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Abstract. We choose a canonical transversal bundle of an affine immersion
if a pseudo-inverse of the fundamental form exists. In particular, well-known
canonical transversal bundles for a non-degenerate surface in R

4 are generalized
to those for a non-degenerate surface in 4-dimensional manifold with torsion-free
connection.

AMS 2000 Mathematics Subject Classification. 53A15.

Key words and phrases. Pseudo-inverse of the fundamental form, affine immer-
sion, cubic form, affine metric, equiaffine transversal bundle.

§1. Introduction

For affine immersions, some canonical choices of a transversal bundle are
known. Among them, the following are relevant to this paper. For a non-
degenerate hypersurface in R

n+1, there exists a canonical equiaffine transver-
sal bundle which is spanned by the Blaschke normal field. For a non-degenerate
surface in R

4, Burstin and Mayer [3], Klingenberg [7], and Nomizu and
Vrancken [11] respectively gave canonical transversal bundles, where the last
is equiaffine. If the affine metric is positive definite, then Scharlach and
Vrancken [13] gave canonical transversal bundles which generalize these three
transversal bundles. For an immersion f : Mn → R

n+r (r ≤ 1
2n(n + 1)),

Weise [14] gave a canonical transversal bundle under a regularity condition,
where he used a “konjugierte Elemente” of the affine fundamental form to
construct the transversal bundle. Recently, revising the regularity condition
and the “konjugierte Elemente” (pseudo-inverse elements), Wiehe [15] gave a
canonical equiaffine transversal bundle for an n-dimensional manifold in R

n+r
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(r ≤ 1
2n(n + 1)). Investigating geometry of splittings for a short exact se-

quence of vector bundles with connection, Abe and Ishii [2] gave a canonical
unimodular splitting if a pseudo-inverse of the fundamental form exists. For
a regular immersion into R

n+r, this splitting gives the equiaffine transversal
bundle by Wiehe.

In this paper, for an immersion f : M → M̃ , we first specify the theory
in [2] to the following short exact sequence of vector bundles over M :

0 → TM
ι→ f#(TM̃)

p→ f#(TM̃)/ι(TM) → 0

with the pull-back ∇̃ of a torsion-free connection on M̃ . We note that a
transversal bundle for the immersion f is given by a splitting of this short
exact sequence. We set B := p∇̃ι and call B the fundamental form. We
include the proofs for the results shown in [2] in order to make this paper
self-contained. Moreover, the regularity condition and the pseudo-inverse of
the fundamental form defined by Wiehe in [15] for M̃ = R

n+r are generalized.
Our main purpose is to construct a two parameter family of splittings for a
non-degenerate surface of codimension two, which gives all known canonical
transversal bundles in the special case of M̃ = R

4.
In Section 2, we set up notation and terminology used in this paper. In

Section 3, we introduce the notion of a pseudo-inverse of the fundamental form
and recall some of the results in [2] to give a canonical choice of a transversal
bundle. This section also includes new result about the regularity condition.
In Section 4, we study affine surfaces of codimension two.

§2. Preliminaries

Throughout this paper we assume that all manifolds and mappings are
smooth and all vector bundles are real. Let M be an n-dimensional manifold.
Let V, W be vector bundles over M , Γ(V ) the space of cross-sections of V , and
C(V ) the set of covariant derivatives of connections on V . Let Hom(V, W ) be
the vector bundle of which fiber Hom(V, W )x at x ∈ M is the vector space
Hom(Vx, Wx) of linear mappings from Vx to Wx. The space of vector bun-
dle homomorphisms from V to W is denoted by HOM(V, W ). We note that
HOM(V, W ) can be canonically identified with the space Γ(Hom(V, W )). For
non-negative integer k, we denote the space of V -valued k-forms on M by
Ak(V ) and Ak := Ak(M × R).

Let M̃ be an (n + r)-dimensional manifold and f : M → M̃ an immersion.
We denote the pull-back bundle through f of TM̃ by T̃ := f#(TM̃), the
bundle mapping by f# : T̃ → TM̃ , and its restriction to the fiber by f#x for
x ∈ M . We define a linear mapping ιx : TxM → T̃x by ιx := (f#x)−1 ◦ f∗x
for each x ∈ M , where f∗x : TxM → Tf(x)M̃ is the differential of f at x and
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the symbol ◦ is used to denote the composition of mappings. We often omit
the symbol ◦ for simplicity. We define a bundle homomorphism ι : TM → T̃
by ι|TxM := ιx. The mapping ι will be omitted if there is no ambiguity and
set T := TM = ι(TM). Let i : T → T̃ be the inclusion and p : T̃ → T̃ /T
the canonical projection. We set INVL(i) := {γ ∈ HOM(T̃ , T )|γi = idT } and
INVR(p) := {μ ∈ HOM(T̃ /T, T̃ )|pμ = idT̃ /T }.

Take D ∈ C(TM̃) and let ∇̃ ∈ C(T̃ ) be the pull-back connection on T̃
from D defined by ∇̃ := f#D. We set B := p∇̃i, where p∇̃i is defined by
(p∇̃i)X := p ◦ ∇̃X ◦ i for X ∈ Γ(T ). We call B the fundamental form of the
immersion f . We note that B ∈ A1(Hom(T, T̃ /T )) because of pi = 0. Let γ
be an element of INVL(i). Then there exists a unique γ̂ ∈ INVR(p) such that
iγ + γ̂p = idT̃ . We set γ∇ := γ∇̃i (resp. ∇γ̂ := p∇̃γ̂) and call γ∇ (resp. ∇γ̂)
the induced connection on T (resp. the transversal connection on T̃ /T ). Since
γi = idT and pγ̂ = idT̃ /T , we have

Lemma 2.1. For γ∇ and ∇γ̂, we have
γ∇ ∈ C(T ) and ∇γ̂ ∈ C(T̃ /T ).

Now we state the relation between γ ∈ INVL(i) and an affine immersion.
For γ ∈ INVL(i), we have a decomposition T̃ = T⊕Nγ , where Nγ is defined by
Nγ := Imγ̂ ∼= T̃ /T . We call Nγ the transversal bundle with respect to γ. Con-
versely we see that a decomposition T ⊕ N = T̃ gives γ ∈ INVL(i) as follows.
We set pT : T̃ → T (resp. pN : T̃ → N) the projection homomorphism. Since
pT i = idT , the corresponding homomorphism γ := pT ∈ INVL(i) is defined by
the decomposition. For T ⊕N = T̃ , let ∇T (resp. BN ) be the induced connec-
tion on T (resp. the affine fundamental form) defined by ∇T := pT ∇̃i ∈ C(T )
(resp. BN := pN∇̃i ∈ A1(Hom(T, N))). We call (f, N) an affine immer-
sion with the transversal bundle N from (M,∇T ) to (M̃, D). It follows that
the correspondence between an affine immersion (f, N) and pT ∈ INVL(i) is
one-to-one, where pT is defined by the decomposition T ⊕ N = T̃ . The ho-
momorphism p̂T : T̃ /T → T̃ induces the isomorphism p̃T : T̃ /T → N . Since
pN = p̃T p, we see that BN = p̃T B and p̃−1

T BN = B.
For γ, γ̄ ∈ INVL(i), since (γ̄ − γ)i = 0, we see that there exists a unique

λ ∈ HOM(T̃ /T, T ) such that λp = γ̄ − γ.

Theorem 2.2. Take γ, γ̄ ∈ INVL(i) and let λ ∈ HOM(T̃ /T, T ) be the ho-
momorphism such that λp = γ̄ − γ. For γ̄, the geometric objects γ̄∇ ∈ C(T )
and ∇ˆ̄γ ∈ C(T̃ /T ) satisfy the following equations:

γ̄∇ = γ∇ + λB,(2.1)

∇ˆ̄γ = ∇γ̂ − Bλ,(2.2)
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Proof. We shall prove the last equation. The other equation can be easily
obtained. Since iγ + γ̂p = idT̃ = iγ̄ + ˆ̄γp, we have ˆ̄γ = γ̂ − iλ. Thus we have

∇ˆ̄γ = p∇̃ˆ̄γ = p∇̃(γ̂ − iλ) = ∇γ̂ − Bλ.
�

§3. A pseudo-inverse of the fundamental form

From now on, we assume that ∇̃ is torsion-free. Since [X, Y ] ∈ Γ(T ) for any
X, Y ∈ Γ(T ), we see that B is symmetric, i.e., BXY = BY X. We first give
the definition of pseudo-inverses. For B ∈ HOM(T, Hom(T, T̃ /T )), we denote
the corresponding element of Γ(T ∗ � T ∗ ⊗ T̃ /T ) (resp. HOM(T � T, T̃ /T )) to
B by B̂ (resp. B̃), where T ∗ is the dual bundle of T and � is the symmetric
tensor product. For a symmetric B ∈ HOM(Hom(T, T̃ /T ), T ), we denote the
corresponding element of Γ(T � T ⊗ (T̃ /T )∗) (resp. HOM(T̃ /T, T � T )) to B

by B̂ (resp. B̃).

Definition 3.1. If a symmetric B ∈ HOM(Hom(T, T̃ /T ), T ) satisfies the
following equations, we say that B is a pseudo-inverse of B:

(3.1) B ◦ B = ridT and B̃ ◦ B̃ = nidT̃ /T .

This is a generalization of the definitions of those of “konjugierte Elemente”
in [14] and pseudo-inverse elements in [15]. Even if there exists a pseudo-
inverse B of B, then B is not unique in general. Considering the ranks of the
affine subbundles with respect to INVL(B) and INVR(B̃), we have

Lemma 3.1. For r = 1 or r =
1
2
n(n+1), a pseudo-inverse B of B is unique

if a pseudo-inverse of B exists.

We secondly recall the theory in [2] to give a canonical transversal bundle.
We assume that there exists a pseudo-inverse of B. Let B be a pseudo-inverse
of B. We denote the corresponding element of HOM(Hom(T̃ /T, T ), T ∗) (resp.
HOM(T ∗, Hom(T̃ /T, T ))) to the dual mapping of B (resp. B) by B∗ (resp.
B∗) and the corresponding element of HOM(T ∗⊗ (T̃ /T ), T ) to B by the same
symbol B. From now on, X, Y, Z (resp. ξ) always denote elements of Γ(T )
(resp. Γ(T̃ /T )). For γ ∈ INVL(i), we denote the dual connection of γ∇ by
γ∇∗ and set

(∇̂γ
XB)(η, ξ) := γ∇X(B(η, ξ)) − B(γ∇∗

Xη, ξ) − B(η,∇γ̂
Xξ),

where η ∈ A1. The symbol CT denotes the contraction with respect to X and
η. Then we have CT (∇̂γB) ∈ HOM(T̃ /T, T ). We define Hγ

B ∈ HOM(T̃ /T, T )
by
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Hγ
B := − 1

n + r
(CT (∇̂γB) − 1

n + 2r
B∗(B∗(CT (∇̂γB)))).

Theorem 3.2.([2]) Let B be a pseudo-inverse of B. For A ∈ HOM(T̃ /T, T ),
there exists a unique γA ∈ INVL(i) which satisfies

HγA

B = A.

Proof. Take γ, γ̄ ∈ INVL(i) and let λ ∈ HOM(T̃ /T, T ) be the homomor-
phism such that λp = γ̄ − γ. From (2.1)–(2.2), we have

(∇̂γ̄
XB)(η, ξ) = (∇̂γ

XB)(η, ξ) + λBXB(η, ξ) + B((λB)∗Xη, ξ) + B(η, BXλ(ξ))

for η ∈ A1, where (λB)∗X : T ∗ → T ∗ is the dual of λBX : T → T . From (3.1),
we have

CT (∇̂γ̄B)ξ = CT (∇̂γB)ξ + (n + r)λ(ξ) + B(CT ((λB)∗), ξ).

Since CT ((λB)∗) = tr(λB) = B∗(λ), we have

B(CT ((λB)∗), ξ) = B(B∗(λ), ξ) = B∗(B∗(λ))(ξ).

Since B∗ ◦ B∗ = ridT ∗ , we obtain

B∗(CT (∇̂γ̄B)) = B∗(CT (∇̂γB)) + (n + 2r)B∗(λ).

Thus we see that

H γ̄
B = Hγ

B − λ.

Hence we have γ̄ +(H γ̄
B −A)p = γ +(Hγ

B −A)p. We set γA := γ +(Hγ
B −A)p.

Since γA = γA + (HγA

B − A)p, we have HγA

B = A. �

Next, we define an equiaffine γ ∈ INVL(i). Hereafter we assume that T and
T̃ are orientable. We define the line bundle DetT̃ by DetT̃ := ∧n+rT̃ ∗. We
set V(T̃ ) := {ω̃ ∈ Γ(DetT̃ )|ω̃ is everywhere non-zero } and call ω̃ ∈ V(T̃ ) the
volume element on T̃ . Let i∗ : ∧nT̃ → Det(T ) (resp. p∗ : Det(T̃ /T ) → ∧rT̃ ∗)
be the induced homomorphism with respect to i : T → T̃ (resp. p : T̃ → T̃ /T ).
For ω̃ ∈ V(T̃ ), we define the induced volume element ωT ∈ V(T ) from ω̃ with
respect to a volume element ωQ ∈ V(T̃ /T ) on the quotient bundle T̃ /T by

ωT := i∗ω̂T ,

where ω̂T ∈ ∧nT̃ ∗ satisfies ω̂T ∧ p∗ωQ = ω̃. For a given ω̃, the correspondence
between ωQ ∈ V(T̃ /T ) and ωT ∈ V(T ) is one-to-one.

Definition 3.2. Let γ be an element of INVL(i). For ωT ∈ V(T ), if γ∇ωT =
0, we say that γ is equiaffine with respect to ωT .

For γ ∈ INVL(i) and ωT ∈ V(T ), let νγ
ωT ∈ A1 be the connection form of

γ∇ relative to a frame field ωT , i.e., νγ
ωT (X)ωT := γ∇XωT . Then we have

Lemma 3.3. Take γ, γ̄ ∈ INVL(i) and let λ ∈ HOM(T̃ /T, T ) be the homo-
morphism such that λp = γ̄ − γ. Then for ωT ∈ V(T ), we have
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ν γ̄
ωT = νγ

ωT − B∗(λ).

Proof. From (2.1), we have

γ̄∇ωT = γ∇ωT − tr(λB)ωT = (νγ
ωT − B∗(λ))ωT .

�

We shall use the following lemma to obtain an equiaffine γ ∈ INVL(i). From
Lemma 3.3 and the equation: H γ̄

B = Hγ
B − λ, where λp = γ̄ − γ, we have

Lemma 3.4. Let ωT ∈ V(T ) be a volume element on T . For γ, γ̄ ∈
INVL(i), we have

νγ
ωT − B∗(Hγ

B) = ν γ̄
ωT − B∗(H γ̄

B).

For γ ∈ INVL(i) and ωT ∈ V(T ), we set νωT ,B := νγ
ωT − B∗(Hγ

B). Lemma
3.4 shows that νωT ,B is independent of the choice of γ ∈ INVL(i). Then we
obtain

Corollary 3.5. The homomorphism γA in Theorem 3.2 is equiaffine with
respect to ωT if the following equation is satisfied:

A = −1
r
B∗(νωT ,B).

Proof. Take γ ∈ INVL(i) and set γA := γ + (Hγ
B +

1
r
B∗(νωT ,B))p. Since

B∗ ◦ B∗ = ridT ∗ , we have

B∗(B∗(κ)) = rκ

for κ ∈ A1. Then we have

B∗(Hγ
B +

1
r
B∗(νγ

ωT − B∗(Hγ
B))) = νγ

B.

From Lemma 3.3, we obtain νγA
ωT = 0. �

Now we introduce a regularity condition on the immersion and apply Corol-
lary 3.5 to generalize the result of Wiehe [15]. Take ωQ ∈ V(T̃ /T ) and let
ωQB ∈ Γ((⊗2rT )∗) be defined by

(ωQB)(Y1, Y2, . . . , Y2r−1, Y2r) := ωQ(BY1Y2, . . . , BY2r−1Y2r)

for Y1, . . . , Y2r ∈ Γ(T ). Let Y 1
1 , . . . , Y 2r

n be elements of Γ(T ). We define
(ωQB)n ∈ Γ((⊗2r(⊗nT ))∗) by

(ωQB)n(Y 1
1 , . . . , Y 1

n , · · · , Y 2r
1 , . . . , Y 2r

n )
:= (ωQB)(Y 1

1 , . . . , Y 2r
1 ) · · · (ωQB)(Y 1

n , . . . , Y 2r
n ),

and An((ωQB)n) ∈ Γ((⊗2r(∧nT ))∗) by
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An((ωQB)n)(Y 1
1 , . . . , Y 1

n , · · · , Y 2r
1 , . . . , Y 2r

n )(3.2)

:=
1
n!

∑

σ1,...,σ2r

sgnσ1 · · · sgnσ2r(ωQB)(Y 1
σ1(1), . . . , Y

2r
σ2r(1)) · · ·

×(ωQB)(Y 1
σ1(n), . . . , Y

2r
σ2r(n)),

where σ1, . . . , σ2r are permutations on {1, . . . , n}. Take ω̃ ∈ V(T̃ ) and let
ωT ∈ V(T ) be the induced volume element form ω̃ with respect to ωQ. There
exists a unique detωT (ωQB) ∈ A0 such that

An((ωQB)n) = detωT (ωQB)ωT ⊗ · · · ⊗ ωT .

We set

ω(B) := |detωT (ωQB)| 1
n+2r ωT .

Note that ω(B) depends only on B and the orientation given by ωT .

Definition 3.3. If the fundamental form B satisfies ω(B)x �= 0 at each
x ∈ M , we say that the immersion f is regular.

The assumption that f is regular is depends only on the immersion f : M →
M̃ and the connection D on M̃ . Let N be a subbundle of T̃ such that T ⊕N =
T̃ and BN the affine fundamental form. We set ωN := p̃−1∗

T ωQ ∈ V(N). Since
B = p̃−1

T BN , we obtain ωQB = ωNBN . Then we have

|detωT (ωNBN )| 1
n+2r ωT = ω(B),

whose left hand side coincides with that of Wiehe [15] in the case of M̃ = R
n+r.

Let X1, . . . , Xn be a unimodular local frame field for T with respect to ωT ,
i.e., ωT (X1, . . . , Xn) = 1, and ξ1, . . . , ξr a unimodular local frame field for
T̃ /T with respect to ωQ. Let X1, . . . , Xn (resp. ξ1, . . . , ξr) be the dual of
X1, . . . , Xn (resp. ξ1, . . . , ξr) and Bα

jk := ξα(BXjXk). We set

aj1···j2r := (ωQB)(Xj1 , . . . X2r) = δα1···αrB
α1
j1j2

· · ·Bαr
j2r−1j2r

.

Then we have

detωT (ωQB) =
1
n!

δj1
1 ···jn

1 · · · δj1
2r···jn

2raj1
1 ···j1

2r
· · · ajn

1 ···jn
2r

.

If f is regular, then we define B′ ∈ HOM(Hom(T, T̃ /T ), T ) by requiring

detωT (ωQB)B̂′(Xj , Xk, ξα) = detωT (ωQB)B′jk
α

= rδαα2···αrB
α2
j3j4

· · ·Bαr
j2r−1j2r

adjωT
(ωQB)jkj3···j2r ,
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where

adjωT
(ωQB)j1···j2r :=

1
(n − 1)!

δj1l21···ln1 · · · δj2rl22r···ln2ral21···l22r
· · · aln1 ···ln2r

is the classical adjoint as in Wiehe [15]. Since

ndetωT (ωQB) = aj1···j2radjωT
(ωQB)j1···j2r ,

we see that B′ satisfies

B
′jk
α Bα

jl = rδk
l and B

′jk
α Bβ

jk = nδβ
α,

that is, B′ is a pseudo-inverse of B. For the independence of the choice of
the transversal bundle N , we use B′ instead of the pseudo-inverse BN ∈
HOM(Hom(T, N), T ) of BN by Wiehe. Then we have

Lemma 3.6. If an immersion f : M → M̃ is regular, then there exists a
unique pseudo-inverse B′ ∈ HOM(Hom(T, T̃ /T ), T ) which is independent of
the choice of the transversal bundle N .

Corollary 3.7. If an immersion f : M → M̃ is regular, then there exists a
unique equiaffine γω(B) ∈ INVL(i) which satisfies

H
γω(B)

B′ = −1
r
B′∗(νω(B),B′).

Note that if M̃ = R
n+q and ∇̃ω̃ = 0, then the equation of Corollary 3.5

reduces to

H
γω(B)

B′ = −1
r
B′∗(νω(B),B′) = 0,

where the transversal bundle Imγ̂ω(B) coincides with the transversal bundle
given by Wiehe [15].

If r = 1, then f : M → M̃ is regular if and only if f is non-degenerate, that
is, the affine fundamental form is non-degenerate. From Lemma 3.1, we have

Corollary 3.8. If an immersion f : M → M̃ with r = 1 is non-
degenerate, then there exists a unique pseudo-inverse B′ and the transversal
bundle Imγ̂ω(B) gives the Blaschke immersion.

For an immersion f : M → M̃ with r = 1
2n(n + 1), we say that f is non-

degenerate if B̃ is surjective (see [12]). If r = 1
2n(n + 1), then f : M → M̃ is

regular if and only if f is non-degenerate. From Lemma 3.1, we have

Corollary 3.9. If an immersion f : M → M̃ with r = 1
2n(n + 1) is non-

degenerate, then there exist a unique pseudo-inverse B′ and a unique equiaffine
γω(B) ∈ INVL(i) which satisfies

H
γω(B)

B′ = −1
r
B′∗(νω(B),B′).
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In particular, if M̃ = R
n+ 1

2
n(n+1), then Imγ̂ω(B) coincides with the transver-

sal bundle given by Weise [14], where the regularity condition coincides with
that in Wiehe [15].

§4. Non-degenerate surfaces of codimension two

Hereafter we assume that dimM = 2 and dimM̃ = 4. We shall generalize
various notions on affine immersions into R

4 to those into M̃ . We first intro-
duce the affine metric g given in Nomizu-Vrancken [11], for example. Take
ω̃ ∈ V(T̃ ), ωQ ∈ V(T̃ /T ), and let ωT ∈ V(T ) be the induced volume element
from ω̃ with respect to ωQ. Let X1, X2 be a local unimodular frame field for
T with respect to ωT . Let G be a symmetric bilinear form on M defined by

G(Y, Z) :=
1
2

∑

σ

sgnσ(ωQB)(Xσ(1), Y, Xσ(2), Z),

where σ is a permutation on {1, 2}. We set

detωT G := det(G(Xj , Xk)).

For a local frame field X1, X2 for T and ξ1, ξ2 for T̃ /T , we write B̂ as Bα
jkX

j ⊗
Xk ⊗ ξα ∈ Γ(T ∗ � T ∗ ⊗ (T̃ /T )).

Proposition 4.1. It follows that

detωT (ωQB) = 4detωT G.

Proof. Let X1, X2 be a local unimodular frame field for T with respect to
ωT . We first compute detωT G. By a straightforward calculation, we have

detωT G = ωQ(ξ1, ξ2)2(B1
11B

2
21B

1
12B

2
22 − B1

11B
2
21B

1
22B

2
12 − B1

21B
2
11B

1
12B

2
22

+B1
21B

2
11B

1
22B

2
12 −

1
4
((B1

11B
2
22)

2 + (B1
22B

2
11)

2 − 2B1
11B

2
22B

1
22B

2
11)).

Next, we compute detωT (ωQB) by (3.2). Then we have

detωT (ωQB) =
1
2
(ωQ(ξ1, ξ2))2(−(B1

11B
2
12 − B1

12B
2
11)(B

1
22B

2
21 − B1

21B
2
22)

−(B1
11B

2
21 − B1

21B
2
11)(B

1
22B

2
12 − B1

12B
2
22)

+(B1
11B

2
22 − B1

22B
2
11)(B

1
22B

2
11 − B1

11B
2
22)

−(B1
12B

2
11 − B1

11B
2
12)(B

1
21B

2
22 − B1

22B
2
21)

−(B1
12B

2
22 − B1

22B
2
12)(B

1
21B

2
11 − B1

11B
2
21)

−(B1
21B

2
11 − B1

11B
2
21)(B

1
12B

2
22 − B1

22B
2
12)

−(B1
21B

2
22 − B1

22B
2
21)(B

1
12B

2
11 − B1

11B
2
12)

+(B1
22B

2
11 − B1

11B
2
22)(B

1
11B

2
22 − B1

22B
2
11)

−(B1
22B

2
12 − B1

12B
2
22)(B

1
11B

2
21 − B1

21B
2
11)

−(B1
22B

2
21 − B1

21B
2
22)(B

1
11B

2
12 − B1

12B
2
11)).
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Comparing detωT G with detωT (ωQB), we have the assertion. �

If G is non-degenerate, we say that f is non-degenerate (see [11]). From
Lemma 4.1, we have

Corollary 4.2. The symmetric bilinear form G is non-degenerate if and
only if the immersion f : M → M̃ is regular.

In the remainder of this section, we assume that the immersion f : M → M̃
is non-degenerate. We define the affine metric g on M by

g(Y, Z) := G(Y, Z)/|detωT G| 13 .

It is clear that g is non-degenerate and

ωg := |detωT g| 12 ωT = |detωT G| 16 ωT = (1
2)

1
3 |detωT (ωQB)| 16 ωT = (1

2)
1
3 ω(B).

Note that g and ωg depend only on B and the orientation given by ωT .
From Lemma 3.6 and Proposition 4.1, there exists a pseudo-inverse B′ of

B. But in this section, we shall show the uniqueness of the pseudo-inverse of
the fundamental form and actually construct the pseudo-inverse by B. Let
X1, X2 be a local orthonormal frame field for T with respect to g, that is,

g(X1, X1) = ε1,
g(X1, X2) = 0,
g(X2, X2) = ε2,

where εi = 1 or −1 for i = 1, 2. The following lemma can be proved in the
same way as in the proof of Theorem 4.1 in [11].

Lemma 4.3. Let X1, X2 be a local orthonormal frame field for T with respect
to g. Then there exists a unique local frame field ξ1, ξ2 for T̃ /T such that

ωT (X1, X2)ωQ(ξ1, ξ2) = 1,
B1

11 = 1, B2
11 = 0,

B1
12 = 0, B2

12 = ε2,
B1

22 = −ε1ε2, B2
22 = 0.

Let X1, X2 be a local orthonormal frame field for T with respect to g and
ξ1, ξ2 a local frame field for T̃ /T that satisfies as in Lemma 4.3.

Lemma 4.4. A pseudo-inverse of B is unique.

Proof. Let B′, B be symmetric pseudo-inverses of B and set D := B−B′.
Then D ∈ HOM(Hom(T, T̃ /T ), T ) satisfies D ◦ B = 0 and B̃ ◦ D̃ = 0. We
compute D by the frame field as in Lemma 4.3. Then we have D = 0. �

Let B := B′ be the pseudo-inverse of B. For X1, X2, ξ1, ξ2, we write B̂ as
B

jk
α Xj ⊗ Xk ⊗ ξα ∈ Γ(T � T ⊗ (T̃ /T )∗). From Lemma 4.3, B satisfies the

following:
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Lemma 4.5. We have

B11
1 = 1, B11

2 = 0,
B12

1 = 0, B12
2 = ε2,

B22
1 = −ε1ε2, B22

2 = 0.

From Theorem 3.2, for A ∈ HOM(T̃ /T, T ), there exists a unique γA ∈
INVL(i). In order to give a canonical choice of A ∈ HOM(T̃ /T, T ), we shall
construct A from the fundamental form B as follows. We set P (X, Y ) :=
∇̃Xi(Y ) − i(∇g

XY ), where ∇g ∈ C(T ) is the Levi-Civita connection for g. Let
trgP ∈ Γ(T̃ ) be defined by

trgP := ε1(∇̃X1X1 −∇g
X1

X1) + ε2(∇̃X2X2 −∇g
X2

X2).

From Lemma 4.3, we see that trgP ∈ Γ(T ). We set

νg :=
∑

i(εiX
i(trgP ))Xi ∈ A1,

i.e., the metric dual of trgP and

μg := X1(trgP )X2 − X2(trgP )X1 ∈ A1.

Note that μg is independent of the choice of a positively oriented orthonor-
mal frame field with respect to g and ωT . Since the equation: νg ∧ μg =
g(trgP, trgP )ωg = νg(trgP )ωg, we see that if g(trgP, trgP ) �= 0, then νg and
μg are linearly independent. For s, t ∈ R, we obtain the element B∗(νω(B),B +
sνg + tμg) of HOM(T̃ /T, T ), which is given by B. Then we have

Theorem 4.6. For s, t ∈ R, there exists a unique γ(s, t) ∈ INVL(i) which
satisfies

H
γ(s,t)
B = −1

2
B∗(νω(B),B + sνg + tμg).

In particular, γ(0, 0) is the equiaffine with respect to ω(B).

If M̃ = R
4, ε1 = ε2 = 1, and ∇̃ω̃ = 0, then γ(s, t) gives a family of transversal

bundle Imγ̂(s, t) which coincides with the family of transversal bundle given
by Theorem 5.3 in [13], where the complex number c in [13] satisfies

c = −(6s − 1 + 6
√−1t).

Let γBM ∈ INVL(i) (resp. γK , γNV ∈ INVL(i)) give the transversal bundle
Imγ̂BM (resp. Imγ̂K , Imγ̂NV ) by Burstin-Mayer (resp. Klingenberg, Nomizu-
Vrancken). We set

C(X, Y, Z) := (∇̂γ
XB)Y Z = ∇γ̂

XBY Z − Bγ∇XY Z − BY
γ∇XZ,

and call C the cubic form. Then we obtain

Corollary 4.7. If M̃ = R
4 and ∇̃ω̃ = 0, then γBM , γK , and γNV satisfy the

following:
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γBM = γ(
1
2
, 0),

γK = γ(
1
6
, 0),

γNV = γ(0, 0).

Proof. From Theorem 4.6, we see that γNV =γ(0, 0). For λ ∈ HOM(T̃ /T, T ),
we set λj

α := Xj(λ(ξα)). We take γ ∈ INVL(i) and set λBMp := γBM −
γ, λKp := γK − γ, and λNV p := γNV − γ. To obtain s, t of γ(s, t) for γBM

and γK , we express λBM , λK , and λNV by using the cubic form C. Since
γNV = γ +Hγ

B, we obtain γNV = Hγ
B. We express γNV by C as follows. From

(3.1), we have

(∇̂γ
XB)B + B ◦ ∇̂γ

XB = 0 and (∇̂γ
XB̃)B̃ + B̃ ◦ ∇̂γ

XB̃ = 0.

Since the ambient space is an affine space, we see that C is symmetric in all
three variables. We write ∇̂γ

Xj
B as Bkl

α;jXk ⊗Xl⊗ξα and C as Cα
jklX

j �Xk �
X l ⊗ ξα. Then we have the following:

B11
1;1 = −C1

111,
B11

1;2 = −C1
112,

B12
1;1 = −ε2

2
C2

111 +
ε1

2
C2

122,

B12
1;2 = −ε2

2
C2

112 +
ε1

2
C2

222,

B22
1;1 = −C1

122,
B22

1;2 = −C1
222,

B11
2;1 = −ε2C

1
112 −

ε1ε2

2
C2

111 −
1
2
C2

122,

B11
2;2 = −ε2C

1
122 −

ε1ε2

2
C2

112 −
1
2
C2

222,

B12
2;1 = −C2

112,
B12

2;2 = −C2
122,

B22
2;1 = ε1C

1
112 −

1
2
C2

111 −
ε1ε2

2
C2

122,

B22
2;2 = ε1C

1
122 −

1
2
C2

112 −
ε1ε2

2
C2

222.

It follows that we have the following equations:

λNV
1
1 =

1
24

(5C1
111 + ε2C

2
112 − 3ε1C

2
222 + ε1ε2C

1
122),

λNV
2
1 =

1
24

(5C1
222 − ε1C

2
122 + 3ε2C

2
111 + ε1ε2C

1
112),

λNV
1
2 =

1
24

(5ε2C
1
112 + 3ε1ε2C

2
111 + 7C2

122 + ε1C
1
222),

λNV
2
2 =

1
24

(7C2
112 − 5ε1C

1
122 + 3ε1ε2C

2
222 − ε2C

1
111).
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We compute γBM by virtue of (5.2) in [11]. Then we have

λBM
1
1 =

1
12

(C1
111 − ε2C

2
112 − ε1ε2C

1
122 − 3ε1C

2
222),

λBM
2
1 =

1
12

(3ε2C
2
111 − ε1ε2C

1
112 + ε1C

2
122 + C1

222),

λBM
1
2 =

1
6
(2ε2C

1
112 + C2

112 + ε1C
1
222),

λBM
2
2 =

1
6
(−ε2C

1
111 − 2ε1C

1
122 + C2

112).

We compute γK by virtue of Theorem 6.1 in [11]. Then we have

λK
1
1 =

1
6
(C1

111 − ε1C
2
222),

λK
2
1 =

1
6
(ε2C

2
111 + C1

222),

λK
1
2 =

1
12

(3C2
122 + 3ε2C

1
112 + ε1C

2
111 + ε1ε2C

1
222),

λK
2
2 =

1
12

(3C2
112 − 3ε1C

1
122 − ε2C

1
111 + ε1ε2C

2
222).

Computing B∗(νg) and B∗(μg), we have the assertion. �
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