A semi-parallel fundamental form of maximal rank for a decomposition of a vector bundle with connection

Ryuji Ishii

(Received October 10, 2006)

Abstract

We study a subbundle with semi-parallel fundamental form. In particular, if the rank of the fundamental form is maximal, we can obtain a certain equation which plays an essential role to classify parallel affine immersions into $\mathbb{R}^{n+\frac{1}{2} n(n+1)}$.

AMS 2000 Mathematics Subject Classification. 53A15.
Key words and phrases. Decomposition of vector bundle with connection, affine immersion, semi-parallel fundamental form, maximal rank, Ricci tensor.

§0. Introduction

In Riemannian geometry, many researchers have studied submanifolds with parallel second fundamental form. In particular, Ferus [5] classified submanifolds of the Euclidean space with parallel second fundamental forms. These submanifolds are often called parallel submanifolds. Moreover, semi-parallel submanifolds which is a generalization of parallel submanifolds, have been also studied in [3] and [4], for example. In affine differential geometry, Vrancken [9] classified linearly full affine immersions from an n-dimensional manifold M to an affine space $\mathbb{R}^{n+\frac{1}{2} n(n+1)}$ with parallel affine fundamental form, where the following equation plays an essential role:

$$
\begin{equation*}
S_{Z} B_{X} Y=\frac{1}{n-1}(\operatorname{Ric}(X, Z) Y+\operatorname{Ric}(Y, Z) X+2 \operatorname{Ric}(X, Y) Z) \tag{0.1}
\end{equation*}
$$

where S is the shape operator, B is the affine fundamental form and Ric is the Ricci tensor of the induced connection.

Our main purpose is to prove equations including (0.1) for the case of a decomposition of a vector bundle with connection, which can be regarded as a
generalization of affine immersions, see [2], [6], for example. Let $V=V_{1} \oplus V_{2}$ be a decomposition with connection ∇ on V, ∇^{1} (resp. ∇^{2}) the induced connection on V_{1} (resp. V_{2}) and B the fundamental form. If $\hat{R} B=0$, where \hat{R} is the curvature operator defined by ∇^{1}, ∇^{2}, and a connection D on $T M$, we say that B is semi-parallel. If the dimension of $\operatorname{Span}\left\{B_{X} \eta \mid X \in T_{x} M, \eta \in\right.$ $\left.V_{1 x}\right\}$ is maximal for every $x \in M, B$ is said to be of maximal rank. Under the condition that the fundamental form B is semi-parallel and of maximal rank, we obtain equations including (0.1). In particular, our proof of (0.1) is relatively shorter than that in [9].

§1. Preliminaries

We assume that all objects are smooth and all vector bundles are real throughout this paper. Let M be an n-dimensional $(n \geq 2)$ manifold. Let V, W be vector bundles over $M, \Gamma(V)$ the space of cross-section of V and $\mathfrak{C}(V)$ the set of covariant derivatives of connections on V. Let $\operatorname{Hom}(V, W)$ be the vector bundle of which fiber $\operatorname{Hom}(V, W)_{x}$ at $x \in M$ is the vector space $\operatorname{Hom}\left(V_{x}, W_{x}\right)$ of linear maps from V_{x} to W_{x}. The space of vector bundle homomorphisms from V to W is denoted by $\operatorname{HOM}(V, W)$. We note that $\operatorname{HOM}(V, W)$ can be canonically identified with the space $\Gamma(\operatorname{Hom}(V, W))$. For non-negative integer r, we denote the space of V-valued r-forms on M by $A^{r}(V)$ and $A^{r}:=A^{r}(M \times \mathbb{R})$.

Let V_{1} be a subbundle of V and $i: V_{1} \rightarrow V$ the inclusion. If a subbundle V_{2} of V satisfies $V_{1} \oplus V_{2}=V$ (direct sum), then we say that V_{2} is the transversal bundle with respect to V_{1}. Take a transversal bundle V_{2}. We set $i_{2}: V_{2} \rightarrow V$ the inclusion and $p_{j}: V \rightarrow V_{j}$ the projection homomorphism for $j=1,2$. We note that $i p_{1}+i_{2} p_{2}=\operatorname{id}_{V}$. Let $\nabla \in \mathfrak{C}(V)$ be a connection on V. We set $\nabla^{1}:=p_{1} \nabla i$, where $p_{1} \nabla i$ is defined by $\left(p_{1} \nabla i\right)_{X}:=p_{1} \circ \nabla_{X} \circ i$ for $X \in \Gamma(T M)$. Similarly, we set $\nabla^{2}:=p_{2} \nabla i_{2}, B:=p_{2} \nabla i$ and $S:=-p_{1} \nabla i_{2}$. We call ∇^{1} the induced connection on V_{1}, ∇^{2} the transversal connection on V_{2}, B the fundamental form and S the shape tensor. Since $p_{1} i=\operatorname{id}_{V_{1}}, p_{2} i=0, p_{2} i_{2}=$ $\mathrm{id}_{V_{2}}$ and $p_{1} i_{2}=0$, we have
Lemma 1.1. For $\nabla^{1}, B, \nabla^{2}$ and S, we obtain
$\nabla^{1} \in \mathfrak{C}\left(V_{1}\right), B \in A^{1}\left(\operatorname{Hom}\left(V_{1}, V_{2}\right)\right), \nabla^{2} \in \mathfrak{C}\left(V_{2}\right)$ and $S \in A^{1}\left(\operatorname{Hom}\left(V_{2}, V_{1}\right)\right)$.
Let R (resp. R^{1}, R^{2}) be the curvature form of ∇ (resp. ∇^{1}, ∇^{2}).
Lemma 1.2. We have the fundamental equations as follows:
Gauss:

$$
p_{1} R_{X, Y} i=R_{X, Y}^{1}-S_{X} B_{Y}+S_{Y} B_{X}
$$

Codazzi for $B: \quad p_{2} R_{X, Y} i=B_{X} \nabla_{Y}^{1}-B_{Y} \nabla_{X}^{1}-\nabla_{Y}^{2} B_{X}+\nabla_{X}^{2} B_{Y}-B_{[X, Y]}$;
Codazzi for $S: \quad p_{1} R_{X, Y} i_{2}=\nabla_{Y}^{1} S_{X}-\nabla_{X}^{1} S_{Y}-S_{X} \nabla_{Y}^{2}+S_{Y} \nabla_{X}^{2}+S_{[X, Y]}$;

Ricci:

$$
p_{2} R_{X, Y} i_{2}=R_{X, Y}^{2}-B_{X} S_{Y}+B_{Y} S_{X}
$$

for $X, Y \in \Gamma(T M)$.
We apply these notions to affine immersions. Let \tilde{M} be an $(n+q)$-dimensional manifold and $f: M \rightarrow \tilde{M}$ an immersion. We denote the pull-back bundle through f of $T \tilde{M}$ by $\tilde{T}:=f^{\#}(T \tilde{M})$, the bundle map by $f_{\#}: \tilde{T} \rightarrow T \tilde{M}$ and its restriction to the fiber by $f_{\# x}$ for $x \in M$. We define a linear mapping $\iota_{x}: T_{x} M \rightarrow \tilde{T}_{x}$ by $\iota_{x}:=\left(f_{\# x}\right)^{-1} f_{* x}$ for each $x \in M$, where $f_{* x}: T_{x} M \rightarrow$ $T_{f(x)} \tilde{M}$ is the differential of f at x. Thus we define a bundle homomorphism $\iota: T M \rightarrow \tilde{T}$ by $\left.\iota\right|_{T_{x} M}:=\iota_{x}$ and obtain the isomorphism $\tilde{\iota}: T M \rightarrow \iota(T M)$. We identify $\iota(T M)$ with $T M$ through $\tilde{\iota}$. Let N be a subbundle of \tilde{T} such that $T \oplus N=\tilde{T}$, where we set $T:=T M(=\iota(T M))$. For $\tilde{D} \in \mathfrak{C}(T \tilde{M})$, there exists the pull-back connection $f^{\#} \tilde{D}$ which is denoted by $\nabla \in \mathfrak{C}(\tilde{T})$. Then we have

$$
\begin{gathered}
\nabla^{T}:=p_{1} \nabla i_{1} \in \mathfrak{C}(T), \nabla^{N}:=p_{2} \nabla i_{2} \in \mathfrak{C}(N), \\
B:=p_{2} \nabla i_{1} \in A^{1}(\operatorname{Hom}(T, N)) \text { and } S:=-p_{1} \nabla i_{2} \in A^{1}(\operatorname{Hom}(N, T)) .
\end{gathered}
$$

We call (f, N) the affine immersion from $\left(M, \nabla^{T}\right)$ to $(\tilde{M}, \tilde{D}), \nabla^{T}$ the induced connection, ∇^{N} the transversal connection, B the affine fundamental form and S the shape tensor.

§2. Semi-parallel fundamental form

From now on, X, Y, Z always denote elements of $\Gamma(T M)$. Let $\nabla \in \mathfrak{C}(V)$ be a connection on V and $D \in \mathfrak{C}(T M)$ a connection on $T M$. We set

$$
\left(\hat{\nabla}_{X} B\right)_{Y}:=\nabla_{X}^{2} B_{Y}-B_{D_{X} Y}-B_{Y} \nabla_{X}^{1},
$$

and

$$
\left(\hat{R}_{X, Y} B\right)_{Z}:=R_{X, Y}^{2} B_{Z}-B_{R_{X, Y}^{D} Z}-B_{Z} R_{X, Y}^{1},
$$

where R^{D} is the curvature form of D.
Definition 2.1. If $\hat{\nabla} B=0$ (resp. $\hat{R} B=0$), we say that B is parallel (resp. semi-parallel).

If D is torsion-free, then we obtain the following equations by a straightforward calculation:

$$
\begin{aligned}
& \left(\hat{R}_{X, Y} B\right)_{Z} \\
& \quad=\nabla_{X}^{2}\left(\hat{\nabla}_{Y} B\right)_{Z}-\left(\hat{\nabla}_{D_{X} Y} B\right)_{Z}-\left(\hat{\nabla}_{Y} B\right)_{D_{X} Z}-\left(\hat{\nabla}_{Y} B\right)_{Z} \nabla_{X}^{1} \\
& \quad-\nabla_{Y}^{2}\left(\hat{\nabla}_{X} B\right)_{Z}+\left(\hat{\nabla}_{D_{Y} X} B\right)_{Z}+\left(\hat{\nabla}_{X} B\right)_{D_{Y} Z}+\left(\hat{\nabla}_{X} B\right)_{Z} \nabla_{Y}^{1} \\
& \quad=\left(\hat{\nabla}_{X}\left(\hat{\nabla}_{Y} B\right)\right)_{Z}-\left(\hat{\nabla}_{Y}\left(\hat{\nabla}_{X} B\right)\right)_{Z}-\left(\hat{\nabla}_{[X, Y]} B\right)_{Z} .
\end{aligned}
$$

Thus we see that if D is torsion-free and B is parallel, then B is semi-parallel.

By Ricci equation, we have
Lemma 2.1. If $p_{2} R i_{2}=0$ and B is semi-parallel, then we have the following:

$$
B_{X} S_{Y} B_{Z} \eta-B_{Y} S_{X} B_{Z} \eta=B_{R_{X, Y}^{D} Z} \eta+B_{Z} R_{X, Y}^{1} \eta
$$

where $\eta \in \Gamma\left(V_{1}\right)$.
We denote the Ricci tensor of R^{D} by Ric ${ }^{D}$, i.e.,

$$
\operatorname{Ric}^{D}(Y, Z):=\operatorname{trace}\left\{X \mapsto R_{X, Y}^{D} Z\right\}
$$

By using first Bianchi identity, if D is torsion-free, then we obtain

$$
\operatorname{tr}\left(R_{X, Y}^{D}\right)=\operatorname{Ric}^{D}(Y, X)-\operatorname{Ric}^{D}(X, Y)
$$

We note that there exists a local parallel volume element on V (resp. V_{1}) if and only if $\operatorname{tr} R=0$ (resp. $\operatorname{tr} R^{1}=0$). If $V_{1}=T M$ and ∇^{1} is torsion-free, then we see that there exists a local parallel volume element on V_{1} if and only if Ric is symmetric, where Ric is the Ricci tensor of R^{1}.
We set $m_{1}:=\operatorname{rank} V_{1}, m=\operatorname{rank} V$ and $m_{2}:=m-m_{1}=\operatorname{rank} V_{2}$. Let $\operatorname{Im} B_{x}$ be a subspace of $V_{2 x}$ defined by $\operatorname{Im} B_{x}:=\operatorname{Span}\left\{B_{X} \eta \mid X \in T_{x} M, \eta \in V_{1 x}\right\}$ at $x \in M$. We denote $\bigcup_{x \in M} \operatorname{Im} B_{x}$ by $\operatorname{Im} B$.

Definition 2.2. If $\operatorname{dim}\left(\operatorname{Im} B_{x}\right)$ is maximal for every $x \in M$, the fundamental form B is said to be of maximal rank.

We see that B has maximal rank if and only if $\operatorname{rank}(\operatorname{Im} B)=n m_{1}$. In the case where B is symmetric, that is, $V_{1}=T M$ and $B_{X} Y=B_{Y} X$ for $X, Y \in \Gamma(T M)$, then we see that B has maximal rank if and only if $\operatorname{rank}(\operatorname{Im} B)=\frac{1}{2} n(n+1)$. From now on, η always denote an element of $\Gamma\left(V_{1}\right)$. We now formulate our main result.
Theorem 2.2. If $p_{2} R i_{2}=0, B$ is semi-parallel and of maximal rank, then we have the following equations:

$$
\begin{gathered}
S_{X} B_{Y} \eta=\frac{1}{n-1}\left(\operatorname{Ric}^{D}(X, Y) \eta+R_{Y, X}^{1} \eta\right), \\
S_{X} B_{Y} \eta-S_{Y} B_{X} \eta=-\left(\operatorname{tr}\left(R_{X, Y}^{D}\right) \eta+n R_{X, Y}^{1} \eta\right) .
\end{gathered}
$$

For $n \geq 3$, in addition, if D is torsion-free, then we have

$$
\begin{gathered}
R_{X, Y}^{1} \eta=\frac{1}{n+1}\left(\operatorname{Ric}^{D}(X, Y)-\operatorname{Ric}^{D}(Y, X)\right) \eta \\
S_{X} B_{Y} \eta=\frac{1}{n^{2}-1}\left(\operatorname{Ric}^{D}(Y, X)+n \operatorname{Ric}^{D}(X, Y)\right) \eta
\end{gathered}
$$

Proof. In this proof, we do not use Einstein's convention. Let $X_{1}, X_{2}, \cdots, X_{n}$ (resp. $\eta_{1}, \eta_{2}, \cdots, \eta_{m_{1}}$) be a basis of $T_{x} M$ (resp. $V_{1 x}$) and $X^{1}, X^{2}, \cdots, X^{n}$ (resp. $\eta^{1}, \eta^{2}, \cdots, \eta^{m_{1}}$) its dual basis. From Lemma 2.1, we have

$$
\begin{equation*}
B_{X_{i}} S_{X_{j}} B_{X_{k}} \eta_{a}=B_{X_{j}} S_{X_{i}} B_{X_{k}} \eta_{a}+B_{R_{X_{i}, X_{j}}^{D} X_{k}} \eta_{a}+B_{X_{k}} R_{X_{i}, X_{j}}^{1} \eta_{a} \tag{2.1}
\end{equation*}
$$

for $1 \leq i, j, k \leq n, 1 \leq a \leq m_{1}$. Let b be an index, where $1 \leq b \leq m_{1}$. Comparing the coefficient of $B_{X_{i}} \eta_{b}$ in the right hand side with that in the left hand side in (2.1), we have

$$
\begin{aligned}
& \eta^{b}\left(S_{X_{j}} B_{X_{k}} \eta_{a}\right) \\
& \quad=X^{i}\left(X_{j}\right) \eta^{b}\left(S_{X_{i}} B_{X_{k}} \eta_{a}\right)+X^{i}\left(R_{X_{i}, X_{j}}^{D} X_{k}\right) \eta^{b}\left(\eta_{a}\right)+X^{i}\left(X_{k}\right) \eta^{b}\left(R_{X_{i}, X_{j}}^{1} \eta_{a}\right) .
\end{aligned}
$$

Hence we obtain

$$
S_{X_{j}} B_{X_{k}} \eta_{a}=\delta_{j}^{i} S_{X_{i}} B_{X_{k}} \eta_{a}+X^{i}\left(R_{X_{i}, X_{j}}^{D} X_{k}\right) \eta_{a}+\delta_{k}^{i} R_{X_{i}, X_{j}}^{1} \eta_{a} .
$$

Summing up the index i, we have

$$
n S_{X_{j}} B_{X_{k}} \eta_{a}=S_{X_{j}} B_{X_{k}} \eta_{a}+\operatorname{Ric}^{D}\left(X_{j}, X_{k}\right) \eta_{a}+R_{X_{k}, X_{j}}^{1} \eta_{a} .
$$

Thus we see that

$$
\begin{gather*}
S_{X} B_{Y} \eta=\frac{1}{n-1}\left(\operatorname{Ric}^{D}(X, Y) \eta+R_{Y, X}^{1} \eta\right) \tag{2.2}\\
S_{X} B_{Y} \eta-S_{Y} B_{X} \eta=\frac{1}{n-1}\left(\operatorname{Ric}^{D}(X, Y) \eta-\operatorname{Ric}^{D}(Y, X) \eta+2 R_{Y, X}^{1} \eta\right)
\end{gather*}
$$

Comparing the coefficient of $B_{X_{k}} \eta_{b}$ in the right hand side with that in the left hand side in (2.1), we have

$$
\begin{equation*}
S_{X} B_{Y} \eta-S_{Y} B_{X} \eta=-\operatorname{tr}\left(R_{X, Y}^{D}\right) \eta-n R_{X, Y}^{1} \eta . \tag{2.3}
\end{equation*}
$$

Thus we have the first assertion.
If $n=2$, then we have $\operatorname{Ric}^{D}(Y, X)-\operatorname{Ric}^{D}(X, Y)=\operatorname{tr} R_{X, Y}^{D}$. Combining (2.2) with (2.3) for $n \geq 3$, we have

$$
-\frac{1}{n-1}\left(\operatorname{Ric}^{D}(X, Y) \eta-\operatorname{Ric}^{D}(Y, X) \eta+2 R_{Y, X}^{1} \eta\right)=\operatorname{tr}\left(R_{X, Y}^{D}\right) \eta+n R_{X, Y}^{1} \eta .
$$

If D is torsion-free, then we have

$$
(n+1) R_{X, Y}^{1} \eta=\operatorname{Ric}^{D}(X, Y) \eta-\operatorname{Ric}^{D}(Y, X) \eta .
$$

Hence we see that

$$
S_{X} B_{Y} \eta=\frac{1}{n^{2}-1}\left(\operatorname{Ric}^{D}(Y, X)+n \operatorname{Ric}^{D}(X, Y)\right) \eta .
$$

Corollary 2.3. If $p_{2} R i_{2}=0, B$ is semi-parallel, of maximal rank and in addition, $p_{1} R i=0$, then we have

$$
\begin{gathered}
R_{X, Y}^{1} \eta=\frac{1}{n+1}\left(\operatorname{Ric}^{D}(X, Y)-\operatorname{Ric}^{D}(Y, X)\right) \eta \\
S_{X} B_{Y} \eta=\frac{1}{n^{2}-1}\left(\operatorname{Ric}^{D}(Y, X)+n \operatorname{Ric}^{D}(X, Y)\right) \eta
\end{gathered}
$$

Proof. From Gauss equation and (2.2), we see that

$$
\begin{gathered}
R_{X, Y}^{1} \eta=S_{X} B_{Y} \eta-S_{Y} B_{X} \eta \\
=\frac{1}{n-1}\left(\operatorname{Ric}^{D}(X, Y) \eta-\operatorname{Ric}^{D}(Y, X) \eta+2 R_{Y, X}^{1} \eta\right)
\end{gathered}
$$

In the case where $V_{1}=T M$, we set

$$
\left(\hat{R}_{X, Y} B\right)_{Z}:=R_{X, Y}^{2} B_{Z}-B_{R_{X, Y}^{1} Z}-B_{Z} R_{X, Y}^{1}
$$

If $\hat{R} B=0$, we say that B is semi-parallel. The following theorem specializes to Theorem 2.2 if B is symmetric.

Theorem 2.4. We assume that B is symmetric. If $p_{2} R i_{2}=0, B$ is semiparallel and of maximal rank, then we have the following equations:

$$
\begin{aligned}
& n S_{X} B_{Y} Z \\
& \quad=\operatorname{tr}\left(S \cdot B_{Y} Z\right) X+\operatorname{Ric}(X, Y) Z+R_{Z, X}^{1} Y+\operatorname{Ric}(X, Z) Y+R_{Y, X}^{1} Z \\
& S_{X} B_{Y} Z+\operatorname{tr}\left(S_{X} B . Z\right) Y \\
& \quad=S_{Y} B_{X} Z+\operatorname{tr}\left(S_{Y} B . Z\right) X+\operatorname{tr}\left(R_{Y, X}^{1}\right) Z+(n+2) R_{Y, X}^{1} Z
\end{aligned}
$$

where $\operatorname{tr}\left(S \cdot B_{Y} Z\right)=\operatorname{trace}\left\{X \mapsto S_{X} B_{Y} Z\right\}, \operatorname{tr}\left(S_{Y} B . Z\right)=\operatorname{trace}\left\{X \mapsto S_{Y} B_{X} Z\right\}$. For $n \geq 3$, in addition, if ∇^{1} is torsion-free, then we have

$$
R_{X, Y}^{1} Z=\frac{1}{n-1}(\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y)
$$

Proof. We can now proceed analogously to the proof of Theorem 2.2. Let $X_{1}, X_{2}, \cdots, X_{n}$ be a basis of $T_{x} M$ and $X^{1}, X^{2}, \cdots, X^{n}$ its dual basis. From Lemma 2.1, we have

$$
\begin{equation*}
B_{X_{i}} S_{X_{j}} B_{X_{k}} X_{l}=B_{X_{j}} S_{X_{i}} B_{X_{k}} X_{l}+\left(B_{R_{X_{i}, X_{j}}^{1} X_{k}} X_{l}+B_{X_{k}} R_{X_{i}, X_{j}}^{1} X_{l}\right) \tag{2.4}
\end{equation*}
$$

for $1 \leq i, j, k, l \leq n$. Let s be an index, where $1 \leq s \leq n$. Comparing the coefficient of $B_{X_{i}} X_{s}$ in the right hand side with that in the left hand side in (2.4), we have

$$
\begin{aligned}
& X^{s}\left(S_{X_{j}} B_{X_{k}} X_{l}\right)+X^{s}\left(X_{i}\right) X^{i}\left(S_{X_{j}} B_{X_{k}} X_{l}\right) \\
& \quad=X^{i}\left(X_{j}\right) X^{s}\left(S_{X_{i}} B_{X_{k}} X_{l}\right)+X^{s}\left(X_{j}\right) X^{i}\left(S_{X_{i}} B_{X_{k}} X_{l}\right)+X^{i}\left(R_{X_{i}, X_{j}}^{1} X_{k}\right) X^{s}\left(X_{l}\right) \\
& \quad+X^{s}\left(R_{X_{i}, X_{j}}^{1} X_{k}\right) X^{i}\left(X_{l}\right)+X^{i}\left(R_{X_{i}, X_{j}}^{1} X_{l}\right) X^{s}\left(X_{k}\right)+X^{s}\left(R_{X_{i}, X_{j}}^{1} X_{l}\right) X^{i}\left(X_{k}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& S_{X_{j}} B_{X_{k}} X_{l} \\
& \quad=-X^{i}\left(S_{X_{j}} B_{X_{k}} X_{l}\right) X_{i}+\delta_{j}^{i} S_{X_{i}} B_{X_{k}} X_{l}+X^{i}\left(S_{X_{i}} B_{X_{k}} X_{l}\right) X_{j} \\
& \quad+X^{i}\left(R_{X_{i}, X_{j}}^{1} X_{k}\right) X_{l}+\delta_{l}^{i} R_{X_{i}, X_{j}}^{1} X_{k}+X^{i}\left(R_{X_{i}, X_{j}}^{1} X_{l}\right) X_{k}+\delta_{k}^{i} R_{X_{i}, X_{j}}^{1} X_{l} .
\end{aligned}
$$

Summing up the index i, we have

$$
n S_{X_{j}} B_{X_{k}} X_{l}
$$

$$
\begin{aligned}
& =\operatorname{tr}\left(S \cdot B_{X_{k}} X_{l}\right) X_{j}+\operatorname{Ric}\left(X_{j}, X_{k}\right) X_{l}+R_{X_{l}, X_{j}}^{1} X_{k}+\operatorname{Ric}\left(X_{j}, X_{l}\right) X_{k} \\
& \quad+R_{X_{k}, X_{j}}^{1} X_{l}
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& n S_{X} B_{Y} Z \tag{2.5}\\
= & \operatorname{tr}\left(S \cdot B_{Y} Z\right) X+\operatorname{Ric}(X, Y) Z+R_{Z, X}^{1} Y+\operatorname{Ric}(X, Z) Y+R_{Y, X}^{1} Z
\end{align*}
$$

Comparing the coefficient of $B_{X_{k}} X_{s}$ in the right hand side with that in the left hand side in (2.4), we have
(2.6) $\quad S_{X} B_{Y} Z+\operatorname{tr}\left(S_{X} B . Z\right) Y$

$$
=S_{Y} B_{X} Z+\operatorname{tr}\left(S_{Y} B \cdot Z\right) X+\operatorname{tr}\left(R_{Y, X}^{1}\right) Z+(n+2) R_{Y, X}^{1} Z
$$

Thus we have the first assertion.
The trace of (2.6) by X (resp. Z) are the following:

$$
\begin{gather*}
\operatorname{tr}\left(S \cdot B_{Y} Z\right)=n \operatorname{tr}\left(S_{Y} B . Z\right)-(n+3) \operatorname{Ric}(Y, Z)+\operatorname{Ric}(Z, Y) \tag{2.7}\\
\operatorname{tr}\left(S_{X} B_{Y} \cdot\right)=\operatorname{tr}\left(S_{Y} B_{X} \cdot\right)+(n+1) \operatorname{tr}\left(R_{Y, X}^{1}\right)
\end{gather*}
$$

Now we assume that ∇^{1} is torsion-free. Since $S . B_{Y} Z=S . B_{Z} Y$, we have

$$
\begin{aligned}
& n\left(\operatorname{tr}\left(S_{Y} B . Z\right)-\operatorname{tr}\left(S_{Z} B . Y\right)\right)=-(n+4)(\operatorname{Ric}(Z, Y)-\operatorname{Ric}(Y, Z)) \\
& \quad=-n(n+1) \operatorname{tr}\left(R_{Y, Z}^{1}\right)=-n(n+1)(\operatorname{Ric}(Z, Y)-\operatorname{Ric}(Y, Z))
\end{aligned}
$$

If $n=2$, then the previous equation is trivial. If $n \geq 3$, then we see that Ric is symmetric. We consider the case $n \geq 3$. By using (2.5)-(2.7) and first Bianchi identity, we have the following equations:

$$
\begin{aligned}
& n\left(S_{X} B_{Y} Z-S_{Y} B_{X} Z\right) \\
& \quad=\left(\operatorname{tr}\left(S \cdot B_{Y} Z\right)-\operatorname{Ric}(Y, Z)\right) X-\left(\operatorname{tr}\left(S \cdot B_{X} Z\right)-\operatorname{Ric}(X, Z)\right) Y+3 R_{Y, X}^{1} Z \\
& \quad=\left(n \operatorname{tr}\left(S_{Y} B . Z\right)-(n+3) \operatorname{Ric}(Y, Z)\right) X-\left(n \operatorname{tr}\left(S_{X} B . Z\right)-(n+3) \operatorname{Ric}(X, Z)\right) Y \\
& \quad+3 R_{Y, X}^{1} Z \\
& \quad=n\left(\operatorname{tr}\left(S_{Y} B . Z\right) X-\operatorname{tr}\left(S_{X} B . Z\right) Y+(n+2) R_{Y, X}^{1} Z\right) .
\end{aligned}
$$

Thus we have

$$
\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y=(n-1) R_{X, Y}^{1} Z
$$

We can now state the analogue of (0.1).
Corollary 2.5. We assume that B is symmetric. For $n \geq 3$, if $p_{2} R i_{2}=0, B$ is semi-parallel, of maximal rank, ∇^{1} is torsion-free and in addition, $p_{1} R i=0$, then we have

$$
S_{X} B_{Y} Z=\frac{1}{n-1}(\operatorname{Ric}(X, Y) Z+\operatorname{Ric}(X, Z) Y+2 \operatorname{Ric}(Y, Z) X)
$$

Proof. From Gauss equation and (2.5), we have

$$
n R_{X, Y}^{1} Z=n\left(S_{X} B_{Y} Z-S_{Y} B_{X} Z\right)
$$

$$
=\left(\operatorname{tr}\left(S \cdot B_{Y} Z\right)-\operatorname{Ric}(Y, Z)\right) X-\left(\operatorname{tr}\left(S . B_{X} Z\right)-\operatorname{Ric}(X, Z)\right) Y+3 R_{Y, X}^{1} Z .
$$

By these equations and Theorem 2.4, we have

$$
\begin{gathered}
(n+3) R_{Y, X}^{1} Z=\frac{n+3}{n-1}(\operatorname{Ric}(X, Z) Y-\operatorname{Ric}(Y, Z) X) \\
=\left(-\operatorname{tr}\left(S \cdot B_{Y} Z\right)+\operatorname{Ric}(Y, Z)\right) X-\left(-\operatorname{tr}\left(S \cdot B_{X} Z\right)+\operatorname{Ric}(X, Z)\right) Y .
\end{gathered}
$$

Hence we obtain

$$
\operatorname{tr}\left(S \cdot B_{Y} Z\right)=\frac{2(n+1)}{n-1} \operatorname{Ric}(Y, Z)
$$

Substituting this equation to (2.5), we have the assertion.

References

[1] Abe, N., Geometry of certain first order differential operators and its applications to general connections, Kodai Math. J. 8(1985), 322-329.
[2] Abe, N. and Kurosu, S., A decomposition of a holomorphic vector bundle with connection and its applications to complex affine immersions, Results in Math. 44(2003), 3-24.
[3] Deprez, J., Semi-parallel surfaces in Euclidean space, J. Geom. 25(1985), 192200.
[4] Dillen, F., Semi-parallel hypersurfaces of a real space form, Israel J. Math. 75(1991), 193-202.
[5] Ferus, D., Immersions with parallel second fundamental form, Math. Z. 140(1974), 87-93.
[6] Hasegawa, K., Splitting of vector bundles with connection and its applications to affine differential geometry, Thesis. Tokyo University of Science (2001).
[7] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, Math. Z. 195(1987), 165-178.
[8] Nomizu, K. and Sasaki, T., Affine differential geometry, Cambridge University Press, Cambridge, 1994.
[9] Vrancken, L., Parallel affine immersions with maximal codimension, Tohoku Math. J. 53(2001), 511-531.

[^0]
[^0]: Ryuji Ishii
 Department of Mathematics, Faculty of Science, Tokyo University of Science 26 Wakamiya-cho, Shinjuku-ku Tokyo 162-0827, Japan

