Magic covering of chain of an arbitrary 2-connected simple graph

P. Jeyanthi and P. Selvagopal

(Received August 19, 2007; Revised November 30, 2007)

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. We say that G is H-magic if there is a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ such that for each subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to $H, \sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ is constant. When $f(V)=\{1,2, \ldots,|V|\}$, then G is said to be H-supermagic. In this paper we show that a chain of any 2 -connected simple graph H is H supermagic.

AMS 2000 Mathematics Subject Classification. 20J06.
Key words and phrases. Chain of graph, Magic covering and H-supermagic.

§1. Introduction

The concept of H-magic graphs was introduced in [2]. An edge-covering of a graph G is a family of different subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ such that each edge of E belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq k$. Then, it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{k}\right)$-edge covering. If every H_{i} is isomorphic to a given graph H, then we say that G admits an H-covering.

Suppose that $G=(V, E)$ admits an H-covering. We say that a bijective function $f: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ is an H-magic labeling of G if there is a positive integer $m(f)$, which we call magic sum, such that for each subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to H, we have, $f\left(H^{\prime}\right)=\sum_{v \in V^{\prime}} f(v)+$ $\sum_{e \in E^{\prime}} f(e)=m(f)$. In this case we say that the graph G is H-magic. When $f(V)=\{1,2, \ldots,|V|\}$, we say that G is H-supermagic and we denote its supermagic-sum by $s(f)$.

We use the following notations. For any two integers $n<m$, we denote by $[n, m]$, the set of all consecutive integers from n to m. For any set $\mathbb{I} \subset \mathbb{N}$ we write $\sum \mathbb{I}=\sum_{x \in \mathbb{I}} x$ and for any integers $\mathrm{k}, \mathbb{I}+k=\{x+k: x \in \mathbb{I}\}$. Thus
$k+[n, m]$ is the set of consecutive integers from $k+n$ to $k+m$. It can be easily verified that $\sum(\mathbb{I}+k)=\sum \mathbb{I}+k|\mathbb{I}|$. Finally, given a graph $G=(V, E)$ and a total labeling f on it we denote by $f(G)=\sum f(V)+\sum f(E)$.

In [2], A. Gutierrez, and A. Llado studied the families of complete and complete bipartite graphs with respect to the star-magic and star-supermagic properties and proved the following results.

- The star $K_{1, n}$ is $K_{1, h}$-supermagic for any $1 \leq h \leq n$.
- Let G be a d-regular graph. Then G is not $K_{1, h}$-magic for any $1<h<d$.
- (a) The complete graph K_{n} is not $K_{1, h}$-magic for any $1<h<n-1$.
(b) The complete bipartite graph $K_{n, n}$ is not $K_{1, h}$-magic for any $1<$ $h<n$.
- The complete bipartite graph $K_{n, n}$ is $K_{1, n}$-magic for $n \geq 1$.
- The complete bipartite graph $K_{n, n}$ is not $K_{1, n}$-supermagic for any integer $n>1$.
- For any pair of integers $1<r<s$, the complete bipartite graph $K_{r, s}$ is $K_{1, h}$-supermagic if and only if $h=s$.

The following results regarding path-magic and path-supermagic coverings are also proved in [2].

- The path P_{n} is P_{h}-supermagic for any integer $2 \leq h \leq n$.
- Let G be a P_{h}-magic graph, $h>2$. Then G is C_{h}-free.
- The complete graph K_{n} is not P_{h}-magic for any $2<h \leq n$.
- The cycle C_{n} is P_{h}-supermagic for any integer $2 \leq h<n$ such that $\operatorname{gcd}(n, h(h-1))=1$.

Also in [2], the authors constructed some families of H-magic graphs for a given graph H by proving the following results.

- Let H be any graph with $|V(H)|+|E(H)|$ even. Then the disjoint union $G=k H$ of k copies of H is H-magic.

Let G and H be two graphs and $e \in E(H)$ a distinguished edge in H. We denote by $G * e H$ the graph obtained from G by gluing a copy of H to each edge of G by the distinguished edge $e \in E(H)$.

- Let H be a 2-connected graph and G an H-free supermagic graph. Let k be the size of G and $h=|V(H)|+|E(H)|$. Assume that h and k are not both even. Then, for each edge $e \in E(H)$, the graph $G * e H$ is H-magic.

In [3], P. Selvagopal and P. Jeyanthi proved that for any positive integer n, k - polygonal snake of length n is C_{k}-supermagic.

In this paper we construct a chain graph $H n$ of 2-connected graph H of length n, and prove that a chain graph $H n$ is H-supermagic.

§2. Preliminary Results

Let $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be partition set of a set X of integers. When all sets have the same cardinality we say then P is a k-equipartition of X. We denote the set of subsets sums of the parts of P by $\sum P=\left\{\sum X_{1}, \sum X_{2}, \ldots, \sum X_{k}\right\}$. The following lemmas are proved in [2].
Lemma 1. Let h and k be two positive integers and let $n=h k$. For each integer $0 \leq t \leq\left\lfloor\frac{h}{2}\right\rfloor$ there is a k-equipartition P of $[1, n]$ such that $\sum P$ is an arithmetic progression of difference $d=h-2 t$.

Lemma 2. Let h and k be two positive integers and let $n=h k$. In the two following cases there exists a k-equipartition P of a set X such that $\sum P$ is a set of consecutive integers.
(i) h or k are not both even and $X=[1, h k]$
(ii) $h=2$ and k is even and $X=[1, h k+1]-\left\{\frac{k}{2}+1\right\}$.

We have the following four results from the above two lemmas.
(a) If h is odd, then there exists a k-equipartition $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum P$ is a set of consecutive integers and $\sum P=$ $\frac{(h-1)(h k+k+1)}{2}+[1, k]$.
(b) If h is even, then there exists a k-equipartition $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that subsets sum are equal and is equal to $\frac{h(h k+1)}{2}$.
(c) If h is even and k is odd, then there exists a k-equipartition $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum P$ is a set of consecutive integers and $\sum P=\frac{h(h k+1)}{2}+\left[-\frac{k-1}{2}, \frac{k-1}{2}\right]$.
(d) If $h=2$ and k is even, and $X=[1,2 k+1]-\left\{\frac{k}{2}+1\right\}$ then there exists a k-equipartition $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of X such that $\sum P$ is a set of consecutive integers and $\sum P=\left[\frac{3 k}{2}+3, \frac{5 k}{2}+2\right]$.

We generalise the second part of Lemma 2.
Corollary 1. Let h and k be two even positive integers and $h \geq 4$. If $X=$ $[1, h k+1]-\left\{\frac{k}{2}+1\right\}$, there exists a k-equipartition P of X such that $\sum P$ is a set of consecutive integers.

Proof. Let $Y=[1,2 k+1]-\left\{\frac{k}{2}+1\right\}$ and $Z=(2 k+1)+[1,(h-2) k]$. Then $X=Y \cup Z$. By (d), there exists a k-equipartition $P_{1}=\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}$ of Y such that

$$
\sum P_{1}=\left[\frac{3 k}{2}+3, \frac{5 k}{2}+2\right]
$$

As $h-2$ is even, by (b) there exists a k-equipartition $P_{2}^{\prime}=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, \ldots, Z_{k}^{\prime}\right\}$ of $[1,(h-2) k]$ such that

$$
\sum P_{2}^{\prime}=\left\{\frac{(h-2)(h k-2 k+1)}{2}\right\}
$$

Hence, there exists a k-equipartition $P_{2}=\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ of Z such that

$$
\sum P_{2}=\left\{(h-2)(2 k+1)+\frac{(h-2)(h k-2 k+1)}{2}\right\}
$$

Let $X_{i}=Y_{i} \cup Z_{i}$ for $1 \leq i \leq k$. Then $P=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is a k equipartition of X such that $\sum P$ is a set of consecutive integers and

$$
\sum P=(h-2)(2 k+1)+\frac{(h-2)(h k-2 k+1)}{2}+\left[\frac{3 k}{2}+3, \frac{5 k}{2}+2\right]
$$

§3. Chain of an arbitrary simple connected graph

Let $H_{1}, H_{2}, \ldots, H_{n}$ be copies of a graph H. Let u_{i} and v_{i} be two distinct vertices of H_{i} for $i=1,2, \ldots, n$. We construct a chain graph $H n$ of H of length n by identifying two vertices u_{i} and v_{i+1} for $i=1,2, \ldots, n-1$. See Figures 1 and 2.

§4. Main Result

Theorem 1. Let H be a 2-connected (p, q) simple graph. Then $H n$ is H supermagic if any one of the following conditions is satisfied.
(i) $p+q$ is even
(ii) $p+q+n$ is even

Proof. Let $G=(V, E)$ be a chain of n copies of H. Let us denote the $i^{\text {th }}$ copy of H in $H n$ by $H_{i}=\left(V_{i}, E_{i}\right)$. Note that $|V|=n p-n+1$ and $|E|=n q$. Moreover, we remark that by H is a 2-connected graph, $H n$ does not contain a subgraph H other than H_{i}.

Let v_{i} be the vertex in common with H_{i} and H_{i+1} for $1 \leq i \leq n-1$. Let v_{0} and v_{n} be any two vertices in H_{1} and H_{n} respectively so that $v_{0} \neq v_{1}$ and $v_{n} \neq v_{n-1}$. Let $V_{i}^{\prime}=V_{i}-\left\{v_{i-1}, v_{i}\right\}$ for $1 \leq i \leq n$.
Case (i): $p+q$ is even
Suppose p and q are odd. As $p-2$ is odd, by (a) there exists an n equipartition $P_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right\}$ of $[1, n(p-2)]$ such that

$$
\sum P_{1}^{\prime}=\frac{(p-3)(n p-n+1)}{2}+[1, n] .
$$

Adding $n+1$ to $[1, n(p-2)]$, we get an n-equipartition $P_{1}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of $[n+2, n p-n+1]$ such that

$$
\sum P_{1}=(p-2)(n+1)+\frac{(p-3)(n p-n+1)}{2}+[1, n]
$$

Similarly, since q is odd there exists an n-equipartition $P_{2}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ of $(n p-n+1)+[1, n q]$ such that

$$
\sum P_{2}=q(n p-n+1)+\frac{(q-1)(n q+n+1)}{2}+[1, n]
$$

Define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, n p+n q-n+1\}$ as follows:
(i) $f\left(v_{i}\right)=i+1$ for $0 \leq i \leq n$.
(ii) $f\left(V_{i}^{\prime}\right)=X_{n-i+1}$ for $1 \leq i \leq n$.
(iii) $f\left(E_{i}\right)=Y_{n-i+1}$ for $1 \leq i \leq n$.

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}\right) \\
& =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum X_{n-i+1}+\sum Y_{n-i+1} \\
& =\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}
\end{aligned}
$$

As $H_{i} \cong H$ for $1 \leq i \leq n, H n$ is H-supermagic.
Suppose both p and q are even. As p is even, by Lemma 1, there exists an n-equipartition $P_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right\}$ of $[1, n(p-2)]$ such that $\sum P_{1}^{\prime}$ is arithmetic progression of difference 2 and

$$
\sum P_{1}^{\prime}=\left\{\frac{n\left[(p-2)^{2}-2\right]+p-4}{2}+2 r: 1 \leq r \leq n\right\}
$$

Adding $n+1$ to $[1, n(p-2)]$, we get an n-equipartition $P_{1}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of $[n+2, n p-n+1]$ such that

$$
\sum P_{1}=\left\{(p-2)(n+1)+\frac{n\left[(p-2)^{2}-2\right]+p-4}{2}+2 i: 1 \leq i \leq n\right\}
$$

As q is even, by (b), there exists an n-equipartition $P_{2}^{\prime}=\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{n}^{\prime}\right\}$ of $[1, n q]$ such that $\sum P_{2}^{\prime}=\left\{\frac{q(n q+1)}{2}\right\}$.

Adding $n p-n+1$ to $[1, n q]$ there exists an n-equipartition $P_{2}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ of $(n p-n+1)+[1, n q]$ such that

$$
\sum P_{2}=\left\{q(n p-n+1)+\frac{q(n q+1)}{2}\right\}
$$

Define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, n p+n q-n+1\}$ as follows:
(i) $f\left(v_{i}\right)=i+1$ for $0 \leq i \leq n$.
(ii) $f\left(V_{i}^{\prime}\right)=X_{n-i+1}$ for $1 \leq i \leq n$.
(iii) $f\left(E_{i}\right)=Y_{n-i+1}$ for $1 \leq i \leq n$.

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}\right) \\
& =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum X_{n-i+1}+\sum Y_{n-i+1} \\
& =\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}
\end{aligned}
$$

As $H_{i} \cong H$ for $1 \leq i \leq n, H n$ is H-supermagic.
Case (ii): $p+q+n$ is even: Suppose p is odd, q is even and n is odd. Since p is odd as in proof of Case (i), there exists an n-equipartition $P_{1}=$ $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of $[n+2, n p-n+1]$ such that

$$
\sum P_{1}=(p-2)(n+1)+\frac{(p-3)(n p-n+1)}{2}+[1, n]
$$

Since q is even and n is odd, by (c) there exists an n-equipartition $P_{2}^{\prime}=$ $\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{n}^{\prime}\right\}$ of $[1, n q]$ such that

$$
\sum P_{2}^{\prime}=\frac{q(n q+1)}{2}+\left[-\frac{n-1}{2}, \frac{n-1}{2}\right] .
$$

Adding $n p-n+1$ to $[1, n q]$ there exists an n-equipartition $P_{2}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ of $(n p-n+1)+[1, n q]$ such that

$$
\sum P_{2}=q(n p-n+1)+\frac{q(n q+1)}{2}+\left[-\frac{n-1}{2}, \frac{n-1}{2}\right]
$$

Define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, n p+n q-n+1\}$ as follows:
(i) $f\left(v_{i}\right)=i+1$ for $0 \leq i \leq n$.
(ii) $f\left(V_{i}^{\prime}\right)=X_{n-i+1}$ for $1 \leq i \leq n$.
(iii) $f\left(E_{i}\right)=Y_{n-i+1}$ for $1 \leq i \leq n$.

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}\right) \\
& =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum X_{n-i+1}+\sum Y_{n-i+1} \\
& =\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}
\end{aligned}
$$

As $H_{i} \cong H$ for $1 \leq i \leq n, H n$ is H-supermagic.
Suppose p is even, q is odd and n is odd. Since $p-2$ is even and n is odd, by (c) there exists an n-equipartition $P_{1}^{\prime}=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right\}$ of $[1, n(p-2)]$ such that

$$
\sum P_{1}^{\prime}=\frac{(p-2)[n(p-2)+1]}{2}+\left[-\frac{n-1}{2}, \frac{n-1}{2}\right] .
$$

Adding $n+1$ to $[1, n(p-2)]$, we get an n-equipartition $P_{1}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of $[n+2, n p-n+1]$ such that such that

$$
\sum P_{1}=(p-2)(n+1)+\frac{(p-2)[n(p-2)+1]}{2}+\left[-\frac{n-1}{2}, \frac{n-1}{2}\right]
$$

Since q is odd, as in Case (i) there exists an n-equipartition $P_{2}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ of $(n p-n+1)+[1, n q]$ such that

$$
\sum P_{2}=q(n p-n+1)+\frac{(q-1)(n q+n+1)}{2}+[1, n]
$$

Define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, n p+n q-n+1\}$ as follows:
(i) $f\left(v_{i}\right)=i+1$ for $0 \leq i \leq n$.
(ii) $f\left(V_{i}^{\prime}\right)=X_{n-i+1}$ for $1 \leq i \leq n$.
(iii) $f\left(E_{i}\right)=Y_{n-i+1}$ for $1 \leq i \leq n$.

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f\left(H_{i}\right) & =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum f\left(V_{i}^{\prime}\right)+\sum f\left(E_{i}\right) \\
& =f\left(v_{i-1}\right)+f\left(v_{i}\right)+\sum X_{n-i+1}+\sum Y_{n-i+1} \\
& =\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}
\end{aligned}
$$

As $H_{i} \cong H$ for $1 \leq i \leq n, H n$ is H-supermagic.

§5. Illustrations

A chain of a 2-connected $(5,7)$ simple graph H of length 5 is shown in Figure 1 and a chain of a 2 -connected $(6,9)$ simple graph H of length 3 is shown in Figure 2.

Figure 1. $p=5, q=7, s(f)=322$.

Figure 2. $p=6, q=9, s(f)=317$.

References

[1] J.A. Gallian, A Dynamic Survey of Graph labeling, The Electronic Journal of Combinatorics. 5 (2005).
[2] A. Gutierrez and A. Llado, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[3] P. Selvagopal, P. Jeyanthi, On C_{k}-supermagic graphs, International Journal of Mathematics and Computer Science, 3.1 (2008), 25-30.

P. Jeyanthi
Department of Mathematics, Govindammal Aditanar College for women Tiruchendur 628 215, India
E-mail: jeyajeyanthi@rediffmail.com
P. Selvagopal
Department of Mathematics, Lord Jegannath College of Engineering and Technology PSN Nagar, Ramanathichenputhur,629 402, India
E-mail: ps_gopaal@yahoo.co.in

