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Abstract. Let Hα,p,V denote the fractional Laplacian (−Δ)α
`
α ∈ (0, 1]

´

acting in Lp(R
N )

`
p ∈ [1,∞)

´
perturbed by a potential V . We prove spectral

inclusion σ(Hα,p,V ) ⊂ σ(Hα,q,V ) (1 ≤ q ≤ p ≤ 2 or 2 ≤ p ≤ q < ∞) for a large
class of potentials, and Lp-spectral independence σ(Hα,p,V ) = σ(Hα,2,V )

`
p ∈

[1,∞)
´

under a certain condition. In addition, we prove that the spectrum of
a perturbed fractional Dirichlet Laplacian acting in Lp(O) is independent of
p ∈ [1,∞) under a weak condition for potentials, where O is a bounded open
subset of R

N .
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§1. Introduction

Let O be an open subset of R
N , and suppose that a C0-semigroup Tp =(

Tp(t)
)
t≥0

on Lp(O) with generator Ap is given for each p ∈ [1,∞). Assume
further that Tp’s are consistent in the sense that Tp(t) = Tq(t) on Lp(O)∩Lq(O)
for all t ≥ 0 and p, q ∈ [1,∞). Under these assumptions, it is natural to expect
Lp-spectral independence of the generators holds, that is to say,

(1.1) σ(Ap) = σ(A2)

for all p ∈ [1,∞). However, W. Arendt [1, Section 3] showed that this equality
is not necessarily true. Nonetheless, Lp-spectral independence (1.1) is proved
in many important cases. In fact, R. Hempel and J. Voigt [6, Theorem] proved
that, for a potential V belonging to a large class including a Kato class, the
spectrum of the Schrödinger operator −Δ/2+V acting in Lp(RN ) is indepen-
dent of p ∈ [1,∞) (for other references, see below in this section). Therefore
we have an interest in Lp-spectral independence in the case where we replace
the Laplacian in −Δ/2+V with a fractional Laplacian, a no less fundamental
operator than the Laplacian. For example, this means that we replace the
heat semigroup

(etΔf)(x) =
1

(4πt)
N
2

∫
RN

e−
|x−y|2

4t f(y) dy

with the Poisson semigroup

(
e−t(−Δ)

1
2 f

)
(x) =

Γ
(

N+1
2

)
t

π
N+1

2

∫
RN

f(y)

(t2 + |x− y|2)N+1
2

dy
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(cf. [12, Example 1.10, 1.8] and [7, (3.248)]).
Let us state the aims and the main results of this paper in more detail. For

that purpose, we have to make the main objects clear. In what follows, Δ de-
notes the usual Laplacian in L2(RN ) with domain H2(RN ). For all α ∈ (0, 1],
the fractional Laplacian (−Δ)α is positive definite self-adjoint and −(−Δ)α

generates a C0-semigroup on L2(RN ). It is well known that the domain of
(−Δ)α is the fractional order Sobolev space H2α(RN ). As will be stated in
Proposition 2.2, there exists a C0-semigroup Uα,p =

(
Uα,p(t)

)
t≥0

on Lp(RN )
for each p ∈ [1,∞) such that Uα,p(t) and e−t(−Δ)α

are consistent for all t ≥ 0.
By this consistency, Uα,p is unique for each p ∈ [1,∞). Let −Hα,p denote
the generator of Uα,p. This is the definition of what was called the fractional
Laplacian acting in Lp(RN ) in the abstract. It is also possible that the frac-
tional Laplacian acting in Lp(RN ) is defined by Hα

1,p. However, both of the
definitions coincide (see the statement below the proof of Theorem 3.20 in
[14]).

Then, we treat the formal expression: Hα,p,V := Hα,p+V . First, we have to
consider whether the formal operator Hα,p +V makes sense. To that purpose,
we modify the generalized Kato class defined in [18, p. 183] to make it suitable
for the fractional Laplacians (Definition 2.10) and prove that for the potentials
belonging to the modified Kato class, the formal expression Hα,p + V can be
given a realization as a C0-semigroup generator via the perturbation theory
of Voigt [18], [19] (Theorem 2.14).

The purpose of this paper is to consider Lp-spectral independence of the
operator Hα,p,V = Hα,p + V , which is given a realization described above. To
prove Lp-spectral independence of Hα,p,V , we prove the Feynman-Kac formula
for e−tHα,p,V (Proposition 3.3) and by using the Feynman-Kac formula, we
show Lp-Lq estimates for e−tHα,2,V (Proposition 3.6).

By using these estimates, we obtain the following spectral inclusion of
Hα,p,V (Theorem 4.1): The relation

σ(Hα,p,V ) ⊂ σ(Hα,q,V )

holds for any 1 ≤ q ≤ p ≤ 2 or any 2 ≤ p ≤ q ≤ ∞, where Hα,∞,V := H ′
α,1,V

(the conjugate of Hα,1,V ). Moreover, in the special case of N = 1 and 1/2 <
α < 1, we show Lp-spectral independence

σ(Hα,p,V ) = σ(Hα,2,V )
(
p ∈ [1,∞)

)
under a condition on potentials V (Theorem 4.2). On the other hand, let ΔD

and HD
α,p,V denote the Dirichlet Laplacian in L2(O), where O is a bounded

open subset of R
N , and the fractional power (−ΔD)α acting in Lp(O) per-

turbed by a potential V for an α ∈ (0, 1] and p ∈ [1,∞), respectively. A
similar condition on V as in the case of Hα,p,V guarantees that HD

α,p,V is given
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a realization. Under a certain condition on V without any restriction on N and
α, we prove that the spectrum σ(HD

α,p,V ) is independent of p ∈ [1,∞) (The-
orem 4.18). Especially, our result implies that p-independence of σ(HD

α,p,V )
holds provided that the boundary ∂O is smooth, V+ ∈ L1

loc(O) and V− is
small enough.

We would like to refer to other references concerning Lp-spectral indepen-
dence that have a close relation to this paper. We do not assume that O is
bounded unless explicitly stated otherwise in the rest of this introduction. Let
us recall that Hempel and Voigt [6] treated only the Schrödinger operators by
a subtle argument using Feynman-Kac formula. However, Arendt [1] found
that their result is closely connected to a specific property of the semigroups
generated by the Schrödinger operators, and he succeeded in generalizing the
result of [6] in an abstract direction. In more detail, Arendt called a C0-
semigroup

(
T (t)

)
t≥0

on L2(O) (O ⊂ R
N ) satisfies an upper Gaussian estimate

if there exist constants M ≥ 1, ω ∈ R and b > 0 such that

(1.2) |T (t)u| ≤MeωtebtΔ|u|
for all t ≥ 0 and u ∈ L2(O). In the right-hand side of this inequality, we
regard u ∈ L2(O) as an element of L2(RN ) by considering the value of u on
R

N \O to be 0. Arendt proved that if a C0-semigroup T on L2(O) satisfies an
upper Gaussian estimate, then there exists a C0-semigroup Tp on L2(O) for
each p ∈ [1,∞) which is consistent with T and the spectrum of the generator
of Tp is independent of p ∈ [1,∞) provided the generator of T is self-adjoint
([1, Corollary 4.3]). (For the result in the non-self-adjoint case, see [1, Theo-
rem 4.2].) For a large class of potentials, the Schrödinger semigroups satisfy
upper Gaussian estimates (cf. [17, Theorem B.6.7]). Hence Arendt’s result
[1, Corollary 4.3] is a generalization of a considerable part of the results in
[6]. However, it is not known whether all of the Schrödinger semigroups in [6]
satisfies an upper Gaussian estimate. Hence the result in [6] is of independent
interest.

On the other hand, after the work of Arendt, generalizations of his result
were achieved by [10], [11], [13] and [14]. In the generalization process, the
notion of an upper Gaussian estimate has been generalized. For example,
the notion of a Gaussian estimate of order α (α ∈ (0, 1]) was defined in [14,
Definition 3.1]. This estimate corresponds to what is obtained by replacing Δ
with −(−Δ)α in (1.2). In some cases including the one where O is bounded,
Miyajima and the author proved that if a C0-semigroup T on L2(O) satisfies
a Gaussian estimate of order α for some α ∈ (0, 1], the same conclusion as
Arendt’s result above holds. However, for a similar reason as in the case of
−Δ + V , the problem of Lp-spectral independence of (−Δ)α + V has its own
significance. This is the reason why the fractional Laplacians perturbed by
potentials are particularly investigated in this paper.
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Besides the references above, for Lp-spectral independence of second or-
der differential operators, see the examples of the references above and the
references therein.

This paper consists of three parts. In the next Section 2, we define the
perturbed operator −Hα,p,V , which is only formal at present, as the generator
of a C0-semigroup on Lp(RN ) for an appropriate potential V . In Section 3,
we show the Feynman-Kac formula for e−tHα,p,V , and then we prove Lp-Lq

estimates for e−tHα,2,V . In Section 4, by using this estimates, we prove Lp-
spectral independence and Lp-spectral inclusion in the form as stated above.

Below, we will list function spaces and operator spaces frequently used in
this paper. In this list, p ∈ [1,∞) and O denotes an open subset of R

N and
X and Y designate Banach spaces.

Lp(O) the usual Lebesgue space on O,
L∞(O) the Lebesgue space of essentially bounded functions on O,
Lp

loc(O) the usual Lp
loc space on O,

C∞(RN ) the space of continuous functions on R
N vanishing at infinity,

Cc(O) the space of continuous functions with compact support in O,
C∞(O) the space of infinite times differentiable functions on O,
C∞

c (O) := C∞(O) ∩ Cc(O),
Hs(O) the usual Sobolev space on O of order s ∈ R,
H1

0 (O) the closure of C∞
c (O) in H1(O),

S(RN ) the Schwartz space of rapidly decreasing functions,
L(X,Y ) the space of bounded linear operators from X into Y ,
L(X) := L(X,X).

In the case of O = R
N , we may drop “(RN )”, for example, Lp = Lp(RN ). In

addition, we also use the following notations. ‖·‖p denotes Lp(RN )-norm for
all p ∈ [1,∞] and B(x, r) denotes the ball in R

N with center x and radius r.
Constants “C” and “M” may vary from place to place.

§2. Perturbation of fractional Laplacians by potentials

2.1. Preliminaries

We shall discuss some basic properties of the semigroups generated by frac-
tional Laplacians. Those will be used throughout this paper.

Definition 2.1. (i) Δ denotes the usual Laplacian in L2(RN ) with domain
H2(RN ). For each α ∈ (0, 1], (−Δ)α is a positive definite self-adjoint operator
in L2(RN ).
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(ii) For each α ∈ (0, 1], Uα :=
(
Uα(t)

)
t≥0

is the C0-semigroup on L2(RN )
generated by −(−Δ)α.

(iii) For each α ∈ (0, 1], the function Kα is defined by

Kα(t, x) :=
1

(2π)N

∫
RN

eixξe−t|ξ|2α
dξ (t > 0, x ∈ R

N ).

(Kα(t, x− y) is the integral kernel of Uα(t) (t > 0). See the next proposition.)
As is well known, U1 is the heat semigroup and K1(t, x) is the Gauss kernel

(i.e. K1(t, x) = (4πt)−
N
2 e−

|x|2
4t for all t > 0, x ∈ R

N ).

In the next proposition, we collect some properties of Uα and Kα, and state
a relation between Uα and Kα. Moreover, it is proved from these properties
that Kα defines a C0-semigroup on Lp(RN ) for each p ∈ [1,∞).

Proposition 2.2. For each α ∈ (0, 1], the following assertions hold.

(i) (a) For all t ≥ 0, Uα(t) is positive, i.e., Uα(t)u ≥ 0 for all positive
u ∈ L2(RN ).

(b) For each t > 0,
Uα(t)u = Kα(t, ·) ∗ u

for all u ∈ L2(RN ), where f ∗ g is the convolution of f and g.

(ii) (a) Kα(t, x) = t−
N
2αKα(1, t−

1
2αx) for all t > 0 and x ∈ R

N .

(b) The function (t, x) �→ Kα(t, x) is continuous on (0,∞) × R
N .

(c) There exists a constant Cα > 0 such that

0 ≤ Kα(t, x) ≤ Cα
t(

t
1
α + |x|2)N

2
+α

for all t > 0 and x ∈ R
N (see also the estimate in Proposition 2.3

below).

(d) For all t > 0, Kα(t, ·) ∈ L1(RN ) and∫
RN

Kα(t, x) dx = 1.

(e) For each t > 0 and u ∈ C∞(RN ), Kα(t, ·) ∗ u belongs to C∞(RN ),
and also Kα(t, ·) ∗ u converges to u as t ↓ 0 in C∞(RN ), i.e.,∫

RN

Kα(t, x− y)u(y) dy − u(x) → 0

as t ↓ 0 uniformly in x ∈ R
N .
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(iii) For each p ∈ [1,∞) and t > 0, a bounded linear operator Uα,p(t) is
defined on Lp(RN ) by the following formula:(

Uα,p(t)u
)
(x) :=

(
Kα(t, ·) ∗ u)(x) (u ∈ Lp(RN ), x ∈ R

N ).

Then, Uα,p :=
(
Uα,p(t)

)
t≥0

is a positive C0-semigroup of contractions on
Lp(RN ) for all p ∈ [1,∞). In addition, Uα,p and Uα,q are consistent for
all p, q ∈ [1,∞) (i.e. Uα,p(t) = Uα,q(t) on Lp(RN )∩Lq(RN ) for all t ≥ 0
and p, q ∈ [1,∞)), and Uα,2(t)u = Uα(t)u for all t > 0 and u ∈ L2(RN ).

−Hα,p will denote the generator of Uα,p for each α ∈ (0, 1] and p ∈ [1,∞).
By (iii) of this proposition, we may identify

(
Uα(t)u

)
(x) with

(
Kα(t, ·) ∗u)(x)

for all t > 0, x ∈ R
N and u ∈ L2(RN ). Under this convention, for all u ∈

L2(RN ), the function (t, x) �→ (
Uα(t)u

)
(x) is measurable on (0,∞) × R

N .
(ii)-(e) of this proposition shows that the kernel Kα(t, x) generates a so-

called Feller semigroup on C∞(RN ), and this fact will play an important role
in Section 3. So we give a direct proof by using (ii)-(d) although (ii)-(e) is
proved in [8, Example 4.1.3].

Proof. (i) The assertions (a) and (b) are proved in [14, Proposition 3.3].
(ii) (a) is verified by using the change of variables t

1
2α ξ = ξ′ in the definition

of Kα(t, x).
(b) is an easy consequence of Lebesgue’s convergence theorem.
(c) and (d) are proved in [14] as Corollary 3.4 and Proposition 3.3 (see

(3.3)), respectively.
(e) Let u be an arbitrary function in C∞(RN ). From the estimate

|Kα(t, y)u(x− y)| ≤ Kα(t, y)‖u‖∞ (t > 0, x, y ∈ R
N )

and Lebesgue’s convergence theorem, it follows that for each t > 0 and x0 ∈
R

N ,

(
Kα(t, ·) ∗ u)(x) =

∫
RN

Kα(t, y)u(x− y) dy

→
∫

RN

Kα(t, y)u(x0 − y) dy =
(
Kα(t, ·) ∗ u)(x0)

as x→ x0. Hence Kα(t, ·) ∗ u is a continuous function on R
N for each t > 0.

Next, for any t > 0, ε > 0 and u ∈ C∞(RN ), we can take an R > 0 such
that

0 ≤
∫
|x|>R

Kα(t, x) dx < ε
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by (ii)-(d) and |u(x)| < ε for |x| ≥ R. Hence, if |x| ≥ 2R, we have

∣∣(Kα(t, ·) ∗ u)(x)∣∣ ≤ ∫
x∈RN

Kα(t, x− y)|u(y)| dy

=
(∫

|y|≥R
+

∫
|y|<R

)
Kα(t, x− y)|u(y)| dy

< ε

∫
|y|≥R

Kα(t, x− y) dy + ‖u‖∞
∫
|x−y|>R

Kα(t, x− y) dy

< ε

∫
RN

Kα(t, x− y) dy + ‖u‖∞
∫
|y|>R

Kα(t, y) dy

< ε+ ‖u‖∞ε = (1 + ‖u‖∞)ε.

Thus, Kα(t, ·) ∗ u ∈ C∞(RN ) for all t > 0 and u ∈ C∞(RN ).
Let ε > 0 and u ∈ C∞(RN ). Then, there exists a δ > 0 such that if

|x− y| < δ, then |u(x) − u(y)| < ε. Hence, for any t > 0 and x ∈ R
N ,

∣∣(Kα(t, ·) ∗ u)(x) − u(x)
∣∣ =

∣∣∣∫
RN

Kα(t, x− y)u(y) dy − u(x)
∣∣∣

=
∣∣∣∫

RN

Kα(t, x− y)
(
u(y) − u(x)

)
dy

∣∣∣ (
by (ii)-(d)

)
≤

(∫
|x−y|<δ

+
∫
|x−y|≥δ

)
Kα(t, x− y)|u(y) − u(x)| dy

< ε

∫
|x−y|<δ

Kα(t, x− y) dy

+
∫
|x−y|≥δ

Kα(t, x− y) dy · 2‖u‖∞

≤ ε+ 2‖u‖∞
∫
|y|≥t−

1
2α δ

Kα(1, y) dy.

For the last inequality, we used (ii)-(a) and an elementary change of variables.
By this inequality and Kα(1, ·) ∈ L1(RN ),

lim sup
t↓0

‖Kα(t, ·) ∗ u− u‖∞ ≤ ε.

Thus, for all u ∈ C∞(RN ), Kα(t, ·) ∗ u converges to u as t ↓ 0 in C∞(RN ).
(iii) is proved in [14, Proposition 3.3].

We can prove also a lower estimate for the kernel Kα. This estimate will
be used in the proof of Lemma 2.17.
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Proposition 2.3. Let α ∈ (0, 1). There exist constants Cα, C
′
α > 0 such that

(2.1) C ′
α

t(
t

1
α + |x|2)N

2
+α

≤ Kα(t, x) ≤ Cα
t(

t
1
α + |x|2)N

2
+α

for all t > 0 and x ∈ R
N .

For the proof of this proposition, we introduce the function ft,α defined in
[20, Chapter IX, Section 11]: For each α ∈ (0, 1) and t > 0,

ft,α(λ) :=

⎧⎪⎨⎪⎩
1

2πi

∫ σ+i∞

σ−i∞
ezλ−tzα

dz (λ ≥ 0, σ > 0),

0 (λ < 0),

where the branch of zα is so taken that Re zα > 0 for Re z > 0. (ft,α is
independent of σ > 0.) Lemma 2.4 below shows that ft,α is a density function
on R for all α ∈ (0, 1) and t > 0, and also Proposition 3 in [20, Chapter IX,
Section 11] implies that ft,α defines a convolution semigroup on R. According
to [20, Chapter IX, Section 11 Theorem 2], for each α ∈ (0, 1) and t > 0, Uα(t)
is represented by ft,α and U1 as follows:

(2.2) Uα(t) =
∫ ∞

0
ft,α(s)U1(s) ds,

i.e., Uα is subordinate to U1. This representation yields that of Kα(t, x) by
K1(t, x) for all t > 0 and x ∈ R

N :

Kα(t, x) =
∫ ∞

0
ft,α(s)K1(s, x) ds,

which will be given a detailed proof and used in the proof of Proposition 2.3.
To verify this representation, we prove the next lemma concerning properties
of the function ft,α. Although these properties must be known, we state it
here with a proof, since we could not find an appropriate literature.

Lemma 2.4. Let 0 < α < 1 and t > 0. The function ft,α above satisfies the
following:

(i) ft,α ≥ 0,
(ii) ft,α ∈ C∞(R),
(iii) ft,α ∈ L1(R) and ‖ft,α‖L1(R) = 1,
(iv) For all j ∈ N ∪ {0}, ft,α(λ) = o(λj) as λ→ 0.

Proof. (i) is proved in [20, Chapter IX, Section 11 Proposition 2].
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(ii) It is clear that ft,α ∈ C∞(
(−∞, 0)

)
. To prove that ft,α ∈ C∞(

(0,∞)
)
,

take any λ0 > 0 and note the following estimate: For all z = σ+ iη (σ > 0, η ∈
R), ∣∣∣ dj

dλj
ezλ−tzα

∣∣∣ = |zjezλ−tzα |(2.3)

≤ eσ(λ0+1)(σ2 + η2)
j
2 e−t|η|α cos πα

2

for all λ ∈ (0, λ0 + 1) and j ∈ N ∪ {0}. The rightmost function of (2.3) with
respect to η is independent of λ ∈ (0, λ0 +1) and is integrable on R. Hence, by
Lebesgue’s convergence theorem,

∫ σ+i∞
σ−i∞ ezλ−tzα

dz is infinitely differentiable
with respect to λ under the integral sign, with

f
(j)
t,α (λ) =

1
2πi

∫ σ+i∞

σ−i∞
zjezλ−tzα

dz

for all λ > 0 and j ∈ N ∪ {0}.
Next we prove that

(2.4) lim
λ↓0

f
(j)
t,α (λ) = 0

for all j ∈ N ∪ {0} and accordingly ft,α is continuous at the origin. By the
estimate (2.3) and Lebesgue’s convergence theorem again,

(2.5) lim
λ↓0

f
(j)
t,α (λ) =

1
2πi

∫ σ+i∞

σ−i∞
zje−tzα

dz

for all j ∈ N∪{0}. Now, we can prove that the right-hand side of this equality
is 0 for all j ∈ N ∪ {0}. To that purpose, we fix an arbitrary σ > 0 and
define CR :=

{
z ∈ C

∣∣|z| = R,−θR ≤ arg z ≤ θR

}
for all R > σ, where

θR := tan−1
√

R2−σ2

σ . Since the function z �→ zje−tzα
is holomorphic on {z ∈

C|Re z > 0},∣∣∣∫ σ+i
√

R2−σ2

σ−i
√

R2−σ2

zje−tzα
dz

∣∣∣ =
∣∣∣∫

CR

zje−tzα
dz

∣∣∣
≤

∫ θR

−θR

Rje−tRα cos πα
2 ·Rdφ

≤ πRj+1e−tRα cos πα
2

for all R > σ. Hence

1
2πi

∫ σ+i∞

σ−i∞
zje−tzα

dz =
1

2πi
lim

R→∞

∫ σ+i
√

R2−σ2

σ−i
√

R2−σ2

zje−tzα
dz(2.6)

= 0
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for all j ∈ N ∪ {0}. By this equality and (2.5), we have (2.4). The equality
(2.6) for j = 0 means ft,α(0) = 0. Since ft,α is right continuous at the origin
by (2.4) for j = 0 and is left continuous there by definition, ft,α is continuous
at the origin.

Now, it follows from (2.5) and (2.6) that f (j)
t,α is continuous on R for all

t > 0 and j ∈ N ∪ {0} since ft,α = 0 on (−∞, 0].
(iii) is proved in [20, Chapter IX, Section 11 Proposition 3].
(iv) is an easy consequence of the fact that ft,α ∈ C∞(R) and f

(j)
t,α (0) = 0

for all j ∈ N ∪ {0} and the mean value theorem.

Proof of Proposition 2.3. Step 1. We prove the following representation of
Kα by K1 for all t > 0 and x ∈ R

N :

(2.7) Kα(t, x) =
∫ ∞

0
ft,α(s)K1(s, x) ds.

For this purpose, we need verify that for all t > 0 and u ∈ C∞
c (RN ), the

function (s, x, y) �→ ft,α(s)K1(s, x− y)u(y) is integrable on (0,∞) × E × R
N ,

where E is an arbitrary bounded measurable subset of R
N . This integrability

follows from the estimate

|ft,α(s)K1(s, x− y)u(y)| ≤ 1

(4πs)
N
2

ft,α(s)|u(y)|

for all (s, x, y) ∈ (0,∞) × E × R
N and the fact that the function s �→

s−
N
2 ft,α(s) is integrable on (0,∞) by Lemma 2.4 (iii) and (iv). Hence, for

a.e. (s, x) ∈ (0,∞) × E, the function y �→ ft,α(s)K1(s, x − y)u(y) is inte-
grable on R

N , and the function (s, x) �→ ∫
RN ft,α(s)K1(s, x − y)u(y) dy =

ft,α(s)
(
U1(s)u

)
(x) is integrable on (0,∞)×E. In addition, for a.e. s ∈ (0,∞),

the function x �→ ft,α(s)
(
U1(s)u

)
(x) is integrable on E, and the function

s �→ ∫
E ft,α(s)

(
U1(s)u

)
(x) dx is integrable on (0,∞). Hence, for all t > 0, u ∈

C∞
c (RN ) and bounded measurable E ⊂ R

N ,∫
E

(∫
RN

Kα(t, x− y)u(y) dy
)
dx

=
∫

E

(
Uα(t)u

)
(x) dx

=
∫

E

(∫ ∞

0
ft,α(s)U1(s)u ds

)
(x) dx (by (2.2))

=
∫

E

(∫ ∞

0
ft,α(s)

(
U1(s)u

)
(x) ds

)
dx
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=
∫

E

(∫ ∞

0
ft,α(s)

(∫
RN

K1(s, x− y)u(y) dy
)
ds

)
dx

=
∫

E

(∫
RN

(∫ ∞

0
ft,α(s)K1(s, x− y) ds

)
u(y) dy

)
dx

by Fubini’s theorem. Since E is arbitrary, we have for all t > 0 and u ∈
C∞

c (RN ),

(2.8)
∫

RN

Kα(t, x− y)u(y) dy =
∫

RN

(∫ ∞

0
ft,α(s)K1(s, x− y) ds

)
u(y) dy

for a.e. x ∈ R
N . Since both sides are continuous with respect to x on R

N , (2.8)
holds for all x ∈ R

N . In fact, the continuity of the left-hand side is proved by
using the estimate

|Kα(t, x− y)u(y)| ≤ t−
N
2α ‖Kα(1, ·)‖∞|u(y)|

for all t > 0 and x, y ∈ R
N and Lebesgue’s convergence theorem. Next we

prove that the right-hand side of (2.8) is continuous with respect to x on R
N .

Since the estimate

|ft,α(s)K1(s, x− y)| ≤ 1

(4πs)
N
2

ft,α(s)

holds for all s > 0 and x, y ∈ R
N , the function (x, y) �→ ∫∞

0 ft,α(s)K1(s, x −
y) ds is continuous on R

N × R
N by Lemma 2.4 (iii) and (iv) and Lebesgue’s

convergence theorem, with

0 ≤
∫ ∞

0
ft,α(s)K1(s, x− y) ds(2.9)

≤ 1

(4π)
N
2

∫ ∞

0
s−

N
2 ft,α(s) ds <∞

for all x, y ∈ R
N . By this continuity and the estimate (2.9) and Lebesgue’s con-

vergence theorem, the desired continuity is proved. The fundamental lemma
of calculus of variations yields

Kα(t, x− y) =
∫ ∞

0
ft,α(s)K1(s, x− y) ds

for all t > 0, x ∈ R
N and a.e. y ∈ R

N . Since both of these functions are
continuous with respect to y on R

N , this equality holds for all y ∈ R
N . Thus,

Kα(t, x) =
∫ ∞

0
ft,α(s)K1(s, x) ds
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for all t > 0 and x ∈ R
N .

Step 2. Since K1(s, x) ≥ K1(s, y) for s > 0 and |x| ≤ |y|, by the represen-
tation above,

(2.10) Kα(t, x) ≥ Kα(t, y)

for t > 0 and |x| ≤ |y|. The asymptotic expansion formula [14, Proposition 2.1]
implies that there exist constants R,Cα,1, Cα,2 > 0 such that

(2.11) Cα,1
1

|x|N+2α
≤ Kα(1, x) ≤ Cα,2

1
|x|N+2α

for all |x| ≥ R. For this R > 0, it follows from (2.10) and this estimate that

Kα(1, 0) ≥ Kα(1, x) ≥ Kα(1, Re) > 0

for all |x| ≤ R, where e ∈ R
N and |e| = 1 (note that Kα(1, Re) is independent

of such e’s). By this inequality and (2.11), there exist constants C ′
α,1, C

′
α,2 > 0

such that

C ′
α,1

1

(1 + |x|2)N
2

+α
≤ Kα(1, x) ≤ C ′

α,2

1

(1 + |x|2)N
2

+α

for all x ∈ R
N . Since Kα(t, x) = t−

N
2αKα(1, t−

1
2αx) for all t > 0 and x ∈ R

N ,

C ′
α,1

t

(t
1
α + |x|2)N

2
+α

≤ Kα(t, x) ≤ C ′
α,2

t

(t
1
α + |x|2)N

2
+α

for all t > 0 and x ∈ R
N .

2.2. Perturbation of fractional Laplacians by potentials

Before proving the main theorems onLp-spectral independence andLp-spectral
inclusion, we have to consider whether the formal operator Hα,p + V makes
sense for each α ∈ (0, 1] and p ∈ [1,∞), where V : R

N → R is a measurable
function. We use the same symbol for the function V and also for the asso-
ciated maximal multiplication operator in Lp defined by V . For convenience,
we will consider such a problem in a more general situation. Let O be an
open subset of R

N and U =
(
U(t)

)
t≥0

a positive C0-semigroup on Lp(O) with
generator T for a p ∈ [1,∞). If V : O → R is a bounded measurable function,
then the operator sum T −V generates a C0-semigroup on Lp(O). In the case
where V is unbounded, as was stated in [18], it is reasonable to consider only
the potential V satisfying the following conditions: The strong limit

(2.12) UV (t) := s- lim
n→∞ exp

(
t(T − V (n))

)
(t ≥ 0)
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exists and UV :=
(
UV (t)

)
t≥0

is a (positive) C0-semigroup on Lp(O), where
V (n) := (signV )

(|V | ∧ n
)

(n ∈ N). Now, following [18, Definition 2.2, 2.5]
with [19, Theorem 2.6] taken into account, and define the notion of “semigroup
admissibility” as follows:

Definition 2.5. Let O be an open subset of R
N and V : O → R a measurable

function, and suppose that U =
(
U(t)

)
t≥0

is a positive C0-semigroup on Lp(O)
with generator T for a p ∈ [1,∞).

(i) If V is bounded below, V will be called U -admissible if the UV above is
a (positive) C0-semigroup on Lp(O) (see also the following Remark (ii)).

(ii) If V is bounded above, V will be called U -admissible if UV (t) of (2.12)
exists for all t ≥ 0 and UV is a (positive) C0-semigroup on Lp(O).

(iii) In general, V will be called U -admissible if both V+ and −V− are
U -admissible, where V+ [resp. V−] is the positive [resp. negative] part of V :
V+ := V ∨ 0 [resp. V− := (−V ) ∨ 0]. In this case, since the UV above is a
C0-semigroup on Lp(O) (see the following Remark (iii)), we may write the
generator of UV as TV .

Remark 2.6. (i) If V ∈ L∞(O), V is U -admissible and TV = T − V .
(ii) In Definition (i), the dominated convergence theorem yields the exis-

tence of UV (t) for all t ≥ 0 ([18, Remark 2.1 (c)]).
(iii) If V is U -admissible, then the UV (t) above exists and V+ [resp. −V−]

is U−V−-admissible [resp. UV+-admissible]. Moreover, the equality

UV (t) =
(
U−V−

)
V+

(t) =
(
UV+

)
−V−

(t)

holds for all t ≥ 0. Hence, UV is a positive C0-semigroup on Lp(O). For
details, see [18, p. 174] and [19, Theorem 2.6].

In this paper, we have to consider the situation where a C0-semigroup Up on
Lp(O) is given for each p ∈ [1,∞) (e.g., Up(t) = etΔ on Lp(RN )). Therefore,
we introduce the following definition to firmly set the starting point.

Definition 2.7. Let O be an open subset of R
N and suppose that a positive

C0-semigroup Up =
(
Up(t)

)
t≥0

on Lp(O) is given for each p ∈ [1,∞). We say
that the family {Up; p ∈ [1,∞)} is self-adjoint and consistent if the following
conditions are satisfied:

(i) U2(t) is self-adjoint for all t ≥ 0,
(ii) Up(t) and Uq(t) are consistent for all p, q ∈ [1,∞), i.e., Up(t) = Uq(t)

on Lp ∩ Lq.

Remark 2.8. If {Up; p ∈ [1,∞)} is self-adjoint and consistent, then it can be
easily verified that Up(t)′ = Up′(t) for all t ≥ 0 and p ∈ (1, 2) ∪ (2,∞), where
Up(t)′ is the conjugate of Up(t) and p′ is the conjugate exponent of p.
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Under this definition, we can prove the following proposition (cf. [18, Propo-
sition 3.2]).

Proposition 2.9. Let Up be a positive C0-semigroup on Lp(O) with gener-
ator Tp for each p ∈ [1,∞) and {Up; p ∈ [1,∞)} self-adjoint and consistent.
Moreover, let V : O → R be a measurable function. Assume that −V− is
U1-admissible and V+ is Up0-admissible for some p0 ∈ [1,∞), then V is Up-
admissible for all p ∈ [1,∞). Moreover, Up,V is a positive C0-semigroup on
Lp(O) for all p ∈ [1,∞) and {Up,V ; p ∈ [1,∞)} is self-adjoint and consistent.

Proof. First, note that if V ∈ L∞(O), then V is Up-admissible for all p ∈ [1,∞)
and the Trotter product formula implies the last assertion of this proposition.

Next, if V ≥ 0 (i.e. V = V+), then by the assumption for V+ and [18,
Remark 2.1 (c)], the operator Up,V (t) exists as a bounded operator on Lp(O)
for all t ≥ 0 and p ∈ [1,∞), and 0 ≤ Up,V (t) ≤ Up(t) holds for all t ≥ 0
and p ∈ [1,∞), i.e., u ≤ Up,V (t)u ≤ Up(t)u for all positive u ∈ Lp and
t ≥ 0, p ∈ [1,∞). Since Up0,V is a C0-semigroup on Lp0(O) and consistent
with Up,V for all p ∈ [1,∞), by a similar argument as in [1, p. 1160], Up,V

is proved to be a C0-semigroup on Lp(O) for all p ∈ [1,∞). Since Up,V (t) is
the strong limit of Up,V (n)(t) as n → ∞ for all t ≥ 0 and p ∈ [1,∞), the last
assertion of this proposition is shown by the result in the case of V ∈ L∞(O).

If V ≤ 0 (i.e. V = −V−), then by the assumption for V− and [19, Proposi-
tion 2.2],

(2.13) sup
{∥∥et(T1−V (n))

∥∥ ∣∣∣ 0 ≤ t ≤ 1, n ∈ N

}
<∞.

Since Up,V (n)(t) is the interpolating operator between U1,V (n)(t) and U1,V (n)(t)′

for all t ≥ 0, p ∈ [1,∞) and n ∈ N, (2.13) and its dual imply by Riesz-Thorin
convexity theorem that

sup
{∥∥et(Tp−V (n))

∥∥ ∣∣∣ 0 ≤ t ≤ 1, n ∈ N

}
<∞

for all p ∈ [1,∞). By [19, Proposition 2.2] again, V is Up-admissible for all
p ∈ [1,∞). The remainder of the proof is as in the case of V ≥ 0.

For an arbitrary V , the results above state that both V+ and −V− are
Up-admissible for all p ∈ [1,∞). Hence V is Up-admissible for all p ∈ [1,∞).
To conclude the proof of this proposition, note that Up,V+ is a positive C0-
semigroup on Lp(O) for all p ∈ [1,∞) and the family {Up,V+ ; p ∈ [1,∞)} is
self-adjoint and consistent. By applying the result in the case of V ∈ L∞(O)
to (Up,V+)−V

(n)
−

(t) and using the fact stated in Remark 2.6 (iii): Up,V (t) =

(Up,V+)−V−(t) = s- limn→∞(Up,V+)−V
(n)
−

(t) for all t ≥ 0 and p ∈ [1,∞), the last

assertion of this proposition is proved.
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From now on, we will treat the C0-semigroup Uα(t) = e−t(−Δ)α
and give a

sufficient condition for a potential V to be Uα,p-admissible for all p ∈ [1,∞).
Since the case of α = 1 is treated in [18, Section 5, 6], we assume α ∈ (0, 1)
in what follows. To state the condition for V in the case of α ∈ (0, 1), we
modify the generalized Kato class defined in [18, p. 183] to be suitable for the
fractional Laplacians.

Definition 2.10. Let α ∈ (0, 1).
(i) The function gN,α : R

N \ {0} → R is defined as follows:

gN,α(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|x| (

N
2 < α i.e. N = 1, 1

2 < α < 1
)
,

1
π

log |x| (
N
2 = α i.e. N = 1, α = 1

2

)
,

1

4απ
N
2

· Γ
(

N
2 − α

)
Γ(α)

|x|−N+2α
(

N
2 > α

)
.

(ii) The function space K̂N,α is defined as follows:

K̂N,α :=
{
V ∈ L1

loc(R
N )

∣∣ ‖V ‖K̂N,α
<∞}

,where

‖V ‖K̂N,α
:= ess.sup

x∈RN

∫
|x−y|<1

|gN,α(x− y)||V (y)| dy.

(iii) For all V ∈ K̂N,α, the quantity cN,α(V ) is defined by

cN,α(V ) := lim
ρ↓0

ess.sup
x∈RN

∫
|x−y|<ρ

|gN,α(x− y)||V (y)| dy.

Remark 2.11. (i) In the case of N
2 > α, the function gN,α is the Riesz kernel

of order 2α.
(ii) K̂N,α is a Banach space with norm ‖·‖K̂N,α

.
(iii) In Definition (ii), we may replace the integral region by |x− y| < δ for

any δ > 0, since there exist constants C1, C2 > 0 such that

C1

∥∥|gN,α,δ| ∗ |V |∥∥∞ ≤ ∥∥|gN,α,1| ∗ |V |∥∥∞ ≤ C2

∥∥|gN,α,δ| ∗ |V |∥∥∞,
where gN,α,η := gN,αχB(0,η) for any η > 0.

(iv) For all V ∈ K̂N,α, the quantity cN,α(V ) is clearly finite.
(v) gN,α and K̂N,α have the following relation to gN and K̂N defined in [18,

p. 183]: For all α ∈ (0, 1), |gN (x)| ≤ |gN,α(x)| holds if |x| > 0 small enough,
and hence K̂N,α ⊂ K̂N for all α ∈ (0, 1).

We define function spaces which have a relation to K̂N,α.
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Definition 2.12. For each p ∈ [1,∞), the function space Lp
loc,unif is defined

as follows:

Lp
loc,unif = Lp

loc,unif (RN ) :=
{
V ∈ Lp

loc(R
N )

∣∣ ‖V ‖p,loc,unif <∞}
,where

‖V ‖p,loc,unif := ess.sup
x∈RN

(∫
|x−y|<1

|V (y)|p dy
) 1

p
.

Lp
loc,unif is a Banach space with norm ‖·‖p,loc,unif for all p ∈ [1,∞). It

is clear that L∞ ↪→ Lq
loc,unif ↪→ Lp

loc,unif for all 1 ≤ p ≤ q < ∞, where ↪→
means the continuous embedding. A relation to K̂N,α is stated in the next
proposition.

Proposition 2.13. Let α ∈ (0, 1).
(i) In the case of N

2 < α (i.e. N = 1, 1
2 < α < 1),

L1
loc,unif (R) = K̂1,α

(as linear spaces, and the norms are equivalent).
(ii) In the case of N

2 ≥ α,

Lp
loc,unif (RN ) ↪→ K̂N,α ↪→ L1

loc,unif (RN )

for all p ∈ (
N
2α ,∞

)
.

In each case, if V belongs to the leftmost space, then cN,α(V ) = 0.

Proof. We first prove assertion (i) and c1,α(V ) = 0 for all V ∈ L1
loc,unif (R).

It is easy to see that if V ∈ L1
loc,unif (R), then V ∈ K̂1,α and ‖V ‖K̂1,α

≤
‖V ‖1,loc,unif . Conversely, let V ∈ K̂1,α and we put Iy :=

[
y − 1, y − 1

2

] ∪ [
y +

1
2 , y + 1

]
for all y ∈ R. Note that [−1, 1] ⊂ ⋃1

j=−1 Ij and g1,α(x) ≥ 1
2 for all

x ∈ I0. For a.e. x ∈ R,∫
|y|<1

|V (x− y)| dy ≤
1∑

j=−1

∫
Ij

|V (x− y)| dy

=
1∑

j=−1

∫
I0

|V (x− j − y)| dy

≤ 2
1∑

j=−1

∫
I0

g1,α(y)|V (x− j − y)| dy

≤ 2
1∑

j=−1

∥∥|V | ∗ g1,α

∥∥
∞

= 6
∥∥|V | ∗ g1,α

∥∥
∞ = 6‖V ‖K̂1,α

.
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Hence, V ∈ L1
loc,unif (R), ‖V ‖1,loc,unif ≤ 6‖V ‖K̂1,α

. In addition, if V ∈
L1

loc,unif (R), then for each 1
2 < α < 1 and 0 < ρ ≤ 1,

ess.sup
x∈R

∫
|x−y|<ρ

|g1,α(x− y)||V (y)| dy ≤ ρ‖V ‖1,loc,unif .

By taking the limit as ρ ↓ 0, we obtain c1,α(V ) = 0.
Next, we prove K̂N,α ↪→ L1

loc,unif (RN ) in the case of N
2 ≥ α. Let V ∈ K̂N,α.

We can take finite points x1, . . . , xn ∈ R
N such that

B(0, 1) ⊂
n⋃

j=1

B
(
xj ,

1
2

)
.

Note that for all x ∈ R
N , B(x, 1) ⊂ ⋃n

j=1B
(
x + xj ,

1
2

)
and that by the

definition of ‖·‖K̂N,α
and Fatou’s lemma,∫

B(x+xj ,1)
|gN,α(x+ xj − y)||V (y)| dy ≤ ‖V ‖K̂N,α

for all x ∈ R
N and j = 1, . . . , n. Now we put CN,α :=

∣∣gN,α

(
1
2e

)∣∣, where e ∈
R

N and |e| = 1 (note that CN,α is independent of such e’s), then |gN,α(x)| >
CN,α for all x ∈ B

(
0, 1

2

)
. Hence, for all x ∈ R

N ,∫
B(x,1)

|V (y)| dy ≤
n∑

j=1

∫
B(x+xj , 1

2
)
|V (y)| dy

≤ 1
CN,α

n∑
j=1

∫
B(x+xj , 1

2
)
|gN,α(x+ xj − y)||V (y)| dy

≤ n

CN,α
‖V ‖K̂N,α

.

Thus, V ∈ L1
loc,unif and ‖V ‖1,loc,unif ≤ n

CN,α
‖V ‖K̂N,α

.

Finally, in the case of N
2 ≥ α, we prove Lp

loc,unif (RN ) ↪→ K̂N,α for all
p ∈ (

N
2α ,∞

)
and the last assertion of this proposition. If V ∈ Lp

loc,unif

(
p ∈(

N
2α ,∞

))
, then for all ρ ∈ (0, 1], a.e. x ∈ R

N and the conjugate exponent p′ of
p, we obtain∫

|x−y|<ρ
|gN,α(x− y)||V (y)| dy

≤
(∫

|x−y|<ρ
|gN,α(x− y)|p′ dy

) 1
p′
(∫

|x−y|<ρ
|V (y)|p dy

) 1
p

(by Hölder’s inequality)
≤ ‖gN,α‖Lp′ (B(0,ρ))‖V ‖p,loc,unif .
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Since gN,α ∈ Lp′(B(0, 1)
)

for all p ∈ (
N
2α ,∞

)
, we have V ∈ K̂N,α, ‖V ‖K̂N,α

≤
‖gN,α‖Lp′ (B(0,1))‖V ‖p,loc,unif for all p ∈ (

N
2α ,∞

)
and

cN,α(V ) ≤ lim
ρ↓0

‖gN,α‖Lp′ (B(0,ρ))‖V ‖p,loc,unif = 0

holds.

Theorem 2.14. Suppose that V− ∈ K̂N,α and cN,α(V−) < 1 and that V+ is
Uα-admissible. Then V is Uα,p-admissible for all p ∈ [1,∞).

Before proving this theorem, we give an example of a potential which is
Uα,p-admissible for all p ∈ [1,∞). Let λ > 0 and a potential V be defined by
V (x) := |x|−λ (x ∈ R

N \ {0}). It is easy to see that for any p ∈ [1,∞), the
following (i) and (ii) are equivalent: (i) V ∈ Lp

loc,unif , (ii)
∫
|y|<1 V (y)p dy <∞.

In the case where N
2 < α (i.e. N = 1, 1

2 < α < 1), 0 < λ < 1 and 1 ≤ p < 1
λ or

in the case where N
2 ≥ α, λ ∈ (0, 2α) and N

2α < p < N
λ , condition (ii) is satisfied.

Hence, V ∈ Lp
loc,unif in each of the cases and hence, by Proposition 2.13

and this theorem, V is Uα,p-admissible for all p ∈ [1,∞). In particular, the
Coulomb potential V (x) := c|x|−1 in R

3 (c is a constant) is Uα,p-admissible
for all α ∈ (

1
2 , 1

)
and p ∈ [1,∞).

For the proof of Theorem 2.14, we need the following lemmas and propo-
sition (cf. [18, Lemma B.1, B.2, Proposition 5.1]). To state the lemmas and
proposition and prove Theorem 2.14, we introduce the notion of “semigroup
boundedness” defined in [18, Definition 1.2].

Definition 2.15. Let U :=
(
U(t)

)
t≥0

be a C0-semigroup on a Banach space
X, with generator T . An operator B in X will be called U -bounded, if B is
T -bounded and there exist an η ∈ (0,∞] and γ ≥ 0 such that

(2.14)
∫ η

0
‖BU(t)x‖ dt ≤ γ‖x‖

holds for all x ∈ D(T ) (see also the remark below). The number

inf{γ ≥ 0 | there exists an η > 0 such that (2.14) holds for all x ∈ D(T )}

is called the U -bound of B. If B is U -bounded with U -bound < 1, then B will
be called U -small.

Remark 2.16. By T -boundedness of B, for all x ∈ D(T ), U(t)x ∈ D(T ) ⊂
D(B) for all t ≥ 0 and the X-valued function t �→ BU(t)x is continuous on
[0,∞). Hence, this function is Bochner integrable on [0, η] for all η > 0.
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Lemma 2.17. For any c > 1 and η > 0, there exists a δ0 ∈ (0, 1] such that

∥∥|V | ∗ |gN,α,δ|
∥∥
∞ ≤ c

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥
for all δ ∈ (0, δ0] and V which is Uα,1-bounded, where ‖V ∫ η

0 Uα,1(t) dt‖ denotes
the L(L1)-norm of the composition of V and

∫ η
0 Uα,1(t) dt. (If V is Uα,1-

bounded, then for a sufficiently small η > 0, the norm is finite by the equality
(2.15) below and Definition 2.15.)

Proof. It is easy to verify the following equality corresponding to (B.1) in [18]:
For all Uα,1-bounded V and η > 0,

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥(2.15)

= sup
{∫ η

0
‖V Uα,1(t)u‖1 dt

∣∣∣ u ∈ L1, ‖u‖1 ≤ 1
}

(by [18, Proposition 4.7 (a)])

= ess.sup
x∈RN

∫
RN

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy

= α ess.sup
x∈RN

∫
RN

|V (x− y)||y|−N+2α

×
(∫ ∞

η− 1
α |y|2

τ
N
2
−α−1Kα(1, τ

1
2 e) dτ

)
dy,

where e ∈ R
N and |e| = 1. For the last equality, we use the fact thatKα(t, y) =

t−
N
2αKα(1, t−

1
2α y) for all t > 0 and y ∈ R

N , and use the change of variables
t−

1
α |y|2 = τ . Therefore, it is sufficient to show that there exists a δ0 ∈ (0, 1]

such that

(2.16) |gN,α,δ(y)| ≤ cα|y|−N+2α

∫ ∞

η− 1
α |y|2

τ
N
2
−α−1Kα(1, τ

1
2 e) dτ

for all δ ∈ (0, δ0] and y ∈ B(0, δ).
First case: N

2 < α (i.e. N = 1, 1
2 < α < 1). The right-hand side of (2.16)

is estimated as follows:

α|y|−1+2α

∫ ∞

η− 1
α |y|2

τ−
1
2
−αKα(1, τ

1
2 ) dτ

≥ C ′
αα|y|−1+2α

∫ ∞

η− 1
α |y|2

τ−
1
2
−α 1

(1 + τ)
1
2
+α

dτ
(
by (2.1)

)
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= C ′
αα|y|−1+2α

( 2
2α− 1

· η1− 1
2α |y|1−2α(

1 + η−
1
α |y|2) 1

2
+α

− 2α+ 1
2α− 1

∫ ∞

η− 1
α |y|2

τ
1
2
−α

(1 + τ)
3
2
+α

dτ
)

(by the integration by parts)

≥ C ′
α · α

2α− 1

(
2η1− 1

2α(
1 + η−

1
α |y|2) 1

2
+α

− (2α+ 1)
∫ ∞

0

τ
1
2
−α

(1 + τ)
3
2
+α

dτ · |y|−1+2α

)
.

Since the limit as |y| → 0 of the right-hand side of the last inequality is
C ′

α · 2α
2α−1η

1− 1
2α > 0,

α|y|−1+2α

∫ ∞

η− 1
α |y|2

τ−
1
2
−αKα(1, τ

1
2 ) dτ ≥ const. ≥ |y| = gN,α(y)

for all |y| < δ if δ is small enough.
Second case: N

2 = α (i.e. N = 1, α = 1
2). In this case, Kα(t, x) is the

Poisson kernel:

Kα(t, x) =
1
π
· t

t2 + x2
(t > 0, x ∈ R).

For 0 < δ < min{1, η} and 0 < |y| < η, the right-hand side of (2.16) is
estimated as follows:

α

∫ ∞

η− 1
α |y|2

τ−
1
2
−αKα(1, τ

1
2 ) dτ

=
1
2π

∫ ∞

η−2|y|2
1
τ
· 1
1 + τ

dτ

=
1
2π

log
(
1 +

η2

|y|2
)

≥ 1
π

log
η

|y|
= − 1

π
log |y|

(
1 − log η

log |y|
)
.

Since 1 − log η
log |y| → 1 as |y| → 0, for c in the statement of this lemma,

cα

∫ ∞

η− 1
α |y|2

τ−1Kα(1, τ
1
2 ) dτ ≥ 1

π

∣∣log |y|∣∣ = |gN,α(y)|
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for |y| < δ if δ is small enough.
Third case: N

2 > α. We have only to prove that

α|y|−N+2α

∫ ∞

0
τ

N
2
−α−1Kα(1, τ

1
2 e) dτ = gN,α(y)

for all y ∈ R
N , where e ∈ R

N and |e| = 1. Recalling the representation (2.7)
of Kα by K1, we have∫ ∞

0
τ

N
2
−α−1Kα(1, τ

1
2 e) dτ

=
∫ ∞

0
τ

N
2
−α−1

(∫ ∞

0
f1,α(s)K1(s, τ

1
2 e) ds

)
dτ

=
∫ ∞

0
f1,α(s)

(∫ ∞

0
τ

N
2
−α−1K1(s, τ

1
2 e) dτ

)
ds

(by Fubini’s theorem)

=
∫ ∞

0
f1,α(s)

(
1

(4πs)
N
2

∫ ∞

0
τ

N
2
−α−1e−

τ
4s dτ

)
ds

=
1

4απ
N
2

∫ ∞

0
f1,α(s)s−α

(∫ ∞

0
τ

N
2
−α−1e−τ dτ

)
ds

=
1

4απ
N
2

Γ
(

N
2 − α

) ∫ ∞

0
f1,α(s)s−α ds.

By using the equality (2.17) that is proved separately in Lemma 2.18, we
obtain

α|y|−N+2α

∫ ∞

0
τ

N
2
−α−1Kα(1, τ

1
2 e) dτ

= α|y|−N+2α · 1

4απ
N
2

Γ
(

N
2 − α

) · 1
αΓ(α)

=
1

4απ
N
2

· Γ
(

N
2 − α

)
Γ(α)

|y|−N+2α = gN,α(y).

Therefore, the proof is completed.

Lemma 2.18. Let α ∈ (0, 1). The equality

(2.17)
∫ ∞

0
f1,α(s)s−α ds =

1
αΓ(α)

holds.
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Proof. Let 0 < σ0 < ε. For all σ ∈ (0, σ0),∫ ∞

0
e−εsf1,α(s)s−α ds(2.18)

=
1

2πi

∫ ∞

0

(∫ σ+i∞

σ−i∞
esz−zα

dz
)
e−εss−α ds

=
1

2πi

∫ σ+i∞

σ−i∞

(∫ ∞

0
e−(ε−z)ss−α ds

)
e−zα

dz

(by Fubini’s theorem)

=
1

2πi

∫ σ+i∞

σ−i∞
Γ(1 − α)

(ε− z)1−α
e−zα

dz.

The reason why we could apply Fubini’s theorem above is that the estimate

|esz−zα
e−εss−α| ≤ e−(ε−σ)ss−αe−|η|α cos πα

2

holds for all z = σ + iη (η ∈ R) and the right-hand side function is integrable
with respect to (s, η) on (0,∞) × R.

In addition, for z = σ + iη (0 < σ < σ0, η ∈ R), the estimate∣∣∣ 1
(ε− z)1−α

e−zα
∣∣∣ ≤ 1

(ε− σ0)1−α
e−|η|α cos πα

2

holds and the right-hand side function is integrable with respect to η on R.
Since f1,α is independent of σ > 0, by applying Lebesgue’s convergence theo-
rem to the rightmost side of (2.18), we have∫ ∞

0
e−εsf1,α(s)s−α ds(2.19)

=
Γ(1 − α)

2πi
lim
σ↓0

∫ σ+i∞

σ−i∞
1

(ε− z)1−α
e−zα

dz

=
Γ(1 − α)

2πi

∫ i∞

−i∞
1

(ε− z)1−α
e−zα

dz

for all ε > 0. Since the function s �→ f1,α(s)s−α is integrable on (0,∞) by
Lemma 2.4 (iii) and (iv), by Lebesgue’s convergence theorem,

(2.20) lim
ε↓0

∫ ∞

0
e−εsf1,α(s)s−α ds =

∫ ∞

0
f1,α(s)s−α ds.

On the other hand, the integrand of the rightmost side of (2.19) satisfies the
estimate ∣∣∣ 1

(ε− z)1−α
e−zα

∣∣∣ ≤ 1
|η|1−α

e−|η|α cos πα
2
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for z = iη (η ∈ R) and the right-hand side function of this inequality is
integrable with respect to η on R. Hence, by Lebesgue’s convergence theorem
again,

(2.21) lim
ε↓0

∫ i∞

−i∞
1

(ε− z)1−α
e−zα

dz =
∫ i∞

−i∞
1

(−z)1−α
e−zα

dz.

By (2.19), (2.20) and (2.21), the equality∫ ∞

0
f1,α(s)s−α ds

=
Γ(1 − α)

2πi

∫ i∞

−i∞
1

(−z)1−α
e−zα

dz

=
Γ(1 − α)

2π

(∫ ∞

0

1
(−iη)1−α

e−iαηα
dη +

∫ ∞

0

1
(iη)1−α

e−(−i)αηα
dη

)
=

Γ(1 − α)
2π

(
ei

π
2
(1−α) · 1

α
e−i πα

2 + e−i π
2
(1−α) · 1

α
ei

πα
2

)
=

2 cos(π
2 (1 − 2α))
2πα

Γ(1 − α)

=
sinπα
πα

Γ(1 − α) =
1

αΓ(α)

holds.

Lemma 2.19. For any c > 1 and δ ∈ (0, 1], there exists an η0 > 0 such that∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ ≤ c
∥∥|V | ∗ |gN,α,δ|

∥∥
∞

for all η ∈ (0, η0] and V ∈ K̂N,α.

Proof. We first show that for all c′ ∈ (1, c) there exist a δ′ > 0 and η1 > 0
such that

(2.22) ess.sup
x∈RN

∫
|y|<δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy ≤ c′

∥∥|V | ∗ |gN,α,δ|
∥∥
∞

for all η ∈ (0, η1], where c and δ are as in the statement of this lemma.
First case: N

2 < α (i.e. N = 1, 1
2 < α < 1). Since 0 ≤ Kα(t, y) ≤

Cαt(t
1
α + |y|2)− 1

2
−α ≤ Cαt

− 1
2α for all t > 0 and y ∈ R

N by (2.1),∫ η

0
Kα(t, y) dt ≤ Cα

∫ η

0
t−

1
2α dt = Cη1− 1

2α
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for all y ∈ R
N and η > 0. Hence, taking δ′ = 1, we can estimate the left-hand

side of (2.22) as follows:

ess.sup
x∈RN

∫
|y|<δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy

≤ Cη1− 1
2α ‖V ‖1,loc,unif

≤ Cη1− 1
2α

∥∥|V | ∗ |gN,α,δ|
∥∥
∞

≤ c′
∥∥|V | ∗ |gN,α,δ|

∥∥
∞

for a sufficiently small η > 0 (note that the exponent 1 − 1
2α of η is positive).

Second case: N
2 = α (i.e. N = 1, α = 1

2). Let η ∈ (0, 1]. As in the second
case of the proof of Lemma 2.17, we have

0 ≤
∫ η

0
Kα(t, y) dt ≤

∫ 1

0
Kα(t, y) dt

= α

∫ ∞

|y|2
1
τ
· 1
1 + τ

dτ

=
1
2π

log
(
1 +

1
|y|2

)
≤ c′

π

∣∣log |y|∣∣
for |y| < δ′ if δ′ is small enough. Hence, let δ′ > 0 be such small and smaller
than δ, then we can estimate the left-hand side of (2.22) as follows:

ess.sup
x∈RN

∫
|y|<δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy ≤ c′

∥∥|V | ∗ |gN,α,δ′ |
∥∥
∞

≤ c′
∥∥|V | ∗ |gN,α,δ|

∥∥
∞.

Third case: N
2 > α. By the result in the third case of the proof of

Lemma 2.17, we have

0 ≤
∫ η

0
Kα(t, y) dt

≤ α|y|−N+2α

∫ ∞

0
τ

N
2
−α−1Kα(1, τ

1
2 e) dτ

= gN,α(y)

for all η > 0 and y ∈ R
N . Hence, let δ′ = δ, then the left-hand side of (2.22)

is estimated as follows:

ess.sup
x∈RN

∫
|y|<δ

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy ≤ ∥∥|V | ∗ |gN,α,δ|

∥∥
∞

≤ c′
∥∥|V | ∗ |gN,α,δ|

∥∥
∞.
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Hence, it is sufficient to prove the assertion of this lemma that for any ε > 0
and δ′ > 0, there exists an η2 > 0 such that

(2.23) ess.sup
x∈RN

∫
|y|>δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy ≤ ε

∥∥|V | ∗ |gN,α,δ|
∥∥
∞

for all η ∈ (0, η2] and V ∈ K̂N,α. Since 0 ≤ Kα(t, y) ≤ Cαt|y|−N−2α for all
t > 0 and y �= 0 by (2.1),

ess.sup
x∈RN

∫
|y|>δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy

≤ 1
2Cαη

2 ess.sup
x∈RN

∫
|y|>δ′

|V (x− y)||y|−N−2α dy

for all δ′ > 0 and η > 0. We will show the estimate

(2.24) ess.sup
x∈RN

∫
|y|>δ′

|V (x− y)||y|−N−2α dy ≤ Cα,δ′‖V ‖1,loc,unif

for all δ′ > 0. On one hand, for all x ∈ R
N and η > 0,∫

|y|> 2
3
δ′

(∫
|z|< δ′

3

|V (x− y + z)||y − z|−N−2α dz
)
dy

=
∫
|z|< δ′

3

(∫
|y|> 2

3
δ′
|V (x− y + z)||y − z|−N−2α dy

)
dz

(by Fubini’s theorem)

≥
∫
|z|< δ′

3

(∫
|y−z|>δ′

|V (x− y + z)||y − z|−N−2α dy
)
dz

=
∫
|z|< δ′

3

(∫
|y|>δ′

|V (x− y)||y|−N−2α dy
)
dz

=
∣∣B(

0, δ′
3

)∣∣ ∫
|y|>δ′

|V (x− y)||y|−N−2α dy.

On the other hand, if |y| > 2
3δ

′ and |z| < δ′
3 , then |y − z| > |y|

2 . Hence, for
a.e. x ∈ R

N and all η > 0,∫
|y|> 2

3
δ′

(∫
|z|< δ′

3

|V (x− y + z)||y − z|−N−2α dz
)
dy

≤ 2N+2α

∫
|y|> 2

3
δ′

(∫
|z|< δ′

3

|V (x− y + z)| dz
)
|y|−N−2α dy

≤ 2N+2α

∫
|y|> 2

3
δ′
|y|−N−2α dy · ‖V ‖1,loc,unif .
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By Proposition 2.13, there exists a constant C > 0 such that ‖V ‖1,loc,unif ≤
‖V ‖K̂N,α

for all V ∈ K̂N,α. By Remark 2.11 (iii), there exists a constant C ′ > 0

such that ‖V ‖K̂N,α
≤ C ′‖|V | ∗ |gN,α,δ|‖∞ for all V ∈ K̂N,α. Thus, we obtain

(2.24) and hence

ess.sup
x∈RN

∫
|y|>δ′

|V (x− y)|
(∫ η

0
Kα(t, y) dt

)
dy ≤ Cα,δ′,δ η

2
∥∥|V | ∗ |gN,α,δ|

∥∥
∞

for all η > 0 and V ∈ K̂N,α. Hence, for all ε > 0 and δ′ > 0, there exists an
η2 > 0 such that (2.23) holds for all η ∈ (0, η2] and V ∈ K̂N,α. Thus, the proof
of this lemma is completed.

Proposition 2.20. Let V : R
N → R be a measurable function. Then the

following assertions hold.

(i) The following conditions are equivalent:

(a) V ∈ K̂N,α,
(b) V is Uα,1-bounded,
(c) V is Hα,1-bounded,
(d) The following quantity c′N,α(V ) is finite.

(2.25) c′N,α(V ) := lim
η↓0

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥.
(ii) There exist constants c1, c2, c3 > 0 such that

‖V ‖K̂N,α
≤ c1

∥∥∥V ∫ 1

0
Uα,1(t) dt

∥∥∥ ≤ c2‖V (Hα,1 + 1)−1‖ ≤ c3‖V ‖K̂N,α

for all V ∈ K̂N,α.

(iii) If V ∈ K̂N,α, then cN,α(V ) = c′N,α(V ) = limλ→∞‖V (Hα,1 + λ)−1‖ is
the Uα,1-bound of V . Therefore, we have cN,α(V ) = 0 if and only if the
Hα,1-bound of V is 0.

Remark 2.21. By (2.15), we can write c′N,α(V ) also as

c′N,α(V ) = α lim
η↓0

ess.sup
x∈RN

∫
RN

|V (x− y)||y|−N+2α

×
(∫ ∞

η− 1
α |y|2

t
N
2
−α−1Kα

(
1, t

1
2 e

)
dt
)
dy,

where e ∈ R
N and |e| = 1. Note that Kα(1, se) is independent of such e’s for

all s ≥ 0.
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Proof. (i): (b) ⇔ (c) holds by [18, Proposition 4.7 (a)].
(b) ⇒ (a). If V is Uα,1-bounded, then there exist an η > 0 and δ > 0 such

that ∥∥|V | ∗ |gN,α,δ|
∥∥
∞ ≤ 2

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ <∞

by Lemma 2.17. Hence, V ∈ K̂N,α.
(a) ⇒ (d). If V ∈ K̂N,α, then there exists an η0 > 0 such that∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ ≤ 2
∥∥|V | ∗ |gN,α,1|

∥∥
∞ = 2‖V ‖K̂N,α

<∞

for all η ∈ (0, η0] by Lemma 2.19. By the definition of c′N,α(V ), we have
c′N,α(V ) <∞.

(d) ⇒ (b). By the assumption (d), there exists an η > 0 such that the
following cη is finite:

cη := α ess.sup
x∈RN

∫
RN

|V (x− y)||y|−N+2α
(∫ ∞

η− 1
α |y|2

τ
N
2
−α−1Kα(1, τ

1
2 e) dτ

)
dy.

For this η > 0 and all u ∈ L1,∫ η

0

(∫
RN

|V (x)|∣∣(Uα,1(t)u
)
(x)

∣∣ dx) dt ≤ cη‖u‖1

by the fact that Uα,1(t)u = Kα(t, ·) ∗ u for all t > 0 and u ∈ L1, and by
a straightforward calculation. This inequality implies that for all u ∈ L1,
Uα,1(t)u ∈ D(V ) in L1 for a.e. t ∈ [0, η) and the L1-valued function t �→
V Uα,1(t)u is Bochner integrable on [0, η), and in addition the estimate

(2.26)
∥∥∥V ∫ η

0
Uα,1(t)u dt

∥∥∥ ≤ cη‖u‖1

for all u ∈ L1. Hence V is Hα,1-bounded by [18, Proposition 1.3]. By this
Hα,1-boundedness and the estimate (2.26), V is Uα,1-bounded.

(ii) Let an arbitrary c > 1 be fixed in the proof of this assertion.
First inequality: By Lemma 2.17, there exists a δ ∈ (0, 1] such that

∥∥|V | ∗ |gN,α,δ|
∥∥
∞ ≤ c

∥∥∥V ∫ 1

0
Uα,1(t) dt

∥∥∥
for all V ∈ K̂N,α. As stated in Remark 2.11 (iii), there exists a constant
Cδ > 0 such that

‖V ‖K̂N,α
≤ Cδ

∥∥|V | ∗ |gN,α,δ|
∥∥
∞

for all V ∈ K̂N,α. Thus, the first inequality in the assertion (ii) holds.
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Second and third inequality: By [18, Proposition 4.7 (b)], there exist con-
stants κ1, κ2 > 0 such that∥∥∥V ∫ 1

0
Uα,1(t) dt

∥∥∥ ≤ κ1

∥∥V (Hα,1 + 1)−1
∥∥ ≤ κ2

∥∥∥V ∫ 1

0
Uα,1(t) dt

∥∥∥
for all V ∈ K̂N,α. Hence, the second inequality in (ii) holds. In addition, by
Lemma 2.19, there exists an η > 0 such that∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ ≤ c
∥∥|V | ∗ |gN,α,1|

∥∥
∞ = c‖V ‖K̂N,α

for all V ∈ K̂N,α. For this η > 0 and 1
m < η (m ∈ N),

∥∥∥V ∫ 1

0
Uα,1(t) dt

∥∥∥ ≤
m−1∑
j=0

∥∥∥V ∫ j+1
m

j
m

Uα,1(t) dt
∥∥∥

≤
m−1∑
j=0

∥∥∥V ∫ 1
m

0
Uα,1(t) dt

∥∥∥∥∥Uα,1

( j
m

)∥∥
≤ m

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥.
For the last inequality, we used the contractivity of Uα,1 by Proposition 2.2 (iii).
Thus, the third inequality in (ii) holds.

(iii) Let V ∈ K̂N,α. By assertion (i), V is Uα,1-bounded. Let c > 1. Then,
for all η > 0

lim sup
δ↓0

∥∥|V | ∗ |gN,α,δ|
∥∥
∞ ≤ c

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥
holds by Lemma 2.17, hence

(2.27) lim sup
δ↓0

∥∥|V | ∗ |gN,α,δ|
∥∥
∞ ≤ c lim inf

η↓0

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥.
On the other hand, Lemma 2.19 implies

lim sup
η↓0

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ ≤ c
∥∥|V | ∗ |gN,α,δ|

∥∥
∞

for every δ ∈ (0, 1], hence

(2.28) lim sup
η↓0

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ ≤ c lim inf
δ↓0

∥∥|V | ∗ |gN,α,δ|
∥∥
∞.
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Note that (2.27) and (2.28) holds for c = 1. Hence, by the definition of cN,α(V )
and (2.27), (2.28) for c = 1 and (2.25), the following limits exist and

cN,α(V ) = lim
δ↓0

∥∥|V | ∗ |gN,α,δ|
∥∥
∞ = lim

η↓0

∥∥∥V ∫ η

0
Uα,1(t) dt

∥∥∥ = c′N,α(V )

for all V ∈ K̂N,α. By [18, Proposition 4.7 (c)], cN,α(V ) is Uα,1-bound of V
and the last statement of (iii) holds.

Proof of Theorem 2.14. By the assumption for V− and Proposition 2.20, −V−
is Uα,1-small. Hence, −V− is Uα,p-admissible for all p ∈ [1,∞) by [18, Re-
mark 2.1 (b)] and Proposition 2.9. On the other hand, V+ is Uα,p-admissible
for all p ∈ [1,∞) by Proposition 2.9. Thus, V is Uα,p-admissible for all
p ∈ [1,∞).

Proposition 2.13 gives a sufficient condition that guarantees that a poten-
tial V satisfies V ∈ K̂N,α and cN,α(V ) < 1, which are assumed for V− in
Theorem 2.14. In the following proposition, we give a necessary and sufficient
condition for a positive potential V to be Uα,p-admissible for all p ∈ [1,∞).

Proposition 2.22 (cf. [18, Proposition 5.8 (a)]). Let V : R
N → R be a non-

negative measurable function. Then the following assertions are equivalent:
(i) V is Uα,p-admissible for some (all) p ∈ [1,∞),
(ii) Hα ∩Q(V ) is dense in L2, where Q(V ) is the form domain of V .
Hence, if V ∈ L1

loc(R
N ), then V is Uα,p-admissible for all p ∈ [1,∞).

Proof. We can prove that (i) and (ii) are equivalent in a similar way as in
[18, Proposition 5.8 (a)]. If V ∈ L1

loc(R
N ), then Hα ∩ Q(V ) is dense in L2

since Hα ∩ Q(V ) includes C∞
c (RN ). Hence, V is Uα,p-admissible for all p ∈

[1,∞).

§3. The Feynman-Kac formula and Lp-Lq estimates for e`tH¸;2;V

In the proofs of the main theorems, Lp-Lq estimates for the semigroup e−tHα,p,V

play an important role. These estimates follow from the Feynman-Kac formula
and a corollary to the so-called Khas’minskii’s lemma.

3.1. The Feynman-Kac formula for e`tH¸;p;V

Voigt established the Feynman-Kac formula for a Schrödinger semigroup (=
e−tH1,p,V ) for a rather general potential in [18, Proposition 6.1]. On the
other hand, M. Demuth and J.A. van Casteren [4, Theorem 2.5] showed the
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Feynman-Kac formulas for Feller semigroups perturbed by certain potentials.
While their result can be applied to many Feller semigroups, in the case of
the heat semigroup etΔ, the coverage for potentials is restricted as compared
with [18, Proposition 6.1]. In view of the difference between these results,
there is a possibility that, for a larger class of potentials than the one in [4,
Theorem 2.5], e−tHα,p,V is represented by the Feynman-Kac formula. In fact,
we can prove the Feynman-Kac formula for e−tHα,p,V for such a larger class
of potentials, by using some preliminaries concerning a Hunt process (cf. [2,
p. 45] for the definition). First, we fix some notations. For any topological
space X, the symbol B(X) denotes the family of the Borel sets of X. In
particular, for X = R

N , we define E := B(RN ). E∞ and E∞ denotes the one
point compactification of R

N by a point x∞ (�∈ R
N ) and B(E∞), respectively.

Let α ∈ (0, 1]. As is easily proved by using Proposition 2.2, we can define
the Markov transition function Kα(t, x, A) by

Kα(t, x, A) :=

⎧⎨⎩
∫

A
Kα(t, x− y) dy (t > 0, x ∈ R

N , A ∈ E ),

δx(A) (t = 0, x ∈ R
N , A ∈ E ),

where δx is the unit mass at x. It is immediately verified from Proposition 2.2
that this Markov transition function induces a Feller semigroup on C∞(RN )
(for the definition, see [4, B.11]) by defining the semigroup by∫

RN

Kα(t, x, dy)u(y) =
(
Kα(t, ·) ∗ u)(x)

for all t > 0, u ∈ L∞(RN ) and a.e. x ∈ R
N . Hence, the Markov transition

function satisfies the assumptions in [2, Theorem 9.4] since the assumptions (1)
and (2) is the same as the condition (i) and (v′) in [4, B.11], respectively.

Hence, there exists a Hunt process (Ω,F ,Ft, Xt, θt,W
α
x ) with state space

(RN ,E ) and transition function Kα(t, x, A) by Theorem 9.4 in [2]. This Hunt
process consists of the following objects:

(i) Ω ⊂ ET∞, where T := [0,∞] and Ω consists of all the elements of ET∞
satisfying the following conditions:

(a) the function t �→ ω(t) is right continuous on [0,∞) and has the left
limit on (0,∞),

(b) ω(∞) = x∞,

(c) If ω(t) = x∞ for some t ≥ 0, then ω(s) = x∞ for all s ≥ t.
Now, we define the special element ω∞ ∈ Ω by ω∞(t) = x∞ for all
t ∈ T .
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(ii) For all t ∈ T , we define the function Xt : Ω → E∞ by Xt(ω) = ω(t) for
all ω ∈ Ω. Note that X∞(ω) = ω(∞) = x∞ for all ω ∈ Ω.

(iii) (Ω,Ft,W
α
x ) is a probability space for all x ∈ E∞ constructed from the

following probability space (Ω,F 0
t ,W

α
x ) as follows. F 0

t denotes the σ-
algebra generated by {Xs; 0 ≤ s ≤ t} in Ω for all t ∈ T . Wα

x is a unique
probability measure on (Ω,F 0∞) satisfying the following conditions:

(a) In the case of x ∈ R
N , for 0 ≤ t1 < · · · < tn < ∞, Bk ∈ E∞ (k =

1, . . . , n),

Wα
x

({
ω ∈ Ω

∣∣(ω(t1), . . . , ω(tn)) ∈ B1 × · · · ×Bn

})
=

∫
(B1\{x∞})×···×(Bn\{x∞})

Kα(t1, x1 − x)Kα(t2 − t1, x2 − x1) × · · ·

×Kα(tn − tn−1, xn − xn−1) dx1dx2 · · · dxn,

(b) In the case of x = x∞, Wα
x = δω∞ , where δω∞ is the probabil-

ity measure on (Ω,F 0∞) defined by δω∞({ω∞}) = 1. (Note that
{ω∞} = X−1

0 (x∞) ∈ F 0
0 ⊂ F 0∞.)

F denotes the completion of F 0∞ with respect to {Wα
x ;x ∈ R

N}. Ft

denotes the completion of F 0
t in F with respect to {Wα

x ;x ∈ R
N}

for all t ∈ T . For the definitions of these completions, see [2, (5.2)
and Definition 5.3] and see also the remark below. We use the same
symbol Wα

x for its extension to F .

(iv) θt is the translation operator for all t ∈ T , i.e., for all t ∈ T , the function
θt : Ω → Ω satisfies Xs ◦ θt = Xs+t for all s ∈ T .

Remark 3.1. According to the statement above Definition 5.7 and (5.15) in
[2], we should use the family of measures {Wα

x ;x ∈ E∞} to define the σ-
algebras F and Ft (t ∈ T ). However, it is easily verified that the completion
of F 0∞ with respect to Wα

x∞ is the power set 2Ω and that the completion of
F 0

t in F with respect to Wα
x∞ is F . Hence, such completions with respect to

{Wα
x ;x ∈ R

N} are the same as the ones with respect to {Wα
x ;x ∈ E∞}.

From now on, (Ω,F ,Ft, Xt, θt,W
α
x ) denotes the Hunt process associated with

the transition function Kα(t, x, A). Then, for all ω ∈ Ω, the function t �→
Xt(ω) is right continuous on [0,∞) and has the left limit on (0,∞). Hence,
for all ω ∈ Ω, the function t �→ Xt(ω) is continuous on [0,∞) except at most
countable points (cf. [8, Lemma 3.3.5]). In the case of α = 1, it is well known
that for all ν ∈ (

0, 1
2

)
, x ∈ E∞ and Wα

x -a.e. ω ∈ Ω, the function t �→ Xt(ω)
is Hölder continuous of order ν. In the case of α ∈ (0, 1), such a regularity
could not be proved. However, the continuity above suffices for us to prove
the Feynman-Kac formula below.
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Proposition 3.2. Let α ∈ (0, 1) and p ∈ [1,∞). If V ∈ L∞(RN ), then
Uα,p,V (t) can be expressed by the Feynman-Kac formula: For all t > 0 and
u ∈ Lp,

(3.1)
(
Uα,p,V (t)u

)
(x) =

∫
Ω

exp
(
−

∫ t

0
V
(
ω(s)

)
ds

)
u
(
ω(t)

)
dWα

x (ω)

for a.e. x ∈ R
N . We regard both values of u and V at x∞ as 0.

Before proving this proposition, we state the Feynman-Kac formula for
more general potentials in the next proposition, which corresponds to [18,
Proposition 6.1] for the case of α = 1.

Proposition 3.3. Let α ∈ (0, 1), p ∈ [1,∞) and let V : R
N → R be Lebesgue

measurable. Then the following assertions hold:

(i) Suppose that V is bounded above and Uα,p-admissible. Then for all t > 0,∫ t
0 V

(
ω(s)

)
ds > −∞ for a.e. x ∈ R

N and Wα
x -a.e. ω ∈ Ω, and (3.1)

holds.

(ii) Suppose that V is bounded below. Then the following conditions are
equivalent:

(a) V is Uα,p-admissible,

(b) for any sequence {tn}n in [0,∞) satisfying tn ↓ 0, it is obtained
that

∫ tn
0 V

(
ω(s)

)
ds → 0 holds as n → ∞ for a.e. x ∈ R

N and
Wα

x -a.e. ω ∈ Ω.
Each of the conditions above implies (3.1).

(iii) Suppose that V is Uα,p-admissible. Then for all t > 0,
∫ t
0 V

(
ω(s)

)
ds ∈

(−∞,∞] holds for a.e. x ∈ R
N and Wα

x -a.e. ω ∈ Ω, and (3.1) is valid.

Proof. We can proceed as in the proof of [18, Proposition 6.1].

Although Proposition 3.2 is proved by a similar manner as in the proof
of [16, Theorem X.68], for the reader’s convenience, we give a detailed proof
with a verification of measurability of functions appearing in the Feynman-
Kac formula. To prove this proposition, we need the following lemma (cf. [16,
p. 279 Lemma]).

Lemma 3.4. Let t > 0 and S be a Borel null set in R
N . Then the following

assertions hold.
(i) X−1

t (S) ∈ F 0
t and Wα

x

(
X−1

t (S)
)

= 0 for all x ∈ R
N .
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(ii) Let Ωt,S be defined by

Ωt,S := {ω ∈ Ω |Xs(ω) �∈ S for μ-a.e. s ∈ (0, t)},

where μ is the Lebesgue measure on R. Then, Ωt,S ∈ Ft and Wα
x (Ωt,S) = 1

for all x ∈ R
N .

(iii) Let m ∈ N, 0 < t1 < · · · < tm = t and S be a Borel null set in R
mN ,

where we identify R
mN with R

N × · · · × R
N (m factors). Then, there exists a

set N ∈ F 0
t such that{

ω ∈ Ω
∣∣ (ω(t1), . . . , ω(tm)

) ∈ S
} ⊂ N

and Wα
x (N ) = 0 for all x ∈ R

N .

Proof. (i) By the definition of F 0
t , it is clear that X−1

t (S) ∈ F 0
t . For all

x ∈ R
N , by description (iii)-(a) concerning the Hunt process,

Wα
x

(
X−1

t (S)
)

=
∫

S
Kα(t, x1 − x) dx1 = 0.

(ii) We first define At,S by

At,S := {(s, ω) ∈ (0, t) × Ω |Xs(ω) ∈ S}

and prove that At,S ∈ B
(
(0, t)

)⊗F 0
t and (μ⊗Wα

x )(At,S) = 0 for all x ∈ R
N .

To prove this, note that for all s > 0, Xs is F 0
s /E∞-measurable (i.e. for any

A ∈ E∞, the set X−1
s (A) ∈ F 0

s ) and for all ω ∈ Ω, the function s �→ Xs(ω) is
right continuous on [0,∞) by description (i)-(a) concerning the Hunt process.
Hence, it is easily proved that the function (s, ω) �→ Xs(ω) is

(
B

(
(0, t)

)⊗F 0
t

)
/

E∞-measurable on (0, t) × Ω, and hence At,S ∈ B
(
(0, t)

) ⊗ F 0
t . In addition,

for all x ∈ R
N , by Fubini’s theorem and assertion (i),

(μ⊗Wα
x )(At,S) =

∫ t

0
Wα

x

(
X−1

s (S)
)
dμ(s) = 0.

By this equality and Fubini’s theorem,∫
Ω
μ
({s ∈ (0, t) |Xs(ω) ∈ S}) dWα

x (ω) = (μ⊗Wα
x )(At,S) = 0

for all x ∈ R
N . Hence, for all x ∈ R

N , there exists a Wα
x -null set Nx ∈ F 0

t

such that
μ
({s ∈ (0, t) |Xs(ω) ∈ S}) = 0

for all ω ∈ Ω \ Nx. Hence, Ω \ Nx ⊂ Ωt,S ⊂ Ω for all x ∈ R
N . Thus, Ωt,S

belongs to the completion of F 0
t with respect to Wα

x for each x ∈ R
N . Since
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the intersection of these completion of F 0
t over {Wα

x ;x ∈ R
N} is included in Ft

(see [2, (5.2), Definition 5.3, (5.5)-(ii)]), we have Ωt,S ∈ Ft and Wα
x (Ωt,S) = 1

for all x ∈ R
N .

(iii) For all k ∈ N, we can take an open subset Ok of R
mN such that S ⊂ Ok

and μmN (Ok \ S) < 1
k , where μmN is the Lebesgue measure on R

mN . For all
k ∈ N, there exist right-half-open intervals J (k)

j,n in R (j = 1, . . . ,mN, n ∈ N)
such that ( m∏

j=1

I
(k)
j,n

)
∩
( m∏

j=1

I
(k)
j,n′

)
= ∅

for n �= n′, where I(k)
j,n :=

∏jN
l=(j−1)N+1 J

(k)
l,n , and

Ok =
∞⋃

n=1

m∏
j=1

I
(k)
j,n .

Note that for all k ∈ N, the set
{
ω ∈ Ω

∣∣ (
ω(t1), . . . , ω(tm)

) ∈ Ok

}
is the

disjoint sum of the sets
{
ω ∈ Ω

∣∣ (ω(t1), . . . , ω(tm)
) ∈ ∏m

j=1 I
(k)
j,n

}
over n ∈ N.

Hence, for all x ∈ R
N and k ∈ N, we have

Wα
x

({
ω ∈ Ω

∣∣ (ω(t1), . . . , ω(tm)
) ∈ Ok

})
=

∞∑
n=1

Wα
x

({
ω ∈ Ω

∣∣∣ (ω(t1), . . . , ω(tm)
) ∈ m∏

j=1

I
(k)
j,n

})
=

∞∑
n=1

∫
Qm

j=1 I
(k)
j,n

Kα(t1, x1 − x) · · ·Kα(tm − tm−1, xm − xm−1) dx1 · · · dxm

≤ Cm

∞∑
n=1

μmN

( m∏
j=1

I
(k)
j,n

)
(see the following statement)

= CmμmN (Ok) <
Cm

k
.

We can take the constant Cm as Cm =
∏m

j=1‖Kα(tj − tj−1, ·)‖∞ by Proposi-
tion 2.2 (ii)-(c), where t0 = 0, and hence Cm is independent of k ∈ N. By the
argument above, the set N :=

⋂∞
k=1

{
ω ∈ Ω

∣∣ (
ω(t1), . . . , ω(tm)

) ∈ Ok

}
belongs to F 0

t and is Wα
x -null set for all x ∈ R

N , and includes the set{
ω ∈ Ω

∣∣ (ω(t1), . . . , ω(tm)
) ∈ S

}
.

We will prove Proposition 3.2 in the next subsection.
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3.2. Proof of Proposition 3.2

3.2.1. Measurability of functions appearing in the Feynman-Kac
formula

Let t > 0, V ∈ L∞ and u ∈ Lp. We first show that (i): the function ω �→
u
(
ω(t)

)
is Ft-measurable, and that (ii): for all x ∈ R

N and Wα
x -a.e. ω ∈ Ω, the

function s �→ V
(
ω(s)

)
is Lebesgue measurable and integrable on (0, t) and (iii):

the function ω �→ ∫ t
0 V

(
ω(s)

)
ds is Ft-measurable on Ω and Wα

x -integrable on
Ω for all x ∈ R

N .
(i): We can take a sequence {un}n in Cc(RN ) and a Borel null set S in R

N

such that un(y) → u(y) for all y ∈ R
N \ S. By Lemma 3.4 (i), X−1

t (S) ∈ F 0
t

and Wα
x

(
X−1

t (S)
)

= 0 for all x ∈ R
N . Hence, un

(
ω(t)

) → u
(
ω(t)

)
as n → ∞

for all x ∈ R
N and Wα

x -a.e. ω ∈ Ω. Hence, the function ω �→ u
(
ω(t)

)
is

measurable relative to the completion of F 0
t with respect to Wα

x for each
x ∈ R

N . Thus, the function ω �→ u
(
ω(t)

)
is measurable relative to Ft.

(ii), (iii): There exist a sequence {Vn}n in Cc(RN ) and a Borel null set S in
R

N such that Vn(y) → V (y) as n→ ∞ for all y ∈ R
N \S and ‖Vn‖∞ ≤ ‖V ‖∞

for all n ∈ N. Let Ωt,S be as in Lemma 3.4 (ii). Then, by Lemma 3.4 (ii), for
all x ∈ R

N , we have that Wα
x (Ωt,S) = 1 and that for all ω ∈ Ωt,S ,

(3.2) Vn

(
ω(s)

) → V
(
ω(s)

)
as n→ ∞ for a.e. s ∈ (0, t) and

(3.3)
∣∣Vn

(
ω(s)

)∣∣ ≤ ‖V ‖∞
for all n ∈ N and s ∈ (0, t). By (3.2) and (3.3), for all ω ∈ Ωt,S , the function
s �→ V

(
ω(s)

)
is Lebesgue measurable and integrable on (0, t) (we used the

fact that the intersection of the completions of F 0
t with respect to Wα

x over
{Wα

x ;x ∈ R
N} is included in Ft).

Moreover, for all ω ∈ Ωt,S , by (3.2), (3.3) and Lebesgue’s convergence
theorem, ∫ t

0
Vn

(
ω(s)

)
ds→

∫ t

0
V
(
ω(s)

)
ds

as n→ ∞.
Since for all ω ∈ Ω the function s �→ ω(s) is continuous on [0,∞) except at

most countable points, the function s �→ Vn

(
ω(s)

)
is Riemann integrable on

(0, t) for each n ∈ N and ω ∈ Ω and hence
m∑

j=1

1
m
Vn

(
ω
( j

m t
)) → ∫ t

0
Vn

(
ω(s)

)
ds

as m → ∞ for all n ∈ N and ω ∈ Ω. Since for all n ∈ N, this Riemann sum
is measurable in ω relative to F 0

t , the function ω �→ ∫ t
0 Vn

(
ω(s)

)
ds (n ∈ N) is
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measurable and hence the function ω �→ ∫ t
0 V

(
ω(s)

)
ds is measurable relative

to the completion of F 0
t with respect to Wα

x for each x ∈ R
N . Thus, the

function ω �→ ∫ t
0 V

(
ω(s)

)
ds is measurable relative to Ft.

3.2.2. The Feynman-Kac formula for V ∈ Cc(RN)

Next, in the case of V ∈ Cc(RN ), we prove the Feynman-Kac formula. It
is easily verified that we can apply the Trotter product formula to the C0-
semigroup e−tHα,p,V . Hence, for all u ∈ Lp,(

e−
t
m

Hα,pe−
t
m

V
)m
u→ e−tHα,p,V u

as m → ∞ in Lp. Hence, there exist a strictly monotone increasing sequence
of natural numbers {mk}k and a Borel null set S in R

N such that((
exp

(− t
mk
Hα,p

)
exp

(− t
mk
V
))mku

)
(x) → (

e−tHα,p,V u
)
(x)

as k → ∞ for all x ∈ R
N \ S. For all k ∈ N and x ∈ R

N \ S, by Fubini’s
theorem and description (iii)-(a) of the Hunt process, we obtain that((

exp
(− t

mk
Hα,p

)
exp

(− t
mk
V
))mku

)
(x)(3.4)

=
∫

R
mkN

Kα

(
t

mk
, x1 − x

) · · ·Kα

(
t

mk
, xmk

− xmk−1

)
× exp

(
− t

mk

mk∑
j=1

V (xj)
)
u(xmk

) dx1 · · · dxmk

=
∫

Ω
exp

(
− t

mk

mk∑
j=1

V
(
ω
( j

mk
t
)))

u
(
ω(t)

)
dWα

x (ω).

We have to verify that (a): we could apply Fubini’s theorem and (b): the last
equality of (3.4) holds. Assertion (a) is ensured by the following estimates:

0 ≤ exp
(
− t

mk

mk∑
j=1

V (xj)
)
≤ et‖V ‖∞ <∞

for all k ∈ N and x1, . . . , xmk
∈ R

N , and

0 ≤
∫

RN

Kα

(
t

mk
, x1 − x

)(∫
RN

Kα

(
t

mk
, x2 − x1

) · · ·(∫
RN

Kα( t
mk
, xmk

− xmk−1)|u(xmk
)| dxmk

)
· · · dx2

)
dx1
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≤
∫

RN

Kα

(
t

mk
, x1 − x

)(∫
RN

Kα

(
t

mk
, x2 − x1

) · · ·(∫
RN

Kα

(
t

mk
, xmk

− xmk−1

)p′
dxmk

) 1
p′

×
(∫

RN

|u(xmk
)|p dxmk

) 1
p · · · dx2

)
dx1

=
∫

RN

Kα

(
t

mk
, x1 − x

)(∫
RN

Kα

(
t

mk
, x2 − x1

) · · ·(∫
RN

Kα( t
mk
, xmk−1 − xmk−2) dxmk−1

)
· · · dx2

)
dx1

× ∥∥Kα

(
t

mk
, ·)∥∥

p′‖u‖p

=
∥∥Kα

(
t

mk
, ·)∥∥mk−1

1

∥∥Kα

(
t

mk
, ·)∥∥

p′‖u‖p <∞
for all k ∈ N and x ∈ R

N , where p′ is the conjugate exponent of p. (Note that
Kα(t, ·) ∈ L1∩L∞ by Proposition 2.2 (ii)-(c) and (d), and hence Kα(t, ·) ∈ Lq

for all q ∈ [1,∞].)
To verify assertion (b), let F : R

mN → R be a Lebesgue measurable func-
tion. We have only to prove that for all m ∈ N,∫

RmN

Kα

(
t
m , x1 − x

) · · ·Kα

(
t
m , xm − xm−1

)
F (x1, . . . , xm) dx1 · · · dxm

=
∫

Ω
F
(
ω
(

t
m

)
, . . . , ω(t)

)
dWα

x (ω).

Without loss of generality, we may assume that F ≥ 0. For this F , there exist
a sequence of Borel measurable and simple functions {Fn}n and a Borel null
set S in R

mN such that

0 ≤ Fn(x1, . . . , xm) ↗ F (x1, . . . , xm)

as n→ ∞ for all (x1, . . . , xm) ∈ R
mN \ S. We can write Fn as

Fn =
mn∑
k=1

a
(n)
k χ

E
(n)
k

for each n ∈ N, where E(n)
k is a Borel measurable subset of R

mN and E
(n)
k ∩

E
(n)
k′ = ∅ if k �= k′. Hence, we have∫

RmN

Kα

(
t
m , x1 − x

) · · ·Kα

(
t
m , xm − xm−1

)
(3.5)

× Fn(x1, . . . , xm) dx1 · · · dxm

=
mn∑
k=1

a
(n)
k

∫
E

(n)
k

Kα

(
t
m , x1 − x

) · · ·Kα

(
t
m , xm − xm−1

)
dx1 · · · dxm



FRACTIONAL LAPLACIANS PERTURBED BY POTENTIALS 263

=
mn∑
k=1

a
(n)
k Wα

x

({
ω ∈ Ω

∣∣ (ω( t
m

)
, ω

(
2t
m

)
, . . . , ω(t)

) ∈ E
(n)
k

})
=

∫
Ω

mn∑
k=1

a
(n)
k χ

E
(n)
k

(
ω
(

t
m

)
, ω

(
2t
m

)
, . . . , ω(t)

)
dWα

x (ω)

=
∫

Ω
Fn

(
ω
(

t
m

)
, ω

(
2t
m

)
, . . . , ω(t)

)
dWα

x (ω)

for all n ∈ N and x ∈ R
N . By Lemma 3.4 (iii), for all m ∈ N and x ∈ R

N ,

Fn

(
ω
(

t
m

)
, . . . , ω(t)

) ↗ F
(
ω
(

t
m

)
, . . . , ω(t)

)
as n → ∞ for Wα

x -a.e. ω ∈ Ω. Hence, by applying the monotone convergence
theorem to both sides of (3.5), the equality∫

RmN

Kα

(
t
m , x1 − x

) · · ·Kα

(
t
m , xm − xm−1

)
F (x1, . . . , xm) dx1 · · · dxm

=
∫

Ω
F
(
ω
(

t
m

)
, . . . , ω(t)

)
dWα

x (ω)

holds for all m ∈ N and x ∈ R
N .

Now, we can apply Lebesgue’s convergence theorem to the rightmost side
of (3.4). In fact, since the function s �→ ω(s) is continuous on [0,∞) except
at most countable points for all ω ∈ Ω, the function s �→ V

(
ω(t)

)
is Riemann

integrable on (0, t). Hence,

exp
(
− t

mk

mk∑
j=1

V
(
ω
( j

mk
t
)))

u
(
ω(t)

) → exp
(
−

∫ t

0
V
(
ω(s)

)
ds

)
u
(
ω(t)

)
as k → ∞ for all ω ∈ Ω. Moreover, the estimate∣∣∣exp

(
− t

mk

mk∑
j=1

V
(
ω
( j

mk
t
)))

u
(
ω(t)

)∣∣∣ ≤ et‖V ‖∞∣∣u(ω(t)
)∣∣

holds for all k ∈ N and ω ∈ Ω, and it is verified that the function ω �→ u
(
ω(t)

)
is Wα

x -integrable on Ω for all x ∈ R
N by the following estimate.∫

Ω

∣∣u(ω(t)
)∣∣ dWα

x (ω) ≤
(∫

Ω

∣∣u(ω(t)
)∣∣p dWα

x (ω)
) 1

p

=
(∫

RN

Kα(t, x− y)|u(y)|p dy
) 1

p

≤ ‖Kα(t, ·)‖
1
p

1 ‖u‖p <∞
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by Young’s inequality. Hence, we can apply Lebesgue’s convergence theorem
to the rightmost side of (3.4) and conclude that

(
e−tHα,p,V u

)
(x) =

∫
Ω

exp
(
−

∫ t

0
V
(
ω(s)

)
ds

)
u
(
ω(t)

)
dWα

x (ω)

for a.e. x ∈ R
N .

3.2.3. The Feynman-Kac formula for V ∈ L1(RN)

Finally, in the case of V ∈ L∞, we prove the Feynman-Kac formula. We can
take a sequence {Vn}n in Cc(RN ) and a Borel null set S in R

N such that
‖Vn‖∞ ≤ ‖V ‖∞ for all n ∈ N and Vn(y) → V (y) as n→ ∞ for all y ∈ R

N \S.
It is easily verified that for all t > 0 and u ∈ Lp, we can use Trotter-Kato
approximation theorem. Hence,

e−tHα,p,Vnu→ e−tHα,p,V u

as n → ∞ in Lp. There exist a Borel null set S′ including S and a strictly
monotone increasing sequence of natural numbers {nk}k such that(

exp(−tHα,p,Vnk
)u

)
(x) → (

exp(−tHα,p,V )u
)
(x)

as k → ∞ for all x ∈ R
N \S′. By the result in the case of V ∈ Cc(RN ), for all

k ∈ N, we have

(3.6)
(
exp(−tHα,p,Vnk

)u
)
(x) =

∫
Ω

exp
(
−

∫ t

0
Vnk

(
ω(s)

)
ds

)
u
(
ω(s)

)
dWα

x (ω)

for a.e. x ∈ R
N . It is clear that we may assume that this equality holds for all

x ∈ R
N \ S′, where S′ is the set above.

Now, we will prove that we can apply Lebesgue’s convergence theorem to
the right-hand side of (3.6). In fact, for all x ∈ R

N and Wα
x -a.e. ω ∈ Ω,

Vnk

(
ω(s)

) → V
(
ω(s)

)
holds as k → ∞ for a.e. s > 0 by Lemma 3.4 (ii), and the estimate∣∣Vnk

(
ω(s)

)∣∣ ≤ ‖V ‖∞
is clear for all k ∈ N, ω ∈ Ω and s > 0 by the way of taking of Vnk

. Hence, by
Lebesgue’s convergence theorem, for all x ∈ R

N and Wα
x -a.e. ω ∈ Ω, we have∫ t

0
Vnk

(
ω(s)

)
ds→

∫ t

0
V
(
ω(s)

)
ds
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as k → ∞. Furthermore, the estimate∣∣∣exp
(
−

∫ t

0
Vnk

(
ω(s)

)
ds

)
u
(
ω(t)

)∣∣∣ ≤ et‖V ‖∞∣∣u(ω(t)
)∣∣

holds for all k ∈ N, x ∈ R
N and Wα

x -a.e. ω ∈ Ω, and the function ω �→ u
(
ω(t)

)
is Wα

x -integrable on Ω for all x ∈ R
N . Hence, applying Lebesgue’s convergence

theorem to the right-hand side of (3.6), it converges to∫
Ω

exp
(
−

∫ t

0
V
(
ω(s)

)
ds

)
u
(
ω(t)

)
dWα

x (ω)

for all x ∈ R
N . Thus, we obtain(

e−tHα,p,V u
)
(x) =

∫
Ω

exp
(
−

∫ t

0
V
(
ω(s)

)
ds

)
u
(
ω(t)

)
dWα

x (ω)

for a.e. x ∈ R
N . The proof of this proposition is completed.

3.3. Lp-Lq estimates for e`tH¸;2;V

The next lemma is used to prove Lp-Lq estimates for e−tHα,2,V , which is es-
sentially Khas’minskii’s lemma (cf. [4, Corollary 3.6]).

Lemma 3.5. Let α ∈ (0, 1), V ≥ 0, V ∈ K̂N,α and cN,α(V ) < 1. Then, for
any μ ∈ (

cN,α(V ), 1
)
, there exists a tμ,V > 0 such that∥∥∥V ∫ tμ,V

0
Uα,1(t) dt

∥∥∥ < μ.

Moreover, for Mμ := 1
1−μ > 1 and bμ,V := 1

tμ,V
logMμ > 0, the estimate

ess.sup
x∈RN

Eα
x

(
exp

(∫ t

0
V ◦Xs ds

))
≤Mμe

tbμ,V

holds for all t ≥ 0, where Eα
x denotes the expectation for the probability measure

Wα
x .

Proof. By Proposition 2.20 (iii) and Remark 2.21, we can take a tμ,V satisfying
the condition in the lemma.

By replacing V with V ∧n (n ∈ N) and taking the limit as n→ ∞, it is seen
that we may assume that V is bounded above. First, by a similar argument
as in the proof of [5, Lemma 1], we can prove that

ess.sup
x∈RN

Eα
x

(
exp

(∫ t

0
V ◦Xs ds

))
<

1
1 − μ
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for all t ∈ [0, tμ,V ]. Next, by a similar argument in the last paragraph of the
proof of [4, Proposition 3.5], we obtain the estimate

ess.sup
x∈RN

Eα
x

(
exp

(∫ t

0
V ◦Xs ds

))
≤Mμe

tbμ,V

for all t ≥ 0.

The Feynman-Kac formula and Lemma 3.5 yield the following Lp-Lq es-
timates. To state these estimates, we use the symbol, Lp-Lq norm ‖·‖p,q.
In what follows, we use this symbol only for linear operators whose domains
include the Schwartz space S, and so we define in this paper,

‖T‖p,q := sup
{‖Tu‖q

‖u‖p

∣∣∣∣ u ∈ S, ‖u‖p ≤ 1
}

for all 1 ≤ p ≤ q ≤ ∞. If ‖T‖p,q <∞ for some 1 ≤ p ≤ q <∞, then T can be
extended to an operator belonging to L(Lp, Lq) since S is dense in Lp.

Proposition 3.6. Let α ∈ (0, 1) and 1 ≤ p ≤ q ≤ ∞. Assume that V− ∈
K̂N,α, cN,α(V−) < 1 and V+ is Uα-admissible, then V is Uα,p-admissible for all
p ∈ [1,∞) by Theorem 2.14. Moreover, there exist constants M = M(V−, p, q),
b = b(V−, p, q) such that∥∥e−tHα,2,V

∥∥
p,q

≤Mt
− N

2α
( 1

p
− 1

q
)
etb

for all t > 0.

Proof. Although this proposition is proved in a similar way as in [18, Propo-
sition 6.3], we give a proof since this proposition is important to prove Lp-
spectral inclusion and independence in the next section. We divide the proof
into several cases. As is stated in the proof of [18, Proposition 6.3], the proof
of [5, Lemma 2] is a reference in Case 1 and 2 for α = 1, the way of which is
of use also in this proof.

Case 1: p = q = ∞. In this case, by the Feynman-Kac formula and
Lemma 3.5, it is clear that for all t > 0 and u ∈ L2 ∩ L∞,∣∣(e−tHα,2,V u

)
(x)

∣∣ ≤Mμe
tbμ,V−‖u‖∞

for a.e. x ∈ R
N , where Mμ and bμ,V− is as in Lemma 3.5. Hence,

‖e−tHα,2,V ‖∞,∞ ≤Mμe
tbμ,V−

holds for all t > 0.
In the rest of the proof, we write simply c instead of cN,α(V−).
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Case 2: μ
μ−c < p < q = ∞. If u ∈ L2 ∩ Lp, then we obtain that

∣∣(e−tHα,2,V u
)
(x)

∣∣ ≤ ∫
Ω

exp
(∫ t

0
V−

(
ω(s)

)
ds

)∣∣u(ω(t)
)∣∣ dWα

x (ω)

(by the Feynman-Kac formula)

≤
(∫

Ω
exp

(
p′
∫ t

0
V−

(
ω(s)

)
ds

)
dWα

x (ω)
) 1

p′

×
(∫

Ω

∣∣u(ω(t)
)∣∣p dWα

x (ω)
) 1

p

(by Hölder’s inequality)

=
(
Eα

x

[
exp

(∫ t

0
(p′V−) ◦Xs ds

)]) 1
p′

×
(∫

RN

Kα(t, x− y)|u(y)|p dy
) 1

p

≤
(
Mμ exp(tbμ,p′V−)

) 1
p′ · t− N

2α
· 1
p ‖Kα(1, ·)‖

1
p∞‖u‖p

(by Lemma 3.5 and Proposition 2.2 (ii)-(a))

= M ′t−
N
2α

· 1
p etb

′‖u‖p

for a.e. x ∈ R
N (the p′ above is the conjugate exponent of p and the con-

stants M ′ and b′ are independent of t > 0). The reason why we could apply
Lemma 3.5 above is that cN,α(p′V−) = p′cN,α(V−) < μ by μ

μ−cN,α(V−) < p.
Hence, we have

‖e−tHα,2,V ‖p,∞ ≤M ′t−
N
2α

· 1
p etb

′

for all t > 0.
Case 3: 1 = p ≤ q < μ

c . The self-adjointness of e−tHα,2,V (t > 0) shows
that

‖e−tHα,2,V ‖1,q = ‖e−tHα,2,V ‖q′,∞,

where q′ is the conjugate exponent of q. Since μ
μ−c < q′ ≤ ∞ by 1 ≤ q < μ

c ,
we can apply the result in Case 1 if q = 1 or in Case 2 if 1 < q < μ

c to the
right-hand side of this equality. Hence, there exist constants M and b such
that

‖e−tHα,2,V ‖q′,∞ ≤Mt
− N

2α
· 1
q′ etb

for all t > 0. Thus,

‖e−tHα,2,V ‖1,q ≤Mt−
N
2α

(1− 1
q
)etb

holds for all t > 0.
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Case 4: 1 ≤ p ≤ q ≤ ∞ and 1 ≤ q
p <

μ
c . Riesz-Thorin convexity theorem

implies the estimate

‖e−tHα,2,V ‖p,q ≤ ‖e−tHα,2,V ‖
1
p

1, q
p
‖e−tHα,2,V ‖1− 1

p∞,∞

for all t > 0. By 1 ≤ q
p <

μ
c , we can apply the result in Case 3 to ‖e−tHα,2,V ‖1, q

p
.

Applying the result in Case 3 and in Case 1 to
(
1, q

p

)
-norm and (∞,∞)-norm,

respectively, we have

‖e−tHα,2,V ‖p,q ≤Mt
− N

2α
( 1

p
− 1

q
)
etb

for some constants M and b which are independent of t > 0, and for all t > 0.
Case 5: 1 ≤ p ≤ q = ∞. Let r be in

(
1, μ

c

)
. Since the case of p > μ

μ−c is
treated in Case 1 and 2, we may assume that 1 ≤ p ≤ μ

μ−c . Then, there exists
an n0 ∈ N such that prn0 > μ

μ−c . Hence, we have

‖e−tHα,2,V ‖p,∞ =
∥∥∥(exp

(− t
n0+1Hα,2,V

))n0+1∥∥∥
p,∞

≤ ∥∥exp
(− t

n0+1Hα,2,V

)∥∥
pn0 ,∞

∥∥exp
(− t

n0+1Hα,2,V

)∥∥
pn0−1,pn0

. . .

× ∥∥exp
(− t

n0+1Hα,2,V

)∥∥
p0,p1

for all t > 0, where pj := prj (j = 0, 1, . . . , n0). Applying the result in Case 2
and in Case 4 to the (pn0 ,∞)-norm and the other norms in the right-hand
side of this inequality

(
by pj

pj−1
= r ∈ (

1, μ
c

)
, we can use the result in Case 4

)
,

respectively, we obtain the asserted estimate of this proposition.
Case 6: 1 ≤ p ≤ q ≤ ∞. By Riesz-Thorin convexity theorem, the estimate

‖e−tHα,2,V ‖p,q ≤ ‖e−tHα,2,V ‖
1
q

1,1‖e−tHα,2,V ‖1− 1
q

r,∞

holds for all t > 0, where r :=
(
1 − 1

q

) / (
1
p − 1

q

)
. By using the results in

Case 4 and 5, we obtain that there exist constants M and b such that

‖e−tHα,2,V ‖p,q ≤Mt−
N
2α

( 1
p
− 1

q
)etb

for all t > 0.

§4. Lp-spectral inclusion and independence

4.1. The case of e`tH¸;p;V on R
N

First, we prove Lp-spectral inclusion for Hα,p,V under the same assumption as
in Theorem 2.14. As in Section 2, Uα(t) = e−t(−Δ)α

for each α ∈ (0, 1] and
t ≥ 0.
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Theorem 4.1 (cf. [6, Proposition 2.1]). Suppose that V− ∈ K̂N,α satisfies
cN,α(V−) < 1 and V+ be Uα-admissible. Then V is Uα,p-admissible for all p ∈
[1,∞) by Theorem 2.14, and so the operator Hα,p,V makes sense. Moreover, let
Hα,∞,V be defined by H ′

α,1,V . Then, for any 1 ≤ q ≤ p ≤ 2 or 2 ≤ p ≤ q ≤ ∞,
we have ρ(Hα,q,V ) ⊂ ρ(Hα,p,V ) and the consistency

(Hα,q,V − ζ)−1|Lp∩Lq = (Hα,p,V − ζ)−1|Lp∩Lq

holds for every ζ ∈ ρ(Hα,q,V ).

Proof. Let 1 ≤ p < q ≤ ∞ and t > 0. Since ‖e−tHα,p,V ‖p,q < ∞ by Proposi-
tion 3.6, it is proved that if u ∈ D(Hα,p,V ), then e−tHα,p,V u ∈ D(Hα,q,V ) and
Hα,q,V e

−tHα,p,V u = e−tHα,p,V Hα,p,V u. Hence, in the same way as in the proof
of [6, Proposition 2.1], the consistency

(Hα,q,V − ζ)−1
∣∣
Lp∩Lq = (Hα,p,V − ζ)−1

∣∣
Lp∩Lq

is shown for all ζ ∈ ρ(Hα,p,V ) ∩ ρ(Hα,q,V ).
Next let 1 ≤ q ≤ p ≤ 2 and ζ ∈ ρ(Hα,q,V )

(
= ρ(Hα,q′,V )

)
. We have only

to prove the assertion of this theorem in this case by duality. By the result
above, (Hα,q,V − ζ)−1|Lq∩Lq′ = (Hα,q′,V − ζ)−1|Lq∩Lq′ . Riesz-Thorin convexity
theorem implies ‖(Hα,q,V − ζ)−1‖p,p < ∞. By [1, Proposition 2.3], we obtain
ζ ∈ ρ(Hα,p,V ) and (Hα,q,V − ζ)−1|Lp∩Lq = (Hα,p,V − ζ)−1|Lp∩Lq .

Next we prove Lp-spectral independence. Since the kernel Kα(t, x) does not
decay exponentially as |x| → ∞ for any α ∈ (0, 1) (cf. [14, Proposition 2.1]), it
is hard to prove Lp-spectral independence without a strict condition on space
dimension N , α and potentials V .

Theorem 4.2. Let N = 1 and 1
2 < α < 1. Assume the following three

conditions:
(i) V− ∈ K̂1,α,
(ii) V+ is Uα-admissible,
(iii) V is (−Δ)α-bounded with relative bound < 1.
Then, V is Uα,p-admissible for all p ∈ [1,∞) and σ(Hα,p,V ) is independent

of p ∈ [1,∞).

We prepare lemmas and propositions to prove this theorem. Most of them
correspond to the ones in [6] for the case of α = 1. Hempel and Voigt used the
weight function e−ε·x (ε, x ∈ R

N ), however we have to define another weight
function because of the polynomial decay of Kα(t, x).

Let c be in (1
2 , α) and fixed. For all ε ∈ [0, 1] and z ∈ R

N , we define the
weight function wε,z by

wε,z(x) := (1 + ε|x− z|2)c (x ∈ R
N ).
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We use the same symbol wε,z for the function wε,z : R
N → R and also for the

associated maximal multiplication operator in L2 defined by wε,z. The same
convention is valid for w−1

ε,z . Note that the domain of the operator wε,z includes
the Schwartz space S for all ε ∈ [0, 1] and z ∈ R

N .
In this subsection, all the lemmas and propositions do not require N = 1.

More precisely, for an arbitrary N , assume the following conditions:

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) α ∈ (

1
2 , 1

)
and c ∈ (

1
2 , α

)
,

(ii) V− ∈ K̂N,α, cN,α(V−) = 0,
(iii) V+ is Uα-admissible,
(iv) V is (−Δ)α-bounded with relative bound < 1,

then all of them is proved. This assumption is more general than the one in
the theorem above since for any 1

2 < α < 1 and V ∈ K̂1,α, we have already
proved c1,α(V ) = 0 in Proposition 2.13 (i).

Lemma 4.3. For all ε ∈ [0, 1] and z ∈ R
N , the weight function wε,z satisfies

the following estimates:
(i) 0 ≤ wε,z(x)−1wε,z(y) ≤ 2c(1 + ε|x− y|2)c (x, y ∈ R

N ),
(ii) |wε,z(x)−1wε,z(y) − 1| ≤ 21+2cc

√
ε(1 + |x− y|2)c (x, y ∈ R

N ).

The inequality of (i) is Peetre’s inequality (2.6) in [8] for the case of s = c.

Proof. (i) Put x′ := x − z, y′ := y − z, then x′ − y′ = x − y. The estimate is
verified by the following straightforward calculation:

0 ≤ wε,z(x)−
1
cwε,z(y)

1
c =

1 + ε|y′|2
1 + ε|x′|2

≤ 1 + ε(|x′ − y′| + |x′|)2
1 + ε|x′|2

=
1 + ε(|x− y|2 + 2|x− y||x′| + |x′|2)

1 + ε|x′|2

≤ 1 + 2ε(|x− y|2 + |x′|2)
1 + ε|x′|2

≤ 1 + 2ε|x′|2
1 + ε|x′|2 + 2ε

|x− y|2
1 + ε|x′|2

≤ 2 + 2ε|x− y|2.

Thus, 0 ≤ wε,z(x)−1wε,z(y) ≤ 2c(1 + ε|x− y|2)c for all x, y ∈ R
N .

(ii) We define the function f by f(u) := (1 + εu2)c for u ≥ 0. Taking any
u, v ≥ 0, by the mean value theorem, for some ξ (u ≤ ξ ≤ v or v ≤ ξ ≤ u), we
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have

|f(u) − f(v)| = 2cε(1 + εξ2)c−1ξ|u− v|
≤ 2c

√
ε(1 + εξ2)c− 1

2 |u− v|.

If |y−z| ≤ 2|x−z|, then for some ξ (|y−z| ≤ ξ ≤ |x−z| or |x−z| ≤ ξ ≤ |y−z|),

|wε,z(x)−1wε,z(y) − 1| =
1

(1 + ε|x− z|2)c
|f(|y − z|) − f(|x− z|)|

≤ 1
(1 + ε|x− z|2)c

· 2c√ε(1 + εξ2)c− 1
2

∣∣|y − z| − |x− z|∣∣
≤

(
1 + ε(2|x− z|)2)c

(1 + ε|x− z|2)c
· 2c√ε|x− y|

≤ 21+2cc
√
ε|x− y|

< 21+2cc
√
ε(1 + |x− y|2)c.

For the last inequality, we used c > 1
2 .

If |y − z| > 2|x− z|, then |x− y| ≥ |y − z| − |x− z| > 1
2 |y − z|. Hence, for

some ξ (|x− z| ≤ ξ ≤ |y − z|),

|wε,z(x)−1wε,z(y) − 1| ≤ 1
(1 + ε|x− z|2)c

· 2c√ε(1 + εξ2)c− 1
2 |x− y|

≤ 2c
√
ε(1 + 4|x− y|2)c− 1

2 |x− y|
≤ 2c

√
ε(1 + 4|x− y|2)c

≤ 21+2cc
√
ε(1 + |x− y|2)c.

Thus, |wε,z(x)−1wε,z(y) − 1| ≤ 21+2cc
√
ε(1 + |x − y|2)c for all ε ∈ [0, 1] and

x, y, z ∈ R
N .

The following lemma is of use together with Proposition 3.6 in the proof of
Proposition 4.6.

Lemma 4.4 (cf. [6, Lemma 3.4]). Let p and q be in [1,∞] with p ≤ q. Then,
for any η > 0, there exists a constant Cη = Cη(p, q) > 0 such that

‖w−1
ε,ze

−t(−Δ)α
wε,z‖p,q≤ Cηt

− N
2α

( 1
p
− 1

q
)
eηt

for all t > 0, ε ∈ [0, 1] and z ∈ R
N .

Proof. For all u ∈ S, it is easy to see that(
w−1

ε,ze
−t(−Δ)α

wε,zu
)
(x) =

∫
RN

wε,z(x)−1wε,z(y)Kα(t, x− y)u(y) dy
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for all x ∈ R
N . By the estimate (2.1), Lemma 4.3 (i) and Young’s inequality,

we obtain for r ∈ [1,∞) defined by 1
r = 1 + 1

q − 1
p and t > 0,

‖w−1
ε,ze

−t(−Δ)α
wε,z‖r

p,q

≤ 2cCα

∫
RN

[
(1 + |x|2)c · t

(t
1
α + |x|2)N

2
+α

]r

dx

= Ct−
N
2α

(r−1)

∫
RN

[
(1 + t

1
α |x|2)c · 1

(1 + |x|2)N
2

+α

]r

dx

= Ct−
N
2α

(r−1)
(∫

|x|≤t−
1
2α

+
∫
|x|≥t−

1
2α

)[
(1 + t

1
α |x|2)c

× 1

(1 + |x|2)N
2

+α

]r

dx

≤ Ct−
N
2α

(r−1)

(
2cr

∫
RN

1

(1 + |x|2)(N
2

+α)r
dx

+ 2crt
cr
α

∫
RN

|x|2cr

(1 + |x|2)(N
2

+α)r
dx

)
≤ Ct−

N
2α

(r−1)(1 + t
cr
α ).

Hence, for any η > 0 there exists a constant Cη > 0 such that

‖w−1
ε,ze

−t(−Δ)α
wε,z‖p,q≤ Cηt

− N
2α

( 1
p
− 1

q
)
eηt

for all t > 0, ε ∈ [0, 1] and z ∈ R
N .

By using the following lemma and propositions, we can prove Theorem 4.2.

Lemma 4.5 (cf. [6, Lemma 3.6]). Let r ∈ (
1, α

c

)
and r′ be the conjugate

exponent of r. Assume that V satisfies the assumption (4.1). Then, r′V is
Uα-admissible and for any ε ∈ [0, 1] and z ∈ R

N ,

‖w−1
ε,ze

−tHα,2,V wε,z‖p,q ≤ ‖w−r
ε,ze

−t(−Δ)α
wr

ε,z‖
1
r
p,q‖e−tHα,2,r′V ‖

1
r′
p,q.

Proof. Although the way of the proof is similar as in the proof of [6, Lemma 3.6],
we will reproduce it here for the reader’s convenience. We first verify that r′V
is Uα-admissible. Under the assumption (4.1), r′V− ∈ K̂N,α and cN,α(r′V−) =
r′cN,α(V−) = 0, hence by Theorem 2.14, r′V− is Uα-admissible. On the
other hand, by [18, Remark 2.3 (a)], r′V+ is Uα-admissible. Thus, r′V is
Uα-admissible.
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Let ε ∈ [0, 1], z ∈ R
N and u ∈ S, v := wε,zu (∈ S). By using the Feynman-

Kac formula, the inequality∣∣(e−tHα,2,V v
)
(x)

∣∣ =
∣∣∣∫

Ω
exp

(
−

∫ t

0
V
(
ω(s)

)
ds

)
v(ω(t)) dWα

x (ω)
∣∣∣

≤
∫

Ω
exp

(
−

∫ t

0
V
(
ω(s)

)
ds

)∣∣u(ω(t)
)| 1

r′

× ∣∣wε,z

(
ω(t)

)r
u
(
ω(t)

)∣∣ 1
r dWα

x (ω)

≤
(∫

Ω
exp

(
−r′

∫ t

0
V
(
ω(s)

)
ds

)∣∣u(ω(t)
)∣∣ dWα

x (ω)
) 1

r′

×
(∫

Ω
wε,z

(
ω(t)

)r∣∣u(ω(t)
)∣∣ dWα

x (ω)
) 1

r

(by Hölder’s inequality)

=
(
exp(−tHα,2,r′V )|u|)(x) 1

r′
(
e−t(−Δ)α

(wr
ε,z|u|)

)
(x)

1
r

holds for a.e. x ∈ R
N . Multiplying by wε,z, taking q-th powers and integrating,

we obtain ∫
RN

∣∣wε,z(x)−1
(
e−tHα,2,V (wε,zu)

)
(x)

∣∣q dx
≤

∫
RN

(
exp(−tHα,2,r′V )|u|)(x) q

r′

× (
w−r

ε,ze
−t(−Δ)α

(wr
ε,z|u|)

)
(x)

q
r dx

≤
(∫

RN

(
exp(−tHα,2,r′V )|u|)(x)q dx

) 1
r′

×
(∫

RN

(
w−r

ε,ze
−t(−Δ)α

(wr
ε,z|u|)

)
(x)q dx

) 1
r
,

which implies

‖w−1
ε,ze

−tHα,2,V wε,zu‖q ≤ ‖exp(−tHα,2,r′V )‖
1
r′
p,q‖u‖

1
r′
p

× ‖w−r
ε,ze

−t(−Δ)α
wr

ε,z‖
1
r
p,q‖u‖

1
r
p

= ‖w−r
ε,ze

−t(−Δ)α
wr

ε,z‖
1
r
p,q‖exp(−tHα,2,r′V )‖

1
r′
p,q‖u‖p.

Thus, the estimate of this lemma is proved.

Proposition 4.6 (cf. [6, Proposition 3.7]). Let 1 ≤ p ≤ q ≤ ∞ and n >
N
2α

(
1
p − 1

q

)
(n ∈ N). Assume that V satisfies the assumption (4.1). Then, there

exists a constant C > 0 such that

‖w−1
ε,z (Hα,2,V − λ)−nwε,z‖p,q ≤ C
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for real and sufficiently negative λ and all ε ∈ [0, 1], z ∈ R
N .

Proof. For all u ∈ S, we have

w−1
ε,z (Hα,2,V − λ)−nwε,zu =

1
(n− 1)!

∫ ∞

0
tn−1eλtw−1

ε,ze
−tHα,2,V wε,zu dt

for all ε ∈ [0, 1], z ∈ R
N and n ∈ N, and hence

‖w−1
ε,z (Hα,2,V − λ)−nwε,zu‖q

=
1

(n− 1)!

∫ ∞

0
tn−1eλt‖w−1

ε,ze
−tHα,2,V wε,z‖p,q dt · ‖u‖p.

We have already proved in Lemma 4.5, that

‖w−1
ε,ze

−tHα,2,V wε,z‖p,q ≤ ‖w−r
ε,ze

−t(−Δ)α
wr

ε,z‖
1
r
p,q‖e−tHα,2,r′V ‖

1
r′
p,q

for all ε ∈ [0, 1], z ∈ R
N , r ∈ (

1, α
c

)
and the conjugate exponent r′. wr

ε,z

coincides with wε,z replaced its exponent c with cr in the definition of wε,z.
Since 1

2 < c < cr < α, we can use the estimate of Lemma 4.4 and hence for
any η > 0, there exists a constant Cη > 0 such that

‖w−r
ε,ze

−t(−Δ)α
wr

ε,z‖p,q≤ Cηt
− N

2α
( 1

p
− 1

q
)
eηt

for all t > 0, ε ∈ [0, 1] and z ∈ R
N . On the other hand, as stated in the proof

of Lemma 4.5, r′V− ∈ K̂N,α, cN,α(r′V−) = 0 and r′V+ is Uα-admissible, hence
by Proposition 3.6, there exist constants M > 0, b > 0 such that

‖exp(−tHα,2,r′V )‖p,q ≤Mt
− N

2α
( 1

p
− 1

q
)
etb

for all t > 0. Thus,

‖w−1
ε,z (Hα,2,V − λ)−nwε,zu‖q ≤ C ′

ηM
′
∫ ∞

0
t
n− N

2α
( 1

p
− 1

q
)−1

e(λ+ η
r
+ b

r′ )t dt · ‖u‖p

= C‖u‖p,

provided that n > N
2α

(
1
p − 1

q

)
and λ is sufficiently negative.

Proposition 4.7 (cf. [6, Proposition 3.3]). Assume that V satisfies the as-
sumption (4.1). Let K be any compact subset of ρ(Hα,2,V ). Then there ex-
ist constants ε0 = ε0(K) ∈ [0, 1] and C = C(ε0,K) > 0 such that, for all
ζ ∈ K, ε ∈ [0, ε0] and z ∈ R

N , the operator w−1
ε,z (Hα,2,V − ζ)−1wε,z with do-

main S has an extension Rα,ε,z(ζ) ∈ L(L2) satisfying the following estimate:
For all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R

N ,

‖Rα,ε,z(ζ)‖2,2 ≤ C.



FRACTIONAL LAPLACIANS PERTURBED BY POTENTIALS 275

We prove this proposition in the next subsection since the proof is lengthy.
For the time being, we admit this proposition, and prove Theorem 4.2 (cf. the
proof of [6, Proposition 3.3]).

Proof of Theorem 4.2. For any V satisfying the assumption of this theorem, V
is Uα,p-admissible for all p ∈ [1,∞) by Proposition 2.13 (i) and Theorem 2.14.

Let us pick an integer n > N
4α . Then, by Proposition 4.6, there exists a

constant C > 0 such that

‖w−1
ε,z (Hα,2,V − λ)−nwε,z‖1,2, ‖w−1

ε,z (Hα,2,V − λ)−nwε,z‖2,∞ ≤ C

for real and sufficiently negative λ, ε ∈ [0, 1] and z ∈ R
N . We fix such a λ.

On the other hand, let K be any compact subset of ρ(Hα,2,V ), ζ ∈ K and
ε0 be the same as in Proposition 4.7, then the estimate

‖w−1
ε,z (Hα,2,V − ζ)−1wε,z‖2,2 ≤ C

holds for all ε ∈ [0, ε0] and z ∈ R
N by Proposition 4.7 (if necessary, take a

larger constant C). Hence, for the n above, we have

‖w−1
ε,z (Hα,2,V − ζ)−2nwε,z‖1,∞

≤
2n∑

j=0

(
2n
j

)
|ζ − λ|j‖w−1

ε,z (Hα,2,V − λ)−nwε,z‖2,∞

× ‖w−1
ε,z (Hα,2,V − ζ)−1wε,z‖j

2,2‖w−1
ε,z (Hα,2,V − λ)−nwε,z‖1,2

≤ C

for all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R
N (if necessary, take a larger constant C).

Hence, for all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R
N , w−1

ε,z (Hα,2,V − ζ)−2nwε,z is an
integral operator and its integral kernel Gn,ε,z(ζ;x, y) satisfies the estimate

|Gn,ε,z(ζ;x, y)| ≤ C

for all ζ ∈ K and a.e. (x, y) ∈ R
N × R

N (see [1, Proposition 6.2]). Since
Gn,0,z is independent of z ∈ R

N (in fact, Gn,0,z(ζ;x, y) is the integral kernel
of (Hα,2,V − ζ)−2n), we may write simply Gn. It is easy to verify that

Gn,ε,z(ζ;x, y) = wε,z(x)−1wε,z(y)Gn(ζ;x, y)

for all ζ ∈ K, ε ∈ [0, ε0], z ∈ R
N and a.e. (x, y) ∈ R

N × R
N . Hence,

(4.2) |Gn(ζ;x, y)| ≤ Cwε,z(x)wε,z(y)−1

for all ζ ∈ K, ε ∈ [0, ε0], z ∈ R
N and a.e. (x, y) ∈ R

N × R
N . Now we take

a countable dense subset S := {zn ∈ R
N |n ∈ N} of R

N . Then, there exists
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a null set N ⊂ R
N × R

N such that the estimate (4.2) holds for all ζ ∈
K, ε ∈ [0, ε0], z ∈ S and (x, y) ∈ (RN × R

N ) \ N . For an arbitrary (x, y) ∈
(RN × R

N ) \ N , we can take a sequence {znj}j in S such that znj → x as
j → ∞. By substituting z = znj for (4.2) and taking the limit as j → ∞, we
obtain the estimate

(4.3) |Gn(ζ;x, y)| ≤ C(1 + ε0|x− y|2)−c

for all ζ ∈ K and a.e. (x, y) ∈ R
N × R

N .
(The argument above holds also under the assumption (4.1). However, we

need N = 1 from here.) Let p ∈ [1,∞). By using the estimate (4.3), we can
define the function Gn,p : ρ(Hα,2,V ) → L(Lp) by(

Gn,p(ζ)u
)
(x) :=

∫
RN

Gn(ζ;x, y)u(y) dy

for all ζ ∈ ρ(Hα,2,V ), u ∈ Lp and a.e. x ∈ R
N . The function Gn,p is holomor-

phic on ρ(Hα,2,V ). In fact, for all u ∈ Lp(R)∩L2(R) and v ∈ Lp′(RN )∩L2(RN ),
the function ζ �→ 〈Gn,p(ζ)u, v〉 = 〈Gn,2(ζ)u, v〉 = 〈(Hα,2,V − ζ)−1u, v〉 is holo-
morphic on ρ(Hα,2,V ), where 〈φ, ψ〉 :=

∫
RN φ(x)ψ(x) dx. Furthermore, we see

that the function Gn,p is locally bounded in ρ(Hα,2,V ). Hence, the function
Gn,p is weakly holomorphic, hence holomorphic on ρ(Hα,2,V ). On the other
hand, Gn,p(ζ) coincides with (Hα,p,V − ζ)−2n for real and sufficiently negative
ζ, since e−tHα,2,V and e−tHα,p,V are consistent. Hence, by unique continua-
tion, the function ζ �→ (Hα,p,V − ζ)−2n is holomorphic on ρ(Hα,2,V ) (note that
ρ(Hα,2,V ) is a connected open subset, since Hα,2,V is self-adjoint and bounded
below). Thus ρ(Hα,2,V ) is included in ρ(Hα,p,V ), the domain of holomorphy
of (Hα,p,V − ζ)−2n.

We give a sufficient condition for a potential to satisfy the assumption of
Theorem 4.2 and close this subsection.

Proposition 4.8. Assume that V 2 ∈ K̂N,α, then the following assertions hold:
(i) V ∈ K̂N,α and cN,α(V ) = 0,
(ii) V is (−Δ)α-bounded with relative bound 0.

Remark 4.9. For an arbitrary dimension N , this proposition is proved.
To prove this proposition, we prepare the following lemma concerning the

resolvent
(
λ + (−Δ)α

)−1 (λ > 0). For all α ∈ (0, 1] and λ > 0, the resolvent(
λ + (−Δ)α

)−1 is an integral operator and its integral kernel Gα(λ;x − y) is
given by

Gα(λ;x) =
∫ ∞

0
e−λtKα(t, x) dt

for all λ > 0 and x ∈ R
N \ {0} (see [14, Lemma 3.7]). For each λ > 0, the

function x �→ Gα(λ;x) is integrable on R
N (see [14, Lemma 3.7, 3.8 and 3.9]).
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Lemma 4.10. For each 0 < α < 1, the function Gα satisfies the following
properties:

(i) Gα(λ;x) = λ−1+ N
2αGα(1;λ

1
2αx) for all λ > 0 and x ∈ R

N \ {0},
(ii) There exists a constant M1 > 0 such that

‖Gα(λ; ·)‖1 =
M1

λ

for all λ > 0,
(iii) There exists a constant M2 > 0 such that

0 ≤ Gα(λ;x) ≤ M2

λ2
· 1
|x|N+2α

for all λ > 0 and x ∈ R
N \ {0},

(iv) There exists a constant MN,α > 0 such that

0 ≤ Gα(λ;x) ≤

⎧⎪⎪⎨⎪⎪⎩
MN,αλ

−1+ N
2α

(
N
2 < α

)
,

1
π

(
1 + 1

2 log 2 + |log λ|) + |gN,α(x)| (
N
2 = α

)
,

gN,α(x)
(

N
2 > α

)
for all λ > 0 and 0 < |x| ≤ 1.

Remark 4.11. In the case of α = 1, assertions (i) and (ii) remain true, and the
following modified assertions (iii) and (iv) hold.

(iii) There exist constants M > 0 and κ > 0 such that

0 ≤ G1(λ;x) ≤Mλ−1+ N
2 e−κ

√
λ|x|

for all λ > 0 and |x| ≥ 1 (x ∈ R
N ).

(iv) There exists a constant MN > 0 such that

0 ≤ G1(λ;x) ≤

⎧⎪⎨⎪⎩
MNλ

−1+ N
2 (N = 1),

MN

(
1 + log|λ|) + |gN (x)| (N = 2),

gN (x) (N ≥ 3)

for all λ > 0 and 0 < |x| ≤ 1 (x ∈ R
N ), where gN is the fundamental solution

of Δ:

gN (x) =

⎧⎪⎪⎨⎪⎪⎩
1
2π

log|x| (N = 2),

Γ
(

N
2

)
2π

N
2 (N − 2)

|x|−N+2 (N ≥ 3)

for all x ∈ R
N \ {0}.
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Proof. (i) is proved as follows:

Gα(λ;x) =
∫ ∞

0
e−λtKα(t, x) dt

= λ−1

∫ ∞

0
e−tKα(λ−1t, x) dt

= λ−1+ N
2α

∫ ∞

0
e−tKα(t, λ

1
2αx) dt

(by Proposition 2.2 (ii)-(a))

= λ−1+ N
2αGα(1;λ

1
2αx).

(ii) is proved as follows:

‖Gα(λ; ·)‖1 = λ−1+ N
2α

∫
RN

Gα(1;λ
1
2αx) dx

= λ−1

∫
RN

Gα(1;x) dx.

(iii) Since there exits a constant M2 > 0 such that

0 ≤ Kα(t, x) ≤M2 · t

|x|N+2α
(t > 0, x �= 0)

by (2.1), we have

0 ≤ Gα(1;x) =
∫ ∞

0
e−tKα(t, x) dx ≤ M2

|x|N+2α
.

This inequality and (i) imply (iii).
(iv) We have only to prove the following estimate

Gα(1;x) ≤

⎧⎪⎪⎨⎪⎪⎩
MN,α

(
N
2 < α

)
1
π

(
1 + log 2 +

∣∣log|x|∣∣) (
N
2 = α

)
gN,α(x)

(
N
2 > α

)
for all x ∈ R

N \ {0}, since assertion (iv) follows from this inequality and (i).
First case: N

2 < α (i.e. N = 1, 1
2 < α < 1). For all x ∈ R

N \ {0},

Gα(1;x) =
∫ ∞

0
e−tKα(t, x) dt

≤ Cα

∫ ∞

0
e−t · t

(t
1
α + |x|2) 1

2
+α

dt (by (2.1))

≤ Cα

∫ ∞

0
e−tt−

1
2α dt <∞.
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(Since 1
2α < 1, the last integral is finite.)

Second case: N
2 = α (i.e. N = 1, α = 1

2). In this case, as is well known,
Kα(t, x) is the Poisson kernel:

Kα(t, x) =
1
π
· t

t2 + x2
.

Hence, for all x ∈ R
N \ {0},

πGα(1;x) = π

∫ ∞

0
e−tKα(t, x) dt

=
∫ ∞

0
e−t · t

t2 + x2
dt

≤
∫ 1

0

t

t2 + x2
dt+

∫ ∞

1
e−tt−1 dt

≤ 1
2

log(1 + |x|−2) + 1.

Since the inequality

log(|x|−2 + 1) − ∣∣log |x|−2
∣∣ ≤ log 2

holds, we obtain the estimate

Gα(1;x) ≤ 1
π

(∣∣log |x|∣∣ + 1 + 1
2 log 2

)
.

Third case: N
2 > α. For details of the proof, see the proof of Lemma 2.17.

For all x ∈ R
N \ {0},

Gα(1;x) =
∫ ∞

0
e−tKα(t, x) dt

≤
∫ ∞

0
Kα(t, x) dt

= α|x|−N+2α

∫ ∞

0
τ

N
2
−α−1Kα(1, τ

1
2 e) dτ

= gN,α(x).

Thus, the lemma is proved.

Proof of Proposition 4.8. (i) For all 0 < ρ ≤ 1 and a.e. x ∈ R
N ,∫

|x−y|<ρ
|gN,α(x− y)||V (y)| dy

≤
(∫

|x−y|<ρ
|gN,α(x− y)| dy

) 1
2
(∫

|x−y|<ρ
|gN,α(x− y)||V (y)|2 dy

) 1
2

(by Schwarz’s inequality)
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≤
(∫

|y|<ρ
|gN,α(y)| dy

) 1
2 ‖V 2‖K̂N,α

.

Hence, V ∈ K̂N,α and

cN,α(V ) ≤ lim
ρ↓0

(∫
|y|<ρ

|gN,α(y)| dy
) 1

2 ‖V 2‖K̂N,α
= 0,

since gN,α ∈ L1
(
B(0, 1)

)
.

(ii) For all λ > 0 and u ∈ L2,∫
RN

V (x)2
((
λ+ (−Δ)α

)−1
u
)
(x)2 dx(4.4)

=
∫

RN

V (x)2
(∫

RN

Gα(λ;x− y)u(y) dy
)2
dx

≤ ‖Gα(λ; ·)‖1

∫
RN

V (x)2
(∫

RN

Gα(λ;x− y)u(y)2 dy
)
dx

(by Schwarz’s inequality)

=
M1

λ

∫
RN

(∫
RN

Gα(λ;x− y)V (x)2 dx
)
u(y)2 dy.

by Lemma 4.10 (ii) and Fubini’s theorem. To estimate
∫

RN Gα(λ;x−y)V (y)2 dy
(for convenience, we change x for y and y for x), we define

IN,α(λ;x) :=
∫
|x−y|≥1

Gα(λ;x− y)V (y)2 dy

and

JN,α(λ;x) :=
∫
|x−y|<1

Gα(λ;x− y)V (y)2 dy

for all λ > 0 and x ∈ R
N , and estimate IN,α and JN,α. We first estimate IN,α.

In a similar way as in the proof of (2.24), we have

IN,α(λ;x) ≤ M2

λ2

∫
|x−y|≥1

V (x− y)2|y|−N−2α dy(4.5)

(by Lemma 4.10 (iii))

≤ M ′
2

λ2
‖V 2‖K̂N,α

for all λ > 0 and a.e. x ∈ R
N .

We next estimate JN,α.
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First case: N
2 < α (i.e. N = 1, 1

2 < α < 1).

JN,α(λ;x) ≤MN,αλ
−1+ N

2α

∫
|x−y|<1

V (y)2 dy(4.6)

(by Lemma 4.10 (iv))

≤MN,αλ
−1+ N

2α ‖V 2‖1,loc,unif

≤M ′
N,αλ

−1+ N
2α ‖V 2‖K̂N,α

for all λ > 0 and a.e. x ∈ R
N .

Second case: N
2 = α (i.e. N = 1, α = 1

2).

JN,α(λ;x) ≤ 1
π

{(
1 + 1

2 log 2 + |log λ|) ∫
|x−y|<1

V (y)2 dy(4.7)

+
∫
|x−y|<1

|gN,α(x− y)|V (y)2 dy
}

≤ 1
π

(
1 + 1

2 log 2 + |log λ|)‖V 2‖1,loc,unif + ‖V 2‖K̂N,α

≤ C
(
1 + 1

2 log 2 + |log λ|)‖V 2‖K̂N,α

for all λ > 0 and a.e. x ∈ R
N , where C > 0 is a constant which is independent

of λ, x and V .
Third case: N

2 > α.

JN,α(λ;x) ≤
∫
|x−y|<1

gN,α(x− y)V (y)2 dy(4.8)

≤ ‖V 2‖K̂N,α

for all λ > 0 and a.e. x ∈ R
N .

By the inequalities (4.4) through (4.8), we obtain that H2α ⊂ D(V ) and

lim
λ→∞

∥∥V (
λ+ (−Δ)α

)−1∥∥ = 0.

Hence, V is (−Δ)α-bounded with relative bound 0.

4.2. The proof of Proposition 4.7

We prove Proposition 4.7 which was stated without a proof in the previous
subsection. We divide the proof into several lemmas and propositions. Our
plan of the proof is that we first prove the proposition in the case of α = 1,
and by using this result, we prove the proposition in the general case.
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4.2.1. ∇-boundedness of w`1
";z(−Δ)w";z − (−Δ)

Lemma 4.12. For any ε ∈ [0, 1] and z ∈ R
N , the operator w−1

ε,z (−Δ)wε,z −
(−Δ) with domain S has an extension Tε,z with domain H1 satisfying the
following ∇-boundedness: There exists a constant C > 0 such that

‖Tε,zu‖2 ≤ C
(√
ε‖∇u‖2 + ε‖u‖2

)
for all ε ∈ [0, 1], z ∈ R

N and u ∈ H1, where ∇u = (∂x1u, . . . , ∂xNu) and

‖∇u‖2 =
(∑N

j=1‖∂xju‖2
2

) 1
2 .

Proof. The statement of this proposition is proved by a straightforward cal-
culation. In fact, it is easily verified that

w−1
ε,z (−Δ)wε,z − (−Δ)

= −4cε(1 + ε|x− z|2)−1
N∑

j=1

(xj − zj)∂xj

− 2cε(1 + ε|x− z|2)−2
{
N + (N + 2c− 2)ε|x− z|2}.

The right-hand side of this equality defines an operator with domain H1 since
(1 + ε|x − z|2)−1(xj − zj) is bounded for j = 1, . . . , N . Let Tε,z denote this
operator. Then there exists a constant C > 0 such that

‖Tε,zu‖2 ≤ 4c
√
ε

N∑
j=1

sup
x∈RN

√
ε(1 + ε|x|2)−1|xj | · ‖∂xju‖2

+ 2cε
{
N + (N + 2c− 2) sup

x∈RN

(1 + ε|x|2)−2ε|x|2}
≤ C

(√
ε‖∇u‖2 + ε‖u‖2

)
for all ε ∈ [0, 1], z ∈ R

N and u ∈ H1.

4.2.2. L2-bounded extension of w`1
";z(s − Δ)`1w";z

Lemma 4.13. There exists an ε′0 ∈ (0, 1] such that for any ε ∈ [0, ε′0], z ∈ R
N

and s ∈ [1,∞), the operator w−1
ε,z (s−Δ)−1wε,z with domain S has an extension

Rε,z(s) ∈ L(L2) satisfying the following estimate:

‖Rε,z(s)‖2,2 ≤ 2
s

for all ε ∈ [0, ε′0], z ∈ R
N and s ∈ [1,∞).
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Proof. To prove the assertion of this lemma, note that

‖∇(s− Δ)−1‖2,2 ≤
√
N

2
· 1√

s

for all s ∈ (0,∞) (by using Fourier transform). Hence, by Lemma 4.12, there
exists a constant C > 0 such that ‖Tε,z(s − Δ)−1‖2,2 ≤ C

(√ε√
s

+ ε
s

)
for all

ε ∈ [0, 1], z ∈ R
N and s ∈ (0,∞), and hence there exists an ε′0 ∈ (0, 1] such

that

(4.9) ‖Tε,z(s− Δ)−1‖2,2 ≤ 1
2

for all ε ∈ [0, ε′0], z ∈ R
N and s ∈ [1,∞).

Next, for all ε ∈ [0, ε′0], z ∈ R
N , s ∈ [1,∞) and u ∈ S,

w−1
ε,z (s− Δ)wε,zu =

(
1 + Tε,z(s− Δ)−1

)
(s− Δ)u.

By the estimate (4.9) above, the operator of the right-hand side of this equality
is invertible in L(L2). Since this equality holds and w−1

ε,z (s − Δ)−1wε,zv ∈ S
for all v ∈ S, we have the following equality

v = w−1
ε,z (s− Δ)wε,z

[
w−1

ε,z (s− Δ)−1wε,zv
]

=
(
1 + Tε,z(s− Δ)−1

)
(s− Δ)

[
w−1

ε,z (s− Δ)−1wε,zv
]
,

hence,
(s− Δ)−1

(
1 + Tε,z(s− Δ)−1

)−1
v = w−1

ε,z (s− Δ)−1wε,zv

for all ε ∈ [0, ε′0], z ∈ R
N , s ∈ [1,∞) and v ∈ S.

Now we define

Rε,z(s) := (s− Δ)−1
(
1 + Tε,z(s− Δ)−1

)−1 ∈ L(L2)

for all ε ∈ [0, ε′0], z ∈ R
N and s ∈ [1,∞). This operator is an extension of

w−1
ε,z (s− Δ)−1wε,z and satisfies the estimate

‖Rε,z(s)‖2,2 ≤ ∥∥(s− Δ)−1
∥∥

2,2

∥∥(1 + Tε,z(s− Δ)−1
)−1∥∥

2,2
≤ 2
s

for all ε ∈ [0, ε′0], z ∈ R
N and s ∈ [1,∞).

4.2.3. The second resolvent equations

Lemma 4.14. Let Tε,z be the same as in Lemma 4.12 and ε′0 and Rε,z be the
same as in Lemma 4.13. Then, for all ε ∈ [0, ε′0], z ∈ R

N and s ∈ [1,∞), the
equality

(s− Δ)−1 −Rε,z(s) = Rε,z(s)Tε,z(s− Δ)−1

holds on L2.
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Proof. Since the domain of Tε,z is H1 including the domain of Δ, we have the
equality

s− Δ + Tε,z =
(
1 + Tε,z(s− Δ)−1

)
(s− Δ)

on H2 for all ε ∈ [0, ε′0], z ∈ R
N and s ∈ [1,∞). As was proved in Lemma 4.13,

the right-hand side operator in this equality is invertible in L(L2) and its
inverse operator is Rε,z(s). Hence, an arbitrary s ∈ [1,∞) belongs to the
resolvent set of the operator sum Δ−Tε,z defined on H2 for all ε ∈ [0, ε′0] and
z ∈ R

N , and the resolvent (s− Δ + Tε,z)−1 coincides with Rε,z(s). Now, it is
clear that the equality in this lemma holds, since the equality is nothing but
the second resolvent equation concerning (s−Δ)−1 and (s−Δ + Tε,z)−1.

4.2.4. ∇-boundedness of w`1
";z(−Δ)¸w";z − (−Δ)¸

Proposition 4.15. Let ε′0 be the same as in Lemma 4.13. For any ε ∈
[0, ε′0] and z ∈ R

N , the operator w−1
ε,z (−Δ)αwε,z − (−Δ)α with domain S has

an extension Tα,ε,z with domain H1 satisfying the following ∇-boundedness:
There exists a constant C > 0 such that

‖Tα,ε,zu‖2 ≤ C
√
ε
(‖∇u‖2 + ‖u‖2

)
for all ε ∈ [0, ε′0], z ∈ R

N and u ∈ H1.

Proof. The assertion in the case of α = 1 is the result in Lemma 4.12, and so
we assume α ∈ (0, 1). Let ε′0, Rε,z(s) and Tε,z be the same as in Lemma 4.13
and Lemma 4.12, respectively, for all ε ∈ [0, ε′0], z ∈ R

N and s ∈ [1,∞). We
will use the well-known formula

(−Δ)αu =
sinπα
π

∫ ∞

0
sα−1(s− Δ)−1(−Δ)u ds

for all u ∈ S (see the formula (4) in [20, Chapter IX, Section 11] or [9, (5.13)]),
where the integrand of the right-hand side of this equality is Bochner integrable
on [0,∞). By this formula, the following equality holds: For all ε ∈ [0, ε′0], z ∈
R

N and u ∈ S,
π

sinπα
(
w−1

ε,z (−Δ)αwε,zu− (−Δ)αu
)

(4.10)

= w−1
ε,z

∫ ∞

0
sα−1(s− Δ)−1(−Δ)wε,zu ds

−
∫ ∞

0
sα−1(s− Δ)−1(−Δ)u ds

=
∫ ∞

0
sα−1w−1

ε,z (s− Δ)−1(−Δ)wε,zu ds

−
∫ ∞

0
sα−1(s− Δ)−1(−Δ)u ds
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=
∫ 1

0
sα−1

(
w−1

ε,z (s− Δ)−1(−Δ)wε,z − (s− Δ)−1(−Δ)
)
u ds

+
∫ ∞

1
sα−1

(
w−1

ε,z (s− Δ)−1(−Δ)wε,z − (s− Δ)−1(−Δ)
)
u ds.

We can execute a calculation on the first term of the rightmost side of (4.10)
as follows:

∫ 1

0
sα−1

(
w−1

ε,z (s− Δ)−1(−Δ)wε,z − (s− Δ)−1(−Δ)
)
u ds

=
∫ 1

0
sα−1

(
w−1

ε,z

(
1 − s(s− Δ)−1

)
wε,z −

(
1 − s(s− Δ)−1

))
u ds

=
∫ 1

0
sα

(
(s− Δ)−1 − w−1

ε,z (s− Δ)−1wε,z

)
u ds.

In addition,
(
1 − wε,z(x)−1wε,z(y)

)
G1(s;x − y) is the integral kernel of (s −

Δ)−1 − w−1
ε,z (s− Δ)−1wε,z for all ε ∈ [0, ε′0], z ∈ R

N and s > 0. Hence, for all
ε ∈ [0, ε′0], z ∈ R

N and u ∈ S, the inequality

∫
RN

([∫ 1

0
sα

(
(s− Δ)−1 − w−1

ε,z (s− Δ)−1wε,z

)
u ds

]
(x)

)2
dx

=
∫

RN

(∫ 1

0
sα

[(
(s− Δ)−1 − w−1

ε,z (s− Δ)−1wε,z

)
u
]
(x) ds

)2
dx

=
∫

RN

(∫ 1

0
sα

(∫
RN

(
1 − wε,z(x)−1wε,z(y)

)
G1(s;x− y)u(y) dy

)
ds

)2
dx

≤ (
21+2cc

√
ε
)2

∫
RN

(∫ 1

0
sα

(∫
RN

(1 + |x− y|2)c

×G1(s;x− y)|u(y)| dy
)
ds

)2
dx

(by Lemma 4.3 (ii))

=
(
21+2cc

√
ε
)2

∫
RN

(∫
RN

(1 + |x− y|2)c

×
(∫ 1

0
sαG1(s;x− y) ds

)
|u(y)| dy

)2
dx

(by Fubini’s theorem)

≤ (
21+2cc

√
ε
)2
(∫

RN

(1 + |x|2)c
(∫ 1

0
sαG1(s;x) ds

)
dx

)2 · ‖u‖2
2

(by Young’s inequality)
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holds. Thus, for all ε ∈ [0, ε′0] and z ∈ R
N , we have∥∥∥∫ 1

0
sα−1

(
w−1

ε,z (s− Δ)−1(−Δ)wε,z − (s− Δ)−1(−Δ)
)
ds

∥∥∥
2,2

≤ 21+2cc
√
ε

∫
RN

(1 + |x|2)c
(∫ 1

0
sαG1(s;x) ds

)
dx

= C
√
ε

∫
RN

(1 + |x|2)c
(∫ 1

0
sα+ N

2
−1G1(1; s

1
2x) ds

)
dx

= C
√
ε

∫ 1

0
sα+ N

2
−1

(∫
RN

(1 + |x|2)cG1(1; s
1
2x) dx

)
ds

(by Fubini’s theorem)

= C
√
ε

∫ 1

0
sα−1

(∫
RN

(1 + s−1|x|2)cG1(1;x) dx
)
ds

= C
√
ε

∫ 1

0
sα−1

[(∫
|x|<1

+
∫
|x|≥1

)
(1 + s−1|x|2)cG1(1;x) dx

]
ds

≤ C
√
ε

∫ 1

0
sα−1

[
(1 + s−1)c

∫
|x|<1

G1(1;x) dx

+ (1 + s−1)c

∫
|x|≥1

|x|2cG1(1;x) dx
]
ds

= C
√
ε

∫ 1

0
sα−1(1 + s−1)c ds

×
(∫

|x|<1
G1(1;x) dx+

∫
|x|≥1

|x|2cG1(1;x) dx
)
.

The integrals of the right-hand side of the last equality are finite. More pre-
cisely, the function s �→ sα−1(1 + s−1)c is integrable on (0, 1) by c < α, and
the functions x �→ G1(1;x) and x �→ |x|2cG1(1;x) are integrable on B(0, 1)
and B(0, 1)c respectively by Remark 4.11. Hence, the operator of the leftmost
side of this equality can be extended to an operator belonging to L(L2) for all
ε ∈ [0, ε′0] and z ∈ R

N . In addition, there exists a constant C > 0 such that
the L(L2)-norm of this operator is not greater than C

√
ε for all ε ∈ [0, ε′0] and

z ∈ R
N .

Next, we can execute a calculation on the second term of the rightmost side
of (4.10) as follows:∫ ∞

1
sα−1

(
w−1

ε,z (s− Δ)−1(−Δ)wε,z − (s− Δ)−1(−Δ)
)
u ds(4.11)

=
∫ ∞

1
sα−1

(
w−1

ε,z (s− Δ)−1wε,z · w−1
ε,z (−Δ)wε,z

− (s− Δ)−1(−Δ)
)
u ds
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=
∫ ∞

1
sα−1

(
w−1

ε,z (s− Δ)−1wε,z

(
w−1

ε,z (−Δ)wε,z − (−Δ)
)

+
(
w−1

ε,z (s− Δ)−1wε,z − (s− Δ)−1
)
(−Δ)

)
u ds

=
∫ ∞

1
sα−1

(
Rε,z(s)Tε,z −Rε,z(s)Tε,z(s− Δ)−1(−Δ)

)
u ds

=
∫ ∞

1
sα−1

(
Rε,z(s)Tε,z −Rε,z(s)Tε,z

(
1 − s(s− Δ)−1

))
u ds

for all ε ∈ [0, ε′0] and z ∈ R
N . (To obtain (4.11), note that (w−1

ε,z (−Δ)wε,z −
(−Δ))u ∈ S for all ε ∈ [0, ε′0] and z ∈ R

N and use Lemma 4.12, 4.13 and 4.14.)
It can be shown that the rightmost side of this equality defines an opera-

tor with domain H1 and satisfies the following estimate by Lemma 4.12 and
Lemma 4.13: Indeed, for any u ∈ H1,∥∥∥∫ ∞

1
sα−1

(
Rε,z(s)Tε,z −Rε,z(s)Tε,z

(
1 − s(s− Δ)−1

))
u ds

∥∥∥
2

≤
∫ ∞

1
sα−1 · 2

s
ds× C

(√
ε‖∇u‖2 + ε‖u‖2

)
+

∫ ∞

1
sα−1 · 2

s
· C

(√
ε
∥∥∇(

1 − s(s− Δ)−1
)
u
∥∥

2

+ ε
∥∥(1 − s(s− Δ)−1

)
u
∥∥

2

)
ds

≤ C
(√
ε‖∇u‖2 + ε‖u‖2

)
for all ε ∈ [0, ε′0] and z ∈ R

N .
Thus, for any ε ∈ [0, ε′0] and z ∈ R

N , the operator w−1
ε,z (−Δ)αwε,z − (−Δ)α

has an extension Tα,ε,z with domain H1 satisfying the following estimate:
There exists a constant C > 0 such that

‖Tα,ε,zu‖2 ≤ C
√
ε
(‖∇u‖2 + ‖u‖2

)
for all ε ∈ [0, ε′0], z ∈ R

N and u ∈ H1.

4.2.5. H¸;2;V -boundedness of ∇
Lemma 4.16. Under the assumption (4.1), ∇ is Hα,2,V -bounded with relative
bound 0.

Proof. Since (−Δ)α + V ⊂ Hα,2,V by [6, Corollary 2.7] and both of the oper-
ators are self-adjoint, Hα,2,V = (−Δ)α + V . Furthermore, since ∇ is (−Δ)α-
bounded with relative bound 0 and V is (−Δ)α-bounded with relative bound
< 1, the assertion of this lemma holds.
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4.2.6. Completion of the proof

Proof of Proposition 4.7. Let K be any compact subset of ρ(Hα,2,V ). As
stated in the proof of Lemma 4.16, Hα,2,V = (−Δ)α + V . (It is implied
in this equality that D(Hα,2,V ) = H2α.) By this equality and Proposition 4.15
and Lemma 4.16, for ε′0 and Tα,ε,z which are the same as in Proposition 4.15,
the estimate

‖Tα,ε,zu‖2 ≤ C
√
ε
(‖Hα,2,V u‖2 + ‖u‖2

)
holds for all ε ∈ [0, ε′0], z ∈ R

N and u ∈ H1, where C is a constant which
is independent of ε ∈ [0, ε′0], z ∈ R

N and u ∈ H1. Hence, there exists an
ε0 ∈ (0, ε′0] such that ∥∥Tα,ε,z(Hα,2,V − ζ)−1

∥∥
2,2

≤ 1
2

for all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R
N . On the other hand, the equality

w−1
ε,z (Hα,2,V − ζ)wε,zu =

(
1 − Tα,ε,z(Hα,2,V − ζ)−1

)
(Hα,2,V − ζ)u

holds for all ε ∈ [0, ε0], z ∈ R
N and u ∈ S.

By the estimate above, the operator of the right-hand side of this equality
is invertible in L(L2), hence we can define the operator

Rα,ε,z(ζ) := (Hα,2,V − ζ)−1
(
1 − Tα,ε,z(Hα,2,V − ζ)−1

)−1 ∈ L(L2)

for all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R
N . This operator satisfies the equality

(4.12) Rα,ε,z(ζ)w−1
ε,z (Hα,2,V − ζ)wε,zu = u

for all ζ ∈ K, ε ∈ [0, ε0], z ∈ R
N and u ∈ S. We can prove that this equal-

ity holds for all u ∈ w−1
ε,zH

2α, where w−1
ε,zH

2α is the image of H2α by the
multiplication operator w−1

ε,z . In fact, since S is a core of (−Δ)α, for any
u ∈ w−1

ε,zH
2α there exists a sequence {vn}n in S such that vn → wε,zu and

(−Δ)αvn → (−Δ)αwε,zu in L2 as n → ∞. Since w−1
ε,zvn ∈ S for all n ∈ N, we

can substitute w−1
ε,zvn for u in (4.12) and we have the equality

Rα,ε,z(ζ)w−1
ε,z (Hα,2,V − ζ)vn = w−1

ε,zvn

for all ζ ∈ K, ε ∈ [0, ε0], z ∈ R and n ∈ N. As n → ∞, the right-hand
side of this equality converges to u in L2 by the way of taking the sequence
{vn}n. On the other hand, the left-hand side of this equality converges to
Rα,ε,z(ζ)w−1

ε,z (Hα,2,V − ζ)wε,zu in L2 as n→ ∞ since (−Δ)αvn → (−Δ)αwε,zu
in L2 as n→ ∞ and also V is (−Δ)α-bounded with relative bound < 1 by the
assumption. Hence, the equality (4.12) holds for all ζ ∈ K, ε ∈ [0, ε0], z ∈
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R
N and u ∈ w−1

ε,zH
2α. Now, let v be an arbitrary function in S. Since

w−1
ε,z (Hα,2,V − ζ)−1wε,zv ∈ w−1

ε,zH
2α, we can substitute w−1

ε,z (Hα,2,V − ζ)−1wε,zv
for u in (4.12) and we have the equality

Rα,ε,z(ζ)v = w−1
ε,z (Hα,2,V − ζ)−1wε,zv

for all ζ ∈ K, ε ∈ [0, ε0], z ∈ R
N and v ∈ S. Hence Rα,ε,z(ζ) is an extension of

w−1
ε,z (Hα,2,V − ζ)−1wε,z and satisfies the estimate

‖Rα,ε,z(ζ)‖2,2 ≤ ‖(Hα,2,V − ζ)−1‖2,2

∥∥(1 + Tα,ε,z(Hα,2,V − ζ)−1
)−1∥∥

2,2

≤ 2 sup
ζ∈K

‖(Hα,2,V − ζ)−1‖2,2 <∞

for all ζ ∈ K, ε ∈ [0, ε0] and z ∈ R
N . The proof of Proposition 4.7 is thus

completed.

4.3. The case of e`tHD
¸;p;V on bounded sets

In this subsection, we prove Lp-spectral independence of a perturbed fractional
Dirichlet Laplacian. Let O be a bounded open subset of R

N and let ΔD be
the Dirichlet Laplacian in L2(O). i.e., −ΔD is the operator associated with
the sesquilinear form a(u, v) :=

∫
O ∇u∇v dx (

u, v ∈ D(a) = H1
0 (O)

)
. Since a

is positive, closed and symmetric with dense domain, −ΔD is self-adjoint and
positive definite.

For all α ∈ (0, 1], the C0-semigroup
(
e−t(−ΔD)α)

t≥0
on L2(O) is positive

and satisfies a Gaussian estimate of order α (see (4.13) below). In fact, by
the maximal principle [3, Théorème IX.27] (see also the footnote there), (λ−
ΔD)−1 ≥ 0 for all λ > 0. Hence etΔD ≥ 0 (t ≥ 0). In addition, by using
[15, Proposition 4.2], 0 ≤ etΔD ≤ etΔ (t ≥ 0) (this inequality means that
u ≤ etΔDu ≤ etΔu for all positive u ∈ L2(O) and t ≥ 0. Here, the heat
semigroup etΔ on L2(RN ) operates on any u ∈ L2(O) identified an element
of L2(RN ) by considering u to have value 0 on R

N \ O). It follows from this
inequality and the formula (2) in [20, Chapter IX, Section 11] that

(4.13) 0 ≤ e−t(−ΔD)α ≤ e−t(−Δ)α
(t ≥ 0).

Hence, as is proved in [14, Proposition 3.5], there exists a positive C0-semigroup
UD

α,p =
(
UD

α,p(t)
)
t≥0

on Lp(O) for each p ∈ [1,∞) such that UD
α,p(t) and UD

α,q(t)
are consistent for all t ≥ 0 and p, q ∈ [1,∞) and UD

α,2(t) = e−t(−ΔD)α
for all

t ≥ 0 (by the consistency condition, UD
α,p is unique for each p ∈ [1,∞)). Since

(−ΔD)α is self-adjoint in L2(RN ), UD
α,2(t)(= e−t(−ΔD)α

) is self-adjoint for all
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t ≥ 0. Using the term in Definition 2.7, the family {UD
α,p; p ∈ [1,∞)} is self-

adjoint and consistent. By the consistency above and the self-adjointness of
UD

α,2, the equality UD
α,p(t)

′ = UD
α,p′(t) holds for all t ≥ 0 and p ∈ (1, 2) ∪ (2,∞)

(cf. Remark 2.8).
In what follows, for any function f : O → R, we define the function f̃ : R

N →
R by f̃(x) = f(x) (x ∈ O), 0 (x �∈ O). (We write f∼ instead of f̃ in some
cases.) This definition is used in the next proposition, which states a suffi-
cient condition for a potential to be UD

α,p-admissible for all p ∈ [1,∞). For a
UD

α,p-admissible V , in the former notation, the perturbed semigroup should be
written as (UD

α,p)V . However, we will write simply the perturbed semigroup
as UD

α,p,V .

Proposition 4.17. Let V : O → R be a measurable function. Assume the
following conditions:

(i) Ṽ− ∈ K̂N,α and cN,α(Ṽ−) < 1,
(ii) Q

(
(−ΔD)α

) ∩Q(V+) is dense in L2(O),
(iii) Hα(RN ) ∩Q(Ṽ+) is dense in L2(RN ).
Then V is UD

α,p-admissible for all p ∈ [1,∞) and Ṽ is Uα,p-admissible for
all p ∈ [1,∞). In addition, the domination

0 ≤ UD
α,2,V (t) ≤ U

α,2,eV (t)

holds for all t ≥ 0.

Proof. As is proved in Theorem 2.14, Ṽ is Uα,p-admissible for all p ∈ [1,∞).
It is proved that V+ is UD

α,p-admissible for all p ∈ [1,∞) in a similar way as
in [18, Proposition 5.8]. The domination for V+ is proved as follows. For any
t ≥ 0, n,m ∈ N and positive u ∈ L2(O), the inequality

0 ≤
[(
UD

α,2

(
t
m

)
e−

t
m

V
(n)
+

)m
u
]∼

(x) ≤
[(
Uα,2

(
t
m

)
e−

t
m

eV (n)
+

)m
ũ
]
(x)

holds for a.e. x ∈ R
N . Hence, by using the Trotter product formula, we obtain

that for any n ∈ N,

0 ≤ (
UD

α,2,V
(n)
+

(t)u
)∼(x) ≤ (

U
α,2,eV (n)

+

(t)ũ
)
(x)

for all t ≥ 0, positive u ∈ L2(O) and a.e. x ∈ R
N . Hence, the domination

0 ≤ (
UD

α,2,V+
(t)u

)∼(x) ≤ (
U

α,2,eV+
(t)ũ

)
(x)

holds for all t ≥ 0, positive u ∈ L2(O) and a.e. x ∈ R
N .

To prove that −V− is UD
α,p-admissible for all p ∈ [1,∞), it suffice to show

that
sup

{∥∥exp
(
t(HD

α,1 + V
(n)
− )

)∥∥ ∣∣∣ 0 ≤ t ≤ 1, n ∈ N

}
<∞
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(see [19, Proposition 2.2] and Proposition 2.9), where HD
α,1 is the generator of

UD
α,1. By a similar way as in the case of V+, for all t ≥ 0, n ∈ N and positive

u ∈ L2(O), the inequality

0 ≤ (
UD

α,2,−V
(n)
−

(t)u
)∼(x) ≤ (

U
α,2,−eV (n)

−
(t)ũ

)
(x)

holds for a.e. x ∈ R
N . Since UD

α,1,−V
(n)
−

(t) and U
α,1,−eV (n)

−
(t) are consistent with

UD

α,2,−V
(n)
−

(t) and U
α,2,−eV (n)

−
(t), respectively, for all t ≥ 0 and n ∈ N, by this

consistency and the inequality above, we have

0 ≤ (
UD

α,1,−V
(n)
−

(t)u
)∼(x) ≤ (

U
α,1,−eV (n)

−
(t)ũ

)
(x)

for all t ≥ 0, n ∈ N, positive u ∈ L1(O) ∩ L2(O) and a.e. x ∈ R
N . Hence the

estimate ∥∥UD

α,1,−V
(n)
−

(t)
∥∥ ≤ ∥∥U

α,1,−eV (n)
−

(t)
∥∥ ≤ ∥∥U

α,1,−eV−(t)
∥∥

holds for all t ≥ 0 and n ∈ N. Thus, the boundedness above holds.
Since both V+ and −V− are UD

α,p-admissible for all p ∈ [1,∞), V is UD
α,p-

admissible for all p ∈ [1,∞). Now it is easy to prove that

(4.14) 0 ≤ UD
α,2,V (t) ≤ U

α,2,eV (t)

for all t ≥ 0. In fact, by replacing UD
α,2, Uα,2 and V+ with UD

α,2,V+
, U

α,2,eV+
and

−V− respectively in the argument in the case of V+, we have

0 ≤ [(
UD

α,2,V+

)
−V

(n)
−

(t)u
]∼(x) ≤ [(

U
α,2,eV+

)
−eV (n)

−
(t)ũ

]
(x)

for all t ≥ 0, n ∈ N, positive u ∈ L2(O) and a.e. x ∈ R
N . Since, as

stated in Remark 2.6, UD
α,2,V (t) = s- limn→∞(UD

α,2,V+
)−V

(n)
−

(t) in L(L2(O)
)

and U
α,2,eV (t) = s- limn→∞(U

α,2,eV+
)−eV (n)

−
(t) in L(L2(RN )

)
for all t ≥ 0, the

domination (4.14) holds.

Theorem 4.18. Under the same assumptions as in Proposition 4.17,

σ(HD
α,p,V ) = σ(HD

α,2,V )

holds for all p ∈ [1,∞), where HD
α,p,V is the generator of UD

α,p,V .

Proof. Note that
∥∥UD

α,p,V (t)
∥∥

p,q
≤ ∥∥U

α,p,eV (t)
∥∥

p,q
for all t ≥ 0 and 1 ≤ p <

q ≤ ∞, by the domination in Proposition 4.17. Hence, σ(HD
α,2,V ) ⊂ σ(HD

α,p,V )
for all p ∈ [1,∞) (for the proof of this spectral inclusion, see the proof of
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Theorem 4.1). To prove the converse inclusion, recall Proposition 4.6. For all
1 ≤ p ≤ q ≤ ∞ and n > N

2α

(
1
p − 1

q

)
, we have∥∥(HD

α,2,V − λ
)−n∥∥

p,q
<∞

for real and sufficiently negative λ. Next, let K be any compact subset of
ρ(HD

α,2,V ). For all n > N
4α and ζ ∈ K, by taking a real and sufficiently negative

λ, the following estimate holds:

∥∥(HD
α,2,V − ζ

)−2n∥∥
1,∞ ≤

2n∑
j=0

(
2n
j

)
|ζ − λ|j∥∥(HD

α,2,V − λ)−n
∥∥

2,∞

× ∥∥(HD
α,2,V − ζ)−1

∥∥j

2,2

∥∥(HD
α,2,V − λ)−n

∥∥
1,2

≤ C,

where the constant C is independent of ζ ∈ K. Hence, (HD
α,2,V − ζ)−2n above

is an integral operator and its integral kernel Gn(ζ;x, y) satisfies the estimate∥∥Gn(ζ; ·, ·)∥∥
L∞(O×O)

≤ C

for all ζ ∈ K. By using this estimate together with the assumption that O
is bounded, we can define the function Gn,p for all p ∈ [1,∞) in the same
way as in the proof of Theorem 4.2. By the same argument there, we obtain
σ
(
HD

α,p,V

) ⊂ σ
(
HD

α,2,V

)
for all p ∈ [1,∞).

Finally, we give a sufficient condition for a potential to satisfy the assump-
tions (ii) and (iii) in Proposition 4.17.

Proposition 4.19. Let O be a bounded open subset of R
N whose boundary

∂O is a set of Lebesgue measure 0 in R
N . Assume that V ∈ L1

loc(O), then
Q
(
(−ΔD)α

)∩Q(V ) is dense in L2(O) and Hα(RN )∩Q(
Ṽ
)

is dense in L2(RN ).

Proof. By the assumption, C∞
c (O) is included in Q

(
(−ΔD)α

) ∩ Q(V ), and
hence Q

(
(−ΔD)α

)∩Q(V ) is dense in L2(O). Next, we prove the latter asser-
tion. To prove this, for any u ∈ L2(RN ), we take a sequence {un}n in C∞

c (RN )
such that un → u in L2(RN ) as n→ ∞. Now we define

Kn :=
{
x ∈ R

N
∣∣ d(x, ∂O) ≥ 1

n

}
for all n ∈ N, where d(x,A) denotes the distance of a point x ∈ R

N from a
closed set A ⊂ R

N . For all n ∈ N, Kn is closed and satisfies Kn ⊂ K◦
n+1

(K◦
n+1 denotes the interior of Kn+1) and

⋃
n∈N

Kn = R
N \ ∂O. For all n ∈ N,

we can take a function φn ∈ C∞(RN ) such that 0 ≤ φn ≤ 1 and

φn(x) =

{
1 (x ∈ Kn),
0 (x ∈ R

N \K◦
n+1).
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It is easy to prove that φnun ∈ Hα(RN ) ∩ Q(
Ṽ
)

(n ∈ N) and φnun → u in
L2(RN ) as n → ∞ (note the assumption that the measure of ∂O is 0). Thus
Hα(RN ) ∩Q(

Ṽ
)

is dense in L2(RN ).
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