On k-Dependent Domination in Graphs

Vladimir Samodivkin

(Received April 11, 2007)

Abstract

A subset D of vertices in a graph G is k-dependent if the maximum degree of a vertex in the subgraph $\langle D\rangle$ induced by D is at most k. The k dependent domination number $\gamma^{k}(G)$ of a graph G is the minimum cardinality of a k-dependent dominating set of G. Any k-dependent dominating set D of a graph G with $|D|=\gamma^{k}(G)$ is called a γ^{k}-set of G. A vertex x of a graph G is called: (i) γ^{k}-good if x belongs to some γ^{k}-set, (ii) γ^{k}-fixed if x belongs to every γ^{k}-set, (iii) γ^{k}-free if x belongs to some γ^{k}-set but not to all γ^{k}-sets, (iv) γ^{k}-bad if x belongs to no γ^{k}-set. In this paper we deal with γ^{k}-good/bad/fixed/free vertices and present results on changing and unchanging of the k-dependent domination number when a graph is modified by adding an edge or deleting a vertex.

AMS 2000 Mathematics Subject Classification. 05C69.
Key words and phrases. dependent domination; γ^{k}-fixed/free/bad/good vertex.

§1. INTRODUCTION

We consider finite, simple graphs. For notation and graph theory terminology not presented here, we follow Haynes, et al. [5]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. For a vertex x of $G, N(x, G)$ denote the set of all neighbors of x in G and $N[x, G]=N(x, G) \cup\{x\}$. The maximum degree of the graph G is denoted by $\Delta(G)$. For a graph G, let $x \in X \subseteq V(G)$. The private neighbor set of x with respect to X is $p n[x, X]=\{y \in V(G)$: $N[y, G] \cap X=\{x\}\}$.

Let G be a graph and $S \subseteq V(G)$. A set S is called k-dependent if $\Delta(\langle S, G\rangle) \leq$ k. If $\Delta(\langle S, G\rangle)=0$ then S is called independent. We let $i(G)$ denote the minimum cardinality of a maximal independent set of vertices in G. A k-dependent dominating set D in a graph G is a vertex subset which is both k-dependent and dominating. The minimum cardinality of an k-dependent dominating set
of G is called the k-dependent domination number and is denoted by $\gamma^{k}(G)$. The concept of k-dependent domination was introduced by Favaron, Hedetniemi, Hedetniemi and Rall [2]. Note that $\gamma^{\Delta(G)}(G)=\gamma(G)$ - the ordinary domination number of a graph and $\gamma^{0}(G)=i(G)$.

Much has been written about the effects on domination related parameters when a graph is modified by deleting a vertex, adding an edge or deleting an edge. For surveys see [5, Chapter 5], [6, Chapter 16]. In this paper we present results on changing and unchanging of the k-dependent domination number when an edge is added or a vertex is deleted.

§2. VERTEX DELETION AND EDGE ADDITION

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with property P and with $\mu(G)$ vertices in G is called a μ-set of G. A graph G is vertex- μ-critical if $\gamma(G-v) \neq \gamma(G)$ for all v in $V(G)$. A vertex v of a graph G is defined to be
(a) [4] μ-good, if v belongs to some μ-set of G;
(b) [4] μ-bad, if v belongs to no μ - set of G;
(c) $[8] \mu$-fixed if v belongs to every μ-set;
(d) [8] μ-free if v belongs to some μ-set but not to all μ-sets.

For a graph G we define:

$$
\begin{aligned}
& \mathbf{G}^{k}(G)=\left\{x \in V(G): x \text { is } \gamma^{k} \text {-good }\right\} \\
& \mathbf{B}^{k}(G)=\left\{x \in V(G): x \text { is } \gamma^{k} \text {-bad }\right\} \\
& \mathbf{F i}^{k}(G)=\left\{x \in V(G): x \text { is } \gamma^{k} \text {-fixed }\right\} \\
& \mathbf{F r}^{k}(G)=\left\{x \in V(G): x \text { is } \gamma^{k} \text {-free }\right\} \\
& \mathbf{V}_{0}^{k}(G)=\left\{x \in V(G): \gamma^{k}(G-x)=\gamma^{k}(G)\right\} \\
& \mathbf{V}_{-}^{k}(G)=\left\{x \in V(G): \gamma^{k}(G-x)<\gamma^{k}(G)\right\} \\
& \mathbf{V}_{+}^{k}(G)=\left\{x \in V(G): \gamma^{k}(G-x)>\gamma^{k}(G)\right\}
\end{aligned}
$$

Clearly, $\left\{\mathbf{V}_{-}^{k}(G), \mathbf{V}_{0}^{k}(G), \mathbf{V}_{+}^{k}(G)\right\}$ and $\left\{\mathbf{G}^{k}(G), \mathbf{B}^{k}(G)\right\}$ are partitions of $V(G)$, and $\left\{\mathbf{F i}^{k}(G), \mathbf{F r}^{k}(G)\right\}$ is a partition of $\mathbf{G}^{k}(G)$.

Proposition 2.1. Let G be a graph and $v \in \mathbf{V}_{-}^{k}(G)$. Then:
(1) $\gamma^{k}(G-v)=\gamma^{k}(G)-1$; for any $\gamma^{k}-$ set M of $G-v$ the set $M_{v}=M \cup\{v\}$ is a γ^{k}-set of G and any neighbor of v is a γ^{k}-bad vertex in $G-v$;
$(2) \mathbf{G}^{k}(G-v) \subseteq \mathbf{G}^{k}(G), \mathbf{F} \mathbf{i}^{k}(G-v) \supseteq \mathbf{F i}^{k}(G)-\{v\}$ and $\mathbf{B}^{k}(G-v) \supseteq$ $\mathbf{B}^{k}(G)$;
(3) if u is a γ^{k}-fixed vertex of G and $u \neq v$ then $u v \notin E(G)$.

Proof. (1) Let M be an arbitrary γ^{k}-set of $G-v$. If $u \in M$ then $u \notin$ $N(v, G)$ - otherwise M will be a k-dependent dominating set of G, which is a contradiction with $\gamma^{k}(G-v)<\gamma^{k}(G)$. Then M_{v} is a k-dependent dominating set of G and $\gamma^{k}(G) \leq\left|M_{v}\right|=\gamma^{k}(G-v)+1 \leq \gamma^{k}(G)$.
(2) Immediately follows by (1).
(3) By (2), $u \in \mathbf{F i}^{k}(G-v)$ and by (1), $u v \notin E(G)$.

Proposition 2.2. Let G be a graph and $v \in V(G)$.
(1) ([1] when $k=\Delta(G))$ Let $v \in \mathbf{V}_{+}^{k}(G)$. Then v is a γ^{k}-fixed vertex of G;
(2) If v is a γ^{k}-bad vertex of G then $\gamma^{k}(G-v)=\gamma^{k}(G)$.

Proof. (1) Let M be a γ^{k}-set of G. Assume $v \notin M$. Then M is a k-dependent dominating set of $G-v$ which implies $\gamma^{k}(G)<\gamma^{k}(G-v) \leq|M|=\gamma^{k}(G)$ - a contradiction.
(2) By (1), $\gamma^{k}(G-v) \leq \gamma^{k}(G)$ and by Proposition 2.1(1), $\gamma^{k}(G-v) \geq$ $\gamma^{k}(G)$.

Since for every $v \in V(G), \gamma^{k}(G-v) \leq|V(G)|-1$ and because of Proposition 2.1 we have $\gamma^{k}(G-v)=\gamma^{k}(G)+p$, where $p \in\{-1,0, . .,|V(G)|-2\}$. This motivated us to define for a graph G :

$$
\begin{aligned}
& \mathbf{F r}_{\bar{k}}^{k}(G)=\left\{x \in \mathbf{F r}^{k}(G): \gamma^{k}(G-x)=\gamma^{k}(G)-1\right\} ; \\
& \mathbf{F r}_{0}^{k}(G)=\left\{x \in \mathbf{F r}^{k}(G): \gamma^{k}(G-x)=\gamma^{k}(G)\right\} ; \\
& \mathbf{F i}_{p}^{k}(G)=\left\{x \in \mathbf{F i}^{k}(G): \gamma^{k}(G-x)=\gamma^{k}(G)+p\right\}, p \in\{-1,0, . .,|V(G)|-2\} .
\end{aligned}
$$

Let G be a graph of order n. By Propositions 2.1 and 2.2 we have:
(e) $\left\{\operatorname{Fr}_{-}^{k}(G), \operatorname{Fr}_{0}^{k}(G)\right\}$ is a partition of $\mathbf{F r}^{k}(G)$;
(f) $\left\{\mathbf{F} \mathbf{i}_{-1}^{k}(G), \mathbf{F i}_{0}^{k}(G), \ldots, \mathbf{F} i_{n-2}^{k}(G)\right\}$ is a partition of $\mathbf{F i}{ }^{k}(G)$;
(g) $\left\{\mathbf{F i}_{-1}^{k}(G), \mathbf{F r}_{-}^{k}(G)\right\}$ is a partition of $\mathbf{V}_{-}^{k}(G)$;
(h) $\left\{\mathbf{F i}_{0}^{k}(G), \mathbf{F r}_{0}^{k}(G), \mathbf{B}^{k}(G)\right\}$ is a partition of $\mathbf{V}_{0}^{k}(G)$;
(i) $\left\{\mathbf{F i}_{1}^{k}(G), \mathbf{F i}_{2}^{k}(G), \ldots, \mathbf{F i}_{n-2}^{k}(G)\right\}$ is a partition of $\mathbf{V}_{+}^{k}(G)$.

Theorem 2.3. Let G be a graph of order $n \geq 2$. Then G is a vertex- γ^{k} critical graph if and only if $\gamma^{k}(G-v)=\gamma^{k}(G)-1$ for all $v \in V(G)$.

Proof. Necessity is obvious.
Sufficiency: Let G be a γ^{k}-critical graph. For every isolated vertex $v \in$ $V(G), \gamma^{k}(G-v)=\gamma^{k}(G)-1$. So, let G have a component of order at least two, say Q. By Propositions 2.1 and 2.2 it follows that either for all $v \in V(Q)$, $\gamma^{k}(Q-v)>\gamma^{k}(Q)$ or for all $v \in V(Q), \gamma^{k}(Q-v)=\gamma^{k}(Q)-1$. Suppose, for all $v \in V(Q), \gamma^{k}(Q-v)>\gamma^{k}(Q)$. But then Proposition 2.2(1) implies that $V(Q)$ is a γ^{k}-set of Q. This is a contradiction with $\gamma^{k}(Q-v)>\gamma^{k}(Q)$.

When $k \in\{0, \Delta(G)\}$ the theorem above due to Ao and MacGillivray (as is referred in [6]) and Carrington, Harary and Haynes [1] respectively.
V. D. SAMODIVKIN

Theorem 2.4. Let x and y be two nonadjacent vertices in a graph G. If $\gamma^{k}(G+x y)<\gamma^{k}(G)$ then $\gamma^{k}(G+x y)=\gamma^{k}(G)-1$. Moreover, $\gamma^{k}(G+x y)=$ $\gamma^{k}(G)-1$ if and only if at least one of the following holds:
(i) $x \in \mathbf{V}_{-}^{k}(G)$ and y is a γ^{k}-good vertex of $G-x$;
(ii) x is a γ^{k}-good vertex of $G-y$ and $y \in \mathbf{V}_{-}^{k}(G)$.

Proof. Let $\gamma^{k}(G+x y)<\gamma^{k}(G)$ and M be a γ^{k}-set of $G+x y$. Then $\mid\{x, y\} \cap$ $M \mid=1$, otherwise M will be a k-dependent dominating set of G which is a contradiction. Let without loss of generalities $x \notin M$ and $y \in M$. Since M is no dominating set of G then $M \cap N(x, G)=\emptyset$. Hence $M_{1}=M \cup\{x\}$ is a k-dependent dominating set of G with $\left|M_{1}\right|=\gamma^{k}(G+x y)+1$ which implies $\gamma^{k}(G)=\gamma^{k}(G+x y)+1$. Since M is a k-dependent dominating set of $G-x$, $\gamma^{k}(G-x) \leq \gamma^{k}(G+x y)$. Hence $\gamma^{k}(G) \geq \gamma^{k}(G-x)+1$ and by Proposition 2.1 follows $\gamma^{k}(G)=\gamma^{k}(G-x)+1$. Thus x is in $\mathbf{V}_{-}^{k}(G)$ and M is a γ^{k}-set of $G-x$. Since $y \in M$ then y is a γ^{k}-good vertex of $G-x$.

For the converse let without loss of generalities (i) hold. Then there is a γ^{k}-set M of $G-x$ with $y \in M$. Certainly M is a k-dependent dominating set of $G+x y$ and then $\gamma^{k}(G+x y) \leq|M|=\gamma^{k}(G-x)=\gamma^{k}(G)-1 \leq \gamma^{k}(G+x y)$.

Corollary 2.5. Let x and y be two nonadjacent vertices in a graph G and $x \in \mathbf{V}_{-}^{k}(G)$. Then $\gamma^{k}(G)-1 \leq \gamma^{k}(G+x y) \leq \gamma^{k}(G)$.

Proof. Let M be a γ^{k}-set of $G-x$. If $y \in \mathbf{G}^{k}(G-x)$ then by Theorem 2.4 $\gamma^{k}(G)-1=\gamma^{k}(G+x y)$. So that, let $y \in \mathbf{B}^{k}(G-x)$. By Proposition 2.1, $M_{1}=$ $M \cup\{x\}$ is a γ^{k}-set of G and $M_{1} \cap N(x, G)=\emptyset$. Hence M_{1} is a k-dependent dominating set of $G+x y$ and $\gamma^{k}(G+x y) \leq\left|M_{1}\right|=\gamma^{k}(G-x)+1=\gamma^{k}(G)$.

We will refine the definitions of the γ^{k}-free vertex and the γ^{k}-fixed vertex as follows. Let x be a vertex of a graph G.
(j) x is called γ_{0}^{k}-free if $x \in \mathbf{F r}_{0}^{k}(G)$;
(k) x is called $\gamma_{-}^{k}(G)$-free if $x \in \operatorname{Fr}_{-}^{k}(G)$ and
(l) x is called $\gamma_{q}^{k}(G)$-fixed if $x \in \mathbf{F i}_{q}^{k}(G)$, where $q \in\{-1,0,1, \ldots,|V(G)|-2\}$.

We need the following useful lemma:
Lemma 2.6. Let x be a γ_{0}^{k}-fixed vertex of a graph G. Then $N(x, G) \subseteq \mathbf{B}^{k}(G-$ $x) \cap\left(\mathbf{V}_{0}^{k}(G) \cup \mathbf{F i}_{1}^{k}(G)\right)$.

Proof. Let M be a γ^{k}-set of $G-x$ and $y \in N(x, G)$. If $y \in M$ then M will be a k-dependent dominating set of G of cardinality $|M|=\gamma^{k}(G-x)=\gamma^{k}(G)$ a contradiction with $x \in \mathbf{F i}^{k}(G)$. Thus $N(x, G) \subseteq \mathbf{B}^{k}(G-x)$. By Proposition 2.1(3) it follows $y \notin \mathbf{V}_{-}^{k}(G)$. Assume $y \in \mathbf{F i}_{p}^{k}(G)$ for some $p \geq 2$. It follows by $M \cap N(x, G)=\emptyset$ that $M_{2}=M \cup\{x\}$ is a k-dependent dominating set of G
with $\left|M_{2}\right|=\gamma^{k}(G-x)+1=\gamma^{k}(G)+1$. But $y \notin M$ and then $\left|M_{2}\right| \geq \gamma^{k}(G)+p$. Thus we have a contradiction.

It is well known fact that for any edge $e \in \bar{G}, \gamma(G+e) \leq \gamma(G)$ ([5]). In general, for γ^{k} this is not valid.

Theorem 2.7. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma^{k}(G+x y)>\gamma^{k}(G)$ if and only if every γ^{k}-set of G is no k-dependent set of $G+x y$ and one of the following holds:
(1) x is a γ_{p}^{k}-fixed vertex of G and y is a γ_{q}^{k}-fixed vertex of G for some $p, q \geq 1$;
(2) $x \in \mathbf{F i}_{0}^{k}(G)$ and $y \in \mathbf{F} \mathbf{i}_{1}^{k}(G) \cap \mathbf{B}^{k}(G-x)$;
(3) $x \in \mathbf{F} \mathbf{i}_{1}^{k}(G) \cap \mathbf{B}^{k}(G-y)$ and $y \in \mathbf{F i}_{0}^{k}(G)$;
(4) $x, y \in \mathbf{F i}_{0}^{k}(G), x \in \mathbf{B}^{k}(G-y)$ and $y \in \mathbf{B}^{k}(G-x)$.

Proof. Let $\gamma^{k}(G+x y)>\gamma^{k}(G)$. By Corollary $2.5, x, y \in \mathbf{V}_{0}^{k}(G) \cup \mathbf{V}_{+}^{k}(G)$. Assume to the contrary, that (without loss of generalities) $x \notin \mathbf{F i}^{k}(G)$. Hence there is a γ^{k}-set M of G with $x \notin M$. But then M will be a k-dependent dominating set of $G+x y$ and $|M|=\gamma^{k}(G)<\gamma^{k}(G+x y)$ - a contradiction. Thus x and y are both γ^{k}-fixed vertices of G. This implies that each γ^{k}-set M of G is a dominating set of $G+x y$ and is no k-dependent set of $G+x y$.

Let x be γ_{p}^{k}-fixed, y be γ_{q}^{k}-fixed and without loss of generalities, $q \geq p \geq 0$. Assume (1) does not hold. Hence $p=0$. Let M_{1} be a γ^{k}-set of $G-x$. Then $\left|M_{1}\right|=\gamma^{k}(G-x)=\gamma^{k}(G)<\gamma^{k}(G+x y)$ and we have that y is a γ^{k}-bad vertex of $G-x$. By Lemma 2.6, $N(x, G) \cap M_{1}=\emptyset$. Then $M_{1} \cup\{x\}$ is a k-dependent dominating set of $G+x y$ which implies $\gamma^{k}(G+x y)=\gamma^{k}(G)+1$. Since $y \notin M_{1} \cup\{x\}$ then $M_{1} \cup\{x\}$ is a k-dependent dominating set of $G-y$ and then $\gamma^{k}(G)+1=\left|M_{1} \cup\{x\}\right| \geq \gamma^{k}(G-y)=\gamma^{k}(G)+q$. So, $q \in\{0,1\}$. If $q=1$ then (2) holds. If $q=0$ then by symmetry, it follows that x is a γ^{k}-bad vertex of $G-y$ and hence (4) holds.

For the converse, let every γ^{k}-set of G be no k-dependent set of $G+x y$ and let one of the conditions (1), (2), (3) and (4) holds. Assume to the contrary, that $\gamma^{k}(G+x y) \leq \gamma^{k}(G)$. By Theorem 2.4, $\gamma^{k}(G+x y)=\gamma^{k}(G)$. Let M_{2} be a γ^{k}-set of $G+x y$. Hence $\left|M_{2} \cap\{x, y\}\right|=1$ - otherwise M_{2} will be a γ^{k}-set of G. Let without loss of generalities $x \notin M_{2}$. Then M_{2} is a k-dependent dominating set of $G-x$ which implies $\gamma^{k}(G-x) \leq\left|M_{2}\right|=\gamma^{k}(G+x y)=\gamma^{k}(G)$. Since $x \in V_{0}^{k}(G) \cup V_{+}^{k}(G)$, we have $\gamma^{k}(G-x)=\gamma^{k}(G+x y)=\gamma^{k}(G)$ and then M_{2} is a γ^{k}-set of $G-x$. Hence x is a γ_{0}^{k}-fixed vertex of G and y is a γ^{k}-good vertex of $G-x$, which is a contradiction with each of (1) - (4).
By Theorem 2.4 and Theorem 2.7 we immediately have:
Theorem 2.8. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma^{k}(G+x y)=\gamma^{k}(G)$ if and only if at least one of the following holds:
(1) $x \in \mathbf{V}_{-}^{k}(G) \cap \mathbf{B}^{k}(G-y)$ and $y \in \mathbf{V}_{-}^{k}(G) \cap \mathbf{B}^{k}(G-x)$;
(2) $x \in \mathbf{V}_{-}^{k}(G)$ and $y \in \mathbf{B}^{k}(G-x)-\mathbf{V}_{-}^{k}(G)$;
(3) $x \in \mathbf{B}^{k}(G-y)-\mathbf{V}_{-}^{k}(G)$ and $y \in \mathbf{V}_{-}^{k}(G)$;
(4) $x, y \notin \mathbf{V}_{-}^{k}(G)$ and $\left|\{x, y\} \cap \mathbf{F i}^{k}(G)\right| \leq 1$;
(5) $x \in \mathbf{F} \mathbf{i}_{0}^{k}(G)$ and $y \in \mathbf{F} \mathbf{i}_{s}^{k}(G) \cap \mathbf{G}^{k}(G-x)$ for some $s \in\{0,1\}$;
(6) $x \in \mathbf{F i}_{s}^{k}(G) \cap \mathbf{G}^{k}(G-y)$ and $y \in \mathbf{F i}_{0}^{k}(G)$ for some $s \in\{0,1\}$;
(7) $x \in \mathbf{F} \mathbf{i}_{0}^{k}(G)$ and $y \in \mathbf{F} \mathbf{i}_{q}^{k}(G)$ for some $q \geq 2$;
(8) $x \in \mathbf{F i}_{q}^{k}(G)$ and $y \in \mathbf{F i}_{0}^{k}(G)$ for some $q \geq 2$;
(9) there is a γ^{k}-set of G which is a k-dependent set of $G+x y$ and one of the (1), (2), (3) and (4) of Theorem 2.7 holds.

Corollary 2.9. Let x and y be two nonadjacent vertices in a graph G. If $x \in \mathbf{B}^{k}(G)$ then $\gamma^{k}(G+x y)=\gamma^{k}(G)$.
Proof. If $y \notin \mathbf{V}_{-}^{k}(G)$ then the result follows by Theorem 2.8(4). If $y \in \mathbf{V}_{-}^{k}(G)$ then by Proposition 2.1, $x \in \mathbf{B}^{k}(G-y)$ and the result now follows by Theorem $2.8(3)$.
Let $\mu \in\{\gamma, i\}$. A graph G is edge- μ-critical if $\mu(G+e)<\mu(G)$ for every edge e missing from G. These concepts were introduced by Sumner and Blitch [10] and Ao and MacGillivray [6, Chapter 16] respectively. Here we define a graph G to be edge- γ^{k}-critical if $\gamma^{k}(G+e) \neq \gamma^{k}(G)$ for every edge e of the complement of G. Relating edge addition to vertex removal, Sumner and Blitch [10] and Ao and MacGillivray showed that $\mathbf{V}_{+}^{k}(G)$ is empty for $k=\Delta(G)$ and $k=0$ respectively. Furthermore Favaron, Sumner and Wojcicka [3] showed that if $\mathbf{V}_{0}^{\Delta(G)}(G) \neq \emptyset$ then $\left\langle\mathbf{V}_{0}^{\Delta(G)}(G), G\right\rangle$ is complete. In general, for edge- γ^{k} critical graphs the following holds.
Theorem 2.10. Let G be an edge- γ^{k}-critical graph. Then
(1) $V(G)=\mathbf{F} \mathbf{i}_{-1}^{k}(G) \cup \mathbf{F r}^{k}(G)$ and if $\mathbf{F r}_{0}^{k}(G) \neq \emptyset$ then $\left\langle\mathbf{F r}_{0}^{k}(G), G\right\rangle$ is complete;
(2) $\gamma^{k}(G+e)<\gamma^{k}(G)$ for every edge e missing from G.

Proof. (1) If $\gamma^{k}(G)=1$ then obviously G is complete and the result is trivial. Assume $\gamma^{k}(G) \geq 2$. Let $x, y \in \mathbf{F r}_{0}^{k}(G)$ and $x y \notin E(G)$. Then by Theorem 2.8(4) it follows $\gamma^{k}(G+x y)=\gamma^{k}(G)$ - a contradiction. By Corollary 2.9, $\mathbf{B}^{k}(G)=\emptyset$. Assume $x \in \mathbf{F i}_{q}^{k}(G)$ for some $q \geq 0$. Let M be any γ^{k}-set of G. Hence there is $y \in p n[x, M]-\{x\}$ - otherwise $M-\{x\}$ becomes a γ^{k} set of $G-x$, which implies $x \in \mathbf{V}_{-}^{k}(G)$. Since $p n[x, M] \cap \mathbf{V}_{-}^{k}(G)=\emptyset$ (by Proposition 2.1 when $q \geq 1$ and Lemma 2.6 when $q=0$), $\mathbf{B}^{k}(G)=\emptyset$ and $y \notin M$, we have $y \in \mathbf{F r}_{0}^{k}(G)$. Let M_{1} be a γ^{k}-set of G and $y \in M_{1}$. Then there is $z \in\left(p n\left[x, M_{1}\right]-\{x\}\right) \cap \mathbf{F r}_{0}^{k}(G)$. Hence $y, z \in \mathbf{F r}_{0}^{k}(G)$ and $y z \notin E(G)$ - a contradiction. Thus $\mathbf{F i}{ }^{k}(G)=\mathbf{F i}{ }_{-1}^{k}(G)$ and the result follows.
(2) Immediately follows by (1) and Theorem 2.7.

§3. OPEN PROBLEMS

- Characterize/study the following classes of graphs.
(We use acronyms as follows: C represents changing; U : unchanging; V : vertex; E : edge; R : removal; A : addition.)
$(C V R)^{k} \quad \gamma^{k}(G-v) \neq \gamma^{k}(G)$ for all $v \in V(G) ;$
$(C E R)^{k} \quad \gamma^{k}(G-e) \neq \gamma^{k}(G)$ for all $e \in E(G) ;$
$(C E A)^{k} \quad \gamma^{k}(G+e) \neq \gamma^{k}(G)$ for all $e \in E(\bar{G}) ;$
$(U V R)^{k} \quad \gamma^{k}(G-v)=\gamma^{k}(G)$ for all $v \in V(G) ;$
$(U E R)^{k} \quad \gamma^{k}(G-e)=\gamma^{k}(G)$ for all $e \in E(G) ;$
$(C E A)^{k} \quad \gamma^{k}(G+e)=\gamma^{k}(G)$ for all $e \in E(\bar{G})$.
Note that Chapter 5 [5] surveys the results of studies attempting to characterize the graphs G in the six classes above provided $k=\Delta(G)$. Additional facts on classes $(C E A)^{\Delta(G)}$ and $(C V R)^{\Delta(G)}$ can be found in [6, Chapter 16] and [9]. Some relationships among these six classes are established by Haynes [5, pp. 150-153] and Haynes and Henning [7].

References

[1] Carrington, J.R., Harary, F. and Haynes, T.W., Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Comput., 9 (1991), 57-63.
[2] Favaron, O., Hedetniemi, S.M., Hedetniemi, S.T. and Rall, D.F., On k-dependent domination, Discrete Mathematics, 249 (2002), 83-94.
[3] Favaron, O., Sumner, D.P. and Wojcicka, E., The diameter of domination k critical graphs, J. Graph Theory, 18 (1994), 723-734.
[4] Fricke, G.H., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T. and Laskar, R.C., Excellent trees, Bull. Inst. Comb. Appl., 34 (2002), 27-38.
[5] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Domination in graphs, New York, Marsel Dekker, 1998.
[6] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Domination in graphs (Advanced topics), New York, Marsel Dekker, 1998.
[7] Haynes, T.W. and Henning, M., Changing and unchanging domination: a classification, Discrete Mathematics, 272 (2003), 65-73.
[8] Sampathkumar, E. and Neeralagi, P.S., Domination and neighborhood critical fixed, free and totally free points, Sankhya, 54 (1992), 403-407.
[9] Sumner, D.P., Critical concepts in domination, Discrete Mathematics, 86 (1990), pp. 33-46.
[10] Sumner, D.P. and Blitch, P., Domination critical graphs, J. Combin. Theory Ser. $B, 34$ (1983), 65-76.

Vladimir Samodivkin
Department of Mathematics, UACEG
1046 Sofia, Bulgaria
E-mail: vlsam_fte@uacg.bg

