Vertex-disjoint t-claws in graphs

Shuya Chiba

(Received June 5, 2007)

Abstract

Let $\delta(G)$ denote the minimum degree of a graph G. We prove that for $t \geq 4$ and $k \geq 2$, a graph G of order at least $(t+1) k+\frac{11}{6} t^{2}$ with $\delta(G) \geq k+t-1$ contains k pairwise vertex-disjoint copies of $K_{1, t}$.

AMS 2000 Mathematics Subject Classification. 05C35. Key words and phrases. Graph, minimum degree, t-claw.

§1. Introduction

We consider only undirected graphs without loops or multiple edges. For a graph G, we denote by $V(G), E(G)$ and $\delta(G)$ the vertex set, the edge set and the minimum degree of G, respectively. A graph F is called a t-claw if F is isomorphic to $K_{1, t}$.

Let H be a fixed connected graph, and let $k \geq 2$ be a fixed integer. In this paper, we are concerned with the existence of k pairwise vertex-disjoint copies of H in a graph G. The main theorem of this paper deals with the case where $|V(G)|>k|V(H)|$, but we start with results which deal with the case where $|V(G)|=k|V(H)|$. For $H=K_{t}$ with $t \geq 2$, Hajnal and Szemerédi [6] proved that if $|V(G)|=k t$ and $\delta(G) \geq \frac{t-1}{t}|V(G)|$, then G contains k pairwise vertex-disjoint copies of K_{t} (see also Corrádi and Hajnal [1]). For $H=P_{t}$ with $t(\geq 3)$ odd, it is easy to see that if $|V(G)|=k t$ and $\delta(G) \geq \frac{|V(G)|-2}{2}$, then G contains k pairwise vertex-disjoint copies of P_{t} (for results concerning the case where it is assumed that G is connected, the reader is referred to Johansson [7] and Enomoto, Kaneko and Tuza [4]).

Note that $P_{3} \cong K_{1,2}$ is a 2-claw. Thus letting $t=2$ in the above result, we obtain the following proposition.

Proposition 1. Let $k \geq 2$ be an integer, and let G be a graph of order $3 k$ such that $\delta(G) \geq(3 k-2) / 2$. Then G contains k pairwise vertex-disjoint 2 -claws.

In the case where H is a 3 -claw, Egawa, Fujita and Ota [2] proved the following theorem.

Theorem 2 (Egawa, Fujita and Ota [2]). Let $k \geq 2$ be an integer, and let G be a graph of order $4 k$ such that $\delta(G) \geq 2 k$. Then G contains k pairwise vertex-disjoint 3 -claws, unless k is odd and G is isomorphic to $K_{2 k, 2 k}$.

In Proposition 1 and Theorem 2, the condition on the minimum degree is sharp. However, if we assume that the order of G is slightly greater than $3 k$ or $4 k$, then a much weaker condition on the minimum degree guarantees the existence of k pairwise vertex-disjoint 2-claws or 3 -claws.

Theorem 3 (Ota [8]). Let $k \geq 2$ be an integer, and let G be a graph of order at least $3 k+2$ such that $\delta(G) \geq k+1$. Then G contains k pairwise vertex-disjoint 2 -claws.

Theorem 4 (Egawa and Ota [3]). Let $k \geq 2$ be an integer, and let G be a graph of order at least $4 k+6$ such that $\delta(G) \geq k+2$. Then G contains k pairwise vertex-disjoint 3-claws.

Based on these results, Ota [8] made the following conjecture.
Conjecture 5 (Ota [8]). Let $t \geq 2, k \geq 2$ be integers, and let G be a graph of order at least $(t+1) k+t^{2}-t$ such that $\delta(G) \geq k+t-1$. Then G contains k pairwise vertex-disjoint t-claws.

As is shown in [8], in this conjecture, the condition on the minimum degree of G is sharp in the sense that for any fixed t and k, there exists a graph of arbitrarily large order which has minimum degree $k+t-2$ but does not contain k vertex-disjoint t-claws and, if k is suffciently large compared with t, then the condition on the order of G is also sharp in the sense that there exists a graph G with $|V(G)|=(t+1) k+t^{2}-t-1$ and $\delta(G) \geq k+t-1$ such that G does not contain k vertex-disjoint t-claws. Theorems 3 and 4 above show that the conjecture is true for $t=2,3$. For $t \geq 4$, Ota [8; Theorem 1] proved the following theorem.

Theorem 6 (Ota [8]). Let $t \geq 4, k \geq 2$ be intgers, and let G be a graph of order at least $(t+1) k+2 t^{2}-3 t-1$ such that $\delta(G) \geq k+t-1$. Then G contains k pairwise vertex-disjoint t-claws.

The coefficient -3 of t in the lower bound on $|V(G)|$ was improved to -4 by Fujita in [5].

Theorem 7 (Fujita [5]). Let $t \geq 4, k \geq 2$ be intgers, and let G be a graph of order at least $(t+1) k+2 t^{2}-4 t+2$ such that $\delta(G) \geq k+t-1$. Then G contains k pairwise vertex-disjoint t-claws.

The purpose of this paper is to improve the coefficient of t^{2} as follows.
Main Theorem Let $t \geq 4, k \geq 2$ be intgers, and let G be a graph of order at least $(t+1) k+\frac{11}{6} t^{2}$ such that $\delta(G) \geq k+t-1$. Then G contains k pairwise vertex-disjoint t-claws.

We need the following notation and terminology. Let G be a graph. For a vertex $v \in V(G)$, we denote by $N(v)=N_{G}(v)$ and $d_{G}(v)$ the set of vertices adjacent to v and the degree of v, respectively; thus $d_{G}(v)=\left|N_{G}(v)\right|$. For $S \subseteq V(G)$, we let $\langle S\rangle=\langle S\rangle_{G}$ denote the subgraph of G induced by S. For disjoint subsets S and T of $V(G)$, we let $E(S, T)=E_{G}(S, T)$ denote the set of edges of G joining a vertex in S and vertex in T. When S or T contains of a single vertex, say $S=\{x\}$ or $T=\{y\}$, we write $E(x, T)$ or $E(S, y)$ for $E(S, T)$.

§2. Preparation for the proof of the main theorem

By way of contradiction, suppose that there exists a graph G with $|V(G)|$ $\geq(t+1) k+\frac{11}{6} t^{2}$ and $\delta(G) \geq k+t-1$ such that G does not contain k pairwise vertex-disjoint t-claws. By Theorem 7, we have $|V(G)| \leq(t+1) k+2 t^{2}-4 t+1$. Since $\left\lceil\frac{11}{6} t^{2}\right\rceil \geq 2 t^{2}-4 t+2$ for $4 \leq t \leq 23$, this implies $t \geq 24$. We may assume that G is an edge-maximal counterexample. Then G contains $k-1$ vertex-disjoint t-claws, say $C^{(1)}, C^{(2)}, \ldots, C^{(k-1)}$. Set $H=G-\left(\bigcup_{i=1}^{k-1} V\left(C^{(i)}\right)\right)$. Let $P^{(1)}, P^{(2)}, \ldots, P^{(s)}$ be the K_{t} components of H, i.e., the components of H isomorphic to K_{t}. Define $U=\bigcup_{\alpha=1}^{s} V\left(P^{(\alpha)}\right)$ and $W=V(H)-U$. We may assume that $C^{(1)}, C^{(2)}, \ldots, C^{(k-1)}$ are chosen so that $|E(\langle W\rangle)|+\frac{2}{t}|E(\langle U\rangle)|$ is as large as possible.

By assumption, H contains no t-claw, or equivalently, every vertex of H has degree at most $t-1$. We define $n=|V(H)|$. Since $n=|V(G)|-(t+1)(k-1)$, we have $\frac{11}{6} t^{2}+t+1 \leq n \leq 2 t^{2}-3 t+2$. For each i, let $a^{(i)}$ be the center of $C^{(i)}$ and $B^{(i)}=\left\{b_{1}^{(i)}, b_{2}^{(i)}, \ldots, b_{t}^{(i)}\right\}$ be the set of leaves of $C^{(i)}$. In the following argument, we sometimes fix i and set $C=C^{(i)}$. In such cases, we write $a, B, b_{1}, b_{2}, \ldots, b_{t}$ instead of $a^{(i)}, B^{(i)}, b_{1}^{(i)}, b_{2}^{(i)}, \ldots, b_{t}^{(i)}$, respectively.

We first state seven lemmas concerning the number of edges between $V\left(C^{(i)}\right)$ and $V(H)$, which are proved in [5; Lemmas 2.1 through 2.7]. Fix i with $1 \leq i \leq k-1$. Thus as mentioned in the preceding paragraph, a denotes the center of $C=C^{(i)}$, and $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ denotes the set of leaves of C.

Lemma 2.1. Let $v \in V(H)$, and suppose that $d_{H}(v)+|E(B, v)| \geq t$. Then $\left|E\left(a, V(H)-\{v\}-N_{H}(v)\right)\right| \leq t-1-d_{H}(v)$.
Lemma 2.2. If $E(a, V(H)) \neq \emptyset$, then $\left|E\left(b_{p}, V(H)\right)\right| \leq t$ for every $b_{p} \in B$.

Lemma 2.3. If $\mid\left(\left(N\left(b_{p}\right) \cup N\left(b_{q}\right)\right) \cap V(H) \mid \geq 2 t-1\right.$ for $b_{p}, b_{q} \in B$ with $p \neq q$, then $\left|E\left(b_{p}, V(H)\right)\right| \leq t-2$ or $\left|E\left(b_{q}, V(H)\right)\right| \leq t-2$.
Lemma 2.4. Let $v \in V(H)$, and suppose that $d_{H}(v)+|E(B, v)| \geq t+1$. Then $\left|E\left(b_{p}, V(H)-\{v\}-N_{H}(v)\right)\right| \leq t-2$ for every $b_{p} \in B$.

Lemma 2.5. Let P be a K_{t} component of H, and suppose that there exists $v \in$ $V(H)-V(P)$ such that $d_{H}(v)+|E(V(C), v)| \geq t+1$. Then $E(V(C), V(P))=$ \emptyset.

Lemma 2.6. Let P be a K_{t} component of H, and suppose that there exists $v \in V(H)-V(P)$ such that $|E(V(C), v)| \geq 2$. Then $E(B, V(P))=\emptyset$, and hence it follows that $|E(V(C), V(P))| \leq t$.

Lemma 2.7. Let P be a K_{t} component of H, and suppose that $E(V(C)$, $V(H)-V(P)) \neq \emptyset$. Then $|E(V(C), V(P))| \leq t$.

In the rest of this section, we consider the case where $s \geq t+1$. For each α with $1 \leq \alpha \leq t+1$, we take $u_{\alpha} \in V\left(P^{(\alpha)}\right)$. Since

$$
\sum_{i=1}^{k-1} \sum_{\alpha=1}^{t+1}\left|E\left(V\left(C^{(i)}\right), u_{\alpha}\right)\right|=\sum_{\alpha=1}^{t+1}\left(d_{G}\left(u_{\alpha}\right)-(t-1)\right) \geq(t+1) k
$$

there exists an index i with $1 \leq i \leq k-1$ such that $\sum_{\alpha=1}^{t+1}\left|E\left(V\left(C^{(i)}\right), u_{\alpha}\right)\right|>t+1$. Then there exist two edges $x u_{\alpha}$ and $y u_{\beta}$ joining $V\left(C^{(i)}\right)$ and $\left\{u_{1}, u_{2}, \ldots, u_{t+1}\right\}$ with $x, y \in V\left(C^{(i)}\right), x \neq y$ and $\alpha \neq \beta$. Replacing $C^{(i)}$ by t-claws contained in $\left\langle\{x\} \cup V\left(P^{(\alpha)}\right)\right\rangle$ and $\left\langle\{y\} \cup V\left(P^{(\beta)}\right)\right\rangle$, we obtain k vertex-disjoint t-claws in G. This is a contradiction.

§3. The case where $s=t$

We continue with the notation of the preceding section. In order to prove the main theorem, we shall choose some $C^{(i)}$'s and show that they together with some vertices in H contain more t-claws, which contradicts the assumption that G is a counterexample. In this section, we consider the case where $s=t$. For each α with $1 \leq \alpha \leq t$, we take a vertex $u_{\alpha} \in V\left(P^{(\alpha)}\right)$, and let $v \in W$. Define

$$
J=\left\{i\left|1 \leq i \leq k-1,\left|E\left(V\left(C^{(i)}\right),\left\{u_{1}, u_{2}, \ldots, u_{t}, v\right\}\right)\right| \geq t+2\right\} .\right.
$$

The following two lemmas are proved in [5; Lemmas 3.1 and 3.2].

Lemma 3.1. Suppose that $C=C^{(i)}$ satisfies $\left|E\left(V(C),\left\{u_{1}, u_{2}, \ldots, u_{t}, v\right\}\right)\right|$ $\geq t+2$. Then the following hold.
(i) $2 \leq|E(V(C), v)| \leq t$.
(ii) $E\left(B,\left\{u_{1}, u_{2}, \ldots, u_{t}, v\right\}\right)=\emptyset$.

Lemma 3.2. $\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right| \geq|J|+t+1$.
We may assume that $J=\{1,2, \ldots, m\}$ where $m=|J|$, and $\mid E\left(V\left(C^{(1)}\right)\right.$, $v)\left|\geq\left|E\left(V\left(C^{(2)}\right), v\right)\right| \geq \cdots \geq\left|E\left(V\left(C^{(m)}\right), v\right)\right| \geq 2\right.$. By Lemmas 3.1(i) and 3.2, there exists $l \in J$ with $2 \leq l \leq m$ such that

$$
\begin{equation*}
\sum_{i=1}^{l}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \geq t \tag{3.1}
\end{equation*}
$$

and such that $\sum_{i=1}^{l-1}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \leq t-1$. By Lemma 3.1(i), we also have $\sum_{j=1}^{i}\left(\left|E\left(V\left(C^{(j)}\right), v\right)\right|-1\right) \leq t-1$ for each $1 \leq i \leq l-1$, and $l-1 \leq$ $\sum_{i=1}^{l-1}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \leq t-1$. Thus $2 \leq l \leq t$. The following lemma is proved in [5; Lemma 3.3].
Lemma 3.3. We have $\left|E\left(a^{(i)},\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}\right)\right| \geq i$ for each $1 \leq i \leq l$.
Now by Lemma 3.3, we may assume that we can take l independent edges $a^{(i)} u_{i}, 1 \leq i \leq l$. On the other hand, (3.1) implies that $\sum_{i=1}^{l}\left|E\left(B^{(i)}, v\right)\right| \geq t$. Hence we can take $X \subset N(v) \cap\left(\bigcup_{i=1}^{l} B^{(i)}\right)$ with $|X|=t$. Then each of $\langle X \cup\{v\}\rangle$ and $\left\langle\left\{a^{(i)}\right\} \cup V\left(P^{(i)}\right)\right\rangle$ for $1 \leq i \leq l$ contains a t-claw. These are $l+1$ vertex-disjoint t-claws in $\left\langle\left(\bigcup_{i=1}^{l} V\left(\bar{C}^{(i)}\right)\right) \cup V(H)\right\rangle$, which contradicts the assumption that G is a counterexample.

§4. Counting argument

Throughout the rest of this paper, we assume that $s \leq t-1$. In this section, we find a good vertex in H that can be used later to find an extra t-claw. The lemmas proved in this section are actually proved in [5], but we include their proofs for the convenience of the reader. Recall that U is the set of vertices contained in the K_{t} components of H, and $W=V(H)-U$. We define

$$
\begin{aligned}
& I=\left\{i \mid 1 \leq i \leq k-1, \quad E\left(V\left(C^{(i)}\right), W\right)=\emptyset\right\}, \\
& J=\left\{i|1 \leq i \leq k-1, \quad i \notin I, \quad| E\left(V\left(C^{(i)}\right), V(H)\right) \mid \geq n-s+1\right\} .
\end{aligned}
$$

Note that since $n \geq \frac{11}{6} t^{2}+t+1$ and $s \leq t-1$, we have $\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right|$ $\geq \frac{11}{6} t^{2}+3$ for each $i \in J$.

Lemma 4.1. There exists $v \in W$ such that

$$
d_{H}(v)+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right| \geq|J|+t .
$$

Proof. Suppose that

$$
\begin{equation*}
d_{H}(v)+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right| \leq|J|+t-1 \text { for all } v \in W \tag{4.1}
\end{equation*}
$$

We first claim that $\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t(t+1)$ for each $i \in I$. If $V\left(C^{(i)}\right)$ is joined by edges to at most one component of $\langle U\rangle$, then the claim is obvious. If $V\left(C^{(i)}\right)$ is joined to at least two components of $\langle U\rangle$, then by Lemma 2.7, $\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t s<t(t+1)$. Thus the claim follows. Note that this claim implies that

$$
\begin{equation*}
\sum_{i \in I}\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t(t+1)|I| . \tag{4.2}
\end{equation*}
$$

For $i \in J$, since $E\left(V\left(C^{(i)}\right), W\right) \neq \emptyset$, it follows from Lemma 2.7 that $\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t s$. Hence

$$
\begin{equation*}
\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t s|J| . \tag{4.3}
\end{equation*}
$$

By the definition of I,

$$
\begin{equation*}
\sum_{i \in I}\left|E\left(V\left(C^{(i)}\right), W\right)\right|=0 \tag{4.4}
\end{equation*}
$$

By (4.1),

$$
\begin{equation*}
\sum_{v \in W}\left(d_{H}(v)+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right|\right) \leq(|J|+t-1)(n-t s) . \tag{4.5}
\end{equation*}
$$

For $i \notin I \cup J$, we have $\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \leq n-s$ by the definition of J. Hence

$$
\begin{equation*}
\sum_{i \notin I \cup J}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \leq(n-s)(k-1-|I|-|J|) . \tag{4.6}
\end{equation*}
$$

Now we estimate the following weighted sum of the degrees of vertices in H in two ways: $\frac{t-1}{t} \sum_{u \in U} d_{G}(u)+\sum_{v \in W} d_{G}(v)$. First, since $\delta(G) \geq k+t-1$,

$$
\begin{align*}
\frac{t-1}{t} \sum_{u \in U} d_{G}(u)+\sum_{v \in W} d_{G}(v) & \geq(k+t-1)\left(\frac{t-1}{t}|U|+|W|\right) \tag{4.7}\\
& =(k+t-1)(n-s) .
\end{align*}
$$

On the other hand, by (4.2) through (4.6),

$$
\begin{aligned}
& \frac{t-1}{t} \sum_{u \in U} d_{G}(u)+\sum_{v \in W} d_{G}(v) \\
& =\frac{t-1}{t} \sum_{u \in U}\left(d_{H}(u)+\sum_{i=1}^{k-1}\left|E\left(V\left(C^{(i)}\right), u\right)\right|\right) \\
& +\sum_{v \in W}\left(d_{H}(v)+\sum_{i=1}^{k-1}\left|E\left(V\left(C^{(i)}\right), v\right)\right|\right) \\
& =\frac{t-1}{t}\left(\sum_{u \in U} d_{H}(u)+\left(\sum_{i \in I}+\sum_{i \in J}+\sum_{i \notin I \cup J}\right)\left|E\left(V\left(C^{(i)}\right), U\right)\right|\right) \\
& +\sum_{v \in W}\left(d_{H}(v)+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right|\right)+\sum_{i \notin I \cup J}\left|E\left(V\left(C^{(i)}\right), W\right)\right| \\
& \leq \frac{t-1}{t}\left(\sum_{u \in U} d_{H}(u)+\sum_{i \in I}\left|E\left(V\left(C^{(i)}\right), U\right)\right|+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), U\right)\right|\right) \\
& +\sum_{v \in W}\left(d_{H}(v)+\sum_{i \in J}\left|E\left(V\left(C^{(i)}\right), v\right)\right|\right)+\sum_{i \notin I \cup J}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \\
& \leq \frac{t-1}{t}(t(t-1) s+t(t+1)|I|+t s|J|)+(|J|+t-1)(n-t s) \\
& +(n-s)(k-1-|I|-|J|) \\
& =(k+t-1)(n-s)+\left(t^{2}-1\right)|I|-(n-s)(|I|+1) \\
& \leq(k+t-1)(n-s)+\left(t^{2}-1\right)|I|-\left(\frac{11}{6} t^{2}+2\right)(|I|+1) \\
& =(k+t-1)(n-s)-\left(\frac{5}{6} t^{2}+3\right)|I|-\left(\frac{11}{6} t^{2}+2\right) .
\end{aligned}
$$

This contradicts (4.7), which completes the proof of Lemma 4.1.
In the following argument, we consider the vertices in W satisfying the condition in Lemma 4.1. We define

$$
W_{0}=\left\{v \in W\left|d_{H}(v)+\sum_{i \in J}\right| E\left(V\left(C^{(i)}\right), v\right)|\geq|J|+t\}\right.
$$

which is not empty by Lemma 4.1. We also define
$W_{1}=\left\{v \in W \mid\right.$ there exists $i \in J$ such that $\left.d_{H}(v)+\left|E\left(V\left(C^{(i)}\right), v\right)\right| \geq t+1\right\}$, $W_{2}=\left\{v \in W-W_{1} \mid\right.$ there exists $J_{0} \subset J$ with $2 \leq\left|J_{0}\right| \leq t-d_{H}(v)$

$$
\text { such that } \left.d_{H}(v)+\sum_{i \in J_{0}}\left|E\left(V\left(C^{(i)}\right), v\right)\right| \geq\left|J_{0}\right|+t\right\}
$$

Lemma 4.2. The following statements hold:
(i) $W_{0} \subset W_{1} \cup W_{2}$.
(ii) If v is a vertex in W_{0} with $d_{H}(v)=t-1$, then $v \in W_{1}$.

Proof. Suppose that $v \in W_{0}$. By the definition of W_{0},

$$
\sum_{i \in J}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \geq t-d_{H}(v) .
$$

Thus there exists $J_{0} \subset J$ with $1 \leq\left|J_{0}\right| \leq t-d_{H}(v)$ such that $\mid E\left(V\left(C^{(i)}\right)\right.$, $v) \mid-1 \geq 1$ for each $i \in J_{0}$ and

$$
\sum_{i \in J_{0}}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \geq t-d_{H}(v) .
$$

This proves (i). Further if $d_{H}(v)=t-1$, then $\left|J_{0}\right|=1$. Thus (ii) holds.
Lemma 4.3. Suppose that $W_{1}=\emptyset$. Fix $C=C^{(i)}$ with $i \in J$, and let $b_{p} \in B$. Suppose that $E(B, U)=\emptyset$ and $\left|E\left(b_{p}, V(H)\right)\right| \geq t+1$, and let $x_{1}, x_{2}, \ldots, x_{t-1}$ be $t-1$ vertices in $N\left(b_{p}\right) \cap V(H)$. Then the following inequality holds:

$$
\begin{aligned}
& |E(a, V(H))|+\left|E\left(b_{p}, V(H)\right)\right|+\sum_{i=1}^{t-1}\left(d_{H}\left(x_{i}\right)+\left|E\left(V(C), x_{i}\right)\right|\right) \\
& \quad \geq|E(V(C), V(H))|+t-1+\left|E\left(\left\langle a, x_{1}, x_{2}, \ldots, x_{t-1}\right\rangle\right)\right| .
\end{aligned}
$$

Proof. First we claim that $\left|E\left(B-\left\{b_{p}\right\}, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right| \leq$ $\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)-e$, where $e=\left|E\left(\left\langle x_{1}, x_{2}, \ldots, x_{t-1}\right\rangle\right)\right|$. We replace C by the t-claw with center b_{p} contained in $\left\langle a, b_{p}, x_{1}, x_{2}, \ldots, x_{t-1}\right\rangle$. Let $H^{\prime}=\langle(V(H)-$ $\left.\left.\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right) \cup\left(V(C)-\left\{a, b_{p}\right\}\right)\right\rangle$, and let U^{\prime} be the union of the vertex sets of the K_{t} components of H^{\prime}. Also we set $S=\left(B-\left\{b_{p}\right\}\right) \cap U^{\prime}$.

If $S=\emptyset$, then the claim immediately follows from the maximality of $|E(\langle W\rangle)|+\frac{2}{t}|E(\langle U\rangle)|$. Thus we may assume that $S \neq \emptyset$. Let $y \in N\left(b_{p}\right) \cap$ $\left(V(H)-\left\{x_{1}, \ldots, x_{t-1}\right\}\right)$. If there exists $b_{q} \in S$ such that $b_{q} y \notin E(G)$, then each of $\left\langle\left\{b_{q}, a\right\} \cup N_{H^{\prime}}\left(b_{q}\right)\right\rangle$ and $\left\langle\left\{b_{p}, x_{1}, x_{2}, \ldots, x_{t-1}, y\right\}\right\rangle$ contains a t-claw, a contradiction. Thus by $\in E(G)$ for every $b \in S$. Hence there exists a K_{t} component P^{\prime} of H^{\prime} such that $\{y\} \cup S \subset V\left(P^{\prime}\right)$. Note that $\mid N\left(b_{p}\right) \cap(V(H)-$ $\left.\left\{x_{1}, \ldots, x_{t-1}\right\}\right) \mid \geq 2$ by the assumption that $\left|E\left(b_{p}, V(H)\right)\right| \geq t+1$. Since the above observation holds for any choice of $y \in N\left(b_{p}\right) \cap\left(V(H)-\left\{x_{1}, \ldots, x_{t-1}\right\}\right)$, it follows that $1 \leq|S| \leq t-2$. This implies that $\left\langle V(C)-\left\{b_{p}\right\}\right\rangle \not \equiv K_{t}$. On the other hand, since $W_{1}=\emptyset$ and $d_{H}(y)+|E(V(C), y)| \geq d_{H}(y)+$ $|E(B, y)|=\left|E\left(y,\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|+\left|E\left(y, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|+|S|+$ $1=\left|E\left(y,\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|+d_{P^{\prime}}(y)+1=\left|E\left(y,\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|+t$, we obtain $E\left(y,\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)=\emptyset$ and $d_{H}(y)=t-|E(B, y)|$.

Now replace C by the t-claw contained in $\left\langle b_{p}, x_{1}, x_{2}, \ldots, x_{t-1}, y\right\rangle$, and set $H^{\prime \prime}=\left\langle\left(V(C)-\left\{b_{p}\right\}\right) \cup\left(V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}, y\right\}\right)\right\rangle$. Then since $\langle V(C)-$
$\left.\left\{b_{p}\right\}\right\rangle$ is connected and not isomorphic to K_{t}, the union of the vertex sets of the K_{t} components of $H^{\prime \prime}$ coincides with U. Therefore it follows from the maximality of $|E(\langle W\rangle)|+\frac{2}{t}|E(\langle U\rangle)|$ that

$$
\begin{aligned}
0 \leq & \left(\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)+d_{H}(y)-e\right)-\left\{\left(\left|E\left(B-\left\{b_{p}\right\}, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|\right.\right. \\
& \left.\left.\quad-\left|E\left(B-\left\{b_{p}\right\}, y\right)\right|\right)+\left|E\left(a, B-\left\{b_{p}\right\}\right)\right|\right\} \\
= & \left(\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)+d_{H}(y)-e\right)-\left\{\left(\left|E\left(B-\left\{b_{p}\right\}, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|\right.\right. \\
& \quad-(|E(B, y)|-1))+(t-1)\} \\
= & \left(\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)-e\right)-\left|E\left(B-\left\{b_{p}\right\}, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|
\end{aligned}
$$

as claimed. Consequently

$$
\begin{aligned}
& |E(a, V(H))|+\left|E\left(b_{p}, V(H)\right)\right|+\sum_{i=1}^{t-1}\left|E\left(V(C), x_{i}\right)\right| \\
& =\mid E\left(V(C), V(H)\left|+\left|E\left(\left\{a, b_{p}\right\},\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|\right.\right. \\
& \quad-\left|E\left(V(C)-\left\{a, b_{p}\right\}, V(H)-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right| \\
& \geq|E(V(C), V(H))|+\left(t-1+\left|E\left(a,\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}\right)\right|\right)-\left(\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)-e\right) \\
& =\mid E\left(V(C), V(H)\left|+t-1+\left|E\left(\left\langle a, x_{1}, x_{2}, \ldots, x_{t-1}\right\rangle\right)\right|-\sum_{i=1}^{t-1} d_{H}\left(x_{i}\right)\right.\right.
\end{aligned}
$$

This completes the proof of Lemma 4.3.

§5. Property of \boldsymbol{J}_{0}

We continue with the notation of the preceding sections. In this section and the next section, we consider the case where $W_{1}=\emptyset$.
Case 1: $W_{1}=\emptyset$.
We take a vertex $v \in W_{0}$, and fix it. By Lemma $4.2(\mathrm{i}), v \in W_{2}$. Also by Lemma 4.2(ii), $d_{H}(v) \leq t-2$. By the definition of W_{2}, there exists $J_{0} \subseteq J$ with $2 \leq\left|J_{0}\right| \leq t-d_{H}(v)$ such that $d_{H}(v)+\sum_{i \in J_{0}}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \geq t$. We choose such a subset J_{0} of J so that $\left|J_{0}\right|$ is as small as possible. Then

$$
\begin{equation*}
d_{H}(v)+\sum_{j \in J_{0}-\{i\}}\left(\left|E\left(V\left(C^{(j)}\right), v\right)\right|-1\right) \leq t-1 \text { for each } i \in J_{0} \tag{5.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|E\left(V\left(C^{(i)}\right), v\right)\right| \geq 2 \text { for each } i \in J_{0} \tag{5.2}
\end{equation*}
$$

By (5.1) and (5.2), we have

$$
\begin{equation*}
d_{H}(v)+\sum_{i \in J_{0}-M}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \leq t-|M| \tag{5.3}
\end{equation*}
$$

for any nonempty subset M of J_{0}. By Lemma 2.6, (5.2) implies

$$
\begin{equation*}
E\left(B^{(i)}, U\right)=\emptyset \text { for each } i \in J_{0} \tag{5.4}
\end{equation*}
$$

Lemma 5.1. For each $C=C^{(i)}$ with $i \in J_{0}$, one of the following statements hold:
(i) $\left|E\left(a, V(H)-\{v\}-N_{H}(v)\right)\right| \geq t-d_{H}(v)$; or
(ii) $E(a, V(H))=\emptyset$ and $\left|E\left(b_{p}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1$ for some $b_{p} \in B$.

Proof. Since $i \in J_{0} \subset J$,

$$
\begin{equation*}
|E(V(C), V(H))| \geq n-s+1 \geq \frac{11}{6} t^{2}+3 \tag{5.5}
\end{equation*}
$$

Suppose that (i) does not hold. Then $|E(a, V(H))| \leq\left(t-1-d_{H}(v)\right)+(1+$ $\left.\left|N_{H}(v)\right|\right)=t$. If $E(a, V(H)) \neq \emptyset$, then by Lemma 2.2, $|E(b, V(H))| \leq t$ for every $b \in B$, and hence $|E(V(C), V(H))|=|E(a, V(H))|+|E(B, V(H))| \leq$ $t+t^{2}$, which contradicts (5.5). Thus $E(a, V(H))=\emptyset$. This together with (5.4) implies $E(V(C), V(H))=E(B, W)$. Hence by (5.5), there exists $b_{p} \in B$ such that $\left|E\left(b_{p}, W\right)\right| \geq t+1$. Take $x_{1}, x_{2}, \ldots, x_{t-1} \in N\left(b_{p}\right) \cap W$. Since $W_{1}=\emptyset$, $d_{H}\left(x_{i}\right)+\left|E\left(x_{i}, V(C)\right)\right| \leq t$ for each $1 \leq i \leq t-1$. Consequently by Lemma 4.3, $\left|E\left(b_{p}, W\right)\right|=\left|E\left(b_{p}, V(H)\right)\right| \geq|E(V(C), V(H))|+t-1-\left(\sum_{i=1}^{t-1}\left\{d_{H}\left(x_{i}\right)+\right.\right.$ $\left.\left.\left|E\left(x_{i}, V(C)\right)\right|\right\}\right) \geq \frac{11}{6} t^{2}+3+t-1-t(t-1)=\frac{5}{6} t^{2}+2 t+2>2 t-1$. By Lemma 2.3, this implies that $|E(b, W)| \leq t-2$ for each $b \in B-\left\{b_{p}\right\}$. Therefore it follows from (5.5) that $\left|E\left(b_{p}, W\right)\right| \geq \frac{11}{6} t^{2}+3-(t-1)(t-2) \geq \frac{5}{6} t^{2}+3 t+1$. This completes the proof of Lemma 5.1.

We may assume that $J_{0}=\left\{i\left|1 \leq i \leq\left|J_{0}\right|\right\}\right.$. We may also assume that there exists an integer h with $0 \leq h \leq\left|J_{0}\right|$ such that $C=C^{(i)}$ satisfies (i) in Lemma 5.1 for all $1 \leq i \leq h$, and $C=C^{(i)}$ satisfies (ii) in Lemma 5.1 for all $h+1 \leq i \leq\left|J_{0}\right|$. Let $J_{0,1}=\{i \mid 1 \leq i \leq h\}$ and $J_{0,2}=\left\{i\left|h+1 \leq i \leq\left|J_{0}\right|\right\}\right.$. For $C=C^{(i)}$ with $i \in J_{0,2}$, we may assume that $b_{1}^{(i)}$ is the vertex $b_{p}^{(i)}$ satisfying the condition of Lemma 5.1(ii). Our first aim is to obtain an upper bound for
$\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right|$ (see Lemma 5.4). Recall that $d_{H}(v) \leq t-2$. Thus it follows from (5.4) and Lemma 5.1(ii) that for each $i \in J_{0,2}$,

$$
\begin{align*}
\left|E\left(b_{1}^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right| & =\left|E\left(b_{1}^{(i)}, W\right)\right|-\left|E\left(b_{1}^{(i)},\{v\} \cup N_{H}(v)\right)\right| \tag{5.6}\\
& \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-1-d_{H}(v) \\
& \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-t+1 \\
& \geq \frac{5}{6} t^{2}+2 t+2
\end{align*}
$$

Lemma 5.2. $\left|J_{0,2}\right| \geq \frac{5}{6} t-1$.
Proof. Suppose that $\left|J_{0,2}\right| \leq\left\lceil\frac{5}{6} t\right\rceil-2$. Recall that

$$
\sum_{i \in J_{0}}\left(\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1\right) \geq t-d_{H}(v)
$$

This inequality implies that for each $i\left(1 \leq i \leq\left|J_{0}\right|\right)$, we can choose a subset $X^{(i)} \subset N(v) \cap V\left(C^{(i)}\right)$ so that

$$
\left|X^{(i)}\right| \leq\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1, \quad \sum_{i=1}^{\left|J_{0}\right|}\left|X^{(i)}\right|=t-d_{H}(v)
$$

and

$$
a^{(i)} \notin X^{(i)} \text { for } 1 \leq i \leq h, \quad b_{1}^{(i)} \notin X^{(i)} \text { for } h+1 \leq i \leq\left|J_{0}\right|
$$

Then we can find a t-claw with center v in $\left\langle\{v\} \cup N_{H}(v) \cup \bigcup_{i=1}^{\left|J_{0}\right|} X^{(i)}\right\rangle$. Note that by the condition in Lemma 5.1(ii), we have $a^{(i)} \notin X^{(i)}$ also for $h+1 \leq i \leq\left|J_{0}\right|$.

We define $Y^{(i)}=V\left(C^{(i)}\right)-X^{(i)}$ for $1 \leq i \leq h$ and $Y^{(i)}=\left\{a^{(i)}, b_{1}^{(i)}\right\}$ for $h+1 \leq i \leq\left|J_{0}\right|$. We take disjoint subsets $Z^{(i)}$ of $V(H)-\{v\}-N_{H}(v)$ for $1 \leq i \leq\left|J_{0}\right|$ so that

$$
\begin{aligned}
& Z^{(i)} \subset N\left(a^{(i)}\right), \quad\left|Z^{(i)}\right|=\left|X^{(i)}\right| \text { for } 1 \leq i \leq h \\
& Z^{(i)} \subset N\left(b_{1}^{(i)}\right), \quad\left|Z^{(i)}\right|=t-1 \text { for } h+1 \leq i \leq\left|J_{0}\right|
\end{aligned}
$$

This can be done by determining $Z^{(i)}$ from $i=1$ up to $\left|J_{0}\right|$, because for $1 \leq i \leq h$,

$$
\sum_{j=1}^{i}\left|X^{(j)}\right| \leq \sum_{j=1}^{\left|J_{0}\right|}\left|X^{(j)}\right|=t-d_{H}(v) \leq\left|E\left(a^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right|
$$

by Lemma $5.1(\mathrm{i})$ and, if $J_{0,2} \neq \emptyset$, then for $h+1 \leq i \leq\left|J_{0}\right|$,

$$
\begin{aligned}
\sum_{j=1}^{h}\left|X^{(j)}\right|+(t-1)(i-h) & \leq \sum_{j=1}^{h}\left(\left|E\left(V\left(C^{(j)}\right), v\right)\right|-1\right)+(t-1)\left|J_{0,2}\right| \\
& \leq\left(t-\left|J_{0,2}\right|\right)+(t-1)\left|J_{0,2}\right|=t+(t-2)\left|J_{0,2}\right| \\
& \leq t+(t-2)\left(\left\lceil\left.\frac{5}{6} t \right\rvert\,-2\right) \leq t+(t-2)\left(\frac{5}{6} t-1\right)\right. \\
& \leq \frac{5}{6} t^{2}-\frac{10}{6} t+2 \\
& \leq\left|E\left(b_{1}^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right|
\end{aligned}
$$

by (5.3) and (5.6). Then for each i with $1 \leq i \leq\left|J_{0}\right|,\left\langle Y^{(i)} \cup Z^{(i)}\right\rangle$ contains a t claw with center $a^{(i)}$ or $b_{1}^{(i)}$ depending on whether $i \leq h$ or $i \geq h+1$. Obviously these t-claws and the t-claw in $\left\langle\{v\} \cup N_{H}(v) \cup \bigcup_{i=1}^{\left|J_{0}\right|} X^{(i)}\right\rangle$ are pairwise vertexdisjoint. This contradicts the assumption that G is a counterexample, and completes the proof of Lemma 5.2.

Lemma 5.3.

$$
\sum_{i \in J_{0,2}}\left|E\left(b_{1}^{(i)}, W\right)\right| \leq \frac{7}{6} t^{3}
$$

Proof. Suppose that $\sum_{i \in J_{0,2}}\left|E\left(b_{1}^{(i)}, W\right)\right|>\left\lfloor\frac{7}{6} t^{3}\right\rfloor$. Set

$$
A=\left\{i \in J_{0,2}| | E\left(b_{1}^{(i)}, W\right) \left\lvert\, \geq t^{2}-\frac{5}{6} t+2\right.\right\}
$$

We show that

$$
\begin{equation*}
|A| \geq\left\lfloor\frac{1}{6} t\right\rfloor+1 \tag{5.7}
\end{equation*}
$$

Suppose that $|A| \leq \frac{1}{6} t$. Recall that $n \leq 2 t^{2}-3 t+2$ (see the second paragraph of Section 2). Since $\left|J_{0,2}\right| \leq\left|J_{0}\right| \leq t$ and $A \subset J_{0,2}$, we get

$$
\begin{aligned}
\sum_{i \in J_{0,2}}\left|E\left(b_{1}^{(i)}, W\right)\right| & =\sum_{i \in A}\left|E\left(b_{1}^{(i)}, W\right)\right|+\sum_{i \in J_{0,2}-A}\left|E\left(b_{1}^{(i)}, W\right)\right| \\
& \leq|A|\left(2 t^{2}-3 t+2\right)+(t-|A|)\left(t^{2}-\frac{5}{6} t+2\right) \\
& =|A|\left(t^{2}-\frac{13}{6} t\right)+t\left(t^{2}-\frac{5}{6} t+2\right) \\
& \leq \frac{1}{6} t\left(t^{2}-\frac{13}{6} t\right)+t\left(t^{2}-\frac{5}{6} t+2\right) \\
& =\frac{7}{6} t^{3}+2 t-\frac{43}{36} t^{2} \leq \frac{7}{6} t^{3}
\end{aligned}
$$

a contradiction. Thus (5.7) is proved.
By (5.7), we may assume that there exists an integer h^{\prime} with $h \leq h^{\prime} \leq$ $\left|J_{0}\right|-\left\lfloor\frac{1}{6} t\right\rfloor-1$ such that $\left|E\left(b_{1}^{(i)}, W\right)\right| \leq t^{2}-\left\lfloor\frac{5}{6} t\right\rfloor+1$ for all $h+1 \leq i \leq h^{\prime}$, and $\left|E\left(b_{1}^{(i)}, W\right)\right| \geq t^{2}-\frac{5}{6} t+2$ for all $h^{\prime}+1 \leq i \leq\left|J_{0}\right|$. Let $J_{0,2}^{\prime}=\left\{i \mid h+1 \leq i \leq h^{\prime}\right\}$ and $J_{0,2}^{\prime \prime}=\left\{i\left|h^{\prime}+1 \leq i \leq\left|J_{0}\right|\right\}\right.$ (if $h^{\prime}=h$, then $J_{0,2}^{\prime}=\emptyset$). Recall that $d_{H}(v)+\left|J_{0}\right| \leq t$. Hence it follows from Lemma 5.2 and Lemma 5.1(ii) that for each $i \in J_{0,2}^{\prime}$,

$$
\begin{align*}
\left|E\left(b_{1}^{(i)}, W-\{v\}-N_{H}(v)\right)\right| & \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-1-d_{H}(v) \tag{5.8}\\
& \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-1+\left|J_{0}\right|-t \\
& \geq\left(\frac{5}{6} t^{2}+3 t+1\right)-1+\left(\frac{5}{6} t-1\right)-t \\
& =\frac{5}{6} t^{2}+\frac{17}{6} t-1,
\end{align*}
$$

and it follows from Lemma 5.2 and the choice of h^{\prime} that for each $i \in J_{0,2}^{\prime \prime}$,

$$
\begin{align*}
\left|E\left(b_{1}^{(i)}, W-\{v\}-N_{H}(v)\right)\right| & \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-1-d_{H}(v) \tag{5.9}\\
& \geq\left|E\left(b_{1}^{(i)}, W\right)\right|-1+\left|J_{0}\right|-t \\
& \geq\left(t^{2}-\frac{5}{6} t+2\right)-1+\left(\frac{5}{6} t-1\right)-t \\
& =t^{2}-t .
\end{align*}
$$

We now argue as in the proof of Lemma 5.2. For each $i\left(1 \leq i \leq\left|J_{0}\right|\right)$, we can choose a subset $X^{(i)} \subset N(v) \cap V\left(C^{(i)}\right)$ so that

$$
\left|X^{(i)}\right| \leq\left|E\left(V\left(C^{(i)}\right), v\right)\right|-1, \quad \sum_{i=1}^{\left|J_{0}\right|}\left|X^{(i)}\right|=t-d_{H}(v)
$$

and

$$
a^{(i)} \notin X^{(i)} \text { for } 1 \leq i \leq h, \quad b_{1}^{(i)} \notin X^{(i)} \text { for } h+1 \leq i \leq\left|J_{0}\right| .
$$

Then we can find a t-claw with center v in $\left\langle\{v\} \cup N_{H}(v) \cup \bigcup_{i=1}^{\left|J_{0}\right|} X^{(i)}\right\rangle$. Note that by the condition in Lemma 5.1(ii), we have $a^{(i)} \notin X^{(i)}$ also for $h+1 \leq i \leq\left|J_{0}\right|$.

We define $Y^{(i)}=V\left(C^{(i)}\right)-X^{(i)}$ for $1 \leq i \leq h$ and $Y^{(i)}=\left\{a^{(i)}, b_{1}^{(i)}\right\}$ for $h+1 \leq i \leq\left|J_{0}\right|$. We take disjoint subsets $Z^{(i)}$ of $V(H)-\{v\}-N_{H}(v)$ for $1 \leq i \leq\left|J_{0}\right|$ so that

$$
\begin{aligned}
& Z^{(i)} \subset N\left(a^{(i)}\right), \quad\left|Z^{(i)}\right|=\left|X^{(i)}\right| \text { for } 1 \leq i \leq h, \\
& Z^{(i)} \subset N\left(b_{1}^{(i)}\right), \quad\left|Z^{(i)}\right|=t-1 \text { for } h+1 \leq i \leq\left|J_{0}\right| .
\end{aligned}
$$

This can be done by determining $Z^{(i)}$ from $i=1$ up to $\left|J_{0}\right|$, because for $1 \leq i \leq h$,

$$
\sum_{j=1}^{i}\left|X^{(j)}\right| \leq \sum_{j=1}^{\left|J_{0}\right|}\left|X^{(j)}\right|=t-d_{H}(v) \leq\left|E\left(a^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right|
$$

by Lemma 5.1(i), and for $h+1 \leq i \leq h^{\prime}$, since $\left|J_{0,2}^{\prime}\right|=h^{\prime}-h \leq h^{\prime} \leq t-\left\lfloor\frac{1}{6} t\right\rfloor-1$, we have

$$
\begin{aligned}
\sum_{j=1}^{h}\left|X^{(j)}\right|+(t-1)(i-h) & \leq \sum_{j=1}^{h}\left(\left|E\left(V\left(C^{(j)}\right), v\right)\right|-1\right)+(t-1)\left|J_{0,2}^{\prime}\right| \\
& \leq\left(t-\left|J_{0,2}\right|\right)+(t-1)\left(t-\left\lfloor\frac{1}{6} t\right\rfloor-1\right) \\
& \leq \frac{1}{6} t+1+(t-1)\left(t-\left\lfloor\frac{1}{6} t\right\rfloor-1\right) \\
& \leq \frac{1}{6} t+1+\frac{5}{6} t(t-1)=\frac{5}{6} t^{2}-\frac{4}{6} t+1 \\
& \leq\left|E\left(b_{1}^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right|
\end{aligned}
$$

by (5.3), Lemma 5.2 and (5.8) and, for $h^{\prime}+1 \leq i \leq\left|J_{0}\right|$,

$$
\begin{aligned}
\sum_{j=1}^{h}\left|X^{(j)}\right|+(t-1)(i-h) & \leq(t-1) i \\
& \leq(t-1)\left|J_{0}\right| \\
& \leq(t-1) t \\
& \leq\left|E\left(b_{1}^{(i)}, V(H)-\{v\}-N_{H}(v)\right)\right|
\end{aligned}
$$

by (5.9). Then for each i with $1 \leq i \leq\left|J_{0}\right|,\left\langle Y^{(i)} \cup Z^{(i)}\right\rangle$ contains a t-claw with center $a^{(i)}$ or $b_{1}^{(i)}$ depending on whether $i \leq h$ or $i \geq h+1$. Obviously, these t-claws and the t-claw in $\left\langle\{v\} \cup N_{H}(v) \cup \bigcup_{i=1}^{\left|J_{0}\right|} X^{(i)}\right\rangle$ are pairwise vertex-disjoint. This contradicts the assumption that G is a counterexample, and completes the proof of Lemma 5.3.

Lemma 5.4.

$$
\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), W\right)\right| \leq \frac{13}{6} t^{3}-3 t^{2}+2 t
$$

Proof. For each $i \in J_{0,2}$, we have $|E(b, W)| \leq t-2$ for every $b \in B^{(i)}-\left\{b_{1}^{(i)}\right\}$ by Lemma 2.2. Also $E\left(V\left(C^{(i)}\right), W\right)=E\left(B^{(i)}, W\right)$ for each $i \in J_{0,2}$ by the first
assertion of Lemma 5.1(ii). Hence by Lemma 5.3,

$$
\begin{aligned}
\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), W\right)\right| & =\sum_{i \in J_{0,2}}\left|E\left(b_{1}^{(i)}, W\right)\right|+\sum_{i \in J_{0,2}}\left|E\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}, W\right)\right| \\
& \leq \frac{7}{6} t^{3}+\left|J_{0,2}\right|(t-1)(t-2) \\
& \leq \frac{7}{6} t^{3}+t(t-1)(t-2) \\
& =\frac{13}{6} t^{3}-3 t^{2}+2 t
\end{aligned}
$$

as desired.
We now consider edges among the $C^{(i)}$.
Lemma 5.5. For each $i \in J_{0,2}$, there exists $l \in\{1,2, \ldots, k-1\}-\{i\}$ such that $\left|E\left(a^{(i)}, V\left(C^{(l)}\right)\right)\right| \geq 2$.

Proof. By the definition of $J_{0,2}$, we have $E\left(a^{(i)}, V(H)\right)=\emptyset$. Hence from the assumption that $\delta(G) \geq k+t-1$, it follows that

$$
\sum_{j \in\{1, \ldots, k-1\}-\{i\}}\left|E\left(a^{(i)}, V\left(C^{(j)}\right)\right)\right| \geq(k+t-1)-t=k-1
$$

which immediately implies the desired conclusion.
Having Lemma 5.5 in mind, we define

$$
L=\left\{l\left|1 \leq l \leq k-1,\left|E\left(a^{(i)}, V\left(C^{(l)}\right)\right)\right| \geq 2 \text { for some } i \in J_{0,2}-\{l\}\right\}\right.
$$

Lemma 5.6. We have $\left|E\left(V\left(C^{(l)}\right), V(H)\right)\right| \leq t(t-2)+1$ for each $l \in L$; in particular $L \cap J=\emptyset$.

Proof. Let $l \in L$. By the definition of L, there exists $i \in J_{0,2}-\{l\}$ such that $\left|E\left(a^{(i)}, V\left(C^{(l)}\right)\right)\right| \geq 2$. Then $N\left(a^{(i)}\right) \cap B^{(l)} \neq \emptyset$. Take $b_{p}^{(l)} \in N\left(a^{(i)}\right) \cap B^{(l)}$.
Claim 5.6.1 $E\left(a^{(l)}, V(H)\right)=\emptyset$.
Proof. Soppose that $E\left(a^{(l)}, V(H)\right) \neq \emptyset$. Take $x \in N\left(a^{(l)}\right) \cap V(H)$. Then each of $\left\langle\left\{a^{(i)}, b_{p}^{(l)}\right\} \cup\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}\right)\right\rangle$ and $\left\langle\left\{a^{(l)}, x\right\} \cup\left(B^{(l)}-\left\{b_{p}^{(l)}\right\}\right)\right\rangle$ contains a t-claw and, since $\left|E\left(b_{1}^{(i)}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1$ by the definition of $J_{0,2},\left\langle\left\{b_{1}^{(i)}\right\} \cup\left(N\left(b_{1}^{(i)}\right) \cap\right.\right.$ $(V(H)-\{x\}))\rangle$ also contains a t-claw, a contradiction.

Claim 5.6.2 $\left|E\left(b_{p}^{(l)}, V(H)\right)\right| \leq t-1$.

Proof. Suppose that $\left|E\left(b_{p}^{(l)}, V(H)\right)\right| \geq t$. Since $\left|E\left(V\left(C^{(l)}\right), a^{(i)}\right)\right| \geq 2$, there exists $x \in N\left(a^{(i)}\right) \cap V\left(C^{(l)}\right)$ with $x \neq b_{p}^{(l)}$. Also take a subset X of $N\left(b_{p}^{(l)}\right) \cap$ $V(H)$ with $|X|=t$. Then each of $\left\langle\left\{a^{(i)}, x\right\} \cup\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}\right)\right\rangle,\left\langle\left\{b_{p}^{(l)}\right\} \cup X\right\rangle$ and $\left\langle\left\{b_{1}^{(i)}\right\} \cup\left(N\left(b_{1}^{(i)}\right) \cap(V(H)-X)\right)\right\rangle$ contains a t-claw, a contradiction.

Claim 5.6.3 $|E(b, V(H))| \leq t-2$ for every $b \in B^{(l)}-\left\{b_{p}^{(l)}\right\}$.
Proof. Suppose that there exists $b_{q}^{(l)} \in B^{(l)}-\left\{b_{p}^{(l)}\right\}$ such that $\left|E\left(b_{q}^{(l)}, V(H)\right)\right| \geq$ $t-1$. Take a subset X of $N\left(b_{q}^{(l)}\right) \cap V(H)$ with $|X|=t-1$. Then each of $\left\langle\left\{a^{(i)}, b_{p}^{(l)}\right\} \cup\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}\right)\right\rangle,\left\langle\left\{a^{(l)}, b_{q}^{l}\right\} \cup X\right\rangle$ and $\left\langle\left\{b_{1}^{(i)}\right\} \cup\left(N\left(b_{1}^{(i)}\right) \cap(V(H)-X)\right)\right\rangle$ contains a t-claw, a contradiction.

Combining Claims 5.6 .1 through 5.6.3, we obtain $\left|E\left(V\left(C^{(l)}\right), V(H)\right)\right| \leq$ $t-1+(t-1)(t-2)=t(t-2)+1$. Since $\left|E\left(V\left(C^{(j)}\right), V(H)\right)\right| \geq \frac{11}{6} t^{2}+3$ for each $j \in J$ by the definition of J, we also get $l \notin J$. This completes the proof of Lemma 5.6.

Lemma 5.7. Let $l \in L$, and let $i \in J_{0,2}$ be an index such that $\left|E\left(a^{(i)}, V\left(C^{(l)}\right)\right)\right| \geq 2$. Then $E\left(a^{(j)}, V\left(C^{(l)}\right)\right)=\emptyset$ for every $j \in J_{0,2}-\{i\}$.
Proof. Suppose that there exists $j \in J_{0,2}-\{i\}$ such that $E\left(a^{(j)}, V\left(C^{(l)}\right)\right) \neq \emptyset$, and take $y \in N\left(a^{(j)}\right) \cap V\left(C^{(l)}\right)$. Since $\left|E\left(a^{(i)}, V\left(C^{(l)}\right)\right)\right| \geq 2$, there exists $x \in N\left(a^{(i)}\right) \cap V\left(C^{(l)}\right)$ with $x \neq y$. Then each of $\left\langle\left\{a^{(i)}, x\right\} \cup\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}\right)\right\rangle$ and $\left\langle\left\{a^{(j)}, y\right\} \cup\left(B^{(j)}-\left\{b_{1}^{(j)}\right\}\right)\right\rangle$ contains a t-claw. Since $i, j \in J_{0,2}$, we can take disjoint subsets $X^{(i)}$ and $X^{(j)}$ of $V(H)$ such that

$$
\left|X^{(i)}\right|=\left|X^{(j)}\right|=t, \quad X^{(i)} \subset N\left(b_{1}^{(i)}\right), \quad X^{(j)} \subset N\left(b_{1}^{(j)}\right)
$$

Then each of $\left\langle\left\{b_{1}^{(i)}\right\} \cup X^{(i)}\right\rangle$ and $\left\langle\left\{b_{1}^{(j)}\right\} \cup X^{(j)}\right\rangle$ contains a t-claw, and thus we get a contradiction.

Note that it follows from Lemmas 5.2, 5.5 and 5.7 that

$$
\begin{equation*}
|L| \geq\left|J_{0,2}\right| \geq \frac{5}{6} t-1 \tag{5.10}
\end{equation*}
$$

§6. Another counting argument

In this section, we complete the proof for Case 1. Let $J_{0}, J_{0.1}, J_{0,2}, L$ be as in the preceding section. Set $I^{\prime}=I-L$ and $J^{\prime}=J-J_{0,2}$. Thus

$$
\{1, \ldots, k-1\}=I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L \cup(\{1, \ldots, k-1\}-I-J-L)
$$

(disjoint union).

Lemma 6.1. There exists $v^{\prime} \in W$ such that

$$
d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right| \geq\left|J^{\prime}\right|+t
$$

Proof. We argue as in the proof of Lemma 4.1. Suppose that

$$
\begin{equation*}
d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right| \leq\left|J^{\prime}\right|+t-1 \text { for all } v^{\prime} \in W \tag{6.1}
\end{equation*}
$$

As in the proof of Lemma 4.1, we have $\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t(t+1)$ for $i \in I^{\prime}$. Hence

$$
\begin{equation*}
\sum_{i \in I^{\prime}}\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t(t+1)\left|I^{\prime}\right| \tag{6.2}
\end{equation*}
$$

For $i \in J^{\prime}$, since $E\left(V\left(C^{(i)}\right), W\right) \neq \emptyset$, it follows from Lemma 2.7 that $\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t s$. Hence

$$
\begin{equation*}
\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), U\right)\right| \leq t s\left|J^{\prime}\right| \tag{6.3}
\end{equation*}
$$

By (5.4) and Lemma 5.1(ii),

$$
\begin{equation*}
\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), U\right)\right|=0 \tag{6.4}
\end{equation*}
$$

By the definition of I,

$$
\begin{equation*}
\sum_{i \in I^{\prime}}\left|E\left(V\left(C^{(i)}\right), W\right)\right|=0 \tag{6.5}
\end{equation*}
$$

By (6.1),

$$
\begin{equation*}
\sum_{v^{\prime} \in W}\left(d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|\right) \leq\left(\left|J^{\prime}\right|+t-1\right)(n-t s) \tag{6.6}
\end{equation*}
$$

By Lemma 5.6,

$$
\begin{equation*}
\sum_{i \in L}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \leq\left(t^{2}-2 t+1\right)|L| \tag{6.7}
\end{equation*}
$$

For $i \notin I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L$, we have $\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \leq n-s$ by the definition of J. Hence

$$
\begin{align*}
& \sum_{i \notin I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right| \tag{6.8}\\
& \quad \leq(n-s)\left(k-1-\left|I^{\prime}\right|-\left|J^{\prime}\right|-\left|J_{0,2}\right|-|L|\right) .
\end{align*}
$$

Now since $\delta(G) \geq k+t-1$,

$$
\begin{align*}
\frac{t-1}{t} \sum_{u \in U} d_{G}(u)+\sum_{v^{\prime} \in W} d_{G}\left(v^{\prime}\right) & \geq(k+t-1)\left(\frac{t-1}{t}|U|+|W|\right) \tag{6.9}\\
& =(k+t-1)(n-s) .
\end{align*}
$$

On the other hand, by (6.2) through (6.8), Lemma 5.4 and (5.10),
$\frac{t-1}{t} \sum_{u \in U} d_{G}(u)+\sum_{v^{\prime} \in W} d_{G}\left(v^{\prime}\right)$
$=\frac{t-1}{t} \sum_{u \in U}\left(d_{H}(u)+\sum_{i=1}^{k-1}\left|E\left(V\left(C^{(i)}\right), u\right)\right|\right)$
$+\sum_{v^{\prime} \in W}\left(d_{H}\left(v^{\prime}\right)+\sum_{i=1}^{k-1}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|\right)$
$=\frac{t-1}{t}\left(\sum_{u \in U} d_{H}(u)+\left(\sum_{i \in I^{\prime}}+\sum_{i \in J^{\prime}}+\sum_{i \in L}+\sum_{i \notin I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L}\right)\left|E\left(V\left(C^{(i)}\right), U\right)\right|\right)$
$+\sum_{v^{\prime} \in W}\left(d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|\right)$
$+\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), W\right)\right|+\sum_{i \in L}\left|E\left(V\left(C^{(i)}\right), W\right)\right|$
$+\sum_{i \notin I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L}\left|E\left(V\left(C^{(i)}\right), W\right)\right|$
$\leq \frac{t-1}{t}\left(\sum_{u \in U} d_{H}(u)+\sum_{i \in I^{\prime}}\left|E\left(V\left(C^{(i)}\right), U\right)\right|+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), U\right)\right|\right)$
$+\sum_{v^{\prime} \in W}\left(d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}}\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|\right)+\sum_{i \in J_{0,2}}\left|E\left(V\left(C^{(i)}\right), W\right)\right|$
$+\sum_{i \in L}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right|+\sum_{i \notin I^{\prime} \cup J^{\prime} \cup J_{0,2} \cup L}\left|E\left(V\left(C^{(i)}\right), V(H)\right)\right|$
$\leq \frac{t-1}{t}\left(t(t-1) s+t(t+1)\left|I^{\prime}\right|+t s\left|J^{\prime}\right|\right)+\left(\left|J^{\prime}\right|+t-1\right)(n-t s)$
$+\left(\frac{13}{6} t^{3}-3 t^{2}+2 t\right)+\left(t^{2}-2 t+1\right)|L|$
$+(n-s)\left(k-1-\left|I^{\prime}\right|-\left|J^{\prime}\right|-\left|J_{0,2}\right|-|L|\right)$
$=(k+t-1)(n-s)-\left(n-s-t^{2}+1\right)\left|I^{\prime}\right|-(n-s)$
$-(n-s)\left(\left|J_{0,2}\right|+|L|\right)+\left(\frac{13}{6} t^{3}-3 t^{2}+2 t\right)+\left(t^{2}-2 t+1\right)|L|$

$$
\begin{aligned}
\leq & (k+t-1)(n-s)-\left(\frac{11}{6} t^{2}+2\right)-\left(\frac{11}{6} t^{2}+2\right)\left(\left|J_{0,2}\right|+|L|\right) \\
& +\left(\frac{13}{6} t^{3}-3 t^{2}+2 t\right)+\left(t^{2}-2 t+1\right)|L| \\
= & (k+t-1)(n-s)+\frac{13}{6} t^{3}-\frac{29}{6} t^{2}+2 t-2 \\
& \quad-\left(\frac{11}{6} t^{2}+2\right)\left|J_{0,2}\right|-\left(\frac{11}{6} t^{2}+2-t^{2}+2 t-1\right)|L| \\
\leq & (k+t-1)(n-s)+\frac{13}{6} t^{3}-\frac{29}{6} t^{2}+2 t-2 \\
& \quad-\left(\frac{11}{6} t^{2}+2\right)\left(\frac{5}{6} t-1\right)-\left(\frac{5}{6} t^{2}+2 t+1\right)\left(\frac{5}{6} t-1\right) \\
= & (k+t-1)(n-s)-\frac{2}{36} t^{3}-\frac{23}{6} t^{2}+\frac{9}{6} t+1
\end{aligned}
$$

This contradicts (6.9), which completes the proof of Lemma 6.1.
Now by Lemma 6.1, there exists $v^{\prime} \in W$ such that $d_{H}\left(v^{\prime}\right)+\sum_{i \in J^{\prime}} \mid E($ $\left.V\left(C^{(i)}\right), v^{\prime}\right)\left|\geq\left|J^{\prime}\right|+t\right.$, i.e., $\sum_{i \in J^{\prime}}\left(\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|-1\right) \geq t-d_{H}\left(v^{\prime}\right)$. Then since $W_{1}=\emptyset$, there exists $J_{0}^{\prime} \subset J^{\prime}$ with $2 \leq\left|J_{0}^{\prime}\right| \leq t-d_{H}\left(v^{\prime}\right) \leq t$ such that $\sum_{i \in J_{0}^{\prime}}\left(\left|E\left(V\left(C^{(i)}\right), v^{\prime}\right)\right|-1\right) \geq t-d_{H}\left(v^{\prime}\right)$. We choose J_{0}^{\prime} so that $\left|J_{0}^{\prime}\right|$ is as small as possible. Arguing as in the proof of Lemmas 5.1 and 5.2, we see that there exist at least $\frac{5}{6} t-1$ indices $i \in J_{0}^{\prime}$ such that $E\left(a^{(i)}, V(H)\right)=\emptyset$ and $\left|E\left(b_{p}^{(i)}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1$ for some $b_{p}^{(i)} \in B^{(i)}$. Set

$$
\begin{array}{r}
J_{0,2}^{\prime}=\left\{i \in J_{0}^{\prime} \mid E\left(a^{(i)}, V(H)\right)=\emptyset, \text { and there exists } b_{p}^{(i)} \in B^{(i)}\right. \\
\text { such that } \left.\left|E\left(b_{p}^{(i)}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1\right\}
\end{array}
$$

Thus $\left|J_{0,2}^{\prime}\right| \geq \frac{5}{6} t-1$. For $i \in J_{0,2}^{\prime}$ we may assume that $b_{1}^{(i)}$ satisfies the condition $\left|E\left(b_{1}^{(i)}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1$. By the definition of $J^{\prime}, J_{0,2} \cap J_{0,2}^{\prime}=\emptyset$. Hence $\left|J_{0,2} \cup J_{0,2}^{\prime}\right| \geq \frac{10}{6} t-2 \geq t+1$. Let K be a subset of $J_{0,2} \cup J_{0,2}^{\prime}$ such that $|K|=t+1$.

Lemma 6.2. For each $i \in K,\left|E\left(a^{(i)}, V\left(C^{(j)}\right)\right)\right| \leq 1$ for every $j \in K-\{i\}$.
Proof. Suppose that $\left|E\left(a^{(i)}, V\left(C^{(j)}\right)\right)\right| \geq 2$. Take $x \in N\left(a^{(i)}\right) \cap V\left(C^{(j)}\right)$ with $x \neq b_{1}^{(j)}$. Then $\left\langle\left\{a^{(i)}, x\right\} \cup\left(B^{(i)}-\left\{b_{1}^{(i)}\right\}\right)\right\rangle$ contains a t-claw. Since $\left|E\left(b_{1}^{(i)}, W\right)\right| \geq$ $\frac{5}{6} t^{2}+3 t+1$ and $\left|E\left(b_{1}^{(j)}, W\right)\right| \geq \frac{5}{6} t^{2}+3 t+1$, we can take disjoint subsets $X^{(i)}$ and $X^{(j)}$ of $V(H)$ such that $\left|X^{(i)}\right|=\left|X^{(j)}\right|=t, X^{(i)} \subset N\left(b_{1}^{(i)}\right), X^{(j)} \subset$ $N\left(b_{1}^{(j)}\right)$. Then each of $\left\langle\left\{b_{1}^{(i)}\right\} \cup X^{(i)}\right\rangle$ and $\left\langle\left\{b_{1}^{(j)}\right\} \cup X^{(j)}\right\rangle$ contains a t-claw, a contradiction.

We are now in a position to complete the proof for Case 1. Set $K^{\prime}=$ $\{1,2, \ldots, k-1\}-K$. Then $\left|K^{\prime}\right|=k-1-(t+1)=k-t-2$. Since $E\left(a^{(i)}, V(H)\right)=\emptyset$ for each $i \in K$ and $\delta(G) \geq k+t-1$, it follows from Lemma 6.2 that

$$
\begin{aligned}
\left|E\left(\left\{a^{(i)} \mid i \in K\right\}, \bigcup_{j \in K^{\prime}} V\left(C^{(j)}\right)\right)\right| & =\sum_{i \in K}\left|E\left(a^{(i)}, \bigcup_{j \in K^{\prime}} V\left(C^{(j)}\right)\right)\right| \\
& \geq|K|(k+t-1-t-t) \\
& =|K|(k-t-1) \\
& =|K|\left(\left|K^{\prime}\right|+1\right) \\
& =\left(\left|K^{\prime}\right|+1\right)(t+1) .
\end{aligned}
$$

Hence there exists an index $j \in K^{\prime}$ such that $\left|E\left(\left\{a^{(i)} \mid i \in K\right\}, V\left(C^{(j)}\right)\right)\right|>$ $t+1$. This implies that there exist two edges $x a^{(l)}$ and $y a^{(m)}$ joining $V\left(C^{(j)}\right)$ and $\left\{a^{(i)} \mid i \in K\right\}$ with $x, y \in V\left(C^{(j)}\right), x \neq y$ and $l \neq m$. Then each of $\left\langle\left\{a^{(l)}, x\right\} \cup\left(B^{(l)}-\left\{b_{1}^{(l)}\right\}\right)\right\rangle$ and $\left\langle\left\{a^{(m)}, y\right\} \cup\left(B^{(m)}-\left\{b_{1}^{(m)}\right\}\right)\right\rangle$ contains a t-claw. Since $l, m \in K \subset J_{0,2} \cup J_{0,2}^{\prime}$, we can take disjoint subsets $X^{(l)}$ and $X^{(m)}$ of $V(H)$ such that $\left|X^{(l)}\right|=\left|X^{(m)}\right|=t, X^{(l)} \subset N\left(b_{1}^{(l)}\right), X^{(m)} \subset N\left(b_{1}^{(m)}\right)$. Then each of $\left\langle\left\{b_{1}^{(l)}\right\} \cup X^{(l)}\right\rangle$ and $\left\langle\left\{b_{1}^{(m)}\right\} \cup X^{(m)}\right\rangle$ contains a t-claw. This contradicts the assumption that G is a counterexample. This concludes the discussion for Case 1.

§7. Proof of the main theorem

In this section, we consider the case where $W_{1} \neq \emptyset$.
Case 2: $W_{1} \neq \emptyset$.
Let $v \in W_{1}$. By the definition of W_{1}, we can take a t-claw $C=C^{(i)}$ with $i \in J$ such that $d_{H}(v)+|E(V(C), v)| \geq t+1$. By Lemma 2.5, we have $E(V(C), U)=\emptyset$, and hence

$$
\begin{equation*}
|E(V(C), W)|=|E(V(C), V(H))|=n-s+1 \geq \frac{11}{6} t^{2}+3 . \tag{7.1}
\end{equation*}
$$

Lemma 7.1. $E(a, W)=\emptyset$.
Proof. Suppose that $E(a, W) \neq \emptyset$. Then by Lemma $2.2,|E(b, W)| \leq t$ for each $b \in B$. On the other hand, we see from Lemma 2.1 that $|E(a, W)|=\mid E(a, W-$ $\left.\{v\}-N_{H}(v)\right)\left|+\left|E\left(a,\{v\} \cup N_{H}(v)\right)\right| \leq\left(t-1-d_{H}(v)\right)+\left(1+\left|N_{H}(v)\right|\right)=t\right.$. Hence $|E(V(C), W)|=|E(a, W)|+|E(B, W)| \leq t+t^{2}$, which contradicts (7.1).

Note that it follows from Lemma 7.1 that

$$
\begin{equation*}
d_{H}(v)+|E(B, v)| \geq t+1 \tag{7.2}
\end{equation*}
$$

Hence by Lemma 2.4,

$$
\begin{equation*}
\left|E\left(b, W-\{v\}-N_{H}(v)\right)\right| \leq t-2 \text { for every } b \in B \tag{7.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
|E(b, W)| \leq 2 t-2 \text { for every } b \in B \tag{7.4}
\end{equation*}
$$

By (7.1) and Lemma 7.1, we also have

$$
\begin{equation*}
|E(B, W)| \geq \frac{11}{6} t^{2}+3 \tag{7.5}
\end{equation*}
$$

Hence $\left|E\left(B, W-\{v\}-N_{H}(v)\right)\right| \geq \frac{11}{6} t^{2}+3-|B|\left(1+d_{H}(v)\right) \geq \frac{5}{6} t^{2}+3$, which together with (7.3) implies that

$$
\begin{equation*}
E\left(B-\{b\}, W-\{v\}-N_{H}(v)\right) \neq \emptyset \text { for every } b \in B \tag{7.6}
\end{equation*}
$$

Set $S=\left\{b \in B| | E(b, W) \left\lvert\, \geq \frac{11}{6} t\right.\right\}$. Note that $S \neq \emptyset$ by (7.5).
Case 2.1: $d_{H}(v) \leq\left\lfloor\frac{5}{6} t\right\rfloor$.
Take $b_{p} \in S$. By $(7.2),\left\langle\{v\} \cup N_{H}(v) \cup\left(N(v) \cap\left(B-\left\{b_{p}\right\}\right)\right)\right\rangle$ contains a t-claw. Since $d_{H}(v) \leq\left\lfloor\frac{5}{6} t\right\rfloor$, it follows from the definition of S that

$$
\begin{aligned}
\left|E\left(b_{p}, W-\{v\}-N_{H}(v)\right)\right| & \geq \frac{11}{6} t-\left(1+\left\lfloor\frac{5}{6} t\right\rfloor\right) \\
& =t-1
\end{aligned}
$$

Hence $\left\langle\left\{a, b_{p}\right\} \cup\left(N\left(b_{p}\right) \cap\left(W-\{v\}-N_{H}(v)\right)\right)\right\rangle$ also contains a t-claw, a contradiction.

Case 2.2: $d_{H}(v) \geq\left\lfloor\frac{5}{6} t\right\rfloor+1$.
Write $d_{H}(v)=\left\lfloor\frac{5}{6} t\right\rfloor+1+h$. Since $d_{H}(v) \leq t-1$, we have $0 \leq h \leq\left\lceil\frac{1}{6} t\right\rceil-2$. By (7.2),

$$
\begin{align*}
|E(B, v)| & \geq t+1-\left(\left\lfloor\frac{5}{6} t\right\rfloor+1+h\right) \tag{7.7}\\
& =\left\lceil\frac{1}{6} t\right\rceil-h
\end{align*}
$$

Set $T=\left\{w \in N_{H}(v) \left\lvert\, d_{H}(w) \geq\left\lfloor\frac{5}{6} t\right\rfloor+1\right.\right\}$.

Lemma 7.2. We have $|E(B, w)| \leq\left\lceil\frac{1}{6} t\right\rceil$ for all $w \in T \cup\{v\}$.
Proof. Suppose that there exists $w \in T \cup\{v\}$ such that $|E(B, w)| \geq\left\lceil\frac{1}{6} t\right\rceil+1$. Since $d_{H}(w) \geq\left\lfloor\frac{5}{6} t\right\rfloor+1$, we can take a subset X of $N_{H}(w)$ such that $|X|=\left\lfloor\frac{5}{6} t\right\rfloor$. Take $b_{p} \in S$. Then $\left|E\left(B-\left\{b_{p}\right\}, w\right)\right| \geq\left\lceil\frac{1}{6} t\right\rceil$. Hence $\langle\{w\} \cup X \cup(N(w) \cap(B-$ $\left.\left.\left.\left\{b_{p}\right\}\right)\right)\right\rangle$ contains a t-claw. By the definition of $S,\left|E\left(b_{p}, W-\{w\}-X\right)\right| \geq$ $\left|E\left(b_{p}, W\right)\right|-1-|X| \geq \frac{11}{6} t-1-\left\lfloor\frac{5}{6} t\right\rfloor \geq t-1$. Hence $\left\langle\left\{a, b_{p}\right\} \cup\left(N\left(b_{p}\right) \cap(W-\right.\right.$ $\{w\}-X))\rangle$ contains a t-claw, a contradiction.

Lemma 7.3. We have $d_{H}(w)+|E(B, w)| \leq t$ for all $w \in N_{H}(v)-T$.
Proof. Suppose that there exists $w \in N_{H}(v)-T$ such that $d_{H}(w)+|E(B, w)| \geq$ $t+1$. Take $b_{p} \in S$. Then $\left.\left\langle\{w\} \cup N_{H}(w) \cup\left(N(w) \cap\left(B-\left\{b_{p}\right\}\right)\right)\right)\right\rangle$ contains a t-claw. Since $w \notin T, d_{H}(w) \leq\left\lfloor\frac{5}{6} t\right\rfloor$. Hence it follows from the definition of S that

$$
\begin{aligned}
\left|E\left(b_{p}, W-\{w\}-N_{H}(w)\right)\right| & \geq \frac{11}{6} t-\left(1+\left\lfloor\frac{5}{6} t\right\rfloor\right) \\
& =t-1 .
\end{aligned}
$$

Consequently $\left\langle\left\{a, b_{p}\right\} \cup\left(N\left(b_{p}\right) \cap\left(W-\{w\}-N_{H}(w)\right)\right)\right\rangle$ contains a t-claw, a contradiction.

By Lemmas 7.2 and 7.3,

$$
\begin{aligned}
& \left|E\left(B,\{v\} \cup N_{H}(v)\right)\right| \\
& \quad=|E(B, v)|+\sum_{w \in T}|E(B, w)|+\sum_{w \in N_{H}(v)-T}|E(B, w)| \\
& \left.\left.\quad \leq\left[\frac{1}{6} t\right\rceil+|T| \right\rvert\, \frac{1}{6} t\right]+\sum_{w \in N_{H}(v)-T}\left(t-d_{H}(w)\right) \\
& \quad \leq \frac{1}{6} t+1+|T|\left(\frac{1}{6} t+1\right)+\left|N_{H}(v)-T\right| t-\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \quad=\frac{1}{6} t+1+\frac{1}{6} t|T|+|T|+\left|N_{H}(v)\right| t-t|T|-\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \quad=\frac{1}{6} t+1-\frac{5}{6} t|T|+|T|+\left(\left\lfloor\frac{5}{6} t\right]+1+h\right) t-\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \quad \leq \frac{5}{6} t^{2}+h t+\frac{7}{6} t-\frac{5}{6} t|T|+|T|+1-\sum_{w \in N_{H}(v)-T} d_{H}(w) .
\end{aligned}
$$

Hence by (7.5),

$$
\begin{align*}
& \left|E\left(B, W-\{v\}-N_{H}(v)\right)\right| \tag{7.8}\\
& \quad=|E(B, W)|-\left|E\left(B,\{v\} \cup N_{H}(v)\right)\right| \\
& \quad \geq \frac{11}{6} t^{2}+3-\left(\frac{5}{6} t^{2}+h t+\frac{7}{6} t-\frac{5}{6} t|T|+|T|+1-\sum_{w \in N_{H}(v)-T} d_{H}(w)\right) \\
& \quad=t^{2}-\frac{7}{6} t-h t+\frac{5}{6} t|T|-|T|+2+\sum_{w \in N_{H}(v)-T} d_{H}(w)
\end{align*}
$$

By (7.7), we can take a subset B^{\prime} of $N(v) \cap B$ with $\left|B^{\prime}\right|=\left\lceil\frac{1}{6} t\right\rceil-h-1$. Then since $|T| \leq d_{H}(v) \leq t-1, h \leq\left\lceil\frac{1}{6} t\right\rceil-2$ and $t \geq 24$, it follows from (7.3) and (7.8) that

$$
\begin{align*}
& \left|E\left(B-B^{\prime}, W-\{v\}-N_{H}(v)\right)\right| \tag{7.9}\\
& \geq t^{2}-\frac{7}{6} t-h t+\frac{5}{6} t|T|-|T|+2+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& -\left(\left\lceil\frac{1}{6} t\right\rceil-h-1\right)(t-2) \\
& \geq t^{2}-\frac{7}{6} t-h t+\frac{5}{6} t|T|-|T|+2+\sum_{w \in N_{H}(v)-T} d_{H}(w)-\left(\frac{1}{6} t-h\right)(t-2) \\
& =\frac{5}{6} t^{2}-\frac{5}{6} t-\frac{1}{6} t|T|+2-2 h+|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \geq \frac{5}{6} t^{2}-\frac{5}{6} t-\frac{1}{6} t(t-1)+2-2 h+|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& =\frac{4}{6} t^{2}-\frac{4}{6} t+2-2 h+|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \geq \frac{2}{3} t^{2}-\frac{2}{3} t+2-2\left(\left\lceil\frac{1}{6} t\right\rceil-2\right)+|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \geq \frac{2}{3} t^{2}-t+4+|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& >|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \left|E\left(\left\langle\{v\} \cup N_{H}(v)\right\rangle\right)\right|+\left|E\left(N_{H}(v), W-\{v\}-N_{H}(v)\right)\right| \tag{7.10}\\
& \quad \leq \sum_{w \in N_{H}(v)} d_{H}(w)=\sum_{w \in T} d_{H}(w)+\sum_{w \in N_{H}(v)-T} d_{H}(w) \\
& \quad \leq|T|(t-1)+\sum_{w \in N_{H}(v)-T} d_{H}(w) .
\end{align*}
$$

Replace C by the t-claw with center v contained in $\left\langle\{v\} \cup N_{H}(v) \cup B^{\prime}\right\rangle$. Let $H^{\prime}=\left\langle\left(V(H)-\{v\}-N_{H}(v)\right) \cup\left(V(C)-B^{\prime}\right)\right\rangle$, and let U^{\prime} be the union of the vertex sets of the K_{t} components of H^{\prime}. Also set $W^{\prime}=V\left(H^{\prime}\right)-U^{\prime}$. Then by Lemma 7.1 (and by (7.6) if $\left|B^{\prime}\right|=1$), $\{a\} \cup\left(B-B^{\prime}\right)$ is not contained in a K_{t} components of H^{\prime}, which means $U^{\prime}=U$. Therefore by (7.9) and (7.10), $\left|E\left(\left\langle W^{\prime}\right\rangle\right)\right|+\frac{2}{t}\left|E\left(\left\langle U^{\prime}\right\rangle\right)\right|>|E(\langle W\rangle)|+\frac{2}{t}|E(\langle U\rangle)|$. This contradicts the maximality of $|E(\langle W\rangle)|+\frac{2}{t}|E(\langle U\rangle)|$, which completes the proof for Case 2.2.

This completes the proof of the main theorem.

References

[1] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-443.
[2] Y. Egawa, S. Fujita and K. Ota, $K_{1,3}$-factors in graphs, Discrete Math, in press.
[3] Y. Egawa and K. Ota, Vertex-disjoint claws in graphs, Discrete Math. 197/198 (1999), 225-246.
[4] H. Enomoto, A. Kaneko and Zs. Tuza, P_{3}-factors and covering cycles in graphs of minimum degree $n / 3$, Colloq. Math, Soc. János Bolyai 52 (1987), 213-220.
[5] S. Fujita, Vertex-Disjoint $K_{1, t}$'s in Graphs, Ars Combin. 64 (2002), 211-223.
[6] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math, Soc. János Bolyai 4 (1970), 601-623.
[7] R. Johansson, An El-Zahar type condition ensuring path-factors, J. Graph Theory 28 (1998), 39-42.
[8] K. Ota, Vertex-disjoint stars in graphs, Discuss. Math. Graph Theory 21 (2001), 179-185.

[^0]
[^0]: Shuya Chiba
 Department of Mathematical Information Science, Tokyo University of Science
 Shinjuku-ku, Tokyo, 162-8601 Japan

