13:4, (1970), 451-461.
[8] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Publications du Centre de Recherches mathématiques Université de Montréal, 175 (1972).
[9] S. M. Lee, and Q. X. Shan, All trees with at most 17 vertices are super edgemagic, 16th MCCCC Conf., Carbondale, University Southern Illinois, Nov. 2002.
[10] Slamin, M. Băca, Y. Lin, M. Miller and R. Simanjuntak, Edge magic total labeling of wheels, fans and friendship graphs, Bull. Inst. Combin. Appl., 35 (2002), 89-98.
[11] W. D. Wallis, E. T. Baskoro, M. Miller and Slamin, Edge-magic total labelings, Austral. J. Combin., 22 (2000), 177-190.
[12] Yong-Ji Lu, A proof of three-path trees $P(m, n, t)$ being edge-magic, College Mathematics, 17:2 (2001), 41-44.
[13] Yong-Ji Lu, A proof of three-path trees $P(m, n, t)$ being edge-magic (II), College Mathematics, 20:3 (2004), 51-53.

Anak Agung Gede Ngurah
Department of Civil Engineering, Universitas Merdeka Malang
Jl. Taman Agung No. 1 Malang, Indonesia
and
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Jalan Ganesa 10 Bandung, Indonesia
E-mail: s304agung@dns.math.itb.ac.id
Rinovia Simanjuntak and Edy Tri Baskoro
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Jalan Ganesa 10 Bandung, Indonesia
E-mail: \{rino, ebaskoro\}@dns.math.itb.ac.id

