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Abstract. A subset D of vertices in a graph G is k-dependent if the maximum
degree of a vertex in the subgraph (D) induced by D is at most k. The k-
dependent domination number v*(G) of a graph G is the minimum cardinality
of a k-dependent dominating set of GG. Any k-dependent dominating set D of a
graph G with |D| = v*(G) is called a v*-set of G. A vertex z of a graph G is
called: (i) v*-good if = belongs to some y"-set, (ii) v*-fixed if = belongs to every
yP-set, (iii) v"-free if = belongs to some v*-set but not to all v*-sets, (iv) v*-bad
if = belongs to no v*-set. In this paper we deal with v*-good/bad/fixed/free
vertices and present results on changing and unchanging of the k-dependent
domination number when a graph is modified by adding an edge or deleting a
vertex.
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§1. INTRODUCTION

We consider finite, simple graphs. For notation and graph theory terminology
not presented here, we follow Haynes, et al. [5]. We denote the vertex set
and the edge set of a graph G by V(G) and E(G), respectively. The subgraph
induced by S C V(G) is denoted by (S, G). For a vertex z of G, N(x, &) denote
the set of all neighbors of z in G and Nz, G| = N(z,G)U{x}. The mazimum
degree of the graph G is denoted by A(G). For a graph G, let z € X C V(G).
The private neighbor set of x with respect to X is pn[z, X| = {y € V(G) :
N[y, Gl N X = {z}}.

Let G beagraphand S C V(G). A set S is called k-dependentif A((S,G)) <
k. If A((S,G)) = 0 then S is called independent. We let i(G) denote the mini-
mum cardinality of a maximal independent set of vertices in G. A k-dependent
dominating set D in a graph G is a vertex subset which is both k-dependent
and dominating. The minimum cardinality of an k-dependent dominating set
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of G is called the k-dependent domination number and is denoted by v*(G).
The concept of k-dependent domination was introduced by Favaron, Hedet-
niemi, Hedetniemi and Rall [2]. Note that v2(%)(G) = ~(G) - the ordinary
domination number of a graph and 7°(G) = i(G).

Much has been written about the effects on domination related parameters
when a graph is modified by deleting a vertex, adding an edge or deleting an
edge. For surveys see [5, Chapter 5], [6, Chapter 16]. In this paper we present
results on changing and unchanging of the k-dependent domination number
when an edge is added or a vertex is deleted.

§2. VERTEX DELETION AND EDGE ADDITION

Let u(G) be a numerical invariant of a graph G defined in such a way that
it is the minimum or maximum number of vertices of a set S C V(G) with a
given property P. A set with property P and with u(G) vertices in G is called
a p-set of G. A graph G is vertex-p-critical if v(G — v) # v(G) for all v in
V(G). A vertex v of a graph G is defined to be

(a) [4] wp-good, if v belongs to some p-set of G;

(b) [4] p-bad, if v belongs to no u - set of G;

(c) [8] p-fized if v belongs to every p-set;

(d) [8] wp-free if v belongs to some p-set but not to all u-sets.

For a graph G we define:
GH(G) ={r € V(G) : x is v*-good };
B¥(G) = {x € V(G) : z is v*-bad };
Fi*(G) = {x € V(G) : x is y*-fixed };
Fr¥(G) = {z € V(G) : x is v*-free };
VE(G) = {z € V(G) : 75(G — 1) = (@)
(G - 2) <G}
R (G —x) > A5 (G}

G),VE(@)} and {GF(G),B*(G)} are partitions of
G)} is a partition of G*(G).
Proposition 2.1. Let G be a graph and v € V¥ (G). Then:

(1) Y*(G—v) = +*(G)—1; for any v*-set M of G—wv the set M, = MU{v}
is a y*-set of G and any neighbor of v is a v*-bad verter in G — v;

(2) GF(G —v) C G¥(@), Fi*(G —v) D Fi*(G) — {v} and B¥(G —v) D
Bk(G);

(3) if u is a y*-fized vertex of G and u # v then uv & E(G).



DEPENDENT DOMINATION IN GRAPHS 101

Proof. (1) Let M be an arbitrary v*-set of G —v. If w € M then u ¢
N(v,G) - otherwise M will be a k-dependent dominating set of G, which is a
contradiction with v¥(G —v) < ¥¥(G). Then M, is a k-dependent dominating
set of G and V*(G) < |M,| = v*(G —v) + 1 < +¥(G).

(2) Immediately follows by (1).

(3) By (2), u € Fi*(G — v) and by (1), uv € E(QG). O

Proposition 2.2. Let G be a graph and v € V(G).

(1) ([1] when k = A(G)) Let v € VE(G). Then v is a v*-fived vertez of G;
(2) Ifvisa ’yk—bad verter of G then ’yk(G —v) = ’yk(G).

Proof. (1) Let M be a y*-set of G. Assume v ¢ M. Then M is a k-dependent
dominating set of G — v which implies Y*(G) < v*(G —v) < |[M| =~+*(G) - a
contradiction.

(2) By (1), v*(G —v) < ~*(G) and by Proposition 2.1(1), ¥*(G —v) >
(@) O

Since for every v € V(G), v¥(G—v) < |V(G)|—1 and because of Proposition
2.1 we have v*(G — v) = ¥*(G) + p, where p € {-1,0,..,|V(G)| — 2}. This
motivated us to define for a graph G:

Fr’ (G) = {z € Fr*(G) : 7*(G — 2) =+(G) - 1};
Frj(G) = {z € Fr"(G) : /"(G — 2) = 7*(G)};

Fi’;(G) = {z € Fi*(G) : v*(G — ) = v*(Q) —|—7p}, pe{-1,0,..,|V(G)|—2}.

Let G be a graph of order n. By Propositions 2.1 and 2.2 we have:

e) {Fr* (G), Frk(G)} is a partition of Fr¥(G);

f) {Fi* | (GQ),Fik(Q), ..., Fif_,(G)} is a partition of Fi¥(Q);
g) {Fi*,(G),Fr* (@)} is a partition of V¥ (G);

h) {Fif(G), Frf(G),B*(G)} is a partition of VE(G);

(i) {Fi}(G),Fi5(G),...,Fi¥_,(G)} is a partition of VX (G).

Theorem 2.3. Let G be a graph of order n > 2. Then G is a vertex-y"-
critical graph if and only if v*(G —v) = ¥¥(G) — 1 for all v € V(G).

(
(
(
(

Proof. Necessity is obvious.

Sufficiency: Let G be a *-critical graph. For every isolated vertex v €
V(G), v*(G —v) = v¥(G) — 1. So, let G have a component of order at least
two, say Q. By Propositions 2.1 and 2.2 it follows that either for all v € V(Q),
YE(Q —v) > A*¥(Q) or for all v € V(Q), Y*(Q — v) = v*(Q) — 1. Suppose, for
all v € V(Q), Y¥(Q — v) > +*(Q). But then Proposition 2.2(1) implies that
V(Q) is a v*-set of Q. This is a contradiction with v*(Q —v) > ~+*(Q). O

When & € {0, A(G)} the theorem above due to Ao and MacGillivray (as is
referred in [6]) and Carrington, Harary and Haynes [1] respectively.
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Theorem 2.4. Let x and y be two nonadjacent vertices in a graph G. If
YE(G + 2y) < A*(G) then v¥(G + xy) = v*(G) — 1. Moreover, v*(G + zy) =
Y¥(G) = 1 if and only if at least one of the following holds:

(i) z € VE(G) and y is a v¥-good vertex of G — x;

(ii) = is a v*-good vertex of G —y and y € VF (G).

Proof. Let v*(G 4+ 2y) < v*(G) and M be a y*-set of G + xy. Then |{z,y} N
M| = 1, otherwise M will be a k-dependent dominating set of G which is a
contradiction. Let without loss of generalities * ¢ M and y € M. Since M
is no dominating set of G then M N N(z,G) = 0. Hence M1 = M U{z} is a
k-dependent dominating set of G with |M;| = v*(G + zy) + 1 which implies
v¥(G) = v*(G + xy) + 1. Since M is a k-dependent dominating set of G — ,
V(G — ) < 4*(G + xy). Hence v*(G) > +*(G — x) 4+ 1 and by Proposition
2.1 follows v*(G) = v*(G — ) + 1. Thus = is in V¥ (G) and M is a y*-set of
G — x. Since y € M then y is a v*-good vertex of G — z.

For the converse let without loss of generalities (i) hold. Then there is a
vF-set M of G — x with y € M. Certainly M is a k-dependent dominating set
of G+ xy and then v*(G + 2y) < |M| = +*(G — ) = ¥¥(G) — 1 < A¥(G + zy).
O

Corollary 2.5. Let x and y be two nonadjacent vertices in a graph G and

Proof. Let M be a v*-set of G — . If y € GF(G — x) then by Theorem 2.4
Y¥(G)—1 = v¥(G+xy). So that, let y € B¥(G—x). By Proposition 2.1, M; =
M U {x} is a y¥-set of G and M; N N(x,G) = (. Hence M; is a k-dependent
dominating set of G +xy and v*(G + zy) < |M1| = Y*(G —2)+1 =+*(G). O

We will refine the definitions of the v¥-free vertex and the v*-fixed vertex as
follows. Let = be a vertex of a graph G.

(j) z is called ~§-free if x € Frf(G);

(k) x is called v* (G)-free if x € Fr* (G) and

(1) @ is called v¥(G)-fized if x € Fil(G), where ¢ € {—1,0,1,..,|V(G)| - 2}.

We need the following useful lemma:

Lemma 2.6. Let x be a~%-fived vertex of a graph G. Then N(x,G) C B¥(G—
z) N (V§(G) UFi{(G)).

Proof. Let M be a v*-set of G —z and y € N(z,G). If y € M then M will be
a k-dependent dominating set of G' of cardinality |M| = v*(G — z) = v*(Q) -
a contradiction with z € Fi*(G). Thus N(z,G) € B¥(G — ). By Proposition
2.1(3) it follows y ¢ V* (G). Assume y € Fi’;(G) for some p > 2. It follows by
M N N(z,G) =0 that My = M U {z} is a k-dependent dominating set of G
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with |Ms| = v¥(G—x)+1 = 4*(G)+1. But y ¢ M and then | M| > +*(G) +p.
Thus we have a contradiction. g

It is well known fact that for any edge e € G, (G +¢) < ~(G) ([5]). In
general, for 4* this is not valid.

Theorem 2.7. Let x and y be two nonadjacent vertices in a graph G. Then
V(G + 2y) > v*(G) if and only if every v*-set of G is no k-dependent set of
G + zy and one of the following holds:

1)z isa ’y;f—ﬁxed vertex of G and y is a 'yg“'—ﬁxed vertex of G
for some p,q > 1;

(2) z € Fif(G) and y € Fif(G) NB*(G — z);

(3) z € Fif(G) N B*(G — y) and y € Fik(G);

(4) z,y € Fik(G), € B¥(G — y) and y € B¥(G — ).

Proof. Let v*(G + xy) > 7*(G). By Corollary 2.5, z,y € VE(G) U VE(G).
Assume to the contrary, that (without loss of generalities) z ¢ Fi*(G). Hence
there is a y¥-set M of G with ¢ M. But then M will be a k-dependent
dominating set of G + zy and |[M| = v*(G) < v*(G + zy) - a contradiction.
Thus x and y are both y*-fixed vertices of G. This implies that each v*-set
M of G is a dominating set of G 4 xy and is no k-dependent set of G + xy.

Let « be 'y;f—ﬁxed, y be W(I;-ﬁxed and without loss of generalities, ¢ > p > 0.
Assume (1) does not hold. Hence p = 0. Let M; be a y*-set of G — x. Then
|Mi| = Y*(G — ) = Y¥(G) < +*(G + xy) and we have that y is a v*-bad
vertex of G — z. By Lemma 2.6, N(x,G) N M; = (. Then M; U {z} is a
k-dependent dominating set of G + 2y which implies v*(G + zy) = v*(G) + 1.
Since y € My U {z} then M; U {z} is a k-dependent dominating set of G —y
and then v¥(G) + 1 = |My U {z}| > +*(G —y) = v*(G) + q. So, ¢ € {0,1}. If
q = 1 then (2) holds. If ¢ = 0 then by symmetry, it follows that z is a y*-bad
vertex of G — y and hence (4) holds.

For the converse, let every v*-set of G be no k-dependent set of G + zy and
let one of the conditions (1), (2), (3) and (4) holds. Assume to the contrary,
that v*(G +zy) < +*(G). By Theorem 2.4, v*(G + 2y) = v*(G). Let My be a
vk-set of G+ zy. Hence |MyN{x,y}| = 1 - otherwise Ms will be a y*-set of G.
Let without loss of generalities x &€ Ms. Then M is a k-dependent dominating
set of G — x which implies v*(G — 2) < |Ma| = v*(G + xy) = v¥(G). Since
z € VF(G)UVE(G), we have v*(G — z) = v*(G+zy) = 7*(G) and then M, is
a v*-set of G — z. Hence z is a fyé“—ﬁxed vertex of G and y is a v*-good vertex
of G — x, which is a contradiction with each of (1) — (4). O

By Theorem 2.4 and Theorem 2.7 we immediately have:

Theorem 2.8. Let x and y be two nonadjacent vertices in a graph G. Then
VE(G 4 zy) = Y*(G) if and only if at least one of the following holds:
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G) and y € Fi*(G) N G*(G — z) for some s € {0,1};
G) N G*(G —y) and y € Fif(G) for some s € {0,1};
G) and y € Fi’;(G) for some q > 2;

the (1), (2), (3) and (4) of Theorem 2.7 holds.

Corollary 2.9. Let x and y be two nonadjacent vertices in a graph G. If
r € B¥(Q) then v*(G + zy) = +*(G).

Proof. If y ¢ V¥ (G) then the result follows by Theorem 2.8(4). If y € V¥ (G)
then by Proposition 2.1, 2 € B¥(G —y) and the result now follows by Theorem
2.8(3). O

Let i € {v,i}. A graph G is edge-p-critical if u(G +e) < u(G) for every edge
e missing from G. These concepts were introduced by Sumner and Blitch [10]
and Ao and MacGillivray [6, Chapter 16] respectively. Here we define a graph
G to be edge-v*-critical if v*(G+e) # ¥ (@) for every edge e of the complement
of G. Relating edge addition to vertex removal, Sumner and Blitch [10] and
Ao and MacGillivray showed that V* (G) is empty for k = A(G) and k = 0
respectively. Furthermore Favaron, Sumner and Wojcicka [3] showed that if
Vﬁ(G)(G) # () then <V0A(G) (G),G> is complete. In general, for edge-v*-
critical graphs the following holds.
Theorem 2.10. Let G be an edge-y*-critical graph. Then

(1) V(G) = Fi* |(G) UFLH(G) and if Fr§(G) # 0 then (Fr§(G),G) is

complete;

(2) Y¥(G +e) < v*(Q) for every edge e missing from G.
Proof. (1) If 4*(G) = 1 then obviously G is complete and the result is trivial.
Assume v*¥(G) > 2. Let z,y € Fr§(G) and zy ¢ E(G). Then by Theorem
2.8(4) it follows v*(G + xy) = v*(G) - a contradiction. By Corollary 2.9,
B¥(G) = (). Assume x € Fi];(G) for some ¢ > 0. Let M be any v¥-set of
G. Hence there is y € pn[z, M] — {z} - otherwise M — {x} becomes a ~v*-
set of G — z, which implies € V¥ (G). Since pn[z, M] N V¥ (G) = 0 (by
Proposition 2.1 when ¢ > 1 and Lemma 2.6 when ¢ = 0), B¥(G) = 0 and
y & M, we have y € Fri(G). Let M be a v*-set of G and y € M;. Then
there is z € (pn[z, M1] — {z}) N Frk(G). Hence y, z € Frf(G) and yz ¢ E(G)
- a contradiction. Thus Fi*(G) = Fi* (@) and the result follows.
(2) Immediately follows by (1) and Theorem 2.7. O
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§3. OPEN PROBLEMS

e Characterize/study the following classes of graphs.
(We use acronyms as follows: C' represents changing; U: unchanging; V:
vertex; E: edge; R: removal; A: addition.)

(CVR)F  ~*(G —v) # +*(Q) for all v € V(G);
(CER)*  +*(G —e) #7*(G) for all e € E(Q);
(CEA*  +*(G +e) #+%(G) for all e € E(G);
(UVR)*  AK(G —v) = ~+*(G) for all v € V(G);
(UER)*  +%(G —e) = 7*(G) for all e € E(G);
(CEA*  +*(G +e) =+*(G) for all e € E(G).

Note that Chapter 5 [5] surveys the results of studies attempting to charac-
terize the graphs G in the six classes above provided k = A(G). Additional
facts on classes (CEA)2(®) and (CVR)*(®) can be found in [6, Chapter 16]
and [9]. Some relationships among these six classes are established by Haynes
[5, pp. 150-153] and Haynes and Henning [7].

1]
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