On Weakly Quasi-Conformally Symmetric Manifolds

Absos Ali Shaikh and Sanjib Kumar Jana

(Received April 10, 2006; Revised February 27, 2007)

Abstract

The object of the present paper is to study weakly quasi-conformally symmetric Riemannian manifolds. Among others we obtain various sufficient conditions for such a manifold to be of weakly symmetric. The decomposable weakly quasi-conformally symmetric manifolds are studied and classified regorously. The existence of a weakly quasi-conformally symmetric and decomposable weakly quasi-conformally symmetric manifolds have been ensured by several non-trivial examples.

AMS 2000 Mathematics Subject Classification. 53B35, 53B05.
Key words and phrases. Weakly quasi-conformally symmetric manifold, decomposable manifold, scalar curvature, Einstein manifold.

§1. Introduction

The notions of weakly symmetric and weakly projective symmetric manifolds were introduced by Tamássy and Binh [8] and later Binh [1] studied decomposable weakly symmetric manifolds. A non-flat Riemannian manifold (M^{n}, g) $(n>2)$ is called a weakly symmetric manifold if its curvature tensor R of type $(0,4)$ satisfies the condition

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, U, V)= & \alpha(X) R(Y, Z, U, V)+\beta(Y) R(X, Z, U, V) \tag{1.1}\\
& +\gamma(Z) R(Y, X, U, V)+\delta(U) R(Y, Z, X, V) \\
& +\sigma(V) R(Y, Z, U, X)
\end{align*}
$$

for all vector fields $X, Y, Z, U, V \in \chi\left(M^{n}\right)$, where $\alpha, \beta, \gamma, \delta$ and σ are 1 -forms (not simultaneously zero), $\chi\left(M^{n}\right)$ is the set of all smooth vector fields over the manifold and ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. The 1-forms are called the associated 1-forms of the
manifold and an n-dimensional manifold of this kind is denoted by $(W S)_{n}$. In 1999 U. C. De and S. Bandyopadhyay [3] established the existence of a $(W S)_{n}$ by an example and proved that in a $(W S)_{n}$, the associated 1-forms $\beta=\gamma$ and $\delta=\sigma$. Hence (1.1) reduces to the following:

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, U, V)= & \alpha(X) R(Y, Z, U, V)+\beta(Y) R(X, Z, U, V) \tag{1.2}\\
& +\beta(Z) R(Y, X, U, V)+\delta(U) R(Y, Z, X, V) \\
& +\delta(V) R(Y, Z, U, X) .
\end{align*}
$$

Also De and Bandyopadhyay [4] studied weakly conformally symmetric manifolds. In this connection it may be noted that although the definition of a $(W S)_{n}$ is similar to that of a generalized pseudo-symmetric manifold introduced by Chaki [2], but the defining condition of a $(W S)_{n}$ is little weaker than that of a generalized pseudo-symmetric manifold. That is, if in (1.1) the 1 -form α is replaced by 2α and σ is replaced by α then the manifold will be a generalized pseudo-symmetric manifold [2]. In 1968 Yano and Sawaki [9] defined and studied a tensor field W on a Riemannian manifold of dimension n which includes both the conformal curvature tensor C and the concircular curvature tensor \widetilde{C} as special cases. This tensor field W is known as quasiconformal curvature tensor given by

$$
\begin{align*}
W(X, Y, Z, U)= & -(n-2) b C(X, Y, Z, U) \tag{1.3}\\
& +[a+(n-2) b] \widetilde{C}(X, Y, Z, U),
\end{align*}
$$

where a and b are arbitrary constants not simultaneously zero, C and \widetilde{C} are the conformal curvature tensor and the concircular curvature tensor of type $(0,4)$ respectively. The present paper deals with a non-quasi-conformally flat Riemannian manifold $\left(M^{n}, g\right)(n>3)$ [the condition $(n>3)$ is assumed throughout this paper as the conformal curvature tensor vanishes for $n=3$] whose quasi-conformal curvature tensor W satisfies the condition

$$
\begin{align*}
\left(\nabla_{X} W\right)(Y, Z, U, V)= & \alpha(X) W(Y, Z, U, V)+\beta(Y) W(X, Z, U, V) \tag{1.4}\\
& +\gamma(Z) W(Y, X, U, V)+\delta(U) W(Y, Z, X, V) \\
& +\sigma(V) W(Y, Z, U, X)
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ and σ are 1 -forms (not simultaneously zero). Such a manifold will be called a weakly quasi-conformally symmetric manifold and denoted by $(W Q C S)_{n}$, where the first ' W ' stands for 'weakly' and ' $Q C$ ' stands for 'quasiconformal curvature tensor' as the 'weakly conformally symmetric manifold' was denoted by $(W C S)_{n}[4]$. In particular, if $a=1$ and $b=-\frac{1}{n-2}$ then a $(W Q C S)_{n}$ reduces to a $(W C S)_{n}$. The manifold $(W Q C S)_{n}$ is introduced and studied by the first author and K. K. Baishya [7]. It is also shown in [7] that
in a $(W Q C S)_{n}$, the 1 -forms $\beta=\gamma$ and $\delta=\sigma$ and hence (1.4) reduces to the following form:

$$
\begin{align*}
\left(\nabla_{X} W\right)(Y, Z, U, V)= & \alpha(X) W(Y, Z, U, V)+\beta(Y) W(X, Z, U, V) \tag{1.5}\\
& +\beta(Z) W(Y, X, U, V)+\delta(U) W(Y, Z, X, V) \\
& +\delta(V) W(Y, Z, U, X)
\end{align*}
$$

where α, β and δ are 1 -forms (not simultaneously zero).
Section 2 is concerned with some basic results of $(W Q C S)_{n}$. It is shown that if in a $(W Q C S)_{n}$ the Ricci tensor is of Codazzi [5] type then $\frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector P defined by $g(X, P)=\lambda(X)$, where r is the scalar curvature of the manifold. Also it is proved that if a $(W Q C S)_{n}$ is of constant scalar curvature then $\frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector L_{1} defined by $g\left(X, L_{1}\right)=\alpha(X)$. Section 3 is devoted to the decomposable $(W Q C S)_{n}$, which is generally called the product $(W Q C S)_{n}$ and it is shown that in such a manifold satisfying certain conditions one of the decomposition is locally symmetric and the other is quasi-conformally flat. Also we obtain some other illuminating results on a decomposable $(W Q C S)_{n}$. Section 4 is devoted to the $(W Q C S)_{n}$ satisfying certain conditions and obtained several interesting results for such a manifold to be a $(W S)_{n}$.

The last section deals with several non-trivial examples of $(W Q C S)_{n}$ and also of decomposable $(W Q C S)_{n}$.

§2. \quad Some basic results of $(W Q C S)_{n}$

In this section we deduce some basic results of a $(W Q C S)_{n}$. The conformal curvature tensor field C of type $(0,4)$ and the concircular curvature tensor field \widetilde{C} of type $(0,4)$ are respectively given by

$$
\begin{aligned}
C(X, Y, Z, U)= & R(X, Y, Z, U)-\frac{1}{n-2}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U) \\
& +g(Y, Z) S(X, U)-g(X, Z) S(Y, U)] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{C}(X, Y, Z, U)= & R(X, Y, Z, U)-\frac{r}{n(n-1)}[g(Y, Z) g(X, U) \\
& -g(X, Z) g(Y, U)]
\end{aligned}
$$

for all vector fields $X, Y, Z, U \in \chi\left(M^{n}\right)$, where R, S, r are the Riemannian curvature tensor of type $(0,4)$, the Ricci tensor of type $(0,2)$ and the scalar
curvature respectively of the manifold. The Riemannian curvature tensor R of type $(0,4)$ on a Riemannian manifold is defined as a quadrilinear mapping $R: \chi(M) \times \chi(M) \times \chi(M) \times \chi(M) \rightarrow C^{\infty}(M)$ and is given by $R(X, Y, Z, U)=$ $g(R(X, Y) Z, U)$ for all $X, Y, Z, U \in \chi\left(M^{n}\right)$, where we have used the same symbol R of the curvature tensor of type $(1,3)$ as well as of type $(0,4)$ and $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \nabla$ being the Levi-Civita connection and $C^{\infty}(M)$ is the set of all smooth functions over the manifold M. The Ricci tensor field S is the covariant tensor field of degree 2 defined by $S(Y, Z)=T r$. $[X \rightarrow R(X, Y) Z]$ and the scalar curvature r is defined as the trace of the $(1,1)$ Ricci tensor Q i.e., $r=T r . Q$ where $S(X, Y)=g(Q X, Y)$ for all $X, Y \in \chi(M)$. Using the above expressions of Weyl conformal curvature tensor C and the concircular curvature tensor \tilde{C} in (1.3) one can easily obtain

$$
\begin{align*}
W(X, Y, Z, U)= & a R(X, Y, Z, U)+b[S(Y, Z) g(X, U) \tag{2.1}\\
& -S(X, Z) g(Y, U)+g(Y, Z) S(X, U) \\
& -g(X, Z) S(Y, U)]-\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)[g(Y, Z) g(X, U) \\
& -g(X, Z) g(Y, U)] .
\end{align*}
$$

Let $\left\{e_{i}: i=1,2, \ldots, n\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then the Ricci tensor S of type (0,2) and the scalar curvature r are given by the following

$$
\begin{aligned}
& S(X, Y)=\sum_{i=1}^{n} R\left(e_{i}, X, Y, e_{i}\right) \\
& \text { and } r=\sum_{i=1}^{n} S\left(e_{i}, e_{i}\right)=\sum_{i=1}^{n} g\left(Q e_{i}, e_{i}\right) .
\end{aligned}
$$

Again from (2.1) we can obtain

$$
\begin{align*}
\sum_{i=1}^{n} W\left(e_{i}, Y, Z, e_{i}\right) & =\sum_{i=1}^{n} W\left(Y, e_{i}, e_{i}, Z\right) \tag{2.2}\\
& =\{a+(n-2) b\}\left[S(Y, Z)-\frac{r}{n} g(Y, Z)\right]
\end{align*}
$$

Differentiating (2.1) covariantly and then taking cyclic sum with respect to X, Y, Z we obtain by virtue of Bianchi identity that

$$
\begin{align*}
& \left(\nabla_{X} W\right)(Y, Z, U, V)+\left(\nabla_{Y} W\right)(Z, X, U, V)+\left(\nabla_{Z} W\right)(X, Y, U, V) \tag{2.3}\\
& =b\left[\left\{\left(\nabla_{X} S\right)(Z, U)-\left(\nabla_{Z} S\right)(X, U)\right\} g(Y, V)+\left\{\left(\nabla_{Y} S\right)(X, U)\right.\right. \\
& \left.-\left(\nabla_{X} S\right)(Y, U)\right\} g(Z, V)+\left\{\left(\nabla_{Z} S\right)(Y, U)-\left(\nabla_{Y} S\right)(Z, U)\right\} g(X, V) \\
& +\left\{\left(\nabla_{X} S\right)(Y, V)-\left(\nabla_{Y} S\right)(X, V)\right\} g(Z, U)+\left\{\left(\nabla_{Z} S\right)(X, V)\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.-\left(\nabla_{X} S\right)(Z, V)\right\} g(Y, U)+\left\{\left(\nabla_{Y} S\right)(Z, V)-\left(\nabla_{Z} S\right)(Y, V)\right\} g(X, U)\right] \\
& -\frac{1}{n}\left(\frac{a}{n-1}+2 b\right)[d r(X)\{g(Z, U) g(Y, V)-g(Z, V) g(Y, U)\} \\
& +d r(Y)\{g(Z, V) g(X, U)-g(Z, U) g(X, V)\} \\
& +d r(Z)\{g(Y, U) g(X, V)-g(X, U) g(Y, V)\}]
\end{aligned}
$$

We now suppose that in a Riemannian manifold the Ricci tensor is of Codazzi type [5]. Then we have

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)=\left(\nabla_{Z} S\right)(X, Y)
$$

for all vector fields X, Y, Z on the manifold. This implies that

$$
d r(X)=0 \text { for all } X .
$$

Therefore (2.3) yields

$$
\begin{equation*}
\left(\nabla_{X} W\right)(Y, Z, U, V)+\left(\nabla_{Y} W\right)(Z, X, U, V)+\left(\nabla_{Z} W\right)(X, Y, U, V)=0 \tag{2.4}
\end{equation*}
$$

Hence if the Ricci tensor is of Codazzi type then in a Riemannian manifold the relation (2.4) holds. Again if a Riemannian manifold (M, g) satisfies the relation (2.4), then (2.3) yields

$$
\begin{aligned}
& b\left[\left\{\left(\nabla_{X} S\right)(Z, U)-\left(\nabla_{Z} S\right)(X, U)\right\} g(Y, V)+\left\{\left(\nabla_{Y} S\right)(X, U)\right.\right. \\
& \left.-\left(\nabla_{X} S\right)(Y, U)\right\} g(Z, V)+\left\{\left(\nabla_{Z} S\right)(Y, U)-\left(\nabla_{Y} S\right)(Z, U)\right\} g(X, V) \\
& +\left\{\left(\nabla_{X} S\right)(Y, V)-\left(\nabla_{Y} S\right)(X, V)\right\} g(Z, U)+\left\{\left(\nabla_{Z} S\right)(X, V)\right. \\
& \left.\left.-\left(\nabla_{X} S\right)(Z, V)\right\} g(Y, U)+\left\{\left(\nabla_{Y} S\right)(Z, V)-\left(\nabla_{Z} S\right)(Y, V)\right\} g(X, U)\right] \\
& -\frac{1}{n}\left(\frac{a}{n-1}+2 b\right)[d r(X)\{g(Z, U) g(Y, V)-g(Z, V) g(Y, U)\} \\
& +d r(Y)\{g(Z, V) g(X, U)-g(Z, U) g(X, V)\} \\
& +d r(Z)\{g(Y, U) g(X, V)-g(X, U) g(Y, V)\}]=0 .
\end{aligned}
$$

Setting $Y=V=e_{i}$ in the above relation and then taking summation over i, $1 \leq i \leq n$ we get

$$
\begin{aligned}
& (n-3) b\left[\left(\nabla_{X} S\right)(Z, U)-\left(\nabla_{Z} S\right)(X, U)\right]-\left\{\frac{(n-2) a}{n(n-1)}\right. \\
& \left.+\frac{(3 n-8) b}{2 n}\right\}[d r(X) g(Z, U)-d r(Z) g(X, U)]=0
\end{aligned}
$$

which yields on contraction over Z and U that $d r(X)=0$ for all X provided $a+(n-2) b \neq 0$ and consequently the last relation reduces to

$$
\begin{aligned}
& \left(\nabla_{X} S\right)(Z, U)=\left(\nabla_{Z} S\right)(X, U) \\
& \text { for all } X, Z, U \in \chi(M) \text { provided } b \neq 0 .
\end{aligned}
$$

Hence the Ricci tensor is of Codazzi type. Thus we can state the following:

Proposition 2.1. In a Riemannian manifold $\left(M^{n}, g\right)$ with $b \neq 0$ and $a+(n-$ $2) b \neq 0$, the Ricci tensor is of Codazzi type if and only if the relation (2.4) holds.

In view of (1.5), the relation (2.4) reduces to

$$
\begin{equation*}
\lambda(X) W(Y, Z, U, V)+\lambda(Y) W(Z, X, U, V)+\lambda(Z) W(X, Y, U, V)=0 \tag{2.5}
\end{equation*}
$$

where $\lambda(X)=\alpha(X)-2 \beta(X)$ for all X. By virtue of (2.1), (2.5) takes the form

$$
\begin{align*}
& a[\lambda(X) R(Y, Z, U, V)+\lambda(Y) R(Z, X, U, V)+\lambda(Z) R(X, Y, U, V)] \tag{2.6}\\
& +b[\lambda(X)\{S(Z, U) g(Y, V)-S(Y, U) g(Z, V)+S(Y, V) g(Z, U) \\
& -S(Z, V) g(Y, U)\}+\lambda(Y)\{S(X, U) g(Z, V)-S(Z, U) g(X, V) \\
& +S(Z, V) g(X, U)-S(X, V) g(Z, U)\}+\lambda(Z)\{S(Y, U) g(X, V) \\
& -S(X, U) g(Y, V)+S(X, V) g(Y, U)-S(Y, V) g(X, U)\}] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)[\lambda(X)\{g(Z, U) g(Y, V)-g(Y, U) g(Z, V)\} \\
& +\lambda(Y)\{g(X, U) g(Z, V)-g(Z, U) g(X, V)\} \\
& +\lambda(Z)\{g(Y, U) g(X, V)-g(X, U) g(Y, V)\}]=0 .
\end{align*}
$$

Setting $Y=V=e_{i}$ in (2.6) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{align*}
& \{a+(n-3) b\}[\lambda(X) S(Z, U)-\lambda(Z) S(X, U)]+a \lambda(R(Z, X) U) \tag{2.7}\\
& +b[\lambda(Q Z) g(X, U)-\lambda(Q X) g(Z, U)]-\frac{r}{n}\left\{\frac{(n-2) a}{n-1}\right. \\
& +(n-4) b\}[\lambda(X) g(Z, U)-\lambda(Z) g(X, U)]=0 .
\end{align*}
$$

Again putting $X=U=e_{i}$ in (2.7) and taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{aligned}
& \{a+(n-2) b\}\left[\lambda(Q Z)-\frac{r}{n} \lambda(Z)\right]=0, \quad \text { which yields } \\
& S(Z, P)=\frac{r}{n} g(Z, P),
\end{aligned}
$$

provided that $a+(n-2) b \neq 0$ where $\lambda(X)=\alpha(X)-2 \beta(X)$ and $g(X, P)=$ $\lambda(X)$. This leads to the following:

Proposition 2.2. If in $a(W Q C S)_{n}$ the Ricci tensor is of Codazzi type then $\frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector P, defined by $g(X, P)=\lambda(X)$, provided that $a+(n-2) b \neq 0$.

Next in view of (1.5), the relation (2.3) takes the form

$$
\begin{align*}
& b\left[\left\{\left(\nabla_{X} S\right)(Z, U)-\left(\nabla_{Z} S\right)(X, U)\right\} g(Y, V)+\left\{\left(\nabla_{Y} S\right)(X, U)\right.\right. \tag{2.8}\\
& \left.-\left(\nabla_{X} S\right)(Y, U)\right\} g(Z, V)+\left\{\left(\nabla_{Z} S\right)(Y, U)-\left(\nabla_{Y} S\right)(Z, U)\right\} g(X, V) \\
& +\left\{\left(\nabla_{X} S\right)(Y, V)-\left(\nabla_{Y} S\right)(X, V)\right\} g(Z, U)+\left\{\left(\nabla_{Z} S\right)(X, V)\right. \\
& \left.\left.-\left(\nabla_{X} S\right)(Z, V)\right\} g(Y, U)+\left\{\left(\nabla_{Y} S\right)(Z, V)-\left(\nabla_{Z} S\right)(Y, V)\right\} g(X, U)\right] \\
& -\frac{1}{n}\left(\frac{a}{n-1}+2 b\right)[d r(X)\{g(Z, U) g(Y, V)-g(Z, V) g(Y, U)\} \\
& +d r(Y)\{g(Z, V) g(X, U)-g(Z, U) g(X, V)\} \\
& +d r(Z)\{g(Y, U) g(X, V)-g(X, U) g(Y, V)\}] \\
& =\lambda(X) W(Y, Z, U, V)+\lambda(Y) W(Z, X, U, V)+\lambda(Z) W(X, Y, U, V)
\end{align*}
$$

where $\lambda(X)=\alpha(X)-2 \beta(X)$ for all X. Setting $Y=V=e_{i}$ in (2.8) and taking summation over $i, 1 \leq i \leq n$, we obtain by virtue of (2.1) and (2.2) that

$$
\begin{align*}
& (n-3) b\left[\left(\nabla_{X} S\right)(Z, U)-\left(\nabla_{Z} S\right)(X, U)\right] \tag{2.9}\\
& -\left[\frac{a(n-2)}{n(n-1)}-\frac{b(3 n-8)}{2 n}\right][d r(X) g(Z, U)-d r(Z) g(X, U)] \\
& =[a+(n-3) b][\lambda(X) S(Z, U)-\lambda(Z) S(X, U)] \\
& +a \lambda(R(Z, X) U)+b[\lambda(Q Z) g(X, U)-\lambda(Q X) g(Z, U)] \\
& -\frac{r}{n}\left[\frac{(n-2) a}{n-1}+(n-4) b\right][\lambda(X) g(Z, U)-\lambda(Z) g(X, U)] .
\end{align*}
$$

Putting $X=U=e_{i}$ in (2.9) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\frac{n-2}{2 n} d r(Z)=\lambda(Q Z)-\frac{r}{n} \lambda(Z) \text { for } a+(n-2) b \neq 0 \tag{2.10}
\end{equation*}
$$

If the manifold under consideration is of constant scalar curvature then (2.10) yields

$$
\begin{equation*}
\lambda(Q Z)=\frac{r}{n} \lambda(Z) \quad \text { for } \quad a+(n-2) b \neq 0 \tag{2.11}
\end{equation*}
$$

If P is the vector field associated with λ such that $g(X, P)=\lambda(X)=\alpha(X)-$ $2 \beta(X)$ then (2.11) can be written as

$$
\begin{equation*}
S(Z, P)=\frac{r}{n} g(Z, P) \quad \text { for } \quad a+(n-2) b \neq 0 \tag{2.12}
\end{equation*}
$$

Thus we can state the following:
Proposition 2.3. If $a(W Q C S)_{n}$ is of constant scalar curvature with $a+$ $(n-2) b \neq 0$ then $\frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector P, defined by $g(X, P)=\lambda(X)$ for all X.

Now using (2.1) in (1.5) we obtain

$$
\begin{align*}
& a\left(\nabla_{X} R\right)(Y, Z, U, V)+b\left[\left(\nabla_{X} S\right)(Z, U) g(Y, V)-\left(\nabla_{X} S\right)(Y, U) g(Z, V)\right. \tag{2.13}\\
& \left.+\left(\nabla_{X} S\right)(Y, V) g(Z, U)-\left(\nabla_{X} S\right)(Z, V) g(Y, U)\right] \\
& -\frac{1}{n} d r(X)\left(\frac{a}{n-1}+2 b\right)[g(Z, U) g(Y, V)-g(Y, U) g(Z, V)] \\
& =a[\alpha(X) R(Y, Z, U, V)+\beta(Y) R(X, Z, U, V)+\beta(Z) R(Y, X, U, V) \\
& +\delta(U) R(Y, Z, X, V)+\delta(V) R(Y, Z, U, X)]+b[\alpha(X)\{S(Z, U) g(Y, V) \\
& -S(Y, U) g(Z, V)+S(Y, V) g(Z, U)-S(Z, V) g(Y, U)\} \\
& +\beta(Y)\{S(Z, U) g(X, V)-S(X, U) g(Z, V)+S(X, V) g(Z, U) \\
& -S(Z, V) g(X, U)\}+\beta(Z)\{S(X, U) g(Y, V)-S(Y, U) g(X, V) \\
& +S(Y, V) g(X, U)-S(X, V) g(Y, U)\}+\delta(U)\{S(Z, X) g(Y, V) \\
& -S(X, Y) g(Z, V)+S(Y, V) g(Z, X)-S(Z, V) g(X, Y)\} \\
& +\delta(V)\{S(Z, U) g(X, Y)-S(Y, U) g(Z, X)+S(X, Y) g(Z, U) \\
& -S(Z, X) g(Y, U)\}]-\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)[\alpha(X)\{g(Z, U) g(Y, V) \\
& -g(Y, U) g(Z, V)\}+\beta(Y)\{g(Z, U) g(X, V)-g(X, U) g(Z, V)\} \\
& +\beta(Z)\{g(X, U) g(Y, V)-g(Y, U) g(X, V)\} \\
& +\delta(U)\{g(Z, X) g(Y, V)-g(X, Y) g(Z, V)\} \\
& +\delta(V)\{g(Z, U) g(X, Y)-g(Y, U) g(Z, X)\}] .
\end{align*}
$$

Setting $Y=V=e_{i}$ in (2.13) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{align*}
& \{a+(n-2) b\}\left[\left(\nabla_{X} S\right)(Z, U)-\frac{1}{n} d r(X) g(Z, U)\right] \tag{2.14}\\
& =\{a+(n-2) b\}\left[\alpha(X)\left\{S(Z, U)-\frac{r}{n} g(Z, U)\right\}\right. \\
& +\beta(Z)\left\{S(X, U)-\frac{r}{n} g(X, U)\right\} \\
& \left.+\delta(U)\left\{S(Z, X)-\frac{r}{n} g(Z, X)\right\}\right]+a[\beta(R(X, Z) U) \\
& +\delta(R(X, U) Z)]+b[\beta(X) S(Z, U)-\beta(Z) S(X, U) \\
& +\delta(X) S(Z, U)-\delta(U) S(Z, X) \\
& +\beta(Q X) g(Z, U)-\beta(Q Z) g(X, U)+\delta(Q X) g(Z, U) \\
& -\delta(Q U) g(Z, X)]-\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)[\beta(X) g(Z, U) \\
& -\beta(Z) g(X, U)+\delta(X) g(Z, U)-\delta(U) g(Z, X)] .
\end{align*}
$$

Again contracting (2.14) over Z and U we obtain

$$
\begin{equation*}
\beta(Q X)+\delta(Q X)=\frac{r}{n}[\beta(X)+\delta(X)], \text { for } a+(n-2) b \neq 0 . \tag{2.15}
\end{equation*}
$$

Also contracting (2.14) over X and U we have

$$
\begin{align*}
\frac{n-2}{2 n} d r(Z)= & \alpha(Q Z)-\beta(Q Z)+\delta(Q Z) \tag{2.16}\\
& -\frac{r}{n}[\alpha(Z)-\beta(Z)+\delta(Z)],
\end{align*}
$$

for $a+(n-2) b \neq 0$. Furthermore, contracting (2.14) over X and Z we obtain

$$
\begin{align*}
\frac{n-2}{2 n} d r(U)= & \alpha(Q U)+\beta(Q U)-\delta(Q U) \tag{2.17}\\
& -\frac{r}{n}[\alpha(U)+\beta(U)-\delta(U)]
\end{align*}
$$

provided that $a+(n-2) b \neq 0$. Replacing U by Z in (2.17) yields

$$
\begin{align*}
\frac{n-2}{2 n} d r(Z)= & \alpha(Q Z)+\beta(Q Z)-\delta(Q Z) \tag{2.18}\\
& -\frac{r}{n}[\alpha(Z)+\beta(Z)-\delta(Z)] .
\end{align*}
$$

From (2.16) and (2.18) it follows that

$$
\begin{equation*}
\beta(Q Z)-\delta(Q Z)=\frac{r}{n}[\beta(Z)-\delta(Z)], \text { for } a+(n-2) b \neq 0 \tag{2.19}
\end{equation*}
$$

In view of (2.15) and (2.19), we obtain

$$
\begin{equation*}
\beta(Q Z)=\frac{r}{n} \beta(Z) \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(Q Z)=\frac{r}{n} \delta(Z), \text { for } a+(n-2) b \neq 0 . \tag{2.21}
\end{equation*}
$$

This leads to the following:
Proposition 2.4. In $a(W Q C S)_{n}$ with $a+(n-2) b \neq 0, \frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvectors L_{2} and L_{3} defined by $g\left(X, L_{2}\right)=\beta(X)$ and $g\left(X, L_{3}\right)=\delta(X)$ respectively, for all X.

Using (2.20) and (2.21) in (2.18) we get

$$
\begin{equation*}
\frac{n-2}{2 n} d r(Z)=\alpha(Q Z)-\frac{r}{n} \alpha(Z), \text { for } a+(n-2) b \neq 0 \tag{2.22}
\end{equation*}
$$

If the manifold is of constant scalar curvature then (2.22) yields

$$
\begin{equation*}
\alpha(Q Z)=\frac{r}{n} \alpha(Z), \text { for } a+(n-2) b \neq 0 \tag{2.23}
\end{equation*}
$$

Thus we can state the following:

Proposition 2.5. If $a(W Q C S)_{n}$ is of constant scalar curvature with $a+(n-$ $2) b \neq 0$, then $\frac{r}{n}$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector L_{1} defined by $g\left(X, L_{1}\right)=\alpha(X)$ for all X.

Using (2.20) and (2.21) in (2.14) we obtain

$$
\begin{align*}
& \{a+(n-2) b\}\left[\left(\nabla_{X} S\right)(Z, U)-\frac{1}{n} d r(X) g(Z, U)\right] \tag{2.24}\\
& =\{a+(n-2) b\}\left[\alpha(X)\left\{S(Z, U)-\frac{r}{n} g(Z, U)\right\}+\beta(Z)\{S(X, U)\right. \\
& \left.\left.-\frac{r}{n} g(X, U)\right\}+\delta(U)\left\{S(Z, X)-\frac{r}{n} g(Z, X)\right\}\right] \\
& +a[\beta(R(X, Z) U)+\delta(R(X, U) Z)]+b[\beta(X) S(Z, U) \\
& -\beta(Z) S(X, U)+\delta(X) S(Z, U)-\delta(U) S(Z, X)] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+b\right)[\beta(X) g(Z, U)-\beta(Z) g(X, U) \\
& +\delta(X) g(Z, U)-\delta(U) g(Z, X)] .
\end{align*}
$$

The above results will be used in the later sections.

§3. Decomposable $(W Q C S)_{n}$

A Riemannian manifold $\left(M^{n}, g\right)$ is said to be decomposable or product manifold [6] if it can be expressed as $M_{1}^{p} \times M_{2}^{n-p}$ for $2 \leq p \leq n-2$.

Let $\left(M^{n}, g\right)$ be a Riemannian manifold such that $M^{n}=M_{1}^{p} \times M_{2}^{n-p}$ $(2 \leq p \leq n-2)$. We assume that M is a weakly quasi-conformally symmetric manifold, that is, for $X, Y, Z, U, V \in \chi(M)$

$$
\begin{aligned}
\left(\nabla_{X} W\right)(Y, Z, U, V)= & \alpha(X) W(Y, Z, U, V)+\beta(Y) W(X, Z, U, V) \\
& +\beta(Z) W(Y, X, U, V)+\delta(U) W(Y, Z, X, V) \\
& +\delta(V) W(Y, Z, U, X)
\end{aligned}
$$

where α, β and δ are (not simultaneously zero) 1-forms on M. Then we find

$$
\begin{align*}
&\left(\nabla_{\bar{X}} W\right)(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})= \alpha(\bar{X}) W(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})+\beta(\bar{Y}) W(\bar{X}, \bar{Z}, \bar{U}, \bar{V}) \tag{3.1}\\
&+\beta(\bar{Z}) W(\bar{Y}, \bar{X}, \bar{U}, \bar{V})+\delta(\bar{U}) W(\bar{Y}, \bar{Z}, \bar{X}, \bar{V}) \\
&+\delta(\bar{V}) W(\bar{Y}, \bar{Z}, \bar{U}, \bar{X}), \\
& \alpha(\stackrel{*}{X}) W(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})=0 \tag{3.2}\\
& \beta(\stackrel{*}{Y}) W(\bar{X}, \bar{Z}, \bar{U}, \bar{V})=0 \tag{3.3}\\
& \delta(\stackrel{*}{U}) W(\bar{Y}, \bar{Z}, \bar{X}, \bar{V})=0 \tag{3.4}
\end{align*}
$$

$$
\begin{gather*}
\beta(\bar{Z}) W(\stackrel{*}{X}, \stackrel{*}{Y}, \bar{U}, \bar{V})+\delta(\bar{U}) W(\stackrel{*}{X}, \bar{V}, \bar{Z}, \stackrel{*}{Y})-\delta(\bar{V}) W(\stackrel{*}{X}, \bar{U}, \bar{Z}, \stackrel{*}{Y})=0 \tag{3.5}\\
\beta(\bar{Y}) W(\stackrel{*}{X}, \bar{Z}, \bar{V}, \stackrel{*}{U})-\beta(\bar{Z}) W(\stackrel{*}{X}, \bar{Y}, \bar{V}, \stackrel{*}{U})+\delta(\bar{V}) W(\stackrel{*}{X}, \stackrel{*}{U}, \bar{Y}, \bar{Z})=0 \tag{3.6}\\
\left(\nabla_{\bar{X}} W\right)(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{V})= \tag{3.7}\\
\quad \alpha(\bar{X}) W(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{V})+\beta(\bar{Z}) W(\stackrel{*}{Y}, \bar{X}, \bar{U}, \stackrel{*}{V}) \\
\\
+\delta(\bar{U}) W(\stackrel{*}{Y}, \bar{Z}, \bar{X}, \stackrel{*}{V})
\end{gather*}
$$

$$
\begin{align*}
& \left(\nabla_{\stackrel{*}{X}} W\right)(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{V})=\alpha\left({ }_{X}^{X}\right) W(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{V})+\beta(\stackrel{*}{Y}) W(\stackrel{*}{X}, \bar{Z}, \bar{U}, \stackrel{*}{V}) \tag{3.8}\\
& +\delta(\stackrel{*}{V}) W(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{X}), \\
& \beta(\stackrel{*}{Z}) W(\bar{X}, \bar{Y}, \stackrel{*}{U}, \stackrel{*}{V})+\delta(\stackrel{*}{U}) W(\stackrel{*}{Z}, \bar{Y}, \bar{X}, \stackrel{*}{V})-\delta\left({ }^{*}\right) W(\stackrel{*}{Z}, \bar{Y}, \bar{X}, \stackrel{*}{U})=0, \tag{3.9}\\
& \beta(\stackrel{*}{Y}) W(\stackrel{*}{Z}, \bar{X}, \bar{U}, \stackrel{*}{V})-\beta(\stackrel{*}{Z}) W(\stackrel{*}{Y}, \bar{X}, \bar{U}, \stackrel{*}{V})+\delta\left({ }_{V}^{V}\right) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \bar{X}, \bar{U})=0, \tag{3.10}\\
& \alpha(\bar{X}) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})=0, \tag{3.11}\\
& \beta(\bar{Y}) W(\stackrel{*}{X}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})=0, \tag{3.12}\\
& \delta(\bar{U}) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{X}, \stackrel{*}{V})=0, \tag{3.13}\\
& \left(\nabla_{X} W\right)(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})=\alpha(\stackrel{*}{X}) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})+\beta(\stackrel{*}{Y}) W(\stackrel{*}{X}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V}) \tag{3.14}\\
& +\beta(\stackrel{*}{Z}) W(\stackrel{*}{Y}, \stackrel{*}{X}, \stackrel{*}{U}, \stackrel{*}{V})+\delta(\stackrel{*}{U}) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{X}, \stackrel{*}{V}) \\
& +\delta(\stackrel{*}{V}) W(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{X})
\end{align*}
$$

for $\bar{X}, \bar{Y}, \bar{Z}, \bar{U}, \bar{V} \in \chi\left(M_{1}\right)$ and $\stackrel{*}{X}, \stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V} \in \chi\left(M_{2}\right)$. From (3.2)-(3.4), we have two cases, namely,
(1) $\alpha=0, \beta=0, \delta=0$ on M_{2},
(2) M_{1} is a quasi-conformally flat.

At first, we consider the case (1). Then from (3.8) it follows that

$$
\begin{align*}
& \left(\nabla_{\underset{X}{*}} W\right)(\stackrel{*}{Y}, \bar{Z}, \bar{U}, \stackrel{*}{V})=0, \text { which implies that } \\
& b\left(\nabla_{*}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})=\frac{\stackrel{*}{X} r}{n}\left(\frac{a}{n-1}+2 b\right) g(\stackrel{*}{Y}, \stackrel{*}{V}) \tag{3.15}
\end{align*}
$$

Also from (3.14), we obtain

$$
\left(\nabla_{X} W\right)(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})=0, \text { that is, }
$$

$$
\begin{align*}
& a\left(\nabla_{X} R\right)(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V}) \tag{3.16}\\
& +b\left\{\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Z}, \stackrel{*}{U}) g(\stackrel{*}{Y}, \stackrel{*}{V})-\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{U}) g(\stackrel{*}{Z}, \stackrel{*}{V})\right. \\
& \left.+g(\stackrel{*}{Z}, \stackrel{*}{U})\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})-g(\stackrel{*}{Y}, \stackrel{*}{U})\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Z}, \stackrel{*}{V})\right\} \\
& -\frac{\stackrel{*}{X}}{n}\left(\frac{a}{n-1}+2 b\right)\{g(\stackrel{*}{Z}, \stackrel{*}{U}) g(\stackrel{*}{Y}, \stackrel{*}{V})-g(\stackrel{*}{Y}, \stackrel{*}{U}) g(\stackrel{*}{Z}, \stackrel{*}{V})\}=0,
\end{align*}
$$

which yields that

$$
\begin{align*}
& \{a+(n-p-2) b\}\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V}) \tag{3.17}\\
& =\frac{\stackrel{*}{X} \stackrel{*}{r}}{n}\left\{\frac{n-p-1}{n-1} a+(n-2 p-2) b\right\} g(\stackrel{*}{Y}, \stackrel{*}{V}),
\end{align*}
$$

where we denote the scalar curvature on M_{2} by $\stackrel{*}{r}$. It is easy to see from (3.15), (3.17) and $\stackrel{*}{X} \stackrel{*}{r}=\stackrel{*}{X} r$ that

$$
\{a+(n-1) b\}\{a+(n-2) b\} \stackrel{*}{X} r=0 .
$$

Thus we have the following three cases:
(1-1) $a+(n-1) b=0$;
(1-2) $a+(n-2) b=0$;
(1-3) $\quad \stackrel{*}{X} r=0$.
In the case of (1-1), we find from (3.15) and $b \neq 0$

$$
\begin{aligned}
& \left(\nabla_{X} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})=\frac{\stackrel{*}{X} r}{n} g(\stackrel{*}{Y}, \stackrel{*}{V}), \\
& \text { which implies that } \quad \stackrel{*}{X} r=0 .
\end{aligned}
$$

Thus we have $\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})=0$. Similarly, if the case (1-2) holds, then we get $\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})=0$. By virtue of (3.15) and (3.17), when (1-3) holds, we have $\left(\nabla_{X}^{*} S\right)(\stackrel{*}{Y}, \stackrel{*}{V})=0$ if $a \neq 0$ or $b \neq 0$. Moreover, from (3.16) we find

$$
\begin{aligned}
& \left(\nabla_{\stackrel{*}{X}} R\right)(\stackrel{*}{Y}, \stackrel{*}{Z}, \stackrel{*}{U}, \stackrel{*}{V})=0 \\
& \text { if } \quad a \neq 0
\end{aligned}
$$

Secondly, we discuss the case of (2). From $W=0$ on M_{1}, we find

$$
\begin{align*}
& a R(\bar{X}, \bar{Y}, \bar{Z}, \bar{U})+b[S(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{U})-S(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{U}) \tag{3.18}\\
& +g(\bar{Y}, \bar{Z}) S(\bar{X}, \bar{U})-g(\bar{X}, \bar{Z}) S(\bar{Y}, \bar{U})] \\
& -\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)\{g(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{U})-g(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{U})\}=0,
\end{align*}
$$

which implies that

$$
\begin{equation*}
\{a+(p-2) b\} S(\bar{Y}, \bar{Z})+\left\{b \bar{r}-\frac{(p-1) r}{n}\left(\frac{a}{n-1}+2 b\right)\right\} g(\bar{Y}, \bar{Z})=0 \tag{3.19}
\end{equation*}
$$

where \bar{r} is the scalar curvature on M_{1}. Thus we find

$$
\begin{equation*}
b \bar{r}-\frac{(p-1) r}{n}\left(\frac{a}{n-1}+2 b\right)=-\frac{\bar{r}}{p}\{a+(p-2) b\} . \tag{3.20}
\end{equation*}
$$

Using (3.20) in (3.19) we obtain

$$
\{a+(p-2) b\}\left\{S(\bar{Y}, \bar{Z})-\frac{\bar{r}}{p} g(\bar{Y}, \bar{Z})\right\}=0 .
$$

Therefore we can consider the following two cases:
(2-1) $a+(p-2) b=0$;
$(2-2) \quad a+(p-2) b \neq 0$.
In the case of (2-1), we get from (3.18), (3.20) and $b \neq 0$

$$
\begin{align*}
& (p-2) R(\bar{X}, \bar{Y}, \bar{Z}, \bar{U})-\{S(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{U})-S(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{U}) \tag{3.21}\\
& +g(\bar{Y}, \bar{Z}) S(\bar{X}, \bar{U})-g(\bar{X}, \bar{Z}) S(\bar{Y}, \bar{U})\} \\
& +\frac{\bar{r}}{p-1}\{g(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{U})-g(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{U})\}=0
\end{align*}
$$

Thus M_{1} is conformally flat if $p \neq 2$. Also, in the case of (2-2), equation (3.18) is rewritten as follows:

$$
\begin{equation*}
R(\bar{X}, \bar{Y}, \bar{Z}, \bar{U})=\frac{\bar{r}}{p(p-1)}\{g(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{U})-g(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{U})\} \tag{3.22}
\end{equation*}
$$

if $a \neq 0$. Hence we have
Theorem 3.1. Let $\left(M^{n}, g\right)$ be a Riemannian manifold such that $M=M_{1}^{p} \times$ $M_{2}^{n-p}(2 \leq p \leq n-2)$. If M is $a(W Q C S)_{n}$, then we get
(1) in the case of $\alpha=0, \beta=0, \delta=0$ on M_{2}, M_{2} is a locally symmetric manifold for $a \neq 0$,
(2) when M_{1} is a quasi-conformally flat,
(i) if $a+(p-2) b=0$ and $p \geq 3$, then M_{1} is conformally flat,
(ii) if $a \neq 0, a+(p-2) b \neq 0$ and $p \geq 3$, then M_{1} is a manifold of constant curvature.

Similarly we have from (3.11)-(3.13)
Theorem 3.2. Let $\left(M^{n}, g\right)$ be a Riemannian manifold such that $M=M_{1}^{p} \times$ $M_{2}^{n-p}(2 \leq p \leq n-2)$. If M is $a(W Q C S)_{n}$, then we get
(1) in the case of $\alpha=0, \beta=0, \delta=0$ on M_{1}, M_{1} is a locally symmetric
manifold for $a \neq 0$,
(2) when M_{2} is a quasi-conformally flat,
(i) if $a+(p-2) b=0$ and $p \leq n-3$, then M_{2} is conformally flat,
(ii) if $a \neq 0, a+(p-2) b \neq 0$ and $p \leq n-3$, then M_{2} is of constant curvature.
Next, we consider the contraction with respect to $\stackrel{*}{X}$ and $\stackrel{*}{U}$ in (3.6) and obtain

$$
\begin{aligned}
& \beta(\bar{Y})\left[b\{\stackrel{*}{r} g(\bar{Z}, \bar{V})+(n-p) S(\bar{Z}, \bar{V})\}-\frac{(n-p) r}{n}\left(\frac{a}{n-1}+2 b\right) g(\bar{Z}, \bar{V})\right] \\
& -\beta(\bar{Z})\left[b\left\{{ }^{*} r g(\bar{Y}, \bar{V})+(n-p) S(\bar{Y}, \bar{V})\right\}-\frac{(n-p) r}{n}\left(\frac{a}{n-1}+2 b\right) g(\bar{Y}, \bar{V})\right] \\
& =0,
\end{aligned}
$$

which yields that

$$
\begin{equation*}
b(n-p) \beta(Q \bar{Y})=-\frac{r_{1}}{n} \beta(\bar{Y}), \tag{3.23}
\end{equation*}
$$

where we put
$r_{1}=(n-p)\left\{\frac{p-1}{n-1} a-(n-2 p+2) b\right\} \bar{r}+(p-1)\left\{\frac{n-p}{n-1} a+(n-2 p) b\right\} \stackrel{*}{r}$.
Similarly, we have from (3.5)

$$
\begin{equation*}
b(n-p) \delta(Q \bar{U})=-\frac{r_{1}}{n} \delta(\bar{U}) . \tag{3.24}
\end{equation*}
$$

If $b=0$, that is, $W=a \widetilde{C}$ on M, then from (3.23) and (3.24) we get $r \beta(\bar{Y})=0$ and $r \delta(\bar{U})=0$. Thus we can consider the two cases:
(3) $r=0$,
(4) $r \neq 0$, namely, $\beta=0, \delta=0$ on M_{1}.

If $r=0$, then M is a weakly symmetric manifold. When the case of (4) holds, we obtain from (3.7) that

$$
\begin{equation*}
\alpha(\bar{X})=-\bar{X} \log |r| . \tag{3.25}
\end{equation*}
$$

It is clear from (3.1) that

$$
\begin{equation*}
\left(\nabla_{\bar{X}} \widetilde{C}\right)(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})=\alpha(\bar{X}) \widetilde{C}(\bar{Y}, \bar{Z}, \bar{U}, \bar{V}) \tag{3.26}
\end{equation*}
$$

Hence we can state the following:
Theorem 3.3. Let $\left(M^{n}, g\right)$ be a Riemannian manifold such that $M=M_{1}^{p} \times$ $M_{2}^{n-p}(2 \leq p \leq n-2)$. If M is a $(W Q C S)_{n}$, then we get
(1) if $b \neq 0$, then we find

$$
\begin{aligned}
\beta(Q \cdot) & =-\frac{r_{1}}{b n(n-p)} \beta(\cdot) \\
\text { and } \quad \delta(Q \cdot) & =-\frac{r_{1}}{b n(n-p)} \delta(\cdot) \text { on } M_{1}
\end{aligned}
$$

(2) in the case of $b=0$,
(i) if $r=0$, then M is a weakly symmetric manifold,
(ii) if $r \neq 0$, then $\alpha(\bar{X})=-\bar{X} \log |r|$ and $\nabla_{\bar{X}} \widetilde{C}=\alpha(\bar{X}) \widetilde{C}$ on M_{1} for $\bar{X} \in \chi\left(M_{1}\right)$. Especially, if r is a non-zero constant, then the concircular curvature tensor field is parallel on M_{1}.

Similarly, from (3.9) and (3.10) we can state the following
Theorem 3.4. Let $\left(M^{n}, g\right)$ be a Riemannian manifold such that $M=M_{1}^{p} \times$ $M_{2}^{n-p}(2 \leq p \leq n-2)$. If M is $a(W Q C S)_{n}$, then we get
(1) if $b \neq 0$, then we find

$$
\begin{aligned}
\beta(Q \cdot) & =-\frac{r_{2}}{b n p} \beta(\cdot) \\
\text { and } \quad \delta(Q \cdot) & =-\frac{r_{2}}{b n p} \delta(\cdot) \text { on } M_{2}
\end{aligned}
$$

where we put

$$
r_{2}=(n-p-1)\left\{\frac{p a}{n-1}-(n-2 p) b\right\} \bar{r}+p\left\{\frac{n-p-1}{n-1} a+(n-2 p-2) b\right\} \stackrel{*}{r},
$$

(2) in the case of $b=0$,
(i) if $r=0$, then M is a weakly symmetric manifold,
(ii) if $r \neq 0$, then $\alpha(\stackrel{*}{X})=-\stackrel{*}{X} \log |r|$ and $\nabla_{X}^{*} \widetilde{C}=\alpha(\stackrel{*}{X}) \widetilde{C}$ on M_{2} for $\stackrel{*}{X} \in \chi\left(M_{2}\right)$. Especially, if r is a non-zero constant, then the concircular curvature tensor field is parallel on M_{2}.

§4. $(W Q C S)_{n}$ satisfying certain conditions

Definition 4.1. The Ricci tensor of a Riemannian manifold is said to be cyclic parallel if it satisfies the following condition:

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y, Z on the manifold i.e., the Ricci tensor S of a Riemannian manifold is cyclic parallel if the cyclic sum of the covariant derivative of S vanishes.

From (4.1) it follows that in such a manifold the scalar curvature r is a constant.
We now consider a $(W Q C S)_{n}$ satisfying the relation (4.1). Taking cyclic sum
with respect to X, Z, U in (2.24) we obtain by virtue of (4.1) and Bianchi identity that

$$
\begin{align*}
& \{\alpha(X)+\beta(X)+\delta(X)\}\left[S(Z, U)-\frac{r}{n} g(Z, U)\right] \tag{4.2}\\
& +\{\alpha(Z)+\beta(Z)+\delta(Z)\}\left[S(X, U)-\frac{r}{n} g(X, U)\right] \\
& +\{\alpha(U)+\beta(U)+\delta(U)\}\left[S(Z, X)-\frac{r}{n} g(Z, X)\right]=0
\end{align*}
$$

for $a+(n-2) b \neq 0$ and $\alpha+\beta+\delta \neq 0$ everywhere.
We now choose the vector fields L_{1}, L_{2} and L_{3} corresponding to the 1-forms α, β and δ respectively as the unit vector fields such that they are mutually orthogonal to each other. We now suppose that $\alpha(Y) \neq 0$ for all Y. For if, $\alpha(Y)=0$ for all Y then $g\left(L_{1}, L_{1}\right)=0$, which contradicts to our assumption that L_{1} is a unit vector field. Then multiplying both sides of (4.2) by $\alpha(Y)$ we get

$$
\begin{align*}
& \alpha(Y)\{\alpha(X)+\beta(X)+\delta(X)\}\left[S(Z, U)-\frac{r}{n} g(Z, U)\right] \tag{4.3}\\
& +\alpha(Y)\{\alpha(Z)+\beta(Z)+\delta(Z)\}\left[S(X, U)-\frac{r}{n} g(X, U)\right] \\
& +\alpha(Y)\{\alpha(U)+\beta(U)+\delta(U)\}\left[S(Z, X)-\frac{r}{n} g(Z, X)\right]=0 .
\end{align*}
$$

Setting $X=Y=e_{i}$ in (4.3) and taking summation over $i, 1 \leq i \leq n$, we have

$$
\begin{align*}
& S(Z, U)-\frac{r}{n} g(Z, U)+\{\alpha(Z)+\beta(Z)+\delta(Z)\}\left[\alpha(Q U)-\frac{r}{n} \alpha(U)\right] \tag{4.4}\\
& +\{\alpha(U)+\beta(U)+\delta(U)\}\left[\alpha(Q Z)-\frac{r}{n} \alpha(Z)\right]=0
\end{align*}
$$

Since the manifold under consideration is of constant scalar curvature, using (2.23) in (4.4) we get

$$
S(Z, U)=\frac{r}{n} g(Z, U), \text { which means that the manifold is Einstein. }
$$

In a similar manner multiplying (4.3) by $\beta(Y)$ and $\delta(Y)$ respectively we obtain that the manifold is Einstein. This leads to the following:

Theorem 4.1. If in $a(W Q C S)_{n}$, the Ricci tensor is cyclic parallel and $a+$ $(n-2) b \neq 0$ then it is an Einstein manifold unless $\alpha+\beta+\delta$ is non-vanishing everywhere.

Corollary 4.1. If $a(W Q C S)_{n}$ is Ricci symmetric then it is an Einstein manifold, provided that $a+(n-2) b \neq 0$ and $\alpha+\beta+\delta \neq 0$ everywhere.

Again in [7] it is shown that if an Einstein $(W Q C S)_{n}$ is a $(W S)_{n}$ then the scalar curvature of the manifold vanishes, provided that $a \neq 0$ and $\alpha+\beta+\delta \neq 0$. Hence by virtue of Theorem 4.1 we can state the following:

Theorem 4.2. If a $(W Q C S)_{n}$ with cyclic parallel Ricci tensor is a $(W S)_{n}$ then the scalar curvature of the manifold vanishes, provided that $a \neq 0, a+$ $(n-2) b \neq 0$ and $\alpha+\beta+\delta \neq 0$ everywhere.

Next in [7] it is proved that if in an Einstein $(W Q C S)_{n}$ the scalar curvature vanishes then it is a $(W S)_{n}$, provided that $a \neq 0$. Hence by virtue of Theorem 4.1 we can state the following:

Theorem 4.3. If in a $(W Q C S)_{n}$ with cyclic parallel Ricci tensor the scalar curvature vanishes, then it is $a(W S)_{n}$, provided that $a \neq 0, a+(n-2) b \neq 0$ and $\alpha+\beta+\delta \neq 0$ everywhere.

Therefore if a $(W Q C S)_{n}$ satisfying (4.1) is of non-vanishing scalar curvature then in view of Theorem 4.3 we can state the following:

Theorem 4.4. If in $a(W Q C S)_{n}$ with non-vanishing scalar curvature, the Ricci tensor is cyclic parallel then it cannot be $a(W S)_{n}$, provided that $a \neq 0$, $a+(n-2) b \neq 0$ and $\alpha+\beta+\delta \neq 0$ everywhere.

Definition 4.2. A vector field L on a Riemannian manifold is said to be concurrent [6] if $\nabla_{X} L=\rho X$, where ρ is a constant.

In particular, if $\rho=0$ then L is said to be a parallel vector field.
Let us now consider a $(W Q C S)_{n}$ such that the vector field $L=L_{2}+L_{3}$ defined by $g(X, L)=\beta(X)+\delta(X)$ is a concurrent vector field. Then making use of Ricci identity we have

$$
\begin{gather*}
R(X, Y, L, U)=0 \quad \text { which implies that } \tag{4.5}\\
S(Y, L)=0 . \tag{4.6}
\end{gather*}
$$

Now the relation (2.15) can be written as

$$
\begin{equation*}
S(X, L)=\frac{r}{n} g(X, L), \quad \text { provided that } a+(n-2) b \neq 0 \tag{4.7}
\end{equation*}
$$

From (4.6) and (4.7) it follows that

$$
r=0, \quad \text { if } \quad\|L\|^{2} \neq 0
$$

This leads to the following:

Theorem 4.5. If in a $(W Q C S)_{n}$ the vector field L defined by $g(X, L)=$ $\beta(X)+\delta(X)$ is a concurrent vector field then it is of vanishing scalar curvature, provided that $a+(n-2) b \neq 0$ and $\|L\|^{2} \neq 0$.

Since $r=0$, from (2.20) and (2.21) we get

$$
\begin{equation*}
\beta(Q X)=\delta(Q X)=0 \text { if } a+(n-2) b \neq 0 . \tag{4.8}
\end{equation*}
$$

Now using (4.8) and $r=0$ in (2.14) we obtain

$$
\begin{align*}
& \{a+(n-2) b\}\left(\nabla_{X} S\right)(Z, U) \tag{4.9}\\
& =\{a+(n-2) b\}[\alpha(X) S(Z, U)+\beta(Z) S(X, U)+\delta(U) S(Z, X)] \\
& +a[\beta(R(X, Z) U)+\delta(R(X, U) Z)]+b[\beta(X) S(Z, U) \\
& -\beta(Z) S(X, U)+\delta(X) S(Z, U)-\delta(U) S(Z, X)] .
\end{align*}
$$

Again from $\nabla_{X} L=\rho X$, we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Z, L)=-\rho S(Z, X) \tag{4.10}
\end{equation*}
$$

Setting $U=L$ in (4.9) and then using (4.5) and (4.6) we obtain by virtue of (4.10) that

$$
\begin{equation*}
[\rho\{a+(n-2) b\}+\{a+(n-3) b\} \delta(L)] S(Z, X)+a \delta(R(X, L) Z)=0 \tag{4.11}
\end{equation*}
$$

From (4.5) we have

$$
\begin{aligned}
& R(L, U, X, Y)=0, \quad \text { which implies that } \\
& R(U, L, Y, X)=0 \quad \text { for all vector fields } U, X, Y .
\end{aligned}
$$

The last relation yields (for $\left.X=L_{3}\right)$ that $\delta(R(U, L) Y)=0$ for all vector fields $U, Y \in \chi(M)$. Hence $\delta(R(X, L) Z)=0$ for all $X, Z \in \chi(M)$. Consequently (4.11) reduces to

$$
S(Z, X)=0 \text { for all } X \text { and } Z,
$$

provided that $\rho\{a+(n-2) b\}+\{a+(n-3) b\} \delta(L) \neq 0$.
Thus (2.1) takes the form $W(X, Y, Z, U)=a R(X, Y, Z, U)$ and hence (1.5) reduces to

$$
\begin{aligned}
\left(\nabla_{X} R\right)(Y, Z, U, V)= & \alpha(X) R(Y, Z, U, V)+\beta(Y) R(X, Z, U, V) \\
& +\beta(Z) R(Y, X, U, V)+\delta(U) R(Y, Z, X, V) \\
& +\delta(V) R(Y, Z, U, X)
\end{aligned}
$$

for $a \neq 0$, which implies that the manifold is a $(W S)_{n}$. Thus we can state the following:

Theorem 4.6. If in $a(W Q C S)_{n}$ with $a \neq 0$ and $a+(n-2) b \neq 0$ the non-null vector field L defined by $g(X, L)=\beta(X)+\delta(X)$ is a concurrent vector field then it is $a(W S)_{n}$, provided that $\rho\{a+(n-2) b\}+\{a+(n-3) b\} \delta(L) \neq 0$.

Corollary 4.2. If in $a(W Q C S)_{n}$ with $a \neq 0$ and $a+(n-2) b \neq 0$ the nonnull vector field L defined by $g(X, L)=\beta(X)+\delta(X)$ is a parallel vector field then it is a $(W S)_{n}$, provided that $\{a+(n-3) b\} \delta(L) \neq 0$.

The above corollary certainly improves the Theorem 4.5 of [7].
Definition 4.3. A vector field L on a Riemannian manifold is said to be recurrent [6] if $\nabla_{X} L=\mu(X) L$, where μ is a non-zero 1-form, called the associated 1-form of the recurrent vector field.

In particular, if $\mu(X)$ is a constant then the recurrent vector field reduces to a concurrent vector field.
Now we consider a $(W Q C S)_{n}$ such that the vector field L defined by $g(X, L)=$ $\beta(X)+\delta(X)$ is a recurrent vector field. Then we have

$$
\nabla_{X} \nabla_{Y} L=(X \mu(Y)) L+\mu(X) \mu(Y) L
$$

and hence using Ricci identity we get

$$
\begin{aligned}
& R(X, Y, L, U)=2 d \mu(X, Y) g(L, U) \text { which implies that } \\
& R(X, Y, L, U)=0, \quad \text { if the } 1 \text {-form } \mu \text { is closed. }
\end{aligned}
$$

Then $S(Y, L)=0$ and hence $r=0$. Therefore proceeding similarly as before we obtain that the manifold is a $(W S)_{n}$. Hence we can state the following:

Theorem 4.7. If in $a(W Q C S)_{n}$ with $a \neq 0$ and $a+(n-2) b \neq 0$, the vector field L defined by $g(X, L)=\beta(X)+\delta(X)$ is a recurrent vector field such that the associated 1-form of the recurrent vector field is closed then it is a $(W S)_{n}$, provided that $a+(n-3) b \neq 0$ and $\delta(L) \neq 0$.

§5. Some examples of $(W Q C S)_{n}$

This section deals with several examples of $(W Q C S)_{n}$. We calculate the components of the curvature tensor, the Ricci tensor, the quasi-conformal curvature tensor and its covariant derivative.
EXAMPLE 1. Let $M^{4}=\left\{\left(x^{1}, x^{2}, x^{3}, x^{4}\right) \in \mathbf{R}^{4} \mid x^{1}<0, x^{3}>0\right\}$ be an open subset of \mathbf{R}^{4} endowed with the metric

$$
\begin{equation*}
d s^{2}=x^{1}\left(x^{3}\right)^{2}\left(d x^{1}\right)^{2}+2 d x^{1} d x^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2} . \tag{5.1}
\end{equation*}
$$

Then the only non-vanishing components of the Christoffel's symbols, the curvature tensor, the Ricci tensor, the scalar curvature, the quasi-conformal curvature tensor and its covariant derivatives are

$$
\begin{aligned}
& \Gamma_{11}^{2}=\frac{1}{2}\left(x^{3}\right)^{2}, \quad \Gamma_{11}^{3}=-x^{1} x^{3}=-\Gamma_{13}^{2} \\
& R_{1313}=x^{1}, \quad S_{11}=-x^{1}, \quad r=0 \\
& W_{1313}=(a+b) x^{1}, \quad W_{1414}=b x^{1} \\
& W_{1313,1}=(a+b), \quad W_{1414,1}=b
\end{aligned}
$$

Here ',' denotes the covariant differentiation with respect to the metric tensor g. Therefore our M^{4} with the considered metric g in (5.1) is a Riemannian manifold of vanishing scalar curvature which is neither quasi-conformally flat nor quasi-conformally symmetric. We put

$$
\begin{aligned}
& \alpha_{i}\left(\partial_{i}\right)=\alpha_{i}=\left\{\begin{array}{cl}
\frac{1}{2 x^{1}} & \text { for } \quad i=1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \beta_{i}\left(\partial_{i}\right)=\beta_{i}=\left\{\begin{array}{cl}
\frac{1}{3 x^{1}} & \text { for } i=1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \delta_{i}\left(\partial_{i}\right)=\delta_{i}=\left\{\begin{array}{cl}
\frac{1}{6 x^{1}} & \text { for } i=1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $\partial_{i}=\frac{\partial}{\partial x^{i}}$. Then $\left(M^{4}, g\right)$ is a $(W Q C S)_{4}$. Hence we can state the following:

Theorem 5.1. Let $\left(M^{4}, g\right)$ be a Riemannian manifold endowed with the metric given in (5.1). Then $\left(M^{4}, g\right)$ is a weakly quasi-conformally symmetric manifold with vanishing scalar curvature which is neither quasi-conformally symmetric nor quasi-conformally recurrent.

EXAMPLE 2. Let $M^{n}=\mathbf{R}^{n}(n \geq 4)$ be endowed with the metric

$$
\begin{equation*}
d s^{2}=f \cdot\left(d x^{1}\right)^{2}+\sum_{i=2}^{n-1}\left(d x^{i}\right)^{2}+2 d x^{1} d x^{n} \tag{5.2}
\end{equation*}
$$

where f is a continuously differentiable function of $x^{1}, x^{2}, \ldots, x^{n-1}$ such that

$$
\begin{equation*}
f<0, \quad a f_{\cdot m m k}+b \sum_{j=2}^{n-1} f_{\cdot j j k} \neq 0 \quad \text { and } \quad a f_{\cdot m m}+b \sum_{j=2}^{n-1} f_{\cdot j j} \neq 0 \tag{5.3}
\end{equation*}
$$

for $2 \leq m \leq n-1$ and $1 \leq k \leq n-1$ and ' '' denotes the partial differentiation with respect to the coordinates. Then the only non-vanishing components of
the Christoffel's symbols, the curvature tensor, the Ricci tensor, the scalar curvature, the quasi-conformal curvature tensors and their covariant derivatives are given by the following:

$$
\begin{aligned}
& \Gamma_{11}^{m}=-\Gamma_{1 m}^{n}=-\frac{1}{2} f_{\cdot m}, \quad \Gamma_{11}^{n}=\frac{1}{2} f_{\cdot 1}, \\
& R_{1 m 1 m}=\frac{1}{2} f \cdot m m, \quad S_{11}=-\frac{1}{2} \sum_{j=2}^{n-1} f_{\cdot j j}, \quad r=0, \\
& W_{1 m 1 m}=\frac{1}{2}\left(a f \cdot m m+b \sum_{j=2}^{n-1} f_{\cdot j j}\right), \\
& W_{1 m 1 m, k}=\frac{1}{2}\left(a f_{\cdot m m k}+b \sum_{j=2}^{n-1} f_{\cdot j j k}\right) .
\end{aligned}
$$

Thus (M^{n}, g) is neither quasi-conformally flat nor quasi-conformally symmetric. We set

$$
\begin{aligned}
& \alpha_{i}\left(\partial_{i}\right)=\alpha_{i}= \begin{cases}\partial_{i} \log \left|a f_{\cdot m m}+b \sum_{j=2}^{n-1} f_{\cdot j j}\right| & \text { for } \\
0 & i=1,2, \ldots, n-1 \\
\text { for } i=n,\end{cases} \\
& \beta_{i}\left(\partial_{i}\right)=\beta_{i}=\left\{\begin{array}{cc}
-\frac{1}{2} & \text { for } i=1 \\
0 & \text { otherwise },
\end{array}\right. \\
& \delta_{i}\left(\partial_{i}\right)=\delta_{i}= \begin{cases}\frac{1}{2} & \text { for } i=1 \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

where $\partial_{i}=\frac{\partial}{\partial x^{2}}$. Then $\left(M^{n}, g\right)$ is a $(W Q C S)_{n}$. Hence we can state the following:

Theorem 5.2. Let $\left(M^{n}, g\right)$ be a Riemannian manifold equipped with the metric given in (5.2). Then $\left(M^{n}, g\right)$ is a weakly quasi-conformally symmetric manifold with vanishing scalar curvature which is neither quasi-conformally symmetric nor quasi-conformally recurrent.

EXAMPLE 3. Let $M^{n}=\left\{\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in \mathbf{R}^{n} \mid x^{1}<0, x^{3}>0\right\}$ be endowed with the metric

$$
\begin{equation*}
d s^{2}=x^{1}\left(x^{3}\right)^{2}\left(d x^{1}\right)^{2}+2 d x^{1} d x^{2}+\sum_{i=3}^{n}\left(d x^{i}\right)^{2} \tag{5.4}
\end{equation*}
$$

Then the only non-vanishing components of the Christoffel's symbols, the curvature tensor, the Ricci tensor, the scalar curvature, the quasi-conformal
curvature tensor and their covariant derivatives are given by the following:

$$
\begin{aligned}
& \Gamma_{11}^{2}=\frac{1}{2}\left(x^{3}\right)^{2}, \quad \Gamma_{11}^{3}=-x^{1} x^{3}=-\Gamma_{13}^{2} \\
& R_{1313}=x^{1}, \quad S_{11}=-x^{1}, \quad r=0 \\
& W_{1313}=(a+b) x^{1}, \quad W_{1 k 1 k}=b x^{1} \\
& W_{1313,1}=(a+b), \quad W_{1 k 1 k, 1}=b
\end{aligned}
$$

for $4 \leq k \leq n$. We put

$$
\begin{aligned}
& \alpha_{i}\left(\partial_{i}\right)=\alpha_{i}=\left\{\begin{array}{cl}
\frac{1}{2 x^{1}} & \text { for } i=1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \beta_{i}\left(\partial_{i}\right)=\beta_{i}=\left\{\begin{array}{cl}
\frac{1}{3 x^{1}} & \text { for } i=1 \\
0 & \text { otherwise },
\end{array}\right. \\
& \delta_{i}\left(\partial_{i}\right)=\delta_{i}=\left\{\begin{array}{cl}
\frac{1}{6 x^{1}} & \text { for } i=1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $\partial_{i}=\frac{\partial}{\partial x^{2}}$. Then it can be easily shown that $\left(M^{n}, g\right)$ is a $(W Q C S)_{n}$, which is neither quasi-conformally symmetric nor quasi-conformally recurrent. Hence we can state the following:

Theorem 5.3. Let $\left(M^{n}, g\right)(n \geq 4)$ be a Riemannian manifold equipped with the metric given in (5.4). Then $\left(M^{n}, g\right)(n \geq 4)$ is a weakly quasi-conformally symmetric manifold with vanishing scalar curvature which is neither quasiconformally symmetric nor quasi-conformally recurrent.

Let $\left(M_{1}^{4}, g_{1}\right)$ be a Riemannian manifold in Example 1 and $\left(\mathbf{R}^{n-4}, g_{0}\right)$ be an ($n-4$)-dimensional Euclidean space with standard metric g_{0}. Then $\left(M^{n}, g\right)$ in Example 3 is a product manifold of $\left(M_{1}^{4}, g_{1}\right)$ and $\left(\mathbf{R}^{n-4}, g_{0}\right)$. Thus we can state the following:

Theorem 5.4. Let $\left(M^{n}, g\right)(n \geq 5)$ be a Riemannian manifold endowed with the metric given in (5.4). Then $\left(M^{n}, g\right)(n \geq 4)$ is a decomposable weakly quasi-conformally symmetric manifold $\left(M_{1}^{4}, g_{1}\right) \times\left(\mathbf{R}^{n-4}, g_{0}\right)$ with vanishing scalar curvature.

Acknowledgement

The authors wish to express their sincere thanks and gratitude to the referee for his valuable comments and suggestions in the improvement of the paper.

References

[1] Binh, T. Q., On weakly symmetric Riemannian spaces, Publi. Math. Debrecen., 42 pp. 103-107 (1993).
[2] Chaki, M. C., On generalized pseudo-symmetric manifolds, Publi. Math. Debrecen., 45 pp. 305-312 (1994).
[3] De, U. C. and Bandyopadhyay, S., On weakly symmetric Riemannian spaces, Publi. Math. Debrecen., 54/3-4 pp. 377-381 (1999).
[4] De, U. C. and Bandyopadhyay, S., On weakly conformally symmetric spaces, Publi. Math. Debrecen., 57/1-2 pp. 71-78 (2000).
[5] Ferus, D., A remark on Codazzi tensors on constant curvature space, Lecture Note in Math., 838, Global Differential Geometry and Global Analysis, SpringerVerlag, New York (1981).
[6] Schouten, J. A., Ricci-Calculus, Springer-Verlag, Berlin (1954).
[7] Shaikh, A. A. and Baishya, K. K., On weakly quasi-conformally symmetric manifolds, Soochow J. of Math. 31(4) pp. 581-595 (2005).
[8] Tamássy, L. and Binh, T. Q., On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai 50 pp. 663-670 (1989).
[9] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2 pp. 161-184 (1968).

[^0]
[^0]: A. A. Shaikh and S. K. Jana

 Department of Mathematics, University of Burdwan Golapbag, Burdwan-713 104, West Bengal, India
 E-mail: aask2003@yahoo.co.in, aask@epatra.com

