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Abstract. The object of the present paper is to study weakly quasi-conformally
symmetric Riemannian manifolds. Among others we obtain various sufficient
conditions for such a manifold to be of weakly symmetric. The decompos-
able weakly quasi-conformally symmetric manifolds are studied and classified
regorously. The existence of a weakly quasi-conformally symmetric and decom-
posable weakly quasi-conformally symmetric manifolds have been ensured by
several non-trivial examples.
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§1. Introduction

The notions of weakly symmetric and weakly projective symmetric manifolds
were introduced by Tamássy and Binh [8] and later Binh [1] studied decompos-
able weakly symmetric manifolds. A non-flat Riemannian manifold (M n, g)
(n > 2) is called a weakly symmetric manifold if its curvature tensor R of type
(0, 4) satisfies the condition

(∇XR)(Y,Z, U, V ) = α(X)R(Y,Z, U, V ) + β(Y )R(X,Z,U, V )(1.1)

+γ(Z)R(Y,X,U, V ) + δ(U)R(Y,Z,X, V )

+σ(V )R(Y,Z, U,X)

for all vector fields X,Y,Z, U, V ∈ χ(Mn), where α, β, γ, δ and σ are 1-forms
(not simultaneously zero), χ(Mn) is the set of all smooth vector fields over the
manifold and ∇ denotes the operator of covariant differentiation with respect
to the metric tensor g. The 1-forms are called the associated 1-forms of the
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manifold and an n-dimensional manifold of this kind is denoted by (WS)n. In
1999 U. C. De and S. Bandyopadhyay [3] established the existence of a (WS)n

by an example and proved that in a (WS)n, the associated 1-forms β = γ and
δ = σ. Hence (1.1) reduces to the following:

(∇XR)(Y,Z, U, V ) = α(X)R(Y,Z, U, V ) + β(Y )R(X,Z,U, V )(1.2)

+β(Z)R(Y,X,U, V ) + δ(U)R(Y,Z,X, V )

+δ(V )R(Y,Z, U,X).

Also De and Bandyopadhyay [4] studied weakly conformally symmetric man-
ifolds. In this connection it may be noted that although the definition of a
(WS)n is similar to that of a generalized pseudo-symmetric manifold intro-
duced by Chaki [2], but the defining condition of a (WS)n is little weaker
than that of a generalized pseudo-symmetric manifold. That is, if in (1.1) the
1-form α is replaced by 2α and σ is replaced by α then the manifold will be
a generalized pseudo-symmetric manifold [2]. In 1968 Yano and Sawaki [9]
defined and studied a tensor field W on a Riemannian manifold of dimension
n which includes both the conformal curvature tensor C and the concircular
curvature tensor C̃ as special cases. This tensor field W is known as quasi-
conformal curvature tensor given by

W (X,Y,Z, U) = −(n − 2)bC(X,Y,Z, U)(1.3)

+[a + (n − 2)b]C̃(X,Y,Z, U),

where a and b are arbitrary constants not simultaneously zero, C and C̃ are
the conformal curvature tensor and the concircular curvature tensor of type
(0, 4) respectively. The present paper deals with a non-quasi-conformally
flat Riemannian manifold (Mn, g)(n > 3) [the condition (n > 3) is assumed
throughout this paper as the conformal curvature tensor vanishes for n = 3]
whose quasi-conformal curvature tensor W satisfies the condition

(∇XW )(Y,Z, U, V ) = α(X)W (Y,Z, U, V ) + β(Y )W (X,Z,U, V )(1.4)

+γ(Z)W (Y,X,U, V ) + δ(U)W (Y,Z,X, V )

+σ(V )W (Y,Z, U,X),

where α, β, γ, δ and σ are 1-forms (not simultaneously zero). Such a manifold
will be called a weakly quasi-conformally symmetric manifold and denoted by
(WQCS)n, where the first ‘W ’ stands for ‘weakly’ and ‘QC’ stands for ‘quasi-

conformal curvature tensor’ as the ‘weakly conformally symmetric manifold’
was denoted by (WCS)n [4]. In particular, if a = 1 and b = − 1

n−2 then a
(WQCS)n reduces to a (WCS)n. The manifold (WQCS)n is introduced and
studied by the first author and K. K. Baishya [7]. It is also shown in [7] that
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in a (WQCS)n, the 1-forms β = γ and δ = σ and hence (1.4) reduces to the
following form:

(∇XW )(Y,Z, U, V ) = α(X)W (Y,Z, U, V ) + β(Y )W (X,Z,U, V )(1.5)

+β(Z)W (Y,X,U, V ) + δ(U)W (Y,Z,X, V )

+δ(V )W (Y,Z, U,X),

where α, β and δ are 1-forms (not simultaneously zero).
Section 2 is concerned with some basic results of (WQCS)n. It is shown

that if in a (WQCS)n the Ricci tensor is of Codazzi [5] type then r
n

is an
eigenvalue of the Ricci tensor S corresponding to the eigenvector P defined
by g(X,P ) = λ(X), where r is the scalar curvature of the manifold. Also
it is proved that if a (WQCS)n is of constant scalar curvature then r

n
is an

eigenvalue of the Ricci tensor S corresponding to the eigenvector L1 defined
by g(X,L1) = α(X). Section 3 is devoted to the decomposable (WQCS)n,
which is generally called the product (WQCS)n and it is shown that in such
a manifold satisfying certain conditions one of the decomposition is locally
symmetric and the other is quasi-conformally flat. Also we obtain some other
illuminating results on a decomposable (WQCS)n. Section 4 is devoted to
the (WQCS)n satisfying certain conditions and obtained several interesting
results for such a manifold to be a (WS)n.

The last section deals with several non-trivial examples of (WQCS)n and
also of decomposable (WQCS)n.

§2. Some basic results of (WQCS)n

In this section we deduce some basic results of a (WQCS)n. The conformal
curvature tensor field C of type (0, 4) and the concircular curvature tensor
field C̃ of type (0, 4) are respectively given by

C(X,Y,Z, U) = R(X,Y,Z, U) −
1

n − 2
[S(Y,Z)g(X,U) − S(X,Z)g(Y,U)

+g(Y,Z)S(X,U) − g(X,Z)S(Y,U)]

+
r

(n − 1)(n − 2)
[g(Y,Z)g(X,U) − g(X,Z)g(Y,U)]

and

C̃(X,Y,Z, U) = R(X,Y,Z, U) −
r

n(n − 1)
[g(Y,Z)g(X,U)

−g(X,Z)g(Y,U)],

for all vector fields X,Y,Z, U ∈ χ(Mn), where R, S, r are the Riemannian
curvature tensor of type (0, 4), the Ricci tensor of type (0, 2) and the scalar
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curvature respectively of the manifold. The Riemannian curvature tensor R

of type (0, 4) on a Riemannian manifold is defined as a quadrilinear mapping
R : χ(M)×χ(M)×χ(M)×χ(M) → C∞(M) and is given by R(X,Y,Z, U) =
g(R(X,Y )Z,U) for all X,Y,Z, U ∈ χ(Mn), where we have used the same
symbol R of the curvature tensor of type (1, 3) as well as of type (0, 4)
and R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, ∇ being the Levi-Civita
connection and C∞(M) is the set of all smooth functions over the manifold
M . The Ricci tensor field S is the covariant tensor field of degree 2 defined
by S(Y,Z) = Tr.[X → R(X,Y )Z] and the scalar curvature r is defined as the
trace of the (1, 1) Ricci tensor Q i.e., r = Tr.Q where S(X,Y ) = g(QX,Y ) for
all X,Y ∈ χ(M). Using the above expressions of Weyl conformal curvature
tensor C and the concircular curvature tensor C̃ in (1.3) one can easily obtain

W (X,Y,Z, U) = aR(X,Y,Z, U) + b[S(Y,Z)g(X,U)(2.1)

−S(X,Z)g(Y,U) + g(Y,Z)S(X,U)

−g(X,Z)S(Y,U)] −
r

n
(

a

n − 1
+ 2b)[g(Y,Z)g(X,U)

−g(X,Z)g(Y,U)].

Let {ei : i = 1, 2, ..., n} be an orthonormal basis of the tangent space at any
point of the manifold. Then the Ricci tensor S of type (0, 2) and the scalar
curvature r are given by the following

S(X,Y ) =
n∑

i=1

R(ei, X, Y, ei)

and r =
n∑

i=1

S(ei, ei) =
n∑

i=1

g(Qei, ei).

Again from (2.1) we can obtain

n∑

i=1

W (ei, Y, Z, ei) =
n∑

i=1

W (Y, ei, ei, Z)(2.2)

= {a + (n − 2)b}[S(Y,Z) −
r

n
g(Y,Z)].

Differentiating (2.1) covariantly and then taking cyclic sum with respect to
X, Y , Z we obtain by virtue of Bianchi identity that

(∇XW )(Y,Z, U, V ) + (∇Y W )(Z,X,U, V ) + (∇ZW )(X,Y,U, V )(2.3)

= b[{(∇XS)(Z,U) − (∇ZS)(X,U)}g(Y, V ) + {(∇Y S)(X,U)

−(∇XS)(Y,U)}g(Z, V ) + {(∇ZS)(Y,U) − (∇Y S)(Z,U)}g(X,V )

+{(∇XS)(Y, V ) − (∇Y S)(X,V )}g(Z,U) + {(∇ZS)(X,V )
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−(∇XS)(Z, V )}g(Y,U) + {(∇Y S)(Z, V ) − (∇ZS)(Y, V )}g(X,U)]

−
1

n
(

a

n − 1
+ 2b)[dr(X){g(Z,U)g(Y, V ) − g(Z, V )g(Y,U)}

+dr(Y ){g(Z, V )g(X,U) − g(Z,U)g(X,V )}

+dr(Z){g(Y,U)g(X,V ) − g(X,U)g(Y, V )}].

We now suppose that in a Riemannian manifold the Ricci tensor is of Codazzi
type [5]. Then we have

(∇XS)(Y,Z) = (∇Y S)(X,Z) = (∇ZS)(X,Y )

for all vector fields X, Y, Z on the manifold. This implies that

dr(X) = 0 for all X.

Therefore (2.3) yields

(∇XW )(Y,Z, U, V ) + (∇Y W )(Z,X,U, V ) + (∇ZW )(X,Y,U, V ) = 0.(2.4)

Hence if the Ricci tensor is of Codazzi type then in a Riemannian manifold
the relation (2.4) holds. Again if a Riemannian manifold (M, g) satisfies the
relation (2.4), then (2.3) yields

b[{(∇XS)(Z,U) − (∇ZS)(X,U)}g(Y, V ) + {(∇Y S)(X,U)

−(∇XS)(Y,U)}g(Z, V ) + {(∇ZS)(Y,U) − (∇Y S)(Z,U)}g(X,V )

+{(∇XS)(Y, V ) − (∇Y S)(X,V )}g(Z,U) + {(∇ZS)(X,V )

−(∇XS)(Z, V )}g(Y,U) + {(∇Y S)(Z, V ) − (∇ZS)(Y, V )}g(X,U)]

−
1

n
(

a

n − 1
+ 2b)[dr(X){g(Z,U)g(Y, V ) − g(Z, V )g(Y,U)}

+dr(Y ){g(Z, V )g(X,U) − g(Z,U)g(X,V )}

+dr(Z){g(Y,U)g(X,V ) − g(X,U)g(Y, V )}] = 0.

Setting Y = V = ei in the above relation and then taking summation over i,
1 ≤ i ≤ n we get

(n − 3)b[(∇XS)(Z,U) − (∇ZS)(X,U)] − {
(n − 2)a

n(n − 1)

+
(3n − 8)b

2n
}[dr(X)g(Z,U) − dr(Z)g(X,U)] = 0,

which yields on contraction over Z and U that dr(X) = 0 for all X provided
a + (n − 2)b 6= 0 and consequently the last relation reduces to

(∇XS)(Z,U) = (∇ZS)(X,U)

for all X,Z,U ∈ χ(M) provided b 6= 0.

Hence the Ricci tensor is of Codazzi type. Thus we can state the following:
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Proposition 2.1. In a Riemannian manifold (M n, g) with b 6= 0 and a+(n−
2)b 6= 0, the Ricci tensor is of Codazzi type if and only if the relation (2.4)
holds.

In view of (1.5), the relation (2.4) reduces to

λ(X)W (Y,Z, U, V ) + λ(Y )W (Z,X,U, V ) + λ(Z)W (X,Y,U, V ) = 0,(2.5)

where λ(X) = α(X) − 2β(X) for all X. By virtue of (2.1), (2.5) takes the
form

a[λ(X)R(Y,Z, U, V ) + λ(Y )R(Z,X,U, V ) + λ(Z)R(X,Y,U, V )](2.6)

+b[λ(X){S(Z,U)g(Y, V ) − S(Y,U)g(Z, V ) + S(Y, V )g(Z,U)

−S(Z, V )g(Y,U)} + λ(Y ){S(X,U)g(Z, V ) − S(Z,U)g(X,V )

+S(Z, V )g(X,U) − S(X,V )g(Z,U)} + λ(Z){S(Y,U)g(X,V )

−S(X,U)g(Y, V ) + S(X,V )g(Y,U) − S(Y, V )g(X,U)}]

−
r

n
(

a

n − 1
+ 2b)[λ(X){g(Z,U)g(Y, V ) − g(Y,U)g(Z, V )}

+λ(Y ){g(X,U)g(Z, V ) − g(Z,U)g(X,V )}

+λ(Z){g(Y,U)g(X,V ) − g(X,U)g(Y, V )}] = 0.

Setting Y = V = ei in (2.6) and taking summation over i, 1 ≤ i ≤ n, we get

{a + (n − 3)b}[λ(X)S(Z,U) − λ(Z)S(X,U)] + aλ(R(Z,X)U)(2.7)

+b[λ(QZ)g(X,U) − λ(QX)g(Z,U)] −
r

n
{
(n − 2)a

n − 1
+(n − 4)b}[λ(X)g(Z,U) − λ(Z)g(X,U)] = 0.

Again putting X = U = ei in (2.7) and taking summation over i, 1 ≤ i ≤ n,
we obtain

{a + (n − 2)b}[λ(QZ) −
r

n
λ(Z)] = 0, which yields

S(Z,P ) =
r

n
g(Z,P ),

provided that a + (n − 2)b 6= 0 where λ(X) = α(X) − 2β(X) and g(X,P ) =
λ(X). This leads to the following:

Proposition 2.2. If in a (WQCS)n the Ricci tensor is of Codazzi type then
r
n

is an eigenvalue of the Ricci tensor S corresponding to the eigenvector P ,

defined by g(X,P ) = λ(X), provided that a + (n − 2)b 6= 0.
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Next in view of (1.5), the relation (2.3) takes the form

b[{(∇XS)(Z,U) − (∇ZS)(X,U)}g(Y, V ) + {(∇Y S)(X,U)(2.8)

−(∇XS)(Y,U)}g(Z, V ) + {(∇ZS)(Y,U) − (∇Y S)(Z,U)}g(X,V )

+{(∇XS)(Y, V ) − (∇Y S)(X,V )}g(Z,U) + {(∇ZS)(X,V )

−(∇XS)(Z, V )}g(Y,U) + {(∇Y S)(Z, V ) − (∇ZS)(Y, V )}g(X,U)]

−
1

n
(

a

n − 1
+ 2b)[dr(X){g(Z,U)g(Y, V ) − g(Z, V )g(Y,U)}

+dr(Y ){g(Z, V )g(X,U) − g(Z,U)g(X,V )}

+dr(Z){g(Y,U)g(X,V ) − g(X,U)g(Y, V )}]

= λ(X)W (Y,Z, U, V ) + λ(Y )W (Z,X,U, V ) + λ(Z)W (X,Y,U, V ),

where λ(X) = α(X) − 2β(X) for all X. Setting Y = V = ei in (2.8) and
taking summation over i, 1 ≤ i ≤ n, we obtain by virtue of (2.1) and (2.2)
that

(n − 3)b[(∇XS)(Z,U) − (∇ZS)(X,U)](2.9)

−[
a(n − 2)

n(n − 1)
−

b(3n − 8)

2n
][dr(X)g(Z,U) − dr(Z)g(X,U)]

= [a + (n − 3)b][λ(X)S(Z,U) − λ(Z)S(X,U)]

+aλ(R(Z,X)U) + b[λ(QZ)g(X,U) − λ(QX)g(Z,U)]

−
r

n
[
(n − 2)a

n − 1
+ (n − 4)b][λ(X)g(Z,U) − λ(Z)g(X,U)].

Putting X = U = ei in (2.9) and taking summation over i, 1 ≤ i ≤ n, we get

n − 2

2n
dr(Z) = λ(QZ) −

r

n
λ(Z) for a + (n − 2)b 6= 0.(2.10)

If the manifold under consideration is of constant scalar curvature then (2.10)
yields

λ(QZ) =
r

n
λ(Z) for a + (n − 2)b 6= 0.(2.11)

If P is the vector field associated with λ such that g(X,P ) = λ(X) = α(X)−
2β(X) then (2.11) can be written as

S(Z,P ) =
r

n
g(Z,P ) for a + (n − 2)b 6= 0.(2.12)

Thus we can state the following:

Proposition 2.3. If a (WQCS)n is of constant scalar curvature with a +
(n − 2)b 6= 0 then r

n
is an eigenvalue of the Ricci tensor S corresponding to

the eigenvector P , defined by g(X,P ) = λ(X) for all X.
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Now using (2.1) in (1.5) we obtain

a(∇XR)(Y,Z, U, V ) + b[(∇XS)(Z,U)g(Y, V ) − (∇XS)(Y,U)g(Z, V )(2.13)

+(∇XS)(Y, V )g(Z,U) − (∇XS)(Z, V )g(Y,U)]

−
1

n
dr(X)(

a

n − 1
+ 2b)[g(Z,U)g(Y, V ) − g(Y,U)g(Z, V )]

= a[α(X)R(Y,Z, U, V ) + β(Y )R(X,Z,U, V ) + β(Z)R(Y,X,U, V )

+δ(U)R(Y,Z,X, V ) + δ(V )R(Y,Z, U,X)] + b[α(X){S(Z,U)g(Y, V )

−S(Y,U)g(Z, V ) + S(Y, V )g(Z,U) − S(Z, V )g(Y,U)}

+β(Y ){S(Z,U)g(X,V ) − S(X,U)g(Z, V ) + S(X,V )g(Z,U)

−S(Z, V )g(X,U)} + β(Z){S(X,U)g(Y, V ) − S(Y,U)g(X,V )

+S(Y, V )g(X,U) − S(X,V )g(Y,U)} + δ(U){S(Z,X)g(Y, V )

−S(X,Y )g(Z, V ) + S(Y, V )g(Z,X) − S(Z, V )g(X,Y )}

+δ(V ){S(Z,U)g(X,Y ) − S(Y,U)g(Z,X) + S(X,Y )g(Z,U)

−S(Z,X)g(Y,U)}] −
r

n
(

a

n − 1
+ 2b)[α(X){g(Z,U)g(Y, V )

−g(Y,U)g(Z, V )} + β(Y ){g(Z,U)g(X,V ) − g(X,U)g(Z, V )}

+β(Z){g(X,U)g(Y, V ) − g(Y,U)g(X,V )}

+δ(U){g(Z,X)g(Y, V ) − g(X,Y )g(Z, V )}

+δ(V ){g(Z,U)g(X,Y ) − g(Y,U)g(Z,X)}].

Setting Y = V = ei in (2.13) and taking summation over i, 1 ≤ i ≤ n, we get

{a + (n − 2)b}[(∇XS)(Z,U) −
1

n
dr(X)g(Z,U)](2.14)

= {a + (n − 2)b}[α(X){S(Z,U) −
r

n
g(Z,U)}

+β(Z){S(X,U) −
r

n
g(X,U)}

+δ(U){S(Z,X) −
r

n
g(Z,X)}] + a[β(R(X,Z)U)

+δ(R(X,U)Z)] + b[β(X)S(Z,U) − β(Z)S(X,U)

+δ(X)S(Z,U) − δ(U)S(Z,X)

+β(QX)g(Z,U) − β(QZ)g(X,U) + δ(QX)g(Z,U)

−δ(QU)g(Z,X)] −
r

n
(

a

n − 1
+ 2b)[β(X)g(Z,U)

−β(Z)g(X,U) + δ(X)g(Z,U) − δ(U)g(Z,X)].

Again contracting (2.14) over Z and U we obtain

β(QX) + δ(QX) =
r

n
[β(X) + δ(X)], for a + (n − 2)b 6= 0.(2.15)
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Also contracting (2.14) over X and U we have

n − 2

2n
dr(Z) = α(QZ) − β(QZ) + δ(QZ)(2.16)

−
r

n
[α(Z) − β(Z) + δ(Z)],

for a+(n− 2)b 6= 0. Furthermore, contracting (2.14) over X and Z we obtain

n − 2

2n
dr(U) = α(QU) + β(QU) − δ(QU)(2.17)

−
r

n
[α(U) + β(U) − δ(U)],

provided that a + (n − 2)b 6= 0. Replacing U by Z in (2.17) yields

n − 2

2n
dr(Z) = α(QZ) + β(QZ) − δ(QZ)(2.18)

−
r

n
[α(Z) + β(Z) − δ(Z)].

From (2.16) and (2.18) it follows that

β(QZ) − δ(QZ) =
r

n
[β(Z) − δ(Z)], for a + (n − 2)b 6= 0.(2.19)

In view of (2.15) and (2.19), we obtain

β(QZ) =
r

n
β(Z)(2.20)

and
δ(QZ) =

r

n
δ(Z), for a + (n − 2)b 6= 0.(2.21)

This leads to the following:

Proposition 2.4. In a (WQCS)n with a + (n − 2)b 6= 0, r
n

is an eigenvalue

of the Ricci tensor S corresponding to the eigenvectors L2 and L3 defined by

g(X,L2) = β(X) and g(X,L3) = δ(X) respectively, for all X.

Using (2.20) and (2.21) in (2.18) we get

n − 2

2n
dr(Z) = α(QZ) −

r

n
α(Z), for a + (n − 2)b 6= 0.(2.22)

If the manifold is of constant scalar curvature then (2.22) yields

α(QZ) =
r

n
α(Z), for a + (n − 2)b 6= 0.(2.23)

Thus we can state the following:
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Proposition 2.5. If a (WQCS)n is of constant scalar curvature with a+(n−
2)b 6= 0, then r

n
is an eigenvalue of the Ricci tensor S corresponding to the

eigenvector L1 defined by g(X,L1) = α(X) for all X.

Using (2.20) and (2.21) in (2.14) we obtain

{a + (n − 2)b}[(∇XS)(Z,U) −
1

n
dr(X)g(Z,U)](2.24)

= {a + (n − 2)b}[α(X){S(Z,U) −
r

n
g(Z,U)} + β(Z){S(X,U)

−
r

n
g(X,U)} + δ(U){S(Z,X) −

r

n
g(Z,X)}]

+a[β(R(X,Z)U) + δ(R(X,U)Z)] + b[β(X)S(Z,U)

−β(Z)S(X,U) + δ(X)S(Z,U) − δ(U)S(Z,X)]

−
r

n
(

a

n − 1
+ b)[β(X)g(Z,U) − β(Z)g(X,U)

+δ(X)g(Z,U) − δ(U)g(Z,X)].

The above results will be used in the later sections.

§3. Decomposable (WQCS)n

A Riemannian manifold (Mn, g) is said to be decomposable or product mani-
fold [6] if it can be expressed as M

p
1 × M

n−p
2 for 2 ≤ p ≤ n − 2.

Let (Mn, g) be a Riemannian manifold such that M n = M
p
1 × M

n−p
2

(2 ≤ p ≤ n − 2). We assume that M is a weakly quasi-conformally sym-
metric manifold, that is, for X,Y,Z, U, V ∈ χ(M)

(∇XW )(Y,Z, U, V ) = α(X)W (Y,Z, U, V ) + β(Y )W (X,Z,U, V )

+β(Z)W (Y,X,U, V ) + δ(U)W (Y,Z,X, V )

+δ(V )W (Y,Z, U,X),

where α, β and δ are (not simultaneously zero) 1-forms on M . Then we find

(∇X̄W )(Ȳ , Z̄, Ū , V̄ ) = α(X̄)W (Ȳ , Z̄, Ū , V̄ ) + β(Ȳ )W (X̄, Z̄, Ū , V̄ )(3.1)

+β(Z̄)W (Ȳ , X̄, Ū , V̄ ) + δ(Ū )W (Ȳ , Z̄, X̄, V̄ )

+δ(V̄ )W (Ȳ , Z̄, Ū , X̄),

α(
∗

X)W (Ȳ , Z̄, Ū , V̄ ) = 0,(3.2)

β(
∗

Y )W (X̄, Z̄, Ū , V̄ ) = 0,(3.3)

δ(
∗

U )W (Ȳ , Z̄, X̄, V̄ ) = 0,(3.4)
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β(Z̄)W (
∗

X,
∗

Y , Ū , V̄ ) + δ(Ū )W (
∗

X, V̄ , Z̄,
∗

Y ) − δ(V̄ )W (
∗

X, Ū , Z̄,
∗

Y ) = 0,(3.5)

β(Ȳ )W (
∗

X, Z̄, V̄ ,
∗

U) − β(Z̄)W (
∗

X, Ȳ , V̄ ,
∗

U) + δ(V̄ )W (
∗

X,
∗

U, Ȳ , Z̄) = 0,(3.6)

(∇X̄W )(
∗

Y , Z̄, Ū ,
∗

V ) = α(X̄)W (
∗

Y , Z̄, Ū ,
∗

V ) + β(Z̄)W (
∗

Y , X̄, Ū ,
∗

V )(3.7)

+δ(Ū )W (
∗

Y , Z̄, X̄,
∗

V ),

(∇ ∗

X
W )(

∗

Y , Z̄, Ū ,
∗

V ) = α(
∗

X)W (
∗

Y , Z̄, Ū ,
∗

V ) + β(
∗

Y )W (
∗

X, Z̄, Ū ,
∗

V )(3.8)

+δ(
∗

V )W (
∗

Y , Z̄, Ū ,
∗

X),

β(
∗

Z)W (X̄, Ȳ ,
∗

U,
∗

V ) + δ(
∗

U )W (
∗

Z, Ȳ , X̄,
∗

V )− δ(
∗

V )W (
∗

Z, Ȳ , X̄,
∗

U) = 0,(3.9)

β(
∗

Y )W (
∗

Z, X̄, Ū ,
∗

V )−β(
∗

Z)W (
∗

Y , X̄, Ū ,
∗

V )+ δ(
∗

V )W (
∗

Y ,
∗

Z, X̄, Ū) = 0,(3.10)

α(X̄)W (
∗

Y ,
∗

Z,
∗

U,
∗

V ) = 0,(3.11)

β(Ȳ )W (
∗

X,
∗

Z,
∗

U,
∗

V ) = 0,(3.12)

δ(Ū )W (
∗

Y ,
∗

Z,
∗

X,
∗

V ) = 0,(3.13)

(∇ ∗

X
W )(

∗

Y ,
∗

Z,
∗

U,
∗

V ) = α(
∗

X)W (
∗

Y ,
∗

Z,
∗

U,
∗

V ) + β(
∗

Y )W (
∗

X,
∗

Z,
∗

U,
∗

V )(3.14)

+β(
∗

Z)W (
∗

Y ,
∗

X,
∗

U,
∗

V ) + δ(
∗

U )W (
∗

Y ,
∗

Z,
∗

X,
∗

V )

+δ(
∗

V )W (
∗

Y ,
∗

Z,
∗

U,
∗

X)

for X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(M1) and
∗

X,
∗

Y ,
∗

Z,
∗

U,
∗

V ∈ χ(M2). From (3.2)-(3.4), we
have two cases, namely,
(1) α = 0, β = 0, δ = 0 on M2,
(2) M1 is a quasi-conformally flat.

At first, we consider the case (1). Then from (3.8) it follows that

(∇ ∗

X
W )(

∗

Y , Z̄, Ū ,
∗

V ) = 0, which implies that

b(∇ ∗

X
S)(

∗

Y ,
∗

V ) =

∗

X r

n
(

a

n − 1
+ 2b)g(

∗

Y ,
∗

V ).(3.15)

Also from (3.14), we obtain

(∇ ∗

X
W )(

∗

Y ,
∗

Z,
∗

U,
∗

V ) = 0, that is,
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a(∇ ∗

X
R)(

∗

Y ,
∗

Z,
∗

U,
∗

V )(3.16)

+b{(∇ ∗

X
S)(

∗

Z,
∗

U)g(
∗

Y ,
∗

V ) − (∇ ∗

X
S)(

∗

Y ,
∗

U)g(
∗

Z,
∗

V )

+g(
∗

Z,
∗

U)(∇ ∗

X
S)(

∗

Y ,
∗

V ) − g(
∗

Y ,
∗

U)(∇ ∗

X
S)(

∗

Z,
∗

V )}

−

∗

X
∗

r

n
(

a

n − 1
+ 2b){g(

∗

Z,
∗

U)g(
∗

Y ,
∗

V ) − g(
∗

Y ,
∗

U)g(
∗

Z,
∗

V )} = 0,

which yields that

{a + (n − p − 2)b}(∇ ∗

X
S)(

∗

Y ,
∗

V )(3.17)

=

∗

X
∗

r

n
{
n − p − 1

n − 1
a + (n − 2p − 2)b}g(

∗

Y ,
∗

V ),

where we denote the scalar curvature on M2 by
∗

r. It is easy to see from (3.15),

(3.17) and
∗

X
∗

r=
∗

X r that

{a + (n − 1)b}{a + (n − 2)b}
∗

X r = 0.

Thus we have the following three cases:
(1-1) a + (n − 1)b = 0;
(1-2) a + (n − 2)b = 0;

(1-3)
∗

X r = 0.
In the case of (1-1), we find from (3.15) and b 6= 0

(∇ ∗

X
S)(

∗

Y ,
∗

V ) =

∗

X r

n
g(

∗

Y ,
∗

V ),

which implies that
∗

X r = 0.

Thus we have (∇ ∗

X
S)(

∗

Y ,
∗

V ) = 0. Similarly, if the case (1-2) holds, then we

get (∇ ∗

X
S)(

∗

Y ,
∗

V ) = 0. By virtue of (3.15) and (3.17), when (1-3) holds, we

have (∇ ∗

X
S)(

∗

Y ,
∗

V ) = 0 if a 6= 0 or b 6= 0. Moreover, from (3.16) we find

(∇ ∗

X
R)(

∗

Y ,
∗

Z,
∗

U,
∗

V ) = 0

if a 6= 0.

Secondly, we discuss the case of (2). From W = 0 on M1, we find

aR(X̄, Ȳ , Z̄, Ū) + b[S(Ȳ , Z̄)g(X̄, Ū ) − S(X̄, Z̄)g(Ȳ , Ū )(3.18)

+g(Ȳ , Z̄)S(X̄, Ū) − g(X̄, Z̄)S(Ȳ , Ū)]

−
r

n
(

a

n − 1
+ 2b){g(Ȳ , Z̄)g(X̄, Ū) − g(X̄, Z̄)g(Ȳ , Ū )} = 0,
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which implies that

{a + (p − 2)b}S(Ȳ , Z̄) + {br̄ −
(p − 1)r

n
(

a

n − 1
+ 2b)}g(Ȳ , Z̄) = 0,(3.19)

where r̄ is the scalar curvature on M1. Thus we find

br̄ −
(p − 1)r

n
(

a

n − 1
+ 2b) = −

r̄

p
{a + (p − 2)b}.(3.20)

Using (3.20) in (3.19) we obtain

{a + (p − 2)b}{S(Ȳ , Z̄) −
r̄

p
g(Ȳ , Z̄)} = 0.

Therefore we can consider the following two cases:
(2-1) a + (p − 2)b = 0;
(2-2) a + (p − 2)b 6= 0.

In the case of (2-1), we get from (3.18), (3.20) and b 6= 0

(p − 2)R(X̄, Ȳ , Z̄, Ū) − {S(Ȳ , Z̄)g(X̄, Ū) − S(X̄, Z̄)g(Ȳ , Ū)(3.21)

+g(Ȳ , Z̄)S(X̄, Ū) − g(X̄, Z̄)S(Ȳ , Ū)}

+
r̄

p − 1
{g(Ȳ , Z̄)g(X̄, Ū) − g(X̄, Z̄)g(Ȳ , Ū )} = 0.

Thus M1 is conformally flat if p 6= 2. Also, in the case of (2-2), equation (3.18)
is rewritten as follows:

R(X̄, Ȳ , Z̄, Ū) =
r̄

p(p − 1)
{g(Ȳ , Z̄)g(X̄, Ū) − g(X̄, Z̄)g(Ȳ , Ū )},(3.22)

if a 6= 0. Hence we have

Theorem 3.1. Let (Mn, g) be a Riemannian manifold such that M = M
p
1 ×

M
n−p
2 (2 ≤ p ≤ n − 2). If M is a (WQCS)n, then we get

(1) in the case of α = 0, β = 0, δ = 0 on M2, M2 is a locally symmetric

manifold for a 6= 0,
(2) when M1 is a quasi-conformally flat,

(i) if a + (p − 2)b = 0 and p ≥ 3, then M1 is conformally flat,

(ii) if a 6= 0, a + (p − 2)b 6= 0 and p ≥ 3, then M1 is a manifold of

constant curvature.

Similarly we have from (3.11)–(3.13)

Theorem 3.2. Let (Mn, g) be a Riemannian manifold such that M = M
p
1 ×

M
n−p
2 (2 ≤ p ≤ n − 2). If M is a (WQCS)n, then we get

(1) in the case of α = 0, β = 0, δ = 0 on M1, M1 is a locally symmetric
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manifold for a 6= 0,
(2) when M2 is a quasi-conformally flat,

(i) if a + (p − 2)b = 0 and p ≤ n − 3, then M2 is conformally flat,

(ii) if a 6= 0, a + (p − 2)b 6= 0 and p ≤ n − 3, then M2 is of constant

curvature.

Next, we consider the contraction with respect to
∗

X and
∗

U in (3.6) and obtain

β(Ȳ )[b{
∗

r g(Z̄, V̄ ) + (n − p)S(Z̄, V̄ )} −
(n − p)r

n
(

a

n − 1
+ 2b)g(Z̄, V̄ )]

−β(Z̄)[b{
∗

r g(Ȳ , V̄ ) + (n − p)S(Ȳ , V̄ )} −
(n − p)r

n
(

a

n − 1
+ 2b)g(Ȳ , V̄ )]

= 0,

which yields that

b(n − p)β(QȲ ) = −
r1

n
β(Ȳ ),(3.23)

where we put

r1 = (n − p){
p − 1

n − 1
a − (n − 2p + 2)b}r̄ + (p − 1){

n − p

n − 1
a + (n − 2p)b}

∗

r .

Similarly, we have from (3.5)

b(n − p)δ(QŪ ) = −
r1

n
δ(Ū ).(3.24)

If b = 0, that is, W = aC̃ on M , then from (3.23) and (3.24) we get rβ(Ȳ ) = 0
and rδ(Ū ) = 0. Thus we can consider the two cases:
(3) r = 0,
(4) r 6= 0, namely, β = 0, δ = 0 on M1.

If r = 0, then M is a weakly symmetric manifold. When the case of (4)
holds, we obtain from (3.7) that

α(X̄) = −X̄ log |r|.(3.25)

It is clear from (3.1) that

(∇X̄C̃)(Ȳ , Z̄, Ū , V̄ ) = α(X̄)C̃(Ȳ , Z̄, Ū , V̄ ).(3.26)

Hence we can state the following:

Theorem 3.3. Let (Mn, g) be a Riemannian manifold such that M = M
p
1 ×

M
n−p
2 (2 ≤ p ≤ n − 2). If M is a (WQCS)n, then we get

(1) if b 6= 0, then we find

β(Q·) = −
r1

bn(n − p)
β(·)

and δ(Q·) = −
r1

bn(n − p)
δ(·) on M1,
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(2) in the case of b = 0,
(i) if r = 0, then M is a weakly symmetric manifold,

(ii) if r 6= 0, then α(X̄) = −X̄ log |r| and ∇X̄C̃ = α(X̄)C̃ on M1

for X̄ ∈ χ(M1). Especially, if r is a non-zero constant, then the concircular

curvature tensor field is parallel on M1.

Similarly, from (3.9) and (3.10) we can state the following

Theorem 3.4. Let (Mn, g) be a Riemannian manifold such that M = M
p
1 ×

M
n−p
2 (2 ≤ p ≤ n − 2). If M is a (WQCS)n, then we get

(1) if b 6= 0, then we find

β(Q·) = −
r2

bnp
β(·)

and δ(Q·) = −
r2

bnp
δ(·) on M2,

where we put

r2 = (n − p − 1){
pa

n − 1
− (n − 2p)b}r̄ + p{

n − p − 1

n − 1
a + (n − 2p − 2)b}

∗

r,

(2) in the case of b = 0,
(i) if r = 0, then M is a weakly symmetric manifold,

(ii) if r 6= 0, then α(
∗

X) = −
∗

X log |r| and ∇ ∗

X
C̃ = α(

∗

X)C̃ on M2

for
∗

X∈ χ(M2). Especially, if r is a non-zero constant, then the concircular

curvature tensor field is parallel on M2.

§4. (WQCS)n satisfying certain conditions

Definition 4.1. The Ricci tensor of a Riemannian manifold is said to be
cyclic parallel if it satisfies the following condition:

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0(4.1)

for all vector fields X, Y , Z on the manifold i.e., the Ricci tensor S of a Rie-
mannian manifold is cyclic parallel if the cyclic sum of the covariant derivative
of S vanishes.

From (4.1) it follows that in such a manifold the scalar curvature r is a con-
stant.
We now consider a (WQCS)n satisfying the relation (4.1). Taking cyclic sum
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with respect to X, Z, U in (2.24) we obtain by virtue of (4.1) and Bianchi
identity that

{α(X) + β(X) + δ(X)}[S(Z,U) −
r

n
g(Z,U)](4.2)

+{α(Z) + β(Z) + δ(Z)}[S(X,U) −
r

n
g(X,U)]

+{α(U) + β(U) + δ(U)}[S(Z,X) −
r

n
g(Z,X)] = 0

for a + (n − 2)b 6= 0 and α + β + δ 6= 0 everywhere.
We now choose the vector fields L1, L2 and L3 corresponding to the 1-forms
α, β and δ respectively as the unit vector fields such that they are mutually
orthogonal to each other. We now suppose that α(Y ) 6= 0 for all Y . For if,
α(Y ) = 0 for all Y then g(L1, L1) = 0, which contradicts to our assumption
that L1 is a unit vector field. Then multiplying both sides of (4.2) by α(Y )
we get

α(Y ){α(X) + β(X) + δ(X)}[S(Z,U) −
r

n
g(Z,U)](4.3)

+α(Y ){α(Z) + β(Z) + δ(Z)}[S(X,U) −
r

n
g(X,U)]

+α(Y ){α(U) + β(U) + δ(U)}[S(Z,X) −
r

n
g(Z,X)] = 0.

Setting X = Y = ei in (4.3) and taking summation over i, 1 ≤ i ≤ n, we have

S(Z,U) −
r

n
g(Z,U) + {α(Z) + β(Z) + δ(Z)}[α(QU) −

r

n
α(U)](4.4)

+{α(U) + β(U) + δ(U)}[α(QZ) −
r

n
α(Z)] = 0.

Since the manifold under consideration is of constant scalar curvature, using
(2.23) in (4.4) we get

S(Z,U) =
r

n
g(Z,U), which means that the manifold is Einstein.

In a similar manner multiplying (4.3) by β(Y ) and δ(Y ) respectively we obtain
that the manifold is Einstein. This leads to the following:

Theorem 4.1. If in a (WQCS)n, the Ricci tensor is cyclic parallel and a +
(n− 2)b 6= 0 then it is an Einstein manifold unless α + β + δ is non-vanishing

everywhere.

Corollary 4.1. If a (WQCS)n is Ricci symmetric then it is an Einstein man-

ifold, provided that a + (n − 2)b 6= 0 and α + β + δ 6= 0 everywhere.
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Again in [7] it is shown that if an Einstein (WQCS)n is a (WS)n then the
scalar curvature of the manifold vanishes, provided that a 6= 0 and α+β+δ 6= 0.
Hence by virtue of Theorem 4.1 we can state the following:

Theorem 4.2. If a (WQCS)n with cyclic parallel Ricci tensor is a (WS)n

then the scalar curvature of the manifold vanishes, provided that a 6= 0, a +
(n − 2)b 6= 0 and α + β + δ 6= 0 everywhere.

Next in [7] it is proved that if in an Einstein (WQCS)n the scalar curvature
vanishes then it is a (WS)n, provided that a 6= 0. Hence by virtue of Theorem
4.1 we can state the following:

Theorem 4.3. If in a (WQCS)n with cyclic parallel Ricci tensor the scalar

curvature vanishes, then it is a (WS)n, provided that a 6= 0, a + (n − 2)b 6= 0
and α + β + δ 6= 0 everywhere.

Therefore if a (WQCS)n satisfying (4.1) is of non-vanishing scalar curvature
then in view of Theorem 4.3 we can state the following:

Theorem 4.4. If in a (WQCS)n with non-vanishing scalar curvature, the

Ricci tensor is cyclic parallel then it cannot be a (WS)n, provided that a 6= 0,
a + (n − 2)b 6= 0 and α + β + δ 6= 0 everywhere.

Definition 4.2. A vector field L on a Riemannian manifold is said to be
concurrent [6] if ∇XL = ρX, where ρ is a constant.

In particular, if ρ = 0 then L is said to be a parallel vector field.
Let us now consider a (WQCS)n such that the vector field L = L2 + L3

defined by g(X,L) = β(X) + δ(X) is a concurrent vector field. Then making
use of Ricci identity we have

R(X,Y,L, U) = 0 which implies that(4.5)

S(Y,L) = 0.(4.6)

Now the relation (2.15) can be written as

S(X,L) =
r

n
g(X,L), provided that a + (n − 2)b 6= 0.(4.7)

From (4.6) and (4.7) it follows that

r = 0, if ||L||2 6= 0.

This leads to the following:
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Theorem 4.5. If in a (WQCS)n the vector field L defined by g(X,L) =
β(X)+δ(X) is a concurrent vector field then it is of vanishing scalar curvature,

provided that a + (n − 2)b 6= 0 and ||L||2 6= 0.

Since r = 0, from (2.20) and (2.21) we get

β(QX) = δ(QX) = 0 if a + (n − 2)b 6= 0.(4.8)

Now using (4.8) and r = 0 in (2.14) we obtain

{a + (n − 2)b}(∇XS)(Z,U)(4.9)

= {a + (n − 2)b}[α(X)S(Z,U) + β(Z)S(X,U) + δ(U)S(Z,X)]

+a[β(R(X,Z)U) + δ(R(X,U)Z)] + b[β(X)S(Z,U)

−β(Z)S(X,U) + δ(X)S(Z,U) − δ(U)S(Z,X)].

Again from ∇XL = ρX, we have

(∇XS)(Z,L) = −ρS(Z,X).(4.10)

Setting U = L in (4.9) and then using (4.5) and (4.6) we obtain by virtue of
(4.10) that

[ρ{a + (n − 2)b} + {a + (n − 3)b}δ(L)]S(Z,X) + aδ(R(X,L)Z) = 0.(4.11)

From (4.5) we have

R(L,U,X, Y ) = 0, which implies that

R(U,L, Y,X) = 0 for all vector fields U,X, Y.

The last relation yields (for X = L3) that δ(R(U,L)Y ) = 0 for all vector fields
U, Y ∈ χ(M). Hence δ(R(X,L)Z) = 0 for all X,Z ∈ χ(M). Consequently
(4.11) reduces to

S(Z,X) = 0 for all X and Z,

provided that ρ{a + (n − 2)b} + {a + (n − 3)b}δ(L) 6= 0.
Thus (2.1) takes the form W (X,Y,Z, U) = aR(X,Y,Z, U) and hence (1.5)
reduces to

(∇XR)(Y,Z, U, V ) = α(X)R(Y,Z, U, V ) + β(Y )R(X,Z,U, V )

+β(Z)R(Y,X,U, V ) + δ(U)R(Y,Z,X, V )

+δ(V )R(Y,Z, U,X)

for a 6= 0, which implies that the manifold is a (WS)n. Thus we can state the
following:
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Theorem 4.6. If in a (WQCS)n with a 6= 0 and a+(n−2)b 6= 0 the non-null

vector field L defined by g(X,L) = β(X) + δ(X) is a concurrent vector field

then it is a (WS)n, provided that ρ{a + (n − 2)b} + {a + (n − 3)b}δ(L) 6= 0.

Corollary 4.2. If in a (WQCS)n with a 6= 0 and a + (n − 2)b 6= 0 the non-

null vector field L defined by g(X,L) = β(X) + δ(X) is a parallel vector field

then it is a (WS)n, provided that {a + (n − 3)b}δ(L) 6= 0.

The above corollary certainly improves the Theorem 4.5 of [7].

Definition 4.3. A vector field L on a Riemannian manifold is said to be
recurrent [6] if ∇XL = µ(X)L, where µ is a non-zero 1-form, called the asso-
ciated 1-form of the recurrent vector field.

In particular, if µ(X) is a constant then the recurrent vector field reduces to
a concurrent vector field.
Now we consider a (WQCS)n such that the vector field L defined by g(X,L) =
β(X) + δ(X) is a recurrent vector field. Then we have

∇X∇Y L = (Xµ(Y ))L + µ(X)µ(Y )L

and hence using Ricci identity we get

R(X,Y,L, U) = 2dµ(X,Y )g(L,U) which implies that

R(X,Y,L, U) = 0, if the 1-form µ is closed.

Then S(Y,L) = 0 and hence r = 0. Therefore proceeding similarly as before
we obtain that the manifold is a (WS)n. Hence we can state the following:

Theorem 4.7. If in a (WQCS)n with a 6= 0 and a + (n− 2)b 6= 0, the vector

field L defined by g(X,L) = β(X) + δ(X) is a recurrent vector field such that

the associated 1-form of the recurrent vector field is closed then it is a (WS)n,

provided that a + (n − 3)b 6= 0 and δ(L) 6= 0.

§5. Some examples of (WQCS)n

This section deals with several examples of (WQCS)n. We calculate the com-
ponents of the curvature tensor, the Ricci tensor, the quasi-conformal curva-
ture tensor and its covariant derivative.
EXAMPLE 1. Let M 4 = {(x1, x2, x3, x4) ∈ R4|x1 < 0, x3 > 0} be an open
subset of R4 endowed with the metric

ds2 = x1(x3)2(dx1)2 + 2dx1dx2 + (dx3)2 + (dx4)2.(5.1)
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Then the only non-vanishing components of the Christoffel’s symbols, the
curvature tensor, the Ricci tensor, the scalar curvature, the quasi-conformal
curvature tensor and its covariant derivatives are

Γ2
11 =

1

2
(x3)2, Γ3

11 = −x1x3 = −Γ2
13,

R1313 = x1, S11 = −x1, r = 0,

W1313 = (a + b)x1, W1414 = bx1,

W1313,1 = (a + b), W1414,1 = b.

Here ‘,’ denotes the covariant differentiation with respect to the metric tensor
g. Therefore our M 4 with the considered metric g in (5.1) is a Riemannian
manifold of vanishing scalar curvature which is neither quasi-conformally flat
nor quasi-conformally symmetric. We put

αi(∂i) = αi =

{
1

2x1 for i = 1
0 otherwise,

βi(∂i) = βi =

{
1

3x1 for i = 1
0 otherwise,

δi(∂i) = δi =

{
1

6x1 for i = 1
0 otherwise,

where ∂i = ∂
∂xi . Then (M 4, g) is a (WQCS)4. Hence we can state the follow-

ing:

Theorem 5.1. Let (M 4, g) be a Riemannian manifold endowed with the met-

ric given in (5.1). Then (M 4, g) is a weakly quasi-conformally symmetric

manifold with vanishing scalar curvature which is neither quasi-conformally

symmetric nor quasi-conformally recurrent.

EXAMPLE 2. Let Mn = Rn(n ≥ 4) be endowed with the metric

ds2 = f · (dx1)2 +
n−1∑

i=2

(dxi)2 + 2dx1dxn,(5.2)

where f is a continuously differentiable function of x1, x2, ..., xn−1 such that

f < 0, af·mmk + b
n−1∑

j=2

f·jjk 6= 0 and af·mm + b
n−1∑

j=2

f·jj 6= 0(5.3)

for 2 ≤ m ≤ n− 1 and 1 ≤ k ≤ n− 1 and ‘·’ denotes the partial differentiation
with respect to the coordinates. Then the only non-vanishing components of
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the Christoffel’s symbols, the curvature tensor, the Ricci tensor, the scalar cur-
vature, the quasi-conformal curvature tensors and their covariant derivatives
are given by the following:

Γm
11 = −Γn

1m = −
1

2
f·m, Γn

11 =
1

2
f·1,

R1m1m =
1

2
f·mm, S11 = −

1

2

n−1∑

j=2

f·jj, r = 0,

W1m1m =
1

2



af·mm + b

n−1∑

j=2

f·jj



 ,

W1m1m,k =
1

2



af·mmk + b

n−1∑

j=2

f·jjk



 .

Thus (Mn, g) is neither quasi-conformally flat nor quasi-conformally symmet-
ric. We set

αi(∂i) = αi =






∂i log |af·mm + b

n−1∑

j=2

f·jj| for i = 1, 2, ..., n − 1

0 for i = n,

βi(∂i) = βi =

{
−1

2 for i = 1
0 otherwise,

δi(∂i) = δi =

{
1
2 for i = 1
0 otherwise,

where ∂i = ∂
∂xi . Then (Mn, g) is a (WQCS)n. Hence we can state the

following:

Theorem 5.2. Let (Mn, g) be a Riemannian manifold equipped with the met-

ric given in (5.2). Then (Mn, g) is a weakly quasi-conformally symmetric

manifold with vanishing scalar curvature which is neither quasi-conformally

symmetric nor quasi-conformally recurrent.

EXAMPLE 3. Let Mn = {(x1, x2, ..., xn) ∈ Rn|x1 < 0, x3 > 0} be endowed
with the metric

ds2 = x1(x3)2(dx1)2 + 2dx1dx2 +
n∑

i=3

(dxi)2.(5.4)

Then the only non-vanishing components of the Christoffel’s symbols, the
curvature tensor, the Ricci tensor, the scalar curvature, the quasi-conformal
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curvature tensor and their covariant derivatives are given by the following:

Γ2
11 =

1

2
(x3)2, Γ3

11 = −x1x3 = −Γ2
13,

R1313 = x1, S11 = −x1, r = 0,

W1313 = (a + b)x1, W1k1k = bx1,

W1313,1 = (a + b), W1k1k,1 = b

for 4 ≤ k ≤ n. We put

αi(∂i) = αi =

{
1

2x1 for i = 1
0 otherwise,

βi(∂i) = βi =

{
1

3x1 for i = 1
0 otherwise,

δi(∂i) = δi =

{
1

6x1 for i = 1
0 otherwise,

where ∂i = ∂
∂xi . Then it can be easily shown that (Mn, g) is a (WQCS)n,

which is neither quasi-conformally symmetric nor quasi-conformally recurrent.
Hence we can state the following:

Theorem 5.3. Let (Mn, g) (n ≥ 4) be a Riemannian manifold equipped with

the metric given in (5.4). Then (Mn, g) (n ≥ 4) is a weakly quasi-conformally

symmetric manifold with vanishing scalar curvature which is neither quasi-

conformally symmetric nor quasi-conformally recurrent.

Let (M4
1 , g1) be a Riemannian manifold in Example 1 and (Rn−4, g0) be an

(n − 4)-dimensional Euclidean space with standard metric g0. Then (Mn, g)
in Example 3 is a product manifold of (M 4

1 , g1) and (Rn−4, g0). Thus we can
state the following:

Theorem 5.4. Let (Mn, g) (n ≥ 5) be a Riemannian manifold endowed with

the metric given in (5.4). Then (Mn, g) (n ≥ 4) is a decomposable weakly

quasi-conformally symmetric manifold (M 4
1 , g1) × (Rn−4, g0) with vanishing

scalar curvature.
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