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Abstract. We classify N(k)-contact metric manifolds satisfying the conditions
Z(ξ, X) · C0 = 0, C0(ξ, X) · Z = 0 and Ce(ξ, X) · Z = 0, where Z, C0 and Ce

denote the concircular curvature tensor, the contact conformal curvature tensor
and the extended contact conformal curvature tensor, respectively.
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Introduction

A transformation of an n-dimensional Riemannian manifold M , which trans-
forms every geodesic circle of M into a geodesic circle, is called a concircular
transformation [15]. An invariant of a concircular transformation is the con-
circular curvature tensor Z. It is defined by [15]

(0.1) Z = R− r

n (n− 1)
R0,

where R is the curvature tensor, r is the scalar curvature and

R0 (X, Y )W = g (Y, W ) X − g (X,W ) Y, X, Y, W ∈ TM.

It is easy to see that Riemannian manifolds with vanishing concircular curva-
ture tensor are of constant curvature.

In [4], the classification of N(k)-contact metric manifolds satisfying the
condition Z (ξ,X) · Z = 0 was given by Blair, Kim and Tripathi (see also [3]).
In [14], Tripathi and Kim studied the concircular curvature tensor of a (k, µ)-
contact metric manifold and they classified (k, µ)-contact metric manifolds
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satisfying the condition Z (ξ, X) · S = 0. Contact Riemannian manifolds
satisfying R(ξ,X) · R = 0 and ξ ∈ (k, µ)-nullity distribution was studied by
Papantoniou in [5].

In [9], Kitahara, Matsuo and Pak defined a tensor field B0 on a Hermitian
manifold which is conformally invariant and studied some of its properties.
They called this tensor field the conformal invariant curvature tensor. By
using the Boothby-Wang fibration [7], Jeong, Lee, Oh and Pak constructed a
contact conformal curvature tensor C0 [10] on a Sasakian manifold from the
conformal invariant curvature tensor. In a (2n+1)-dimensional contact metric
manifold (M,ϕ, ξ, η, g), it is defined by

C0(X, Y )Z = R(X,Y )Z

+
1
2n
{−g(QY, Z)ϕ2X + g(QX,Z)ϕ2Y

+g(ϕY, ϕZ)QX − g(ϕX, ϕZ)QY

+g(QϕX,Z)ϕY − g(QϕY, Z)ϕX + 2g(QϕX,Y )ϕZ

+g(ϕX,Z)QY − g(ϕY,Z)QX + 2g(ϕX, Y )QZ}
+

1
2n(n + 1)

(
2n2 − n− 2 +

(n + 2)r
2n

)
×(0.2)

×{g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ}
+

1
2n(n + 1)

(
n + 2− (3n + 2)r

2n

)
(g(Y, Z)X − g(X, Z)Y )

− 1
2n(n + 1)

(
4n2 + 5n + 2− (3n + 2)r

2n

)
×

×{η(Y )η(Z)X − η(X)η(Z)Y
+η(X)g(Y, Z)ξ − η(Y )g(X, Z)ξ},

where R, Q, r are the curvature tensor, the Ricci operator and the scalar cur-
vature, respectively. In [11], Pak and Shin showed that every contact metric
manifold with vanishing contact conformal curvature tensor is a Sasakian space
form. In [8], Kim, Choi, the first author and Tripathi extended the concept of
contact conformal curvature tensor to an extended contact conformal curvature
tensor Ce. It is defined by

Ce(X, Y )Z = C0(X, Y )Z − η(X)C0(ξ, Y )Z(0.3)
−η(Y )C0(X, ξ)Z − η(Z)C0(X, Y )ξ.

In [8], it was proved that an N(k)-contact metric manifold with vanishing
extended contact conformal curvature tensor is a Sasakian manifold.

Motivated by the studies of the above authors, in this study, we consider
N(k)-contact metric manifolds satisfying the conditions Z(ξ, X) · C0 = 0,
C0(ξ, X) · Z = 0 and Ce(ξ,X) · Z = 0.
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§1. Preliminaries

An odd-dimensional differentiable manifold M is called an almost contact man-
ifold [2] if there is an almost contact structure (ϕ, ξ, η) consisting of a tensor
field ϕ type (1, 1), a vector field ξ, and a 1-form η satisfying

(1.1) ϕ2 = −I + η ⊗ ξ, and (one of) η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

If the induced almost complex structure J on the product manifold M2n+1×R
defined by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)

is integrable then the structure (ϕ, ξ, η) is said to be normal, where X is
tangent to M , t is the coordinate of R and f is a smooth function on M2n+1×R.
M becomes an almost contact metric manifold with an almost contact metric
structure (ϕ, ξ, η, g), if

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

or equivalently

g(X, ϕY ) = −g(ϕX, Y ) and g (X, ξ) = η(X)

for all X, Y ∈ TM , where g is a Riemannian metric tensor of M .
An almost contact metric structure is called a contact metric structure if

g(X, ϕY ) = dη(X, Y )

holds on M for X, Y ∈ TM.
A normal contact metric manifold is a Sasakian manifold. However an

almost contact metric manifold is Sasakian if and only if

∇Xϕ = R0(ξ, X), X ∈ TM,

where ∇ is Levi-Civita connection. Also a contact metric manifold M is
Sasakian if and only if the curvature tensor R satisfies

R(X, Y )ξ = R0(X, Y )ξ, X, Y ∈ TM,

(see [2], Proposition 7.6).
The tangent sphere bundle of a flat Riemannian manifold admits a contact

metric structure satisfying R(X, Y )ξ = 0 [2]. The (k, µ)-nullity condition on a
contact metric manifold is considered as a generalization of both R(X,Y )ξ = 0
and the Sasakian case. The (k, µ)-nullity distribution N(k, µ) [5] of a contact
metric manifold M2n+1 is defined by

N(k, µ) : p → Np(k, µ) = {W ∈ TpM | R(X, Y )W = (kI + µh)R0(X,Y )W},
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for all X, Y ∈ TM where (k, µ) ∈ R2 and the tensor field h is defined by
h = 1

2Lξϕ, here Lξ denotes Lie differentiation in the direction of ξ. If ξ
belongs to (k, µ)-nullity distribution N(k, µ) then a contact metric manifold
M2n+1is called a (k, µ)-contact metric manifold. In particular the condition

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

holds on a (k, µ)-contact metric manifold. On a (k, µ)-manifold k ≤ 1. If
k = 1, the structure is Sasakian and if k < 1, the (k, µ)-nullity condition
determines the curvature of M2n+1completely [5]. For a (k, µ) contact metric
manifold, the conditions of being a Sasakian manifold, a K-contact manifold,
k = 1 and h = 0 are all equivalent. Also h and ϕ are related by

h2 = (k − 1)ϕ2.

If µ = 0, the (k, µ)-nullity distribution N(k, µ) is reduced to the k-nullity
distribution N(k) [13], where the k-nullity distribution N(k) of a Riemannian
manifold M is defined by

N(k) : p → Np(k) = {W ∈ TpM | R(X, Y )W = kR0(X,Y )W};
k being a constant. If ξ ∈ N(k), then we call a contact metric manifold M
an N(k)-contact metric manifold. If k = 1, an N(k)-contact metric manifold
is Sasakian. If k < 1, the scalar curvature is r = 2n(2n − 2 + k). Also in an
N(k)-contact metric manifold the following conditions hold:

(1.2) S(X, ξ) = 2nkη(X), Qξ = 2nkξ,

(1.3) R(X, Y )ξ = k(η(Y )X − η(X)Y )

and

(1.4) R(ξ,X)Y = k(g(X, Y )ξ − η(Y )X),

(see [5]). For an extended contact conformal curvature tensor we find the
following equations in an N(k)-contact metric manifold:

Ce(X, Y )Z = C0(X, Y )Z − 2(k − 1){η(X)g(Y, Z)− η(Y )g(X, Z)}ξ
−4(k − 1)η(Z){η(Y )X − η(X)Y }(1.5)
+k{η(X)g(ϕY,Z)− η(Y )g(ϕX, Z)− 2η(Z)g(ϕX, Y )}ξ,

Ce(X, Y )ξ = −2(k − 1){η(Y )X − η(X)Y } = −2(k − 1)R0(X,Y )ξ

and

Ce(ξ, X)Y = 2(k − 1)η(Y ){X − η(X)ξ} = −2(k − 1)η(Y )R0(ξ, X)ξ.
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Consequently we have

(1.6) C0(X, Y )ξ = 2(k − 1){η(Y )X − η(X)Y }+ 2kg(ϕX, Y )ξ,

(1.7) C0(ξ, X)Y = 2(k−1){g(X,Y )ξ−η(Y )X}−kg(ϕX, Y )ξ = −C0(X, ξ)Y.

From (1.5), in a Sasakian manifold, the extended contact conformal curva-
ture tensor and the contact conformal curvature tensor are related by

Ce(X, Y )Z = C0(X,Y )Z + η(X)g(ϕY, Z)ξ(1.8)
−η(Y )g(ϕX, Z)ξ − 2η(Z)g(ϕX, Y )ξ,

(see [8]).
The standard contact metric structure on the tangent sphere bundle T1M

satisfies the (k, µ)-nullity condition if and only if the base manifold M is of
constant curvature. If M has constant curvature c, then k = c(2 − c) and
µ = −2c.

For a given contact metric structure (ϕ, ξ, η, g), D-homothetic deformation
is the structure defined by

η = aη, ξ =
1
a
ξ, ϕ = ϕ, g = ag + a(a− 1)η ⊗ η,

where a is a positive constant. While such a change preserves the state of being
contact metric, K-contact, Sasakian or strongly pseudo-convex CR, it destroys
a condition like R(X, Y )ξ = 0 or R(X,Y )ξ = k(η(Y )X − η(X)Y ). However,
the form of the (k, µ)-nullity condition is preserved under a D-homothetic
deformation with

k=
k + a2 − 1

a2
, µ=

µ + 2a− 2
a

.

Given a non-Sasakian (k, µ)-manifold M , in [6] an invariant

IM =
1− µ

2√
1− k

was introduced by E. Boeckx. He showed that for two non-Sasakian (k, µ)-
manifolds (Mi, ϕi, ξi, ηi, gi), i = 1, 2, we have IM1 = IM2 if and only if up to a
D-homothetic deformation, the two manifolds are locally isometric as contact
metric manifolds. Hence we know all non-Sasakian (k, µ)-manifolds locally as
soon as we have, for every odd dimension 2n + 1 and for every possible value
of the invariant I, one (k, µ)-manifold (M,ϕ, ξ, η, g) with IM = I. For I > −1
such examples may be found from the standard contact metric structure on
the tangent sphere bundle of a manifold of constant curvature c where we have
I = 1+c

|1−c| [6].
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Using this invariant, an example of a (2n+1)-dimensional N(1− 1
n)-contact

metric manifold, n > 1, was constructed by Blair, Kim and Tripathi in [4] as
follows:

Example 1. Since the Boeckx invariant for a (1− 1
n , 0)-manifold is

√
n > −1,

we consider the tangent sphere bundle of an (n + 1)-dimensional manifold of
constant curvature c so chosen that the resulting D-homothetic deformation
will be a (1− 1

n , 0)-manifold. That is, for k = c(2− c) and µ = −2c we solve

1− 1
n

=
k + a2 − 1

a2
, 0 =

µ + 2a− 2
a

for a and c. The result is

c =
(
√

n± 1)2

n− 1
, a = 1 + c

and taking c and a to be these values it is obtained an N(1− 1
n)-contact metric

manifold.

We need the following theorems in Section 2.

Theorem 1. A contact metric manifold M2n+1 satisfying the condition R(X, Y )ξ =
0 is locally isometric to En+1×Sn(4) for n > 1 and flat for n = 1 ([2], Theorem
7.5).

Theorem 2. If a contact metric manifold M2n+1 is of constant curvature c
and dimension ≥ 5, then c = 1 and the structure is Sasakian ([2], Theorem
7.3).

§2. Main Results

In this section, we give the main results of the study. Now we begin with the
following:

Theorem 3. Let M be a (2n + 1)-dimensional non-Sasakian N(k)-contact
metric manifold. Then M satisfies the condition Z(ξ, X) · C0 = 0 if and only
if either M is locally isometric to the product En+1×Sn(4) for n > 1 and flat
for n = 1 or locally isometric to the Example 1.

Proof. If M is a non-Sasakian N(k)-contact metric manifold then the equation
(0.1) can be written as

(2.1) Z(ξ,X) =
2n

2n + 1

(
k − 1 +

1
n

)
R0(ξ, X),
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which implies that

Z(ξ,X) · C0 =
2n

2n + 1

(
k − 1 +

1
n

)
R0(ξ, X) · C0.

Therefore Z(ξ, X) · C0 = 0 is equivalent to k = 1− 1
n or R0(ξ, X) · C0 = 0. If

k = 1− 1
n , then M is locally isometric to the Example 1.

If R0(ξ, X) · C0 = 0 we can write

0 = R0(ξ, X)C0(Y, V )U − C0(R0(ξ,X)Y, V )U
−C0(Y, R0(ξ, X)V )U − C0(Y, V )R0(ξ, X)U

for all X, Y, V, U ∈ TM . So using the definition of R0 we get

0 = C0(Y, V, U,X)ξ − η(C0(Y, V )U)X
−g(X, Y )C0(ξ, V )U + η(Y )C0(X, V )U(2.2)
−g(X, V )C0(Y, ξ)U + η(V )C0(Y, X)U
−g(X, U)C0(Y, V )ξ + η(U)C0(Y, V )X,

where C0(Y, V, U,X) = g(C0(Y, V )U,X). Putting U = ξ in (2.2) and by the
use of (1.6) and (1.7) in (2.2) we obtain

C0(Y, V )X = 2(k − 1)[g(X,V )Y − g(X, Y )V ]
+2k[g(ϕY, V )X − η(Y )g(ϕX, V )ξ(2.3)
−η(V )g(ϕY, X)ξ].

Taking Y = ξ in (2.3) we find

C0(ξ, V )X = 2(k − 1)[g(X,V )ξ − η(X)V ] + 2kg(ϕV, X)ξ.

In view of (1.7), we know that

C0(ξ, V )X = 2(k − 1)[g(X,V )ξ − η(X)V ]− kg(ϕV, X)ξ.

Comparing last two equations we find kg(ϕV, X)ξ = 0. Since g(ϕV, X) 6= 0,
we get k = 0. Hence from Theorem 1, M is locally isometric to the product
En+1 × Sn(4) for n > 1 and flat for dimension 3. The converse statement is
trivial. This completes the proof of the theorem.

Theorem 4. Let M be a (2n + 1)-dimensional non-Sasakian N(k)-contact
metric manifold. If M satisfies the condition C0(ξ, X) · Z = 0 then either it
is locally isometric to the product En+1 × Sn(4) for n > 1 and flat for n = 1
or locally isometric to the Example 1.
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Proof. Since M satisfies the condition C0(ξ, X) · Z = 0, we can write

0 = C0(ξ, X)Z(Y, V )U −Z(C0(ξ, X)Y, V )U(2.4)
−Z(Y,C0(ξ, X)V )U −Z(Y, V )C0(ξ,X)U

for all X, Y, V, U ∈ TM . So using (1.7) we have

0 = 2(k − 1) {Z(Y, V, U,X)ξ −Z(Y, V, U, ξ)X
−g(X,Y )Z(ξ, V )U + η(Y )Z(X, V )U
−g(X,V )Z(Y, ξ)U + η(V )Z(Y, X)U(2.5)
−g(X, U)Z(Y, V )ξ + η(U)Z(Y, V )X}
+k {−g(ϕX,Z(Y, V )U)ξ + g(ϕX, Y )Z(ξ, V )U
+g(ϕX, V )Z(Y, ξ)U + g(ϕX, U)Z(Y, V )ξ} ,

where Z(Y, V, U,X) = g(Z(Y, V )U,X). Taking U = ξ in (2.5) we get

0 = 2(k − 1) {Z(Y, V, ξ, X)ξ − g(X,Y )Z(ξ, V )ξ
+η(Y )Z(X, V )ξ − g(X, V )Z(Y, ξ)ξ
+ η(V )Z(Y, X)ξ − η(X)Z(Y, V )ξ + Z(Y, V )X}
+k {−g(ϕX,Z(Y, V )ξ)ξ + g(ϕX, Y )Z(ξ, V )ξ
+g(ϕX, V )Z(Y, ξ)ξ} .

Since M is a non-Sasakian N(k)-contact metric manifold, using (0.1), the
above equation can be written as

0 =
2n

2n + 1

(
k − 1 +

1
n

)
[2(k − 1) {R0(Y, V, ξ, X)ξ

−g(X,Y )R0(ξ, V )ξ + η(Y )R0(X,V )ξ
−g(X, V )R0(Y, ξ)ξ + η(V )R0(Y, X)ξ − η(X)R0(Y, V )ξ}
+k {−g(ϕX, R0(Y, V )ξ)ξ + g(ϕX, Y )R0(ξ, V )ξ
+g(ϕX, V )R0(Y, ξ)ξ}] + 2(k − 1)Z(Y, V )X.

So by virtue of the definition of R0 we obtain

(k − 1)Z(Y, V )X =
n

2n + 1

(
k − 1 +

1
n

)
[2(k − 1){g(X, V )Y

−g(X, Y )V }+ k{g(ϕX, Y )V − g(ϕX, V )Y }] .(2.6)

Putting Y = ξ in (2.6) we find

(k − 1)Z(ξ, V )X =
n

2n + 1

(
k − 1 +

1
n

)
[(2(k − 1)) {g(X, V )ξ

−η(X)V } − kg(ϕX, V )ξ].
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Hence in view of (0.1) and the definition of R0 we have

k

(
k − 1 +

1
n

)
g(ϕX, V )ξ = 0.

Since g(ϕX, V ) 6= 0 then we obtain either k = 0 or k − 1 + 1
n = 0. If k = 0

from Theorem 1, M is locally isometric to the En+1×Sn(4) for n > 1 and flat
for dimension 3. If k− 1+ 1

n = 0, then M is locally isometric to the Example
1.

Thus the proof of the theorem is completed.

Theorem 5. Let M be a (2n+1)-dimensional N(k)-contact metric manifold,
n > 1. Then M satisfies the condition Ce(ξ, X) · Z = 0 if and only if it is a
Sasakian manifold.

Proof. For all X, Y, V, U ∈ TM , from (0.3) and (1.5), we can write

(Ce(ξ, X) · Z) (Y, V )U = Ce(ξ, X)Z(Y, V )U −Z(Ce(ξ,X)Y, V )U
−Z(Y, Ce(ξ, X)V )U −Z(Y, V )Ce(ξ, X)U

= 2(k − 1)[−η(X)Z(Y, V, U, ξ)ξ + Z(Y, V, U, ξ)X
+η(X)η(Y )Z(ξ, V )U − η(Y )Z(X,V )U
+η(X)η(V )Z(Y, ξ)U − η(V )Z(Y, X)U
+η(U)η(X)Z(Y, V )ξ − η(U)Z(Y, V )X].

Therefore Ce(ξ,X) · Z = 0 is equivalent to k = 1 or

0 = −η(X)Z(Y, V, U, ξ)ξ + Z(Y, V, U, ξ)X + η(X)η(Y )Z(ξ, V )U
−η(Y )Z(X, V )U + η(X)η(V )Z(Y, ξ)U − η(V )Z(Y,X)U(2.7)
+η(U)η(X)Z(Y, V )ξ − η(U)Z(Y, V )X.

If k = 1, then M is a Sasakian manifold. Putting U = ξ in (2.7) we obtain

0 = η(X)η(Y )Z(ξ, V )ξ − η(Y )Z(X,V )ξ(2.8)
+η(X)η(V )Z(Y, ξ)ξ − η(V )Z(Y, X)ξ
+η(X)Z(Y, V )ξ −Z(Y, V )X.

Since M is an N(k)-contact metric manifold, using (0.1) in (2.8) we can write

0 =
(

k − r

2n(2n + 1)

)
[η(X)η(Y )R0(ξ, V )ξ − η(Y )R0(X, V )ξ

+η(X)η(V )R0(Y, ξ)ξ − η(V )R0(Y, X)ξ + η(X)R0(Y, V )ξ]−Z(Y, V )X.
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So by virtue of the definition of R0 we have

(2.9) Z(Y, V )X =
(

k − r

2n(2n + 1)

)
[η(X)η(V )Y − η(X)η(Y )V ].

Then by the use of (0.1), the equation (2.9) can be written as

R(Y, V )X =
(

k − r

2n(2n + 1)

)
[η(X)η(V )Y − η(X)η(Y )V ]

+
r

2n(2n + 1)
{g(X,V )Y − g(Y, X)V } .(2.10)

Hence from (2.10), by a contraction, we obtain

(2.11) S(X, V ) =
r

2n + 1
g(X,V ) +

(
2nk − r

2n + 1

)
η(X)η(V ).

From (2.11), by a contraction, we get

r = 2nk(2n + 1).

Then putting r = 2nk(2n + 1) into (2.10) we obtain

R(Y, V )X = k(g(X, V )Y − g(Y,X)V ).

So M is a space of constant curvature k. Since n > 1, hence from Theorem 2,
it is necessarily a Sasakian manifold of constant curvature +1, n > 1. From
(1.8), since Ce(ξ, X)Y = 0 for all Sasakian manifolds, the converse statement
is trivial. Hence we get the result as required.
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