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Abstract. Let Hqp v denote the fractional Laplacian (—A)* (a € (0,1])
acting in LP(RN) (p €1, oo)) perturbed by a potential V. We prove spectral
inclusion 0(Ha,p,v) C 0(Ha,qv) 1 <g<p<2o0r2<p<qg< o) for alarge
class of potentials, and LP-spectral independence o(Ha,p,v) = 0(Ha2,v) (p €
1, oo)) under a certain condition. In addition, we prove that the spectrum of
a perturbed fractional Dirichlet Laplacian acting in LP(O) is independent of

p € [1,00) under a weak condition for potentials, where O is a bounded open
subset of RY.
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81. Introduction

Let O be an open subset of RY, and suppose that a Cp-semigroup 7, =
(Tp(t))tzo on LP(O) with generator A, is given for each p € [1,00). Assume
further that T},’s are consistent in the sense that T),(t) = T;(t) on LP(O)NL4(O)
for allt > 0 and p,q € [1,00). Under these assumptions, it is natural to expect
LP-spectral independence of the generators holds, that is to say,

(1.1) o(4p) = 0(Az)

for all p € [1,00). However, W. Arendt [1, Section 3] showed that this equality
is not necessarily true. Nonetheless, LP-spectral independence (1.1) is proved
in many important cases. In fact, R. Hempel and J. Voigt [6, Theorem| proved
that, for a potential V' belonging to a large class including a Kato class, the
spectrum of the Schrédinger operator —A/2+V acting in LP(RY) is indepen-
dent of p € [1,00) (for other references, see below in this section). Therefore
we have an interest in LP-spectral independence in the case where we replace
the Laplacian in —A/2+V with a fractional Laplacian, a no less fundamental
operator than the Laplacian. For example, this means that we replace the
heat semigroup

with the Poisson semigroup

EENS D(55H)t /)
H-a)? _ 1 d
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(cf. [12, Example 1.10, 1.8] and [7, (3.248)]).

Let us state the aims and the main results of this paper in more detail. For
that purpose, we have to make the main objects clear. In what follows, A de-
notes the usual Laplacian in L?(R") with domain H2(R"). For all o € (0, 1],
the fractional Laplacian (—A)® is positive definite self-adjoint and —(—A)“
generates a Cp-semigroup on L?(R™). It is well known that the domain of
(—A)? is the fractional order Sobolev space H2*(R™). As will be stated in
Proposition 2.2, there exists a Cy-semigroup Uy, = (Ua,p(t))t>0 on LP(RY)

for each p € [1,00) such that U, ,(t) and e *=2)% are consistent for all ¢ > 0.
By this consistency, U, is unique for each p € [1,00). Let —H,, denote
the generator of U, ;. This is the definition of what was called the fractional
Laplacian acting in LP(RY) in the abstract. It is also possible that the frac-
tional Laplacian acting in LP(RY) is defined by HY,. However, both of the
definitions coincide (see the statement below the proof of Theorem 3.20 in
[14]).

Then, we treat the formal expression: H, p v := H, p+ V. First, we have to
consider whether the formal operator H, ,+ V makes sense. To that purpose,
we modify the generalized Kato class defined in [18, p. 183] to make it suitable
for the fractional Laplacians (Definition 2.10) and prove that for the potentials
belonging to the modified Kato class, the formal expression H,, + V can be
given a realization as a Cpy-semigroup generator via the perturbation theory
of Voigt [18], [19] (Theorem 2.14).

The purpose of this paper is to consider LP-spectral independence of the
operator Hy, v = Hqp + V, which is given a realization described above. To
prove LP-spectral independence of H, py, we prove the Feynman-Kac formula
for e *Hepv (Proposition 3.3) and by using the Feynman-Kac formula, we
show LP-L9 estimates for e~*He2v (Proposition 3.6).

By using these estimates, we obtain the following spectral inclusion of
H,pv (Theorem 4.1): The relation

o0(Hapyv) Co(Hagv)

holds for any 1 < ¢ <p <2orany 2 <p<q< oo, where Hyoov = H, |
(the conjugate of H, 1,v). Moreover, in the special case of N =1 and 1/2 <
a < 1, we show LP-spectral independence

U(Ha,p,V) = U(HQ,Q,V) (p € [17 OO))

under a condition on potentials V' (Theorem 4.2). On the other hand, let Ap
and H c?,p,v denote the Dirichlet Laplacian in L?(O), where O is a bounded
open subset of RV, and the fractional power (—Ap)® acting in LP(O) per-
turbed by a potential V for an a € (0,1] and p € [1,00), respectively. A
similar condition on V" as in the case of H, py guarantees that H £p,v is given
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a realization. Under a certain condition on V' without any restriction on N and
a, we prove that the spectrum J(H(Bpjv) is independent of p € [1,00) (The-
orem 4.18). Especially, our result implies that p-independence of o(H, £p,v)
holds provided that the boundary 9O is smooth, Vi € L} (O) and V_ is
small enough.

We would like to refer to other references concerning LP-spectral indepen-
dence that have a close relation to this paper. We do not assume that O is
bounded unless explicitly stated otherwise in the rest of this introduction. Let
us recall that Hempel and Voigt [6] treated only the Schrodinger operators by
a subtle argument using Feynman-Kac formula. However, Arendt [1] found
that their result is closely connected to a specific property of the semigroups
generated by the Schrodinger operators, and he succeeded in generalizing the
result of [6] in an abstract direction. In more detail, Arendt called a Cp-
semigroup (T(t))t>0 on L?(0) (O C RY) satisfies an upper Gaussian estimate
if there exist constants M > 1,w € R and b > 0 such that

(1.2) IT(t)u| < Me“teb*|u)

for all t > 0 and v € L?(0O). In the right-hand side of this inequality, we
regard u € L?(0) as an element of L?(R") by considering the value of u on
RY\ O to be 0. Arendt proved that if a Cy-semigroup T on L%(O) satisfies an
upper Gaussian estimate, then there exists a Cp-semigroup 7, on L?(0) for
each p € [1,00) which is consistent with 7" and the spectrum of the generator
of T}, is independent of p € [1,00) provided the generator of 7" is self-adjoint
([1, Corollary 4.3]). (For the result in the non-self-adjoint case, see [1, Theo-
rem 4.2].) For a large class of potentials, the Schrodinger semigroups satisfy
upper Gaussian estimates (c¢f. [17, Theorem B.6.7]). Hence Arendt’s result
[1, Corollary 4.3] is a generalization of a considerable part of the results in
[6]. However, it is not known whether all of the Schrédinger semigroups in [6]
satisfies an upper Gaussian estimate. Hence the result in [6] is of independent
interest.

On the other hand, after the work of Arendt, generalizations of his result
were achieved by [10], [11], [13] and [14]. In the generalization process, the
notion of an upper Gaussian estimate has been generalized. For example,
the notion of a Gaussian estimate of order o (« € (0, 1]) was defined in [14,
Definition 3.1]. This estimate corresponds to what is obtained by replacing A
with —(—A)% in (1.2). In some cases including the one where O is bounded,
Miyajima and the author proved that if a Cg-semigroup T on L?(O) satisfies
a Gaussian estimate of order « for some « € (0, 1], the same conclusion as
Arendt’s result above holds. However, for a similar reason as in the case of
—A 4V, the problem of LP-spectral independence of (—A)* 4+ V has its own
significance. This is the reason why the fractional Laplacians perturbed by
potentials are particularly investigated in this paper.
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Besides the references above, for LP-spectral independence of second or-
der differential operators, see the examples of the references above and the
references therein.

This paper consists of three parts. In the next Section 2, we define the
perturbed operator —H, ;, v, which is only formal at present, as the generator
of a Cp-semigroup on LP(RY) for an appropriate potential V. In Section 3,
we show the Feynman-Kac formula for e *#or.v and then we prove LP-L4
estimates for e *o2v_ In Section 4, by using this estimates, we prove LP-
spectral independence and LP-spectral inclusion in the form as stated above.

Below, we will list function spaces and operator spaces frequently used in
this paper. In this list, p € [1,00) and O denotes an open subset of R and
X and Y designate Banach spaces.

LP(0O) the usual Lebesgue space on O,
L*°(0)  the Lebesgue space of essentially bounded functions on O,
LP

10e(O the usual L}  space on O,
Coo(RY)  the space of continuous functions on R vanishing at infinity,
C.(0) the space of continuous functions with compact support in O,

C>*(0)  the space of infinite times differentiable functions on O,
Ce(0) == C>=(0) N Ce(0),

H*5(0) the usual Sobolev space on O of order s € R,

H(0) the closure of C2°(0) in H(O),

S(RM) the Schwartz space of rapidly decreasing functions,
L(X,Y) the space of bounded linear operators from X into Y,
L(X):=L(X,X).

In the case of O = RY, we may drop “(RY)”, for example, LP = LP(RY). In
addition, we also use the following notations. |-||, denotes LP(R™)-norm for
all p € [1,00] and B(z,7) denotes the ball in RY with center x and radius 7.
Constants “C” and “M” may vary from place to place.

§2. Perturbation of fractional Laplacians by potentials
2.1. Preliminaries
We shall discuss some basic properties of the semigroups generated by frac-
tional Laplacians. Those will be used throughout this paper.

Definition 2.1. (i) A denotes the usual Laplacian in L?(RY) with domain
H?(RY). For each a € (0,1], (—A)® is a positive definite self-adjoint operator
in L2(RN).
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(ii) For each v € (0,1], Uy := (Ua(t))t>0 is the Cp-semigroup on L2(RY)
generated by —(—A)®. B
(iii) For each « € (0, 1], the function K, is defined by

]. ; 2a
._ € —tl¢ N
Ka(t,l'>.—(2ﬂ_)lv/RNezr€ €] df (t>0,$€R )
(Ko (t,x —y) is the integral kernel of U,(t) (t > 0). See the next proposition.)
As is well known, U; is the heat semigroup and K;(¢,z) is the Gauss kernel
- 2
(le. Kq(t,z) = (47rt)_%e_% for all t > 0,z € RY).
In the next proposition, we collect some properties of U, and K, and state
a relation between U, and K,. Moreover, it is proved from these properties
that K, defines a Co-semigroup on LP(R™) for each p € [1, 00).

Proposition 2.2. For each o € (0,1], the following assertions hold.
(i) (a) For all t > 0, Uy(t) is positive, i.e., Uy(t)u > 0 for all positive
u € L2(RY).

(b) For eacht >0,
Ua(t)u = Ko(t,-) *xu

for all u € L?>(RN), where f g is the convolution of f and g.
(ii) (a) Ka(t,z) = t_%Ka(l,t_ix) for allt >0 and v € RV,
(b) The function (t,z) — K(t,z) is continuous on (0,00) x RV,
(¢) There exists a constant Co > 0 such that
t
(£ +[af2) =

0 < Kq(t,z) < Ca

for allt >0 and x € RY (see also the estimate in Proposition 2.3
below).

(d) For allt >0, K,(t,-) € LY RY) and
K,(t,z)dz = 1.
RN
(e) For each t >0 and u € Coo(RN), Ko(t,-) * u belongs to Coo(RN),
and also K4(t,-) * u converges tou ast | 0 in Coo(RY), i.e.,
Ka(t,z = y)u(y) dy —u(z) — 0
RN

as t | 0 uniformly in x € RN.
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(iii) For each p € [1,00) and t > 0, a bounded linear operator Uqp(t) is
defined on LP(RN) by the following formula:

(Uap(®)u)(x) == (Kolt,) xu)(z) (ue LP(RY),z € RY).

Then, Uy p = (Ua,p(t))po 1s a positive Co-semigroup of contractions on
LP(RYN) for all p € [1,00). In addition, U, and U, 4 are consistent for
all p,q € [1,00) (i.e. Upp(t) = Uay(t) on LP(RN) N LIRN) for all t > 0
and p,q € [1,00)), and Uy 2(t)u = Us(t)u for all t > 0 and u € L?(RY).

—H, ) will denote the generator of U, for each a € (0,1] and p € [1,00).
By (iii) of this proposition, we may identify (Us (t)u)(z) with (Kq(t,-) *u)(z)
for all t > 0,z € RY and v € L?(RY). Under this convention, for all u €
L?(RY), the function (¢, z) — (Ua(t)u)(z) is measurable on (0,00) x RV,

(ii)-(e) of this proposition shows that the kernel K, (t,z) generates a so-
called Feller semigroup on Cy, (]RN ), and this fact will play an important role
in Section 3. So we give a direct proof by using (ii)-(d) although (ii)-(e) is
proved in [8, Example 4.1.3].

Proof. (i) The assertions (a) and (b) are proved in [14, Proposition 3.3].

(ii) (a) is verified by using the change of variables t2a¢ = ¢ in the definition
of Ky(t,x).

(b) is an easy consequence of Lebesgue’s convergence theorem.

(c) and (d) are proved in [14] as Corollary 3.4 and Proposition 3.3 (see
(3.3)), respectively.

(e) Let u be an arbitrary function in Cso(RY). From the estimate

[Ka(t,y)u(z —y)| < Ka(t,y)ulloc (> 0,2,y € RY)

and Lebesgue’s convergence theorem, it follows that for each t > 0 and xg €
RV,

(Ka(t,) *u)(z) = o Ky(t,y)u(x —y) dy

- BN Koc(tv y)u(xo - y) dy = (Ka<t7 ) * U’) (xU)

as  — x9. Hence K,(t,-) * u is a continuous function on RY for each ¢ > 0.
Next, for any ¢t > 0,6 > 0 and u € Cso(RY), we can take an R > 0 such
that

OS/ Ky(t,x)de < e
lz|>R
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by (ii)-(d) and |u(z)| < e for |z| > R. Hence, if |z| > 2R, we have

(Kot s ) @) < [ Kalto = w)lu)]dy

zeRN

- </|y|>R i /y|<R> Holtoz =y)luty)ldy

<e Ka(t,x—y)dy—l—HuHoo/ Ky(t,x —y)dy
ly|>R lz—y[>R

<e | Kult,x—y)dy+ |lul Ko (t,y)dy
RN lyl>R

< e+ |ulloce = (1 4 ||ul|oo)e.

Thus, Ku(t,-) *u € Coo(RY) for all t > 0 and u € Coo (RY).
Let ¢ > 0 and u € Coo(RY). Then, there exists a 6 > 0 such that if
|z — y| < 4, then |u(x) — u(y)| < e. Hence, for any ¢ > 0 and z € RV,

[(Ka(t,) =) @) —u(@)| = | || Kalta —y)uly) dy — u(z)

= ‘ o K, (t,x —y) (u(y) — u(m)) dy’ (by (ii)‘(d))

<(f ) Kt —wlut) —utldy

< s/ Ky(t,x —y)dy
lz—y|<d
4 / Kotz —y)dy - 2llulloe
lz—yl|=6
< et 2ullo /  Ka(ly)dy.
lyl>t~ 2

For the last inequality, we used (ii

)-(a) and an elementary change of variables.
By this inequality and K,(1,-) € L!

(RY),

limsup|| Kqu(t, ) * u — ul|oc < e.
t10

Thus, for all u € Coo(RY), K4(t,-) * u converges to u as t | 0 in Cu(RY).
(iii) is proved in [14, Proposition 3.3]. O

We can prove also a lower estimate for the kernel K,. This estimate will
be used in the proof of Lemma 2.17.
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Proposition 2.3. Let a € (0,1). There exist constants Cy, Cl, > 0 such that

t t
- oo < Ko(t,z) < Co—;
(to + |z[?)> (ta + |z|?

(2.1) C!

«

)rre

for allt >0 and x € RN,

For the proof of this proposition, we introduce the function f; , defined in
[20, Chapter IX, Section 11]: For each o € (0,1) and ¢t > 0,

1 o+1i00 o
FalV) 2m/ Az (A>0,0>0),
t,« = o —100

0 (A <0),

where the branch of 2% is so taken that Rez* > 0 for Rez > 0. (fiq is
independent of o > 0.) Lemma 2.4 below shows that f; is a density function
on R for all @ € (0,1) and ¢ > 0, and also Proposition 3 in [20, Chapter IX,
Section 11] implies that f; o, defines a convolution semigroup on R. According
to [20, Chapter IX, Section 11 Theorem 2], for each o € (0,1) and t > 0, U, ()
is represented by f; o and U; as follows:

(2.2) Un(t) = /0 " fral()Ui(s) ds,

i.e., U, is subordinate to U;. This representation yields that of K,(t,z) by
Ki(t,z) for all t > 0 and = € RV:

Kot z) = /0 " fal)Ki (5, 2) ds,

which will be given a detailed proof and used in the proof of Proposition 2.3.
To verify this representation, we prove the next lemma concerning properties
of the function f;,. Although these properties must be known, we state it
here with a proof, since we could not find an appropriate literature.

Lemma 2.4. Let 0 < o < 1 and t > 0. The function f;. above satisfies the
following:

(1) ft,a > 0}

(i) fio € C(R),

(i) fra € L'(R) and | fralli@) = 1,

(iv) For all j € NU{0}, fir.a(A) = o(N) as A — 0.

Proof. (i) is proved in [20, Chapter IX, Section 11 Proposition 2].
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(ii) It is clear that f;o € C*°((—00,0)). To prove that f;o € C*((0,00)),
take any A9 > 0 and note the following estimate: For all z = o+in (o > 0,71 €
R),

ZA—tz® ZA—tz% ‘

= |e

d7

< 60()\0—1-1) (0_2 + 7]2)%6_“7]‘@ cos T3

for all A € (0,\o + 1) and j € NU {0}. The rightmost function of (2.3) with
respect to 7 is independent of A € (0, \g+ 1) and is integrable on R. Hence, by
Lebesgue’s convergence theorem, f;jzooj ZA—t2®
with respect to A under the integral sign, with

. o+ico o
(J)()\) _ 1/ z]ez)\—tz dz

b 2

dz is infinitely differentiable

—100
for all A > 0 and j € NU{0}.
Next we prove that

(2.4) lim 9 (\) = 0

for all j € NU {0} and accordingly f; . is continuous at the origin. By the
estimate (2.3) and Lebesgue’s convergence theorem again,

) 1 o+ico -
. _ b it
(2.5) 1)}?8 fra(N) 27”,/0 e dz

for all j € NU{0}. Now, we can prove that the right-hand side of this equality

is 0 for all j € NU{0}. To that purpose, we fix an arbitrary ¢ > 0 and
define Cr = {z € CHZ” = R,—0p < argz < HR} for all R > o, where

Or := tan—! 7”:%_"2. Since the function z +— z/e™**" is holomorphic on {z €
C|Re z > 0},

/0+i\/ R2—02
o—iv/R2—0?

oY e
et dz‘ = ‘/ etz dz‘
Cr

HR : xe?
S/ Rje—tR COST‘Rd¢
g
< ﬂ_RjJrleftRo‘ cos T5*

for all R > o. Hence

1 o+ico N 1 o+ivVR?2—02 N
(2.6) — e " dz = — lim e dz
27 Jo_ico 27 R—oo J i/ RZ—o2

=0
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for all j € NU{0}. By this equality and (2.5), we have (2.4). The equality
(2.6) for j = 0 means f; o(0) = 0. Since f; is right continuous at the origin
by (2.4) for j = 0 and is left continuous there by definition, f;, is continuous
at the origin.

Now, it follows from (2.5) and (2.6) that ft(g is continuous on R for all
t >0 and j € NU {0} since fro =0 on (—o0,0].

(iii) is proved in [20, Chapter IX, Section 11 Proposition 3].

(iv) is an easy consequence of the fact that f;, € C*°(R) and ft(’Q(O) =0
for all j € NU {0} and the mean value theorem. O

Proof of Proposition 2.3. Step 1. We prove the following representation of
K, by K, for all t >0 and z € RV:

(2.7) K, (t,z) = /Ooo fr.a(s)Ki(s,x)ds.

For this purpose, we need verify that for all t > 0 and u € C°(RY), the
function (s,x,y) — fra(s)K1(s,z — y)u(y) is integrable on (0,00) x E x RV,
where F is an arbitrary bounded measurable subset of RY. This integrability
follows from the estimate

Fral8) K1 (5,2 — 9)u)] € ——5 Foa(s) u(y)
(4ms)=

for all (s,z,y) € (0,00) x E x RN and the fact that the function s
sfgft,a(s) is integrable on (0,00) by Lemma 2.4 (iii) and (iv). Hence, for
a.e. (s,x) € (0,00) x E, the function y — fro(s)Ki(s,z — y)u(y) is inte-
grable on RV, and the function (s,z) — [on fra(s)K1(s,z — y)u(y)dy =
fr.a(8)(Ur(s)u) () is integrable on (0, 00) x E. In addition, for a.e. s € (0, 00),
the function @ — fi4(s)(Ui(s)u)(z) is integrable on E, and the function
s — [ fra(s)(Ur(s)u)(x) dz is integrable on (0,00). Hence, for all ¢t > 0,u €
C(RY) and bounded measurable £ C RV,

/E< . Kao(t,z — y)u(y) dy) dx
_ / (Ua(tyu) (z) do
E o0
~ [ (| haisuds) @iz oy 2:2)

0

_ /E ( /0 " Fals) (U1 (s)u) ) ds) di
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_ /E</OOO foa(s) (/RN Ki(s,2 — y)uly) dy) ds) da
_ /E(/RN (/OOO fra(s)E (5,2 — ) dsYuy) dy ) do

by Fubini’s theorem. Since E is arbitrary, we have for all t > 0 and u €
Ce(RY),

28 [ Kato—pumdr= [ ([ ha K ) ds)ut) dy

RN
for a.e. z € RY. Since both sides are continuous with respect to z on RV, (2.8)

holds for all z € RV, In fact, the continuity of the left-hand side is proved by
using the estimate

Kotz —y)uly)] < 72 | Ka(1,-)]|oclu(y)]

for all ¢ > 0 and z,y € RY and Lebesgue’s convergence theorem. Next we
prove that the right-hand side of (2.8) is continuous with respect to 2 on R,
Since the estimate

Fral8) K1 (5,2 — 4)| < —— fra(s)
(4ms)2

holds for all s > 0 and z,y € RY, the function (z,y) fo fra(s)Ki(s,z —
y) ds is continuous on RN RY by Lemma 2.4 (iii) and (iv) and Lebesgue’s
convergence theorem, with

(2.9) 0< /OO fra(s)Ki(s,z —y)ds
0
< 1 -

< (47r)% /0 sfgfta(s) ds < oo

for all 2,y € RY. By this continuity and the estimate (2.9) and Lebesgue’s con-
vergence theorem, the desired continuity is proved. The fundamental lemma
of calculus of variations yields

otz —y / Jta(8)Ki(s,z —y)ds

for all t > 0, x € RY and a.e. y € RY. Since both of these functions are
continuous with respect to y on RY, this equality holds for all y € RY. Thus,

Kq(t,z) = /000 Jra(s)Ki(s,x)ds
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for all t > 0 and z € RV,
Step 2. Since Ki(s,z) > Ki(s,y) for s > 0 and |z| < |y|, by the represen-
tation above,

(2.10) Ko(t,z) > Ko(t,y)
fort > 0 and |z| < |y|. The asymptotic expansion formula [14, Proposition 2.1]
implies that there exist constants R, Cy 1,Cq,2 > 0 such that

1 1

(211) Cwlm < Ka(L«T) < Ca,QW

for all |x| > R. For this R > 0, it follows from (2.10) and this estimate that
Ko(1,0) > Ko(1,2) > Ko(1,Re) > 0

for all |z| < R, where e € RY and |e| = 1 (note that K,(1, Re) is independent
of such e’s). By this inequality and (2.11), there exist constants Cy, ;,C;, 5 > 0
such that

, 1 1

SR S O e/ ———
(1+[af2)zte = ° 1+ [z2) T

a,l

for all z € RY. Since K,(t,z) = t_%Ka(l,t_ix) for all t > 0 and x € RY,
t

(to + [2]2) 2+

, t

MGEIPEa

< Kot x) < Cq

for all t > 0 and z € RY. O

2.2. Perturbation of fractional Laplacians by potentials

Before proving the main theorems on LP-spectral independence and LP-spectral
inclusion, we have to consider whether the formal operator H,, + V makes
sense for each a € (0,1] and p € [1,00), where V: RY — R is a measurable
function. We use the same symbol for the function V' and also for the asso-
ciated maximal multiplication operator in LP defined by V. For convenience,
we will consider such a problem in a more general situation. Let O be an
open subset of RY and U = (U(t))t>0 a positive Cp-semigroup on LP(O) with
generator T for a p € [1,00). If V: O — R is a bounded measurable function,
then the operator sum T'— V generates a Cy-semigroup on LP(O). In the case
where V' is unbounded, as was stated in [18], it is reasonable to consider only
the potential V satisfying the following conditions: The strong limit

(2.12) Uy (t) :=s- lim exp(t(T ~ v) (> 0)
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exists and Uy := (Uv(t))t>0 is a (positive) Cp-semigroup on LP(O), where
V() = (signV)(|V| An) (n € N). Now, following [18, Definition 2.2, 2.5]
with [19, Theorem 2.6] taken into account, and define the notion of “semigroup
admissibility” as follows:

Definition 2.5. Let O be an open subset of RY and V: O — R a measurable
function, and suppose that U = (U(t)) is a positive Cy-semigroup on LP(O)
with generator T for a p € [1,00).

(i) If V' is bounded below, V will be called U-admissible if the Uy above is
a (positive) Cp-semigroup on LP(O) (see also the following Remark (ii)).

(ii) If V' is bounded above, V' will be called U-admissible if Uy (t) of (2.12)
exists for all t > 0 and Uy is a (positive) Cp-semigroup on LP(O).

(iii) In general, V will be called U-admissible if both V. and —V_ are
U-admissible, where V [resp. V_] is the positive [resp. negative] part of V:
Vi =V VO [resp. V_ := (=V) Vv 0]. In this case, since the Uy above is a
Co-semigroup on LP(O) (see the following Remark (iii)), we may write the
generator of Uy as Ty .

>0

Remark 2.6. (i) If V € L*>°(0), V is U-admissible and Ty =T — V.

(ii) In Definition (i), the dominated convergence theorem yields the exis-
tence of Uy (t) for all ¢ > 0 ([18, Remark 2.1 (c)]).

(iii) If V' is U-admissible, then the Uy (¢) above exists and V. [resp. —V_]
is U_y_-admissible [resp. Uy, -admissible]. Moreover, the equality

Uy (t) = (U-v.)y, () = (Uv,) (1)

holds for all ¢ > 0. Hence, Uy is a positive Cy-semigroup on LP(O). For
details, see [18, p. 174] and [19, Theorem 2.6].

In this paper, we have to consider the situation where a Cy-semigroup U, on
LP(0) is given for each p € [1,00) (e.g., Up(t) = €' on LP(RY)). Therefore,
we introduce the following definition to firmly set the starting point.

Definition 2.7. Let O be an open subset of RY and suppose that a positive
Co-semigroup Uy, = (Up(t))t>0 on LP(O) is given for each p € [1,00). We say
that the family {U,;p € [1,00)} is self-adjoint and consistent if the following
conditions are satisfied:

(i) Us(t) is self-adjoint for all ¢ > 0,

(ii) Up(t) and U,y(t) are consistent for all p,q € [1,00), i.e., Up(t) = U,y(?)
on LP N LA.

Remark 2.8. If {Uy,;p € [1,00)} is self-adjoint and consistent, then it can be
easily verified that Uy(t) = Uy (t) for all t > 0 and p € (1,2) U (2,00), where
Up(t)' is the conjugate of Uy,(t) and p' is the conjugate exponent of p.
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Under this definition, we can prove the following proposition (cf. [18, Propo-
sition 3.2]).

Proposition 2.9. Let U, be a positive Cy-semigroup on LP(O) with gener-
ator T, for each p € [1,00) and {Up;p € [1,00)} self-adjoint and consistent.
Moreover, let V: O — R be a measurable function. Assume that —V_ 1is
Ui-admissible and V. is Up,-admissible for some py € [1,00), then V is U,-
admissible for all p € [1,00). Moreover, U,y is a positive Co-semigroup on
LP(O) for allp € [1,00) and {Upv;p € [1,00)} is self-adjoint and consistent.

Proof. First, note that if V'€ L>(0), then V is U,-admissible for all p € [1, 00)
and the Trotter product formula implies the last assertion of this proposition.

Next, if V' > 0 (i.e. V. = V4), then by the assumption for V, and [18,
Remark 2.1 (c)], the operator Up, v (t) exists as a bounded operator on L”(O)
for all t > 0 and p € [1,00), and 0 < U,y (t) < Up(t) holds for all ¢ > 0
and p € [1,00), ie.,, u < Upy(t)u < Up(t)u for all positive v € LP and
t > 0,p € [1,00). Since Uy, v is a Cp-semigroup on LP°(O) and consistent
with Upy for all p € [1,00), by a similar argument as in [1, p. 1160], U,y
is proved to be a Cyp-semigroup on LP(O) for all p € [1,00). Since U,y (t) is
the strong limit of U, ) (t) as n — oo for all t > 0 and p € [1, 00), the last
assertion of this proposition is shown by the result in the case of V' € L*°(0).

If V<0 (i.e. V.= —=V_), then by the assumption for V_ and [19, Proposi-
tion 2.2],

(2.13) sup{Het(Tl_V<n))H ’ 0<t<lne N} < 00.

Since U, /() (t) is the interpolating operator between U, ) (t) and Uy y ) ()’
forallt > 0,p € [1,00) and n € N, (2.13) and its dual imply by Riesz-Thorin
convexity theorem that

sup{Hean—wm)H ) 0<t<lne N} .

for all p € [1,00). By [19, Proposition 2.2] again, V is U,-admissible for all
p € [1,00). The remainder of the proof is as in the case of V' > 0.

For an arbitrary V, the results above state that both Vi and —V_ are
Up-admissible for all p € [1,00). Hence V is Up-admissible for all p € [1, 00).
To conclude the proof of this proposition, note that Uy, is a positive Cop-
semigroup on LP(O) for all p € [1,00) and the family {U, v, ;p € [1,00)} is
self-adjoint and consistent. By applying the result in the case of V € L*°(0O)
to (Up,v;) ,om(t) and using the fact stated in Remark 2.6 (iii): Upv(t) =

(Up,vy)—v (t) = s-limp o0 (Up,vy ) (o (¢) for all £ > 0 and p € [1,00), the last

assertion of this proposition is proved. ]
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From now on, we will treat the Cop-semigroup U, (t) = e (=) and give a

sufficient condition for a potential V' to be U, p-admissible for all p € [1, 00).
Since the case of a = 1 is treated in [18, Section 5, 6], we assume « € (0,1)
in what follows. To state the condition for V' in the case of o € (0,1), we
modify the generalized Kato class defined in [18, p. 183] to be suitable for the
fractional Laplacians.

Definition 2.10. Let a € (0, 1).
(i) The function gy q: RY \ {0} — R is defined as follows:

2| (§ <aie N=1,1<a<1),

1
—loglz| (§=aie N=1a=3),
T

gN,oa(w) =
1 F(% - O‘) ~N42 N
wET@ G

(ii) The function space Ky 4 is defined as follows:
Ky = {V € Li,®Y) | |V]|g, . < oo}, where

IV, = ess.sup /| lovae vl dy
’ r—y|<

zeRN

(ili) For all V € Ky 4, the quantity cy (V) is defined by

cNo(V) :==lim ess.sup/ lgn .oz —y)||V (y)| dy.
PO LeRrN lz—y|<p

Remark 2.11. (i) In the case of % > «, the function gy is the Riesz kernel
of order 2a.

(ii) Ky is a Banach space with norm Iz -

(iii) In Definition (ii), we may replace the intégral region by |z —y| < § for
any ¢ > 0, since there exist constants Cy,Cy > 0 such that

Cl”’gN,a,5| * |VH|oo < WQN,a,l * |VY|HOO < CZH’QN,&,5| * |VH|007

where gy a.n = gN,aXB(0,) for any n > 0.

(iv) For all V € K N, the quantity cy (V') is clearly finite.

(V) 9N, and K N, have the following relation to gn and Ky defined in [18,
p. 183]: For all a € (0,1), |gn(2)| < |gn,a(z)| holds if |z| > 0 small enough,
and hence IA(N@ C Ky forall a € (0,1).

We define function spaces which have a relation to K N,
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Definition 2.12. For each p € [1,00), the function space Lfoc,umf is defined
as follows:
N N
Lfac,unif = Lfac,unz’f(R ) = {V € Lfoc(R ) | HVHp,loc,unif < oo},where
1
IV ltocamis = esssup( [ V)P )"
xRN lz—y|<1
- unif 18 a Banach space with norm ||-||, joc,uniy for all p € [1,00). It

is clear that L>® — quogum f

— L

means the continuous embedding. A relation to K N,a is stated in the next
proposition.

for all 1 < p < g < o0, where —

p
loc,unif

Proposition 2.13. Let a € (0,1).
(i) In the case of § < a (i.e. N=1,2 <a<1),

Llloc,unif (R) - Kl,a

(as linear spaces, and the norms are equivalent).
(ii) In the case of § > a,

Ly (RN) — KN,Ot - Llloc,um'f(RN)

loc,unif

for allp € (%,oo).
In each case, if V' belongs to the leftmost space, then cn (V') = 0.

Proof. We first prove assertion (i) and ¢; 4(V) = 0 for all V € L} (R).

loc,uni f
It is easy to see that if V € Llloc,unif(R)7 then V € Ki, and HV”KLQ <
|V 1,10c,unif- Conversely, let V e IA(La and we put I, := [y -1,y — %} U [y +
2.y +1] for all y € R. Note that [-1,1] C U;:_lfj and g1 q(z) > § for all
x € Iy. For a.e. x € R,

1
[ ve=ulas Y [we -yl

j=—171i
1
-3 [ We-i-wldy
j=-1710
1
<23 [ galVie—i-)ldy
j=—1710

1
<2 [[IVI*grall.
j=—1

=6[IVI* 10l = 61VIg, -
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Ll .(R),thenforeach%<a<1and0<p§1,

loc,unif

Hence, V € Llocumf( )s 1V L iocuni < 6||VHIA<LC¥. In addition, if V' €

ess.sup / g1a(e — DIV dy < PV l1iocmis-
z€R lz—yl<p

By taking the limit as p | 0, we obtain ¢; (V) = 0.
Next, we prove Ky o < Llocumf(]RN) in the case of 4 N >a. LetV € Ky

We can take finite points x1,...,z, € RY such that

B(0,1) ¢ | B(x;,3).
j=1

Note that for all z € RN, B(z,1) C U?le(ac + $j,%) and that by the
definition of |||z, and Fatou’s lemma,

/ gnalm+a; — V) dy < Vg,
B(z+xj,1) ’

for all z € RN and j = 1,...,n. Now we put CNa = |gN7a(%e) ,
RN and |e| = 1 (note that Cy, is independent of such e’s), then |gn o (7)| >
CN, forall z € B(O, l). Hence, for all z € RV,

y)ldy < / y)ldy
/B(ac,l) Z B(z+xj, ')

n

Z/B( ol V)
j=1 TrTjeg

n
< TQHV”KN@'

1

N,«

<

Thus, V € L} CNa” ||KN,a‘

Finally, in the case of N > «, we prove L

loc umf(RN) - KN,oa for all
pE (é\ofu ) and the last assertlon of this proposition. If V' € Lloc unif (p e
(l OO))> then for all p € (0,1], a.e. z € RY and the conjugate exponent p’ of

2a07
p, we obtain

/ oxale — )V ()| dy
lz—yl<p

([ ovate—Pa)” ([ vorw)’

(by Holder’s inequality)

< HgN,OéHLp’(B(o,p))HVHp,ZOC,um‘f'
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Since gy € L” (B(0,1)) for all p € (%,oo), we have V € Ky q, IVllgy. <

||9N,OcHLP’(B(0,1))”VHp,loc,um‘f for all p € (%700) and
CN,O&(V) < lpig)l”gN,aHLp/(B(o’p))||V||p,loc,unif =0

holds. O

Theorem 2.14. Suppose that V_ € IA(N,Q and cNo(V-) < 1 and that Vi is
Uq-admissible. Then V is Uy p-admissible for all p € [1,00).

Before proving this theorem, we give an example of a potential which is
Ua,p-admissible for all p € [1,00). Let A > 0 and a potential V' be defined by
V(z) :=|z|™ (z € RV \ {0}). It is easy to see that for any p € [1,00), the
following (i) and (ii) are equivalent: (i) V € L, ./, (ii) fly\<1 V(y)?dy < oo.
In the case where ¥ < « (i.e. N=1,<a<1),0<A<land1<p<}or
in the case where 5 > a, A € (0,2«) and % <p< %, condition (ii) is satisfied.
Hence, V € Lf oc.umif in each of the cases and hence, by Proposition 2.13
and this theorem, V' is U, -admissible for all p € [1,00). In particular, the
Coulomb potential V(z) := c|z|~! in R? (c is a constant) is U, p-admissible
for all a € (%, 1) and p € [1,00).

For the proof of Theorem 2.14, we need the following lemmas and propo-
sition (c¢f. [18, Lemma B.1, B.2, Proposition 5.1]). To state the lemmas and
proposition and prove Theorem 2.14, we introduce the notion of “semigroup

boundedness” defined in [18, Definition 1.2].

Definition 2.15. Let U := (U(t))t>0 be a Cp-semigroup on a Banach space
X, with generator 7. An operator B in X will be called U-bounded, if B is
T-bounded and there exist an n € (0, 00] and v > 0 such that

(2.14) /0 "|BU)]| dt < 4z

holds for all z € D(T') (see also the remark below). The number
inf{~ > 0| there exists an > 0 such that (2.14) holds for all z € D(T')}

is called the U-bound of B. If B is U-bounded with U-bound < 1, then B will
be called U-small.

Remark 2.16. By T-boundedness of B, for all z € D(T), U(t)r € D(T) C
D(B) for all t > 0 and the X-valued function ¢ — BU(t)x is continuous on
[0,00). Hence, this function is Bochner integrable on [0, 7] for all n > 0.



244 H. SHINDOH

Lemma 2.17. For any ¢ > 1 and n > 0, there exists a 6y € (0,1] such that
n
11V lgn.aslll,, < cHV/ Ua1 (t) dtH
0

Jor all & € (0,00) and V which is Uy,1-bounded, where ||V [[! Ua,1(t) dt|| denotes
the L(L)-norm of the composition of V and [ Uq1(t)dt. (If V is Ug,-
bounded, then for a sufficiently small n > 0, the norm is finite by the equality
(2.15) below and Definition 2.15.)

Proof. 1t is easy to verify the following equality corresponding to (B.1) in [18]:
For all U, 1-bounded V' and n > 0,

(2.15) HV/On Unr (2) dtH

n
= sup{/ IVUaa(®ullidt |we L July <1}
0

(by [18, Proposition 4.7 (a)])

n
= ess.sup/ |V(z—y)| (/ Ku(t,y) dt) dy
z€RN JRN 0

= aess.sup/ V(z—y)lly| N+
xRN RN

X (/ T%_a_lKa(l,T%B) dT) dy,
n

1
alyl?

where e € RV and |e| = 1. For the last equality, we use the fact that K (t,y) =
t_%Ka(l,t_iy) for all t > 0 and y € R, and use the change of variables

t‘é\y|2 = 7. Therefore, it is sufficient to show that there exists a dy € (0, 1]
such that

216)  lgwas@) < caly N [ rEerig @ rteyar
n-alyl?
for all 0 € (0,00] and y € B(0,9).

First case: § < a (i.e. N =1,3 < a < 1). The right-hand side of (2.16)
is estimated as follows:

=

> 1
a|y|_1+2a/ L T 2K, (1,72)dr
n-elyl?

o
1
>C! a|y|_1+2a/ T N — by (2.1)
’ Tk (1+47)2te ( )
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_L _
2 771 2u|y‘1 2a

20— 1 (1 +n_é!y\2) s+a

2a0+ 1 /°° 73 d )
_ - dr
20 — 1 n—éw‘z (1 _|_7_)%+a

(by the integration by parts)

1
« 2171_%
(T4n"aly?)?

— (2a + 1)/ ———dr - |y .
o (1 —|—7')5+°‘

Since the limit as |y| — 0 of the right-hand side of the last inequality is
C(/)z : 2221771_% > 07

= Chaly ™+ (

1
alyl?

(o]
a\y]_Hm/ T—%—a[(a(l,q-%) dr > const. > ]y\ = gN,a(y)
n

for all |y| < § if ¢ is small enough.

Second case: § = a (i.e. N = 1,a = 3). In this case, Ko(t,z) is the
Poisson kernel:
1 t

For 0 < § < min{l,n} and 0 < |y| < 7, the right-hand side of (2.16) is
estimated as follows:

o0 1 1
a/ T2 K(1,72)dr
n

_1
alyl?

1 /°° 1 1
= — - dr
2w n=2lyl2 T 147

> —log -
T |yl
logn
N _7log|y’< - logly\)

Since 1 — léogg‘; — 1 as |y| — 0, for ¢ in the statement of this lemma,

o s 1
ca/ T Ko (1, 72)dr > —|logly|| = |gn.a(y)|
n 2 "
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for |y| < ¢ if 0 is small enough.
Third case: % > «. We have only to prove that

—N+2a > N _a-1 1
a|y| T2 Ka(lvTQG) dT:gN,a(y)
0

for all y € RY, where e € RY and |e| = 1. Recalling the representation (2.7)
of K, by K7, we have

/ o R 'K, (1,T%e)dr
0
—/ . 1/ f1,0(8) K1 (s, 7'26)d8>d7'

/fla /T];_a_lK1<S,T26)dT)ds

(by Fubini’s theorem)
/ f1a(s ( 72 lem stT) ds
)* 0
*© N_ ,1 _
= o T2 ¢ Tdr)ds
4%]; /0 Fra(s)s™( / )
= N / fla
412

By using the equality (2.17) that is proved separately in Lemma 2.18, we
obtain

o0
ay|N+2°‘/ 7'2 —olg (1,T%e)d7'
0

1 1
~N+2a N
= . 7]? = — .
vl qony (3 ) ol (a)
1 F(% B Oé) —N-+2a
- 4&7-‘-% : F(Oé) |y‘ _gN,a(y)‘
Therefore, the proof is completed. O

Lemma 2.18. Let o € (0,1). The equality

(2.17) /OOO f1,a(s)s % ds = aFl(a)

holds.
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Proof. Let 0 < 0g < €. For all o € (0, 09),

(2.18) /OO e frals)s *ds
0

1 0 o+100 o
=5 </ e* % dz) e %5 %ds
e 0 o

—100

1 o+1i00 o) o
=5 (/ e (e=2)sg—a ds) e % dz
Tt Jo—ico 0

(by Fubini’s theorem)
1 o+ico 1‘\(1 o a)

:% o—100 (g_z)l—a

@

e ? dz.

The reason why we could apply Fubini’s theorem above is that the estimate

L _ —(e— _ —|p|e juse?
‘esz 2% —es g a,Se (e U)SS @ [n]< cos 75

holds for all z = o +in (n € R) and the right-hand side function is integrable
with respect to (s,7) on (0,00) x R.
In addition, for z = o +in (0 < 0 < 09,n € R), the estimate
L el 1

- 7€—|n\a cos =&
(e —z)l-@ (e —op)t—

2

holds and the right-hand side function is integrable with respect to n on R.
Since f1 , is independent of o > 0, by applying Lebesgue’s convergence theo-
rem to the rightmost side of (2.18), we have

(2.19) /OO e frals)s™*ds
0

r(1— g+ic0 1 o
= (g)lim/ — e % dz
21 0l0 Jyie (e —2)17@

I'(1 - e «
= ( ,a) / ! e * dz
270 ioo (€ — 2)17

for all € > 0. Since the function s — f14(s)s™ is integrable on (0,00) by

Lemma 2.4 (iii) and (iv), by Lebesgue’s convergence theorem,

(o)

(2.20) lim e “fial(s)s %ds = / f1,a(s)s % ds.
el0 Jo 0

On the other hand, the integrand of the rightmost side of (2.19) satisfies the

estimate 1

<

= nlte

o Inl cos 72
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for z = in (n € R) and the right-hand side function of this inequality is
integrable with respect to n on R. Hence, by Lebesgue’s convergence theorem
again,

100 1 o 100 1
(2.21) lim ———e % dz= / ———e 7 dz.
elo J_joo (€ = 2)17 oo (—2)17

By (2.19), (2.20) and (2.21), the equality

/ f1,a(s)s % ds
0
_ F(l—a)/ L e

2mi —100 (_Z)l_a

P(l - a) o0 1 _*ana /OO 1 _(_‘)a (e%
— ) d )% q
on (/0 Cipi=a® T e )

_ F(12; a) (eigu_a) . ée—z% 4 eiE-a) éez%>
2cos(5(1 —2a
-2 (22204 ))F(lza)
S T
~ ra P —a) = ol (@)
holds. O

Lemma 2.19. For any ¢ > 1 and § € (0,1], there exists an ny > 0 such that

n
HV/O Un,1(t) dt” < ||Vl lgn.asl]| o

for allm € (0,m9] and V € IA(N’Q.

Proof. We first show that for all ¢ € (1,¢) there exist a & > 0 and n; > 0
such that

n
(2.22) ess.sup/ \V(z — y)](/ K. (t,y) dt) dy < c’H]V| * ’ngo‘?é’Hoo
ly| <o’ 0

zeRN

for all n € (0,71], where ¢ and § are as in the statement of this lemma.

First case: § < a (ie. N = 1,4 < a < 1). Since 0 < Kq(t,y) <

C’at(té + |y\2)_%_a < Cut™2 forall t >0 and y € RN by (2.1),

n v 1
/ Ko (t,y)dt < Ca/ =3 dt = O~ 2a
0 0
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for all y € RY and n > 0. Hence, taking ¢’ = 1, we can estimate the left-hand
side of (2.22) as follows:

n
ess.sup/ |V(z—y)| (/ K (t,y) dt) dy
xeRN  J|y|<d’ 0

< Cnl_iuvul,loc,unif
< Cnl_iH\V! * |gn.asl]] o
<d||IVI*lgnasl| o

for a sufficiently small 7 > 0 (note that the exponent 1 — i of 7 is positive).

Second case: § =« (i.e. N=1,a=1). Let n € (0,1]. As in the second

case of the proof of Lemma 2.17, we have

n 1
Og/ Ka(t,y)dtg/ Kot y) dt
0 0

/001 1
=0 —- dr
2 T 1+71

L <1+ ! )
= —_— Og —_—
27 |y|?
/
C
< —|log ly||
v

for |y| < ¢’ if ¢ is small enough. Hence, let ¢’ > 0 be such small and smaller
than 4, then we can estimate the left-hand side of (2.22) as follows:

o0

n
ess.sup/ |V (z —y)| (/ Ku(t,y) dt) dy < c'H\V] * |gN a0
ly| <’ 0

z€RN

</d|IV]=* ‘gN,a,J‘Hoo'

Third case: % > «. By the result in the third case of the proof of

Lemma 2.17, we have

n
OS/ Ko(t,y)dt
0
_N4+2 © N -1 1
< aly| +a/ T2 Y K (1, T2e)dT
0

= gn,a(y)

for all > 0 and y € RY. Hence, let 6’ = §, then the left-hand side of (2.22)
is estimated as follows:

n
ess.sup/ |V (z — y)](/ K (t,y) dt) dy < H\V! * ‘gNia’é‘Hoo
ly|<d 0

zERN

< V] *lgnasl -
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Hence, it is sufficient to prove the assertion of this lemma that for any ¢ > 0
and &' > 0, there exists an 73 > 0 such that

zERN

n
(2.23) ess.sup/ |V (z — y)](/ K (t,y) dt) dy < EH]V| * \gNﬂ,(;]”OO
ly|>6" 0

for all 7 € (0,72] and V € K. Since 0 < Kq(t,y) < Cotly|~ V=22 for all
t>0and y #0 by (2.1),

n
ess.sup/ [V (z—1y)| (/ K, (t,y) dt) dy
z€RN  J|y|>¢ 0

< LCunP ess.sup / WV — )y N2 dy
z€RN  J|y|>d

for all 8 > 0 and n > 0. We will show the estimate

(2.24) ess.sup / V(e = 9)llyl ™2 dy < Casr IVl 1ocsunis
zeRN  J|y|>¢

for all & > 0. On one hand, for all 2 € RV and n > 0,

[ (] =yl -2 dz) ay
lyl>36" M zl< S
:/ /(/ |V(m—y+z)||y—z|_N_2ady) dz
2<% Myl>26

(by Fubini’s theorem)

[ ([ Wl ) e
\z|<% ly—z|>d’

[ Vel ) s
Z<§ y>l

= 1BO.5) [ V-l
Yy

On the other hand, if [y| > 20’ and |2| < %/, then |y — z| > ‘%' Hence, for
a.e. z € RV and all > 0,

([ WV@=y+2)lly -2 az) dy
ly|>36" M l=l<%

coven [ ([ Ve —u 2l by
y|>358 2<%

< gN+2a / 122 dy - [ V|1 toesunis-
ly|>26'
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By Proposition 2.13, there exists a constant C' > 0 such that ||V||1 joc,unif <
Vg,  forallV e KN.o. By Remark 2.11 (iii), there exists a constant C’ > 0
such that |V < C'[[[V]* |gn,asllleo for all V€ K. Thus, we obtain
(2.24) and hence

n
ess.sup/|| S |V (x — y)](/ Ku(t,y) dt) dy < Cop s 772H|V| * |gN.a,6
y|>d' 0

0 ls

forallp >0and V € IA(N,Q. Hence, for all € > 0 and ¢ > 0, there exists an
n2 > 0 such that (2.23) holds for all ) € (0,72] and V € Ky 4. Thus, the proof
of this lemma is completed. O

Proposition 2.20. Let V: RY — R be a measurable function. Then the
following assertions hold.

(i) The following conditions are equivalent:

(a) V€Kyq,
(b) V is Ugy,1-bounded,
(c) V is Hy 1-bounded,
(d) The following quantity cy (V') is finite.
U
(2.25) (V) = limHV/ Ua, () dtH.
’ nl0 0

(ii) There exist constants c1,ca,c3 > 0 such that
1
Wiy, <av [ vaa@ @] < v, + 07 < alVi,,

for all V € IA(N,O(.

(i) If V € Ky, then cna(V) = cyo(V) = imy_ool[V(Haa + A7V is
the Uq1-bound of V. Therefore, we have ¢y (V') = 0 if and only if the
H, 1-bound of V is 0.

Remark 2.21. By (2.15), we can write cjy (V) also as
c'N’a(V) = alim ess.sup/ |V (z — y)Hy[ﬁN*QO‘
RN

0 zeRrN

o0 N 1 1

x (/ ot K (1, 82) dt) dy,
n- o lyl?

where e € RY and |e| = 1. Note that K,(1, se) is independent of such e’s for
all s > 0.
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Proof. (i): (b) < (c) holds by [18, Proposition 4.7 (a)].
(b) = (a). If V is U,,1-bounded, then there exist an n > 0 and § > 0 such
that ;
VI laxaslle <2V [ Una®yd] < oc
0
by Lemma 2.17. Hence, V € IA(N,Q.
(a) = (d). If V € Kn.q, then there exists an 79 > 0 such that

n
[v [ vas@ya] < 2fvis lomanll = 2171, <o

for all n € (0,7m0] by Lemma 2.19. By the definition of ¢y ,(V), we have
Iy o(V) < o0

(d) = (b). By the assumption (d), there exists an 7 > 0 such that the
following ¢, is finite:

oo
Cy = aess.sup/ V(z—y)||y|~ VT2 (/ ) T%_O‘_lKa(l,T%e) d’]‘) dy.
z€RN  JRN n-alyl?

For this > 0 and all u € L*,

/On (/RNIV(:E)H(Uag(t)u) ()| da:) dt < cyl|ully

by the fact that Uy 1(t)u = Ku(t,-) xu for all t > 0 and v € L', and by
a straightforward calculation. This inequality implies that for all w € L',
Uai(t)u € D(V) in L! for ae. t € [0,7) and the L!'-valued function t
VUq,1(t)u is Bochner integrable on [0,7), and in addition the estimate

U
(2.26) Hv/ U ()] < eqfull
0
for all uw € L'. Hence V is H,1-bounded by [18, Proposition 1.3]. By this
H, 1-boundedness and the estimate (2.26), V' is U, ;-bounded.

(ii) Let an arbitrary ¢ > 1 be fixed in the proof of this assertion.
First inequality: By Lemma 2.17, there exists a § € (0, 1] such that

1
V] * |gn,aslll, < cHV/O U1 (t) dt”

for all V e K N.a- As stated in Remark 2.11 (iii), there exists a constant
Cs > 0 such that

leo

||V”KN7Q < Cs[[IV] * lgnau0

forall V e K N,a- Thus, the first inequality in the assertion (ii) holds.
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Second and third inequality: By [18, Proposition 4.7 (b)], there exist con-
stants k1, ko > 0 such that

HV/O1 Ua,1(t) dtH < /-ﬂHV(Ha,1 + 1)_1H < HQHV/Ol Ua(t) dtH

forall V € K N,o- Hence, the second inequality in (ii) holds. In addition, by
Lemma 2.19, there exists an 1 > 0 such that

n
v /0 Uaa(t) dt]| < ef|IVI* lgmalll,, = elVilg,,

for all V € IA(N@. For this n > 0 and % <n (meN),

Jj+1
m
J
m

WV [ vty < Sy [ vaswa]
0 =0

gjzéuv [ Va2

< mHV/On Unr (£) dtH.

For the last inequality, we used the contractivity of U, ; by Proposition 2.2 (iii).
Thus, the third inequality in (ii) holds.

(iti) Let V € K. By assertion (i), V is U,,i-bounded. Let ¢ > 1. Then,
forallp >0

n
limsup|||V| * [gn,a.s|| ., < CHV/ Uaa(t) dtH
610 0
holds by Lemma 2.17, hence

n
(2.27) limsup|| |V * |gn,a6l|| . < climianV/ Ua(t) dtH.
510 *° nl0 0

On the other hand, Lemma 2.19 implies

n
limsupHV/ Ua(t) dtH < CH’V’ * ‘gN,a,(S’Hoo
nl0 0

for every 6 € (0, 1], hence

n
(2.28) limsupHV/ Uan(t) dtH < climinf|||V] * g .
nl0 0 510
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Note that (2.27) and (2.28) holds for ¢ = 1. Hence, by the definition of ey (V)
and (2.27), (2.28) for ¢ =1 and (2.25), the following limits exist and
lim||V ! U d NaV
W(V) = Tim|[|V . _H/ attH:
ena(V) =HmllIV]+lgnosll oo = ||V | Uaa () na(V)

for all V € Kyqo. By [18, Proposition 4.7 (c)], cn.a(V) is Ua1-bound of V
and the last statement of (iii) holds. O

Proof of Theorem 2.14. By the assumption for V_ and Proposition 2.20, —V_
is Uy 1-small. Hence, —V_ is U, p-admissible for all p € [1,00) by [18, Re-
mark 2.1 (b)] and Proposition 2.9. On the other hand, V, is U, p-admissible
for all p € [1,00) by Proposition 2.9. Thus, V is U, ,-admissible for all
p € [1,00). O

Proposition 2.13 gives a sufficient condition that guarantees that a poten-
tial V satisfies V € K N and ey (V) < 1, which are assumed for V_ in
Theorem 2.14. In the following proposition, we give a necessary and sufficient
condition for a positive potential V' to be U, ,-admissible for all p € [1, 00).

Proposition 2.22 (cf. [18, Proposition 5.8 (a)]). Let V: RN — R be a non-
negative measurable function. Then the following assertions are equivalent:
(1) V is Uq p-admissible for some (all) p € [1,00),
(i) H*NQ(V) is dense in L?, where Q(V) is the form domain of V.
Hence, if V € L} (RN), then V is Uy p-admissible for all p € [1,00).

loc

Proof. We can prove that (i) and (ii) are equivalent in a similar way as in
[18, Proposition 5.8 (a)]. If V € L} (RY), then H* N Q(V) is dense in L2

since H* N Q(V) includes C°(RY). Hence, V is U, p-admissible for all p €
[1,00). O

§3. The Feynman-Kac formula and LP-L9 estimates for e~ tHa2,v

In the proofs of the main theorems, LP-L9 estimates for the semigroup e *He.r.v

play an important role. These estimates follow from the Feynman-Kac formula
and a corollary to the so-called Khas’minskii’s lemma.

3.1. The Feynman-Kac formula for e tHe.p,v

Voigt established the Feynman-Kac formula for a Schrédinger semigroup (=
e ipv) for a rather general potential in [18, Proposition 6.1]. On the
other hand, M. Demuth and J.A. van Casteren [4, Theorem 2.5] showed the
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Feynman-Kac formulas for Feller semigroups perturbed by certain potentials.
While their result can be applied to many Feller semigroups, in the case of
the heat semigroup e'®, the coverage for potentials is restricted as compared
with [18, Proposition 6.1]. In view of the difference between these results,
there is a possibility that, for a larger class of potentials than the one in [4,
Theorem 2.5], e~!«»r.V is represented by the Feynman-Kac formula. In fact,
we can prove the Feynman-Kac formula for e *He».v for such a larger class
of potentials, by using some preliminaries concerning a Hunt process (cf. [2,
p. 45] for the definition). First, we fix some notations. For any topological
space X, the symbol HA(X) denotes the family of the Borel sets of X. In
particular, for X = RY, we define & := Z(R"). E and &, denotes the one
point compactification of R by a point 2o, (¢ RY) and %(FEL,), respectively.

Let « € (0,1]. As is easily proved by using Proposition 2.2, we can define
the Markov transition function K, (¢, x, A) by

/K Ydy (t>0,zcRV Acé),
(t=0,zc RN, Ac &),

alt,x, A)

where J, is the unit mass at x. It is immediately verified from Proposition 2.2
that this Markov transition function induces a Feller semigroup on Coo(RY)
(for the definition, see [4, B.11]) by defining the semigroup by

- Ka(tv €L, dy)u(y) = (Ka(tv ) * u) (‘7;)

for all t > 0,u € L®°(RY) and a.e. x € RY. Hence, the Markov transition
function satisfies the assumptions in [2, Theorem 9.4] since the assumptions (1)
and (2) is the same as the condition (i) and (v') in [4, B.11], respectively.

Hence, there exists a Hunt process (Q,.7, %, Xy, 0, WS) with state space
(RN, &) and transition function K, (t,x, A) by Theorem 9.4 in [2]. This Hunt
process consists of the following objects:

(i) Q C EL, where T := [0,00] and © consists of all the elements of EL
satisfying the following conditions:

(a) the function t — w(t) is right continuous on [0, 00) and has the left
limit on (0, 00),
(¢) If w(t) = zo for some ¢t > 0, then w(s) = z for all s > .

Now, we define the special element we, € 2 by weo(t) = xo for all
teT.
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(ii) For all t € T', we define the function X;: @ — Ey by X¢(w) = w(t) for
all w € Q. Note that Xo(w) = w(o0) = 2 for all w € Q.

(iii) (Q,.Z, W2) is a probability space for all x € E, constructed from the
following probability space (2, %), W2) as follows. .%# denotes the o-
algebra generated by {X;0 < s <t} in Q forallt € T. W2 is a unique
probability measure on (Q,.Z)) satisfying the following conditions:

(a) In the case of x € RN, for 0 < ¢ < -+ < t, < 00, By, € &x (k =
1,...,n),

W ({w e Q(w(tr),...,w(tn)) € By X -+ x By })

/ Ka(tl,xl—x)Ka(tg—tl,xg—xl) Xoeee
(Bi\{zoo}) XX (Bn\{Zoo})

X Ko(tn — tn—1,%n — Tp—1) dridas - - - day,,

(b) In the case of z = 2, W = 4., where 6, is the probabil-

ity measure on (Q,.#2) defined by 6, ({ws}) = 1. (Note that
{wee} = Xg ' (20) € 7§ € FL,.)
Z denotes the completion of .#2 with respect to {IW%;z € RV}, %,
denotes the completion of .% in .# with respect to {W2; 2 € RV}
for all ¢t € T'. For the definitions of these completions, see [2, (5.2)
and Definition 5.3] and see also the remark below. We use the same
symbol W for its extension to .%.

(iv) 6, is the translation operator for all t € T, i.e., for all t € T, the function
0¢:  — € satisfies X;00; = X544 forall s € T.

Remark 3.1. According to the statement above Definition 5.7 and (5.15) in
[2], we should use the family of measures {W%;x € Ex} to define the o-
algebras . and % (t € T'). However, it is easily verified that the completion
of ZFY with respect to Wz is the power set 29 and that the completion of
Z in .F with respect to W is #. Hence, such completions with respect to
{We; x € RV} are the same as the ones with respect to {W%;x € E . }.

From now on, (Q,.%,.%;, Xy, 0, WS) denotes the Hunt process associated with
the transition function K, (t,x, A). Then, for all w € Q, the function ¢ —
X¢(w) is right continuous on [0, 00) and has the left limit on (0,00). Hence,
for all w € Q, the function ¢t — X;(w) is continuous on [0, 00) except at most
countable points (cf. [8, Lemma 3.3.5]). In the case of a = 1, it is well known
that for all v € (0,3),2 € Ex and W-a.e. w € €, the function ¢t — X;(w)
is Holder continuous of order v. In the case of a € (0, 1), such a regularity
could not be proved. However, the continuity above suffices for us to prove
the Feynman-Kac formula below.
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Proposition 3.2. Let a € (0,1) and p € [1,00). If V € L®(RYN), then
Uapv(t) can be expressed by the Feynman-Kac formula: For all t > 0 and
u € LP,

(3.1) (Uapy (t)u) () = / exp( - /0 tv(w(s))ds)u(w(t))dW;‘(w)

Q
for a.e. x € RN. We regard both values of u and V at zs as 0.

Before proving this proposition, we state the Feynman-Kac formula for
more general potentials in the next proposition, which corresponds to [18,
Proposition 6.1] for the case of o = 1.

Proposition 3.3. Let a € (0,1),p € [1,00) and let V: RN — R be Lebesgue
measurable. Then the following assertions hold:

(i) Suppose thatV is bounded above and Uy ,-admissible. Then for allt > 0,
ng(w(s)) ds > —oco for a.e. x € RN and W-a.e. w € Q, and (3.1)
holds.

(ii) Suppose that V is bounded below. Then the following conditions are
equivalent:

(a) V is Uy p-admissible,

(b) for any sequence {tn}n in [0,00) satisfying t, | 0, it is obtained
that fg"V(u)(s)) ds — 0 holds as n — oo for a.e. x € RN and
W-a.e. w e .

FEach of the conditions above implies (3.1).

(ili) Suppose that V is Uqp-admissible. Then for all t > 0, fOtV(w(s)) ds €
(—00, 0] holds for a.e. v € RN and W2-a.e. w € Q, and (3.1) is valid.

Proof. We can proceed as in the proof of [18, Proposition 6.1]. O

Although Proposition 3.2 is proved by a similar manner as in the proof
of [16, Theorem X.68], for the reader’s convenience, we give a detailed proof
with a verification of measurability of functions appearing in the Feynman-
Kac formula. To prove this proposition, we need the following lemma (cf. [16,
p. 279 Lemmal).

Lemma 3.4. Lett > 0 and S be a Borel null set in RY. Then the following
assertions hold.
(i) X, 1) € Z2 and W(X;1(S)) =0 for all z € RY.
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(ii) Let Qi g be defined by
Qs ={we Q| Xs(w) €8 for p-a.e. s € (0,t)},

where 1 is the Lebesgue measure on R. Then, Qy g € F and W (hs) =1
for all z € RV,

(iii) Let m € N,0 < t; < -+ < t;, = t and S be a Borel null set in R™Y,
where we identify R™YN with RN x .- x RN (m factors). Then, there erists a
set N € FP such that

{we Q| (wtr),...,wtm)) €S} C N
and W&(AN) =0 for all x € RV,
Proof. (i) By the definition of .Z2, it is clear that X; '(S) € .#0. For all
x € RN by description (iii)-(a) concerning the Hunt process,

W (X;71(9)) = /SKa(t, z1 —x)dry = 0.

(i) We first define A; g by
A g ={(s,w) € (0,t) x Q| X5(w) € S}

and prove that 4,5 € 2((0,t)) ® % and (u®@ W) (Ars) =0 for all z € RV,
To prove this, note that for all s > 0, X is F/&-measurable (i.e. for any
A € &y, the set X71(A) € Z0) and for all w € Q, the function s — X,(w) is
right continuous on [0, c0) by description (i)-(a) concerning the Hunt process.
Hence, it is easily proved that the function (s,w) — X,(w) is (2((0,t)) %)/
&no-measurable on (0,t) x 2, and hence Ay g € £((0,t)) ® .#. In addition,
for all z € RY| by Fubini’s theorem and assertion (i),

t
(1© W) (Arg) = /0 W (X71(S)) du(s) = 0.
By this equality and Fubini’s theorem,
/Q i({s € (0,1) | Xa(w) € 51) dWE (w) = (u® W2)(Apg) = 0

for all x € RY. Hence, for all z € RY, there exists a W%-null set .4, € %
such that
p({s € (0,t)| Xs(w) € S}) =0

for all w € 2\ A,. Hence, Q\ A, C Qg C Q for all z € RY. Thus, Qs
belongs to the completion of ﬁto with respect to W' for each x € RY. Since
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the intersection of these completion of .7 over {W2; 2z € RV} is included in .%;
(see [2, (5.2), Definition 5.3, (5.5)-(ii)]), we have Qg € . and W (4 5) =1
for all z € RV,

(iii) For all k € N, we can take an open subset Oy of R™" such that S C Oy,
and pu,n (O \ S) < %, where p,,n is the Lebesgue measure on R™V. For all

k € N, there exist right-half-open intervals JJ(I:L) inR (j=1,...,mN,n € N)
such that

(I129) n (T12%) =0
j=1

=1

k j k
for n # n', where I](n) = Hgiv(j—l)N—l—l Jl(,n)’ and

Op = Ulnllj“jf
n=1j=

Note that for all k& € N, the set {w € Q | (w(t1),...,w(tm)) € Ok} is the
disjoint sum of the sets {w € Q | (w(t1),...,w(tm)) € [T, Ij(k;)} over n € N.
Hence, for all z € RY and k € N, we have

We({we Q| (wtr),...,w(tn)) € Ox})

_ iwg({w e Q| (wltr),..,w(tm)) € ﬁﬂi;)})
n=1 e

— Z/ Ko(ti, 21 — ) Ko(tm — tm—1, Tm — Tim—1) dxy - - dTpm,
— Jr, 1%
n=1 j=1"j,n
<Cn Z HmN (H I ;2) (see the following statement)
n=1 j=1
Cm,
= Crptmn (Or) < -

We can take the constant Cy, as Cy, = [[;L,[|Ka(tj — tj-1,")|lc by Proposi-
tion 2.2 (ii)-(c), where t9 = 0, and hence Cy, is independent of k € N. By the
argument above, the set A = (72 {w € Q | (w(t1),...,w(tm)) € Ok}
belongs to .#_ and is Wo-null set for all x € RY, and includes the set
{we Q| (w(tr),...,w(tnm)) € S}. O

We will prove Proposition 3.2 in the next subsection.
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3.2. Proof of Proposition 3.2

3.2.1. Measurability of functions appearing in the Feynman-Kac
formula

Let t > 0,V € L>* and u € LP. We first show that (i): the function w —
u(w(t)) is Fp-measurable, and that (ii): for all z € RY and W-a.e. w € €, the
function s — V (w(s)) is Lebesgue measurable and integrable on (0, t) and (iii):
the function w +— fot V(w(s)) ds is #-measurable on Q and WS-integrable on
Q for all z € RV,

(i): We can take a sequence {uy}, in C.(RY) and a Borel null set S in RV
such that u,(y) — u(y) for all y € RV \ S. By Lemma 3.4 (i), X; 1(S) € %
and W2 (X, (S)) = 0 for all z € RN. Hence, u, (w(t)) — u(w(t)) as n — oo
for all z € RY and W-a.e. w € Q. Hence, the function w — u(w(t)) is
measurable relative to the completion of . with respect to W< for each
z € RV, Thus, the function w — u(w(t)) is measurable relative to .%;.

(i), (iii): There exist a sequence {V;,},, in C.(R") and a Borel null set S in
RN such that V,,(y) — V(y) asn — oo for all y € RN\ S and ||[Vp]loo < |V 0o
for all n € N. Let Qg be as in Lemma 3.4 (ii). Then, by Lemma 3.4 (ii), for
all € RN, we have that W (§,s) =1 and that for all w € € g,

(3.2) Vn(w(s)) — V(w(s))
as n — oo for a.e. s € (0,¢) and
(3.3) Vi (w()] <1V loo

for all n € N and s € (0,¢). By (3.2) and (3.3), for all w € g, the function
s — V(w(s)) is Lebesgue measurable and integrable on (0,¢) (we used the
fact that the intersection of the completions of .# with respect to W< over
{We; 2 € RV} is included in .%;).

Moreover, for all w € Q; g, by (3.2), (3.3) and Lebesgue’s convergence
theorem,

/Ot Vi (w(s)) ds — /OtV(w(s))ds

as n — oo.

Since for all w € Q the function s — w(s) is continuous on [0, c0) except at
most countable points, the function s — Vj, (w(s)) is Riemann integrable on
(0,t) for each n € N and w € © and hence

i %Vn(w(%t)) - /Ot Vi (w(s)) ds

asm — oo for all n € N and w € €). Since for all n € N, this Riemann sum
is measurable in w relative to %Y, the function w + fot Vo(w(s)) ds (n € N) is
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measurable and hence the function w — fot V(w(s)) ds is measurable relative
to the completion of .% with respect to W2 for each x € RY. Thus, the
function w — fg V (w(s)) ds is measurable relative to .7%;.

3.2.2. The Feynman-Kac formula for V € C.(RY)

Next, in the case of V € C.(RY), we prove the Feynman-Kac formula. It
is easily verified that we can apply the Trotter product formula to the Cy-
semigroup e tHer.v  Hence, for all u € LP,

t t
(e_ﬁHa,pe_Ev)mu — e_tHouP»Vu

as m — oo in LP. Hence, there exist a strictly monotone increasing sequence
of natural numbers {my,}; and a Borel null set S in RY such that

((exp(~ 5 Hap) exp(=551)) ™ 1) (2) = (7o) (2)

as k — oo for all € RV \ S. For all k € N and » € RV \ S, by Fubini’s
theorem and description (iii)-(a) of the Hunt process, we obtain that

(3.4) ((exp(—mikHa’p) exp(_mLkv))mku) ()

:/ Ka(mik,xl—x)---[(a(mik,xmk — Tymy—1)
X exp(—nik % V(xj)>u(a:mk) dzy - ditpy,
=1
-/ exp(—n;ii‘/(w(nzkt)))u(w(t)) AW ().

We have to verify that (a): we could apply Fubini’s theorem and (b): the last
equality of (3.4) holds. Assertion (a) is ensured by the following estimates:

t s
0< exp(—m—k ZV(:C])) < etlVlle 5o
j=1

forall k € Nand z1,..., 7, € RN, and

0g/RNKa(nﬁk,xl—m)(/RNKa(Tr;,@_ggl)...

( N Ka(m%cvl"mk — Trp—1) |w(Tmy, )| dmmk> e dazg) dxq
R
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< [ Kol =a)([ | Koz =) -

1

(/I\QN Ka(mik7$mk - xmk—l)p dxmk)?
1
X </RN]u(xmk)|p d:pmk)p d$2) dxq
- [ Kol =) ([ Kl =)

(/]RN Ka(ems Tmg—1 — Tymy—2) dl‘mk—1> dl‘z) dzy
x [ Ka (o)
ol LACR] G A C Y

for all k € N and z € RY, where p/ is the conjugate exponent of p. (Note that
Ku(t,-) € L' N L™ by Proposition 2.2 (ii)-(c) and (d), and hence K,(t,-) € L4
for all ¢ € [1,00].)

To verify assertion (b), let F: R™Y — R be a Lebesgue measurable func-
tion. We have only to prove that for all m € N,

el

p/HUHp <0

/R . Ka(%,xl —a:)---Ka(%,xm — xm_l)F(xl,...,:zm) dxy - - dzy,

:/F(w(;),...,w(t))dwg(w).
Q

Without loss of generality, we may assume that F' > 0. For this F', there exist
a sequence of Borel measurable and simple functions {F),}, and a Borel null
set S in R™Y such that

0< Fu(x1,...,2m) / F(x1,...,%Tm)

as n — oo for all (z1,...,2T,) € R™YV\ S. We can write F, as
Mn
Y SN
k=1

for each n € N, where Elin) is a Borel measurable subset of R™V and E,gn) N
E,(;L) = () if k # k’. Hence, we have

(3.5) / Ka(%,azl - x) . Ka(%,xm — xm,l)
RmN

X Fp(z1,. .., &Tm) dey -+ - dzyy,

Mn
= Za]gn)/( )Ka(%,xl —x)...Ka(%ij —xm_l) dzy---dxy,
k=1 Ekn
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—faémwa({w € 0] (L) w(2). ...u(t) € )

/Zak X () 0(2)...(8) AW )
— [ Fufol)w(Z).el) aWE ()

for all n € N and € RY. By Lemma 3.4 (iii), for all m € N and = € RV,

Fn(w(%),...,w(t)) ya F(w(%),...,w(t))

as n — oo for W-a.e. w € Q2. Hence, by applying the monotone convergence
theorem to both sides of (3.5), the equality

/ . Ka(%,:cl — x) e Ka(%,xm — :cm_l)F(xl, ey X)) dxy - dTgy,
Rm
:/S)F(w(;),...,w(t)) AW ()
holds for all m € N and = € RV,
Now, we can apply Lebesgue’s convergence theorem to the rightmost side
of (3.4). In fact, since the function s — w(s) is continuous on [0, c0) except

at most countable points for all w € €, the function s — V (w(t)) is Riemann
integrable on (0,¢). Hence,

exp(—w; Jil; V(w(%t)))u(w(t)) — exp<_ /Ot V(w(s)) ds)u(w(t))
as k — oo for all w € Q). Moreover, the estimate
exp(— 1 S V() Jufe)] <V utr)
j=1

holds for all k£ € N and w € €, and it is verified that the function w +— u(w(t))
is W&-integrable on Q for all z € R by the following estimate.

/\ )| dWe(w) /\ )P dawe ))1
= ([, Kalt.o = luty) dy)

< [[Kalt, )II [ullp < oo

D=
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by Young’s inequality. Hence, we can apply Lebesgue’s convergence theorem
to the rightmost side of (3.4) and conclude that

(¢ terva)(o) = [

Q

exp(— /Ot V(w(s)) ds)u(w(t)) AW (w)
for a.e. x € RV,

3.2.3. The Feynman-Kac formula for V € L>(RY)

Finally, in the case of V' € L*°, we prove the Feynman-Kac formula. We can
take a sequence {V;,}, in C.(R") and a Borel null set S in RY such that
Villoo < IV ||oo for all n € N and Vi, (y) — V(y) as n — oo for all y € RV \ S.

It is easily verified that for all ¢ > 0 and v € LP, we can use Trotter-Kato
approximation theorem. Hence,

e_tH'%P»Vn u — e_tHOHPqu

as n — oo in LP. There exist a Borel null set S’ including S and a strictly
monotone increasing sequence of natural numbers {ny}; such that

(exp(—tHa,pymc )u) () — (exp(—tHa,py)u) (x)

as k — oo for all z € RV\ §’. By the result in the case of V € C.(RY), for all
k € N, we have

(3.6) (exp(—tHa,pynk)u) (x) = / exp(— /Ot Vi (w(5)) ds)u(w(s)) AW (w)

Q

for a.e. € RV, It is clear that we may assume that this equality holds for all
r € RN\ S’ where S is the set above.

Now, we will prove that we can apply Lebesgue’s convergence theorem to
the right-hand side of (3.6). In fact, for all z € RY and W-a.e. w € (,

Ve (w(s)) — V(w(s))
holds as k — oo for a.e. s > 0 by Lemma 3.4 (ii), and the estimate
Vi (w() | < IV ]loo

is clear for all £ € N,w € €2 and s > 0 by the way of taking of V,,,. Hence, by
Lebesgue’s convergence theorem, for all z € RY and W-a.e. w € Q, we have

/ Vi (w(s)) ds / W (w(s)) ds
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as k — oo. Furthermore, the estimate

jexp(~ /Ot Vi (w(5)) ds ) u(w(®)] < eIV ]u(w(n)|

holds for all k € N,z € RY and W-a.e. w € Q, and the function w — u(w(t))
is WW2-integrable on ) for all z € RY. Hence, applying Lebesgue’s convergence
theorem to the right-hand side of (3.6), it converges to

/Qexp(— /Ot V(w(s)) ds)u(w(t)) AW (w)

for all z € RY. Thus, we obtain

(¢ tHerv (o) = [

Q

exp(— /Ot V(w(s)) ds)u(w(t)) AW (w)

for a.e. x € RY. The proof of this proposition is completed.

3.3. LP-L9 estimates for e tHa2,v

The next lemma is used to prove LP-L? estimates for e o2V which is es-
sentially Khas'minskii’s lemma (cf. [4, Corollary 3.6]).

Lemma 3.5. Let o € (0,1),V > 0,V € Ky, and cxo(V) < 1. Then, for
any 1 € (ena(V), 1), there exists a t,y > 0 such that

tv
HV/ Ua,1 (1) dtH <
0

Moreover, for M, := ﬁ >1and b,y = tﬂ%log M, > 0, the estimate

¢

ess.sup EY (exp (/ Vo X ds)) < M,e'nv
z€RN 0

holds for allt > 0, where E$ denotes the expectation for the probability measure

W

Proof. By Proposition 2.20 (iii) and Remark 2.21, we can take a t,, v satisfying
the condition in the lemma.

By replacing V' with V. An (n € N) and taking the limit as n — oo, it is seen
that we may assume that V' is bounded above. First, by a similar argument
as in the proof of [5, Lemma 1], we can prove that

t
1
ess.sup By (exp(/ Vo X, ds)) < —
xERN 0 1- 2
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for all t € [0,¢,,v]. Next, by a similar argument in the last paragraph of the
proof of [4, Proposition 3.5], we obtain the estimate

¢
ess.sup B9 (exp (/ Vo X, ds)) < Mefuv
0

z€RN

for all ¢t > 0. L]

The Feynman-Kac formula and Lemma 3.5 yield the following LP-L9 es-
timates. To state these estimates, we use the symbol, LP-L? norm |||, -
In what follows, we use this symbol only for linear operators whose domains
include the Schwartz space &, and so we define in this paper,

| Tul|
lp,g = SUP{ 1

1T
[ll

uesmw531}

forall 1 <p < g <oo. If || T||p,q < 0o for some 1 < p < ¢ < oo, then T can be
extended to an operator belonging to L(LP, L9) since S is dense in LP.

Proposition 3.6. Let o € (0,1) and 1 < p < q < co. Assume that V_ €
IA(N’Q, ena(V2) <1 and V4 is Uy-admissible, then V' is Ug p-admissible for all
p € [1,00) by Theorem 2.14. Moreover, there exist constants M = M(V_,p,q),
b=0b(V_,p,q) such that

—tHy 2, v

e
for allt > 0.

Proof. Although this proposition is proved in a similar way as in [18, Propo-
sition 6.3], we give a proof since this proposition is important to prove LP-
spectral inclusion and independence in the next section. We divide the proof
into several cases. As is stated in the proof of [18, Proposition 6.3], the proof
of [5, Lemma 2] is a reference in Case 1 and 2 for a = 1, the way of which is
of use also in this proof.

Case 1: p = q = oo. In this case, by the Feynman-Kac formula and
Lemma 3.5, it is clear that for all + > 0 and w € L?> N L™,

[ (e o2V ar) ()| < Myue™ = ufog
for a.e. z € RY, where M,, and b, y_ is as in Lemma 3.5. Hence,
HeftH""Q’VHoo,oo < Muetb“v‘/—

holds for all £ > 0.
In the rest of the proof, we write simply ¢ instead of ey (V_).
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= o00. If u € L?> N L?, then we obtain that

Case 2: £
n—c

‘(e—tHa,ZVu) (ZL‘)| < /Qexp(/ot V_(w(s)) ds) |u(w |dW°‘ w)

(by the Feynman-Kac formula)

< (/QeXp(p'/tV (w(s)) d5> de(W));/
/\u ) [P dwe( ))’1’

(by Holder’s inequality)

= (Ezfew( [ w0 x.a5)])”

< ([ Kotz =l )

N1 1
< (M explthupry. )" -1 F K (1)l
(by Lemma 3.5 and Proposition 2.2 (ii)-(a))
= Mt 5 [,

for a.e. € RY (the p’ above is the conjugate exponent of p and the con-
stants M’ and b are independent of ¢ > 0). The reason why we could apply
Lemma 3.5 above is that cyo(p'V-) = p'ena(V2) < p by #T‘(V) < p.
Hence, we have

||6_tHa’2’V||p,oo < M/t—%%etb/

for all t > 0.
Case 3: 1 = p < q < £. The self-adjointness of e~ *#e.2v (¢ > 0) shows

that
—tH,,

_tHa,Q,V’

le 1g = lle

/ : 3 2 K
where ¢’ is the conjugate exponent of ¢. Since e < ¢d <cobyl<gc< Z,
we can apply the result in Case 1 if ¢ = 1 or in Case 2 if 1 < ¢ < % to the
right-hand side of this equality. Hence, there exist constants M and b such

that v 1
le™ a2 ||y g < Mt 207 €

for all £ > 0. Thus,
N 1
He tHOHQJ HL < (\/.Zt 2a(1 q)etb

holds for all ¢ > 0.
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Case 4: 1 <p<g<ooandl< % < £. Riesz-Thorin convexity theorem
implies the estimate
1
~tH,, Hq, ~tHoov || o
le™ a2V, g < e 2‘”||1 le™ o2V |00 &
forallt > 0. By 1 < £, we can apply the result in Case 3 to [|e™ tHo2 v 1,2

Applying the result in Case 3 and in Case 1 to (1, g) norm and (0o, 00)- norm,
respectively, we have

le~tHazv |, < Mt 2 )eth

for some constants M and b which are independent of ¢ > 0, and for all £ > 0.
Case 5: 1 < p < ¢g=o0. Let r be in (1, £).
treated in Case 1 and 2, we may assume that 1 < p < < . Then, there ex1sts

an ng € N such that pr™ > “ . Hence, we have

no+1
||67tHa,2,V ||p,00 = H (eXp(_ﬁHa,Z‘/)) H

< st (s Hazw) o o0 (e a2

X |lexp(~mpr Hazv) |

p7oo

pnoflypn() T

Po,p1

for all ¢ > 0, where p; :=pr/ (j =0,1,...,n0). Applying the result in Case 2
and in Case 4 to the (pn,,o0)-norm and the other norms in the right-hand
side of this inequality (by pf . -=r€ (1,), we can use the result in Case 4),

respectively, we obtain the asserted estimate of this proposition.
Case 6: 1 < p < g < . By Riesz-Thorin convexity theorem, the estimate

1 1—1
le™ o2Vl q < fle™ o2V |1f  [le™ a2y, o8

holds for all ¢ > 0, where r := (1 — f) / (1% — %) By using the results in

Case 4 and 5, we obtain that there ex1st constants M and b such that
le~tHazv ||, . < Mt 20t

for all ¢ > 0. O

84. LP-spectral inclusion and independence
4.1. The case of e tHap.v on RN

First, we prove LP-spectral inclusion for H, ;1 under the same assumption as
in Theorem 2.14. As in Section 2, Uy(t) = e *=2)" for each o € (0,1] and
t>0.
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Theorem 4.1 (cf. [6, Proposition 2.1]). Suppose that V_ € Ky satisfies
ena(V2) <1 and Vi be Uy-admissible. Then V is U, p-admissible for all p €
[1,00) by Theorem 2.14, and so the operator Hy, v makes sense. Moreover, let
Hy oo,y be defined by H., | ;. Then, for any1 <qg<p<2o0r2<p<q< o0,
we have p(Hyqv) C p(Hla:py) and the consistency

(Haqv — Q71|L1’0L‘1 = (Hapv — C)A’LPHL‘I
holds for every ¢ € p(Ha qv)-

Proof. Let 1 < p < ¢ < oo and t > 0. Since ||e"terV|, . < 0o by Proposi-
tion 3.6, it is proved that if u € D(H, v ), then e tHarvy € D(H, 4v) and
Ha,qvve_tHavP!Vu = e_tHavP!VHmpyvu. Hence, in the same way as in the proof
of [6, Proposition 2.1], the consistency

(HOMLV - C)_l ‘meLq - (HOCJ%V - C)_l ‘LPqu

is shown for all ¢ € p(Hupv) N p(Haqv)-

Next let 1 < ¢ < p < 2 and ¢ € p(Haqv)(= p(Hag,v)). We have only
to prove the assertion of this theorem in this case by duality. By the result
above, (Haqv — () anre = (Hag v — €)Y anpe - Riesz-Thorin convexity
theorem implies ||(Ha,qv — ¢) " pp < 0. By [1, Proposition 2.3], we obtain
¢ € p(Hapy) and (Hogv — )~ vz = (Hapy — O~ ienra. O

Next we prove LP-spectral independence. Since the kernel K (¢, z) does not
decay exponentially as |z| — oo for any a € (0,1) (¢f. [14, Proposition 2.1]), it
is hard to prove LP-spectral independence without a strict condition on space
dimension N, a and potentials V.

Theorem 4.2. Let N = 1 and % < a < 1. Assume the following three
conditions:

(i) V_ € K1.q,

(i) V4 is Uy-admissible,

(iii) V' is (—A)*-bounded with relative bound < 1.

Then, V is Uy p-admissible for all p € [1,00) and o(Hqp,v) is independent
of p € [1,00).

We prepare lemmas and propositions to prove this theorem. Most of them
correspond to the ones in [6] for the case of &« = 1. Hempel and Voigt used the
weight function e =% (g,2 € RY), however we have to define another weight
function because of the polynomial decay of K, (t, ).

Let ¢ be in (3, ) and fixed. For all ¢ € [0,1] and z € RY, we define the
weight function w, . by

we,(2) = (1 +elz — 22 (z € RY).
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We use the same symbol w, . for the function w, . : RN — R and also for the
associated maximal multiplication operator in L? defined by We,». The same
convention is valid for we, ; Note that the domain of the operator w, , includes
the Schwartz space S for all ¢ € [0,1] and z € RV.

In this subsection, all the lemmas and propositions do not require N = 1.
More precisely, for an arbitrary N, assume the following conditions:

i) a e (%,1) and ¢ € (%,a),

i) Vo € KN, ena(V2) =0,

iii) V4 is Uy-admissible,

iv) V is (—A)*-bounded with relative bound < 1,

(
(
(4.1) (
(

then all of them is proved. This assumption is more general than the one in
the theorem above since for any % <a<landV € K;,, we have already
proved ¢1 (V) = 0 in Proposition 2.13 (i).

Lemma 4.3. For all ¢ € [0,1] and z € RY, the weight function We,, satisfies
the following estimates:

(1) 0< ws,z(a:)_lwa,z(y) < 26(1 + 8|SL‘ - y|2)c (SL‘, JAS ]RN);

(ii) we,(2) " Mwe 2 (y) — 1] < 22\ /6(1 + o —yP)¢ (2,5 € RY).

The inequality of (i) is Peetre’s inequality (2.6) in [8] for the case of s = c.

Proof. (i) Put 2/ := 2z — 2,y :== y — z, then 2/ — ¢y = x — y. The estimate is
verified by the following straightforward calculation:

/12
0 < we,(2) Fwe . (y) e = m
< Lte(a =yl +1a'])?
= 1+ elz'|?
_ 1+e(lz —yl2+2lz —yll2'| + |2/]?)
1+ e|a’)?
14 2¢(|z — yl* + [2'])
- 1+ ela’|?
1+ 2¢|2|? [z — y|?
STt e T el

<2+ 2z —yl.

Thus, 0 < we () " we . (y) < 2¢(1 +elz — y|?)¢ for all z,y € RY.
(ii) We define the function f by f(u) := (1 + eu?)¢ for u > 0. Taking any
u,v > 0, by the mean value theorem, for some £ (u < & <wvor v <& <), we
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have

[f(u) = f(v)] = 2ce(1 + €%)° 7 Efu — o]
< 2evE(1+e€2) 2 |u— .

If |ly—z| < 2|z—z|, then for some £ (|[y—z| <& < |z—z| or |[z—2] <& < |y—2z|),

1
-1 B
|We 2 (2) " we 2 (y) — 1] = (1+E|x_z|2)c\f(ly—2|) — f(lz = 2|)]
1 1
= (1+elz — z)?)e 2eVE(1+26%) 2y — 2| — o — 2]
(1+e(2lz— 2))?)°
(1+elz — z[2)° 2evelr -yl

< 2M2cy/ela — y|
< 2M2e/e(1+ |z — y|*)".
For the last inequality, we used ¢ > %

If |y — z| > 2|z — 2|, then |z — y| > |y — 2| — |z — 2| > |y — 2|. Hence, for
some £ (|z —z[ <€ < |y —2]),

_ _1
|w5,z(x) lws,z(y) -1 < (It ez — 2P . 20\@(1 + 552)6 2|z -y

< 2ev/E(1 44|z —y[)) 2|z — y|
< 2ev/E(1 + 4la — y[?)°
<2 eVE(l+ |z -yl

Thus, |we . (7) twe,(y) — 1] < 212¢c/e(1 + |z — y|?)¢ for all € € [0,1] and
z,y,z € RV, ]

The following lemma is of use together with Proposition 3.6 in the proof of
Proposition 4.6.

Lemma 4.4 (cf. [6, Lemma 3.4]). Let p and q be in [1,00] with p < q. Then,
for any n > 0, there exists a constant C, = Cy(p,q) > 0 such that

« _N(1_1
Hw_le_t(_A) We 2 ||p,g< Cnt 257 et

€,2

for allt >0, €10,1] and z € RV,

Proof. For all u € S, it is easy to see that

(w;,zleit(iA)awazu) (x) = /RN wa,z(l‘)ilwa,z(y)Ka(u €T — y)u(y) dy
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for all z € RY. By the estimate (2.1), Lemma 4.3 (i) and Young’s inequality,
we obtain for r € [1,00) defined by % =1+ % — % and t > 0,

lw te " A w7

< 2C, /
:Ctéi(“)/ A+ ey — | da
RN (1+ Jz[2)2 e

= thﬁ(rfl) (/ ) + ) )
el<e2s - Jlol>e 7

1 T
(1+ o) F

T

t

L+ [a*)" — |
(@ o+ 2T

(1+talz[?)°

<Otz +¢9),
Hence, for any 1 > 0 there exists a constant C;, > 0 such that

N
Hw;;e*t( A)e waszq< C t*g(**%)ent

for all t > 0,¢ € [0,1] and 2z € RY. O
By using the following lemma and propositions, we can prove Theorem 4.2.

Lemma 4.5 (cf. [6, Lemma 3.6]). Let r € (1,2) and v be the conjugate
exponent of r. Assume that V satisfies the assumption (4.1). Then, r'V is
Uq-admissible and for any € € [0,1] and z € RY,

1
—tH, —t(—A)™ e~ tHa2,v HI?

Hw @2V we 2 lp,g < [Jwzle
Proof. Although the way of the proof is similar as in the proof of [6, Lemma 3.6],
we will reproduce it here for the reader’s convenience. We first verify that 'V’
is U,-admissible. Under the assumption (4.1), »'V_ € IA(N’Q and cy o(r'V) =
r'ena(V2) = 0, hence by Theorem 2.14, r'V_ is U,-admissible. On the
other hand, by [18, Remark 2.3 (a)], 7'V is U,-admissible. Thus, 'V is
U,-admissible.
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Let e €[0,1],z € RV and u € S,v := we u (€ S). By using the Feynman-
Kac formula, the inequality

‘(e—tHa,ZVU) (z)| = ‘/Qexp<— /OtV(w(s)) ds)v(w(t))de(w)‘

g/Qexp(—/otv(w(s))ds)\u(w(t))ﬁ

% e (w(8) u(w(t) |7 AW (w)

g(/gexp(—r//otv( d8)|u( )| awe( )>
o (s ) o) W)’

(by Holder’s inequality)
1 A r 1
= (exp(—tHo 2,y ) ul) (2)7 (7 (wl[u])) ()~

holds for a.e. z € RV, Multiplying by We -, taking ¢g-th powers and integrating,
we obtain

1
-

/ ‘we,z (ac)_l (e_tH‘l*QvV (we,zu)) (z) ‘q dx
RN

9
7

< /RN (exp(—tHq 2,v)|ul) (z)*
x (woTe "R (wl[u])) (z)

g,

(/ (exp(—tHa2,v)|ul) (2 )qda:>
X (/RN(%Z —H-2)7( §72|u|))(x)qu>i’

q
rdx

1
-

which implies

ez le™ o2V, ully < llexp(—tHozm ) |gallully
X oz ne A wr 7 ollulls
= s te O w15 llexp(—tHa )5,
Thus, the estimate of this lemma is proved. OJ

Proposition 4.6 (cf. [6, Proposition 3.7]). Let 1 < p < ¢ < o0 and n >
X (l - %) (n € N). Assume that V satisfies the assumption (4.1). Then, there
exists a constant C' > 0 such that

”w;;(Ha,ZV —A)"Wellpg < C



274 H. SHINDOH

for real and sufficiently negative X and all € € [0,1],z € RV,

Proof. For all u € §, we have
1 [e.e]
w;; (Haov — A "we zu = )] / t"ile)‘tw;’;e*tHavZng,zu dt
EENA

for all € € [0,1],z € RY and n € N, and hence

ng; (Ha2v — A) " "we 2ullq

1 e L
= G, e e el g

We have already proved in Lemma 4.5, that

1 1
palle™Hazrv g

|wZ Le P.g

€,2 2V e lpg < ||w;re_t(_A)awr

2 €,2

for all € € [0,1],z € RV ,r € (1,%) and the conjugate exponent r’. wl

coincides with w, . replaced its exponent ¢ with c¢r in the definition of we ..
Since % < ¢ < er < a, we can use the estimate of Lemma 4.4 and hence for

any n > 0, there exists a constant Cj, > 0 such that
a _N(1_1
hwzze Ol g Gyt 72 e

for all t > 0,e € [0,1] and z € RY. On the other hand, as stated in the proof
of Lemma 4.5, 7'V_ € Kn o, cNo(r'V_) = 0 and 7'V, is U,-admissible, hence
by Proposition 3.6, there exist constants M > 0,b > 0 such that

N1 _1
lexp(—tHa2,0)llpg < Mt~ 227l

for all £ > 0. Thus,

oo N1 1
W (Hany — N we sully < CLM / (2T T M g,
0
= Cllull,,

1 1

provided that n > % ( > g

) and A is sufficiently negative. O

Proposition 4.7 (cf. [6, Proposition 3.3]). Assume that V satisfies the as-
sumption (4.1). Let K be any compact subset of p(Hu2yv). Then there ex-
ist constants g = €o(K) € [0,1] and C = C(eg, K) > 0 such that, for all
¢ € K,e € [0,e0] and z € RY, the operator w;;(Ha’Q’V — )" twe , with do-
main S has an extension R .(C) € L(L?) satisfying the following estimate:
For all ¢ € K,e € [0,e0] and z € RV,

[Rae,z ()22 < C.
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We prove this proposition in the next subsection since the proof is lengthy.
For the time being, we admit this proposition, and prove Theorem 4.2 (cf. the
proof of [6, Proposition 3.3]).

Proof of Theorem 4.2. For any V satisfying the assumption of this theorem, V'
is U, p-admissible for all p € [1, 00) by Proposition 2.13 (i) and Theorem 2.14.

Let us pick an integer n > %. Then, by Proposition 4.6, there exists a
constant C' > 0 such that

w2 (Hapzy =N "wezll12, w22 (Hazy — A) e sll2,00 < C

for real and sufficiently negative ), e € [0,1] and z € RY. We fix such a \.
On the other hand, let K be any compact subset of p(Ha2,v),¢ € K and
€p be the same as in Proposition 4.7, then the estimate

lw. ! (Haz,v — () 'wesll22 < C

holds for all € € [0,e0] and z € RY by Proposition 4.7 (if necessary, take a
larger constant C'). Hence, for the n above, we have

Hwa_,; (HOC,Q,V - C)_ane,z 1,00

2n
2n S _
<y ( ’ )\c APl (Hamy — A) e 2]l
=0

X Hw;; (Hapv — oilwa,zug,z||w;;(Ha72,V —A) "we |12

<C

for all ¢ € K,e € [0,60] and z € RY (if necessary, take a larger constant C).
Hence, for all ( € K,e € [0,50] and z € RV, w;;(H%gyv — ()" "w, , is an
integral operator and its integral kernel G, . ,((; z,y) satisfies the estimate

Grez(Ga,y) <C

for all ¢ € K and a.e. (z,y) € RY x RV (see [1, Proposition 6.2]). Since
Gno.» is independent of z € RY (in fact, Gy 0..(¢; 7, y) is the integral kernel
of (Hy 2y — ¢)™?"), we may write simply G,,. It is easy to verify that

Gn,E,z(C§ z, 3/) = ws,z(w)_lws,z(y)Gn(C z,Yy)
for all ¢ € K,e €[0,50],z € RY and a.e. (z,5) € RY x RV, Hence,
(4.2) |Gn(C 2, y)| < C’waz(ﬂs)we’z(y)_l

for all ¢ € K,e € [0,e0),2 € RY and ae. (z,y) € RY x RN, Now we take
a countable dense subset S := {2z, € R¥|n € N} of RY. Then, there exists
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a null set .4/ C RY x RV such that the estimate (4.2) holds for all ¢ €
K,e € [0,e0],2 € S and (z,y) € (RY x RN)\ .#. For an arbitrary (z,y) €
(RN x RM)\ A, we can take a sequence {z,,}; in S such that z,, — z as
j — oco. By substituting z = z,; for (4.2) and taking the limit as j — oo, we
obtain the estimate

(4.3) Gn(G,)| < C(1+ ol —y*)~

for all ( € K and a.e. (z,y) € RY x RV,
(The argument above holds also under the assumption (4.1). However, we

need N =1 from here.) Let p € [1,00). By using the estimate (4.3), we can
define the function Gy, ,: p(Ha2,v) — L(LP) by

(Gua ) ) = [ GulGiayuty)dy

for all ¢ € p(Hapov),u € LP and a.e. € RY. The function an is holomor-
phic on p(Hagy) In fact, for all u € LP(R)NL?(R) and v € L (RMN)NL*(RYN),
the function ¢ — (G p(Q)u,v) = (G 2(Q)u, v) <(Ha2 v —¢)"'u, v) is holo-
morphic on p(Hq,2,v), where (¢,1) := [on &( x) dx. Furthermore, we see
that the function G, is locally bounded in p(Hmz,V). Hence, the function
G p is weakly holomorphic, hence holomorphic on p(Hy2y). On the other
hand, Gy, ,(¢) coincides with (H,, v — ¢) ™2 for real and sufficiently negative
¢, since e a2V and e tHerv are consistent. Hence, by unique continua-
tion, the function ¢ + (Hy v —¢)~2" is holomorphic on p(Ha2v) (note that
p(Hqa,2,v) is a connected open subset, since H, 2 v is self-adjoint and bounded
below). Thus p(Ha2,v) is included in p(H,p v ), the domain of holomorphy
of (Hap,y —¢)~ 2, 0

We give a sufficient condition for a potential to satisfy the assumption of
Theorem 4.2 and close this subsection.

Proposition 4.8. Assume that V2 € K’N,a, then the following assertions hold:
(i) Ve Knqg and cno(V) =0,
(ii) V is (—A)*-bounded with relative bound 0.

Remark 4.9. For an arbitrary dimension NN, this proposition is proved.

To prove this proposition, we prepare the following lemma concerning the
resolvent (X + (—A)“)_l (A >0). For all @ € (0,1] and A > 0, the resolvent

(/\ + (—A)O‘)_l is an integral operator and its integral kernel G, (\;x — y) is
given by

Ga()\;x):/ e MK (t, ) dt
0

for all A > 0 and x € RV \ {0} (see [14, Lemma 3.7]). For each A > 0, the
function z — G4 (\; ) is integrable on RY (see [14, Lemma 3.7, 3.8 and 3.9]).
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Lemma 4.10. For each 0 < o < 1, the function G, satisfies the following
properties:

(i) Ga(N\;z) = )\_H%Ga(l; /\ix) for all A\ > 0 and z € RV \ {0},

(ii) There exists a constant My > 0 such that

M
|GaXi ) ==
for all A >0,
(iii) There exists a constant My > 0 such that
M 1
0< Ga(hz) < =2

=2 'mN+2a

for all A >0 and x € RN \ {0},
(iv) There exists a constant My o > 0 such that

My A (X <a),
0= GalXia) <4 (14 3log2 + flog A)) + gna@)] (¥ =a),
gva(®) (3 >a)
for all A\ >0 and 0 < |z| < 1.

Remark 4.11. In the case of o = 1, assertions (i) and (ii) remain true, and the
following modified assertions (iii) and (iv) hold.
(iii) There exist constants M > 0 and x > 0 such that

0< Gi(Ajz) < MA M E e rVAl]

for all A > 0 and |z| > 1 (z € RY).
(iv) There exists a constant My > 0 such that

MyA"H% (N =1),
0 < Gi(N\z) < ¢ My (1+1ogA]) + |gn(2)] (N =2),
gn(z) (N =3)

for all A > 0 and 0 < |z| < 1 (x € RY), where gy is the fundamental solution
of A: .
o logl] (N =2),

gn(z) = E(im—f\“r? (N >3)

272 (N — 2)
for all z € RV \ {0}.
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Proof. (i) is proved as follows:
Ga(\; ) :/ e MK, (t, ) dt
0
= )\1/ e Ko\ ) dt
0

= A”fﬁ/ e Ko (t, \2az) dt
0
(by Proposition 2.2 (ii)-(a))
= A2 Gy (1 A ).
(ii) is proved as follows:
|Ga(X; )l = A"1F 2= / Go(1; A% ) do
=% Ga(l;z) dx.

RN

(iii) Since there exits a constant M > 0 such that

0 < Ko(t,x) < My - (t >0,z #0)

|x‘N+2a

by (2.1), we have

My

oo
0 S Ga(l,.fl?) = / 6_tKa(t,$) dx S W
0 T

This inequality and (i) imply (iii).
(iv) We have only to prove the following estimate

Myo (§<a)
Go(l;7) < %(1 +log 2 + |log|z||) (%
gN,Oc(x) (% > a)

a)
for all z € R \ {0}, since assertion (iv) follows from this inequality and (i).
First case: % <a(le. N=1,1 <a<1). Forall z € RV {0},
Ga(l;2) = / e 'K, (t,r)dt
t
< C, / ————dt (by (2.1))
(to + [2]2)2
< Ca/ e_tt_ﬂ dt < oo.
0
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(Since 5 < 1, the last integral is finite.)
Second case: % =a(ie N=1a=1
K (t,z) is the Poisson kernel:

). In this case, as is well known,

&0 t
:/ et
0 t2+5172

1 t o
g/ 22dt+/ et lat
0 t“-+x 1

1
log(1 + |z|72) + 1.

< Z
-2

Since the inequality
log(|z| ™2 +1) — |log 2| 72| < log2
holds, we obtain the estimate
1
Ga(1l;2) < ;(‘log || + 14 §log2).

Third case: % > «. For details of the proof, see the proof of Lemma 2.17.
For all € RV \ {0},

Go(liz) = / e Kot 2) dt
0
S/ Ko(t,z)d
0
:a|x|_N+2a/ T%_a_lKa(l,Tée) dr
0
= gn,a(2).

Thus, the lemma is proved.

Proof of Proposition 4.8. (i) For all 0 < p <1 and a.e. z € RV,
[ laxate =Vl
lz—yl<p

< </|my|<p’gN’°‘(x — )| dy) : (/ lgn.a(z — )|V (y)? dy>

1
2

B lz—yl<p
(by Schwarz’s inequality)
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1
< ([ lovawldn) V2l
lyl<p ’

Hence, V € IA(N,Q and

1
exaV) <tim( [ lgvalo)ldy) 1V, =0
PO M Jyl<p -

since gy o € L'(B(0,1)).
(ii) For all A > 0 and u € L?,

(4.4) /R VP (-8)) ) () do
= [ V([ Galna - yputwdy)” o
RN RN

éHGa(A;~)H1/ / Go(Niz—y (y)2dy)dx

(by Schwarz’s inequality)

_ % /RN( [ Galia— y)V(x)? dﬂv>u(y)2 dy.

by Lemma 4.10 (ii) and Fubini’s theorem. To estimate [ Ga(X;2—y)V (y)? dy
(for convenience, we change x for y and y for x), we define

Ino(N ) = / Ga(Xsz—y)V(y)*dy
lz—y|>1

and
Tna(Xia) = / GalNiz — y)V(y)2 dy
lz—y|<1

for all A > 0 and z € R", and estimate In,o and Jy . We first estimate Iy q.
In a similar way as in the proof of (2.24), we have

M, N
(45) Ivain) <552 [ V=Pl Yy
lz—y|>1
(by Lemma 4.10 (iii))
M/
< S22,

for all A > 0 and a.e. z € RV,
We next estimate Jy q.
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First case: § <a (ie. N=1,3 <a<1).

(4.6) INa(Xiz) < My oA T2 - 1v<y>2dy
r—y|<

(by Lemma 4.10 (iv))
N
< MN:OJ‘_H_% HvzHl,loc,umf

< My AT V24

for all A > 0 and a.e. z € RY.

Second case: § =a (ie. N =1,a = 3).

1
4.7 JInva(hz) < —{(1 + 3 log2 + [log A|) / V(y)*dy
i lz—y|<1

v Javale—pViar)

1
< —(1+ 3 log2 + [og AN IVZ 1 tocunis + 1Vl ,
< C(1+ glog2+ log A IV &,

for all A > 0 and a.e. z € RY, where C > 0 is a constant which is independent
of \,z and V.
Third case: % > Q.

(48) Ina(hiz) < / avale —y)V(y)?dy
lz—y|<1
< IVl

for all A > 0 and a.e. x € RV,
By the inequalities (4.4) through (4.8), we obtain that H?* C D(V) and

lim ||V (A + (~=A)%) || = 0.

A—00

Hence, V is (—A)%bounded with relative bound 0. O

4.2. The proof of Proposition 4.7

We prove Proposition 4.7 which was stated without a proof in the previous
subsection. We divide the proof into several lemmas and propositions. Our
plan of the proof is that we first prove the proposition in the case of a = 1,
and by using this result, we prove the proposition in the general case.
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4.2.1. V-boundedness of w;;(—A)we,z —(=A)

Lemma 4.12. For any ¢ € [0,1] and z € RY, the operator w;}(—A)we,. —
(—A) with domain S has an extension Ty, with domain H' satisfying the
following V-boundedness: There exists a constant C' > 0 such that

| Te zulls < C(VelVull2 + €llull2)
for all ¢ € [0,1],z € RY and u € H', where Vu = (0y,u,...,0zyu) and
1
IVullz = (375 [10x,ul3) 2

Proof. The statement of this proposition is proved by a straightforward cal-
culation. In fact, it is easily verified that

w2 (= A)we, — (—A)

€,z

= —4ce(1+¢lz — 2|?) 2j) 0,

QMZ

—2ce(1 + el — 2|2 ) 2{N+ N +2¢ - 2)e|z — z|*}.
The right-hand side of this equality defines an operator with domain H' since

(14 ¢elz — 2/*)7Y(x; — 2;) is bounded for j = 1,...,N. Let 7% . denote this
operator. Then there exists a constant C' > 0 such that

1Tz zull2 < 40\72 sup ve(1+elzf*) ™ ay] - [0, ull2

1$ERN
+ 2c€{N + (N 4 2c—2) sup (1 +elz?)%elz?}
z€RN
< O (Ve[ Vullz + ellull2)
for all e € [0,1],2 € RN and u € H'. O

4.2.2. L?-bounded extension of ws_’;(s — A)"lw,,

Lemma 4.13. There exists an &) € (0, 1] such that for any € € [0,¢)],z € RN
and s € [1,00), the operator w }(s—A) " w. . with domain S has an extension
R. .(s) € L(L?) satisfying the following estimate:

\V)

[Rez(s)ll22 < —

»

for alle € 0,e}],z € RN and s € [1,00).
0
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Proof. To prove the assertion of this lemma, note that

_ VN 1
V(s = A) Hge < = —=

2 Vs
for all s € (0,00) (by using Fourier transform). Hence, by Lemma 4.12, there
exists a constant C' > 0 such that ||T..(s — A)7 a2 < C’(% + £) for all
e €[0,1],2 € RY and s € (0,00), and hence there exists an & € (0,1] such
that

(4.9) |Te.(s — A7t

N =

|22 <

for all ¢ € [0,),2 € RN and s € [1,0).
Next, for all ¢ € [0,¢)],2z € RY,s € [1,00) and u € S,

W (s — Aweu= (14T (s — A) 1) (s — A

€,z

By the estimate (4.9) above, the operator of the right-hand side of this equality
is invertible in £(L?). Since this equality holds and w_}(s — A)lw. v € S
for all v € §, we have the following equality

v=w: (s — Awes [w2 2 (s — A)hwe 0]
=1+ T.(s—A) (s —A)[wi(s — A) . .v],

€,2
hence,
(s = A) 1+ Teals = A) D o= wl(s — A) e o
for all € € [0,(),2 € RN, s € [1,00) and v € S.
Now we define
Reo(s):= (s —A) "1+ Teo(s — A e £(L?)

for all e € [0,e)],2 € RY and s € [1,00). This operator is an extension of

wZ1(s — A)"tw.. and satisfies the estimate
_ 1y —1 2
1Rz 2 (s)ll22 < [ (s — A) 1H2,2H (14 Tee(s = A)7) H2,2 < s
for all € € [0,ep],2 € RN and s € [1,0). O

4.2.3. The second resolvent equations

Lemma 4.14. Let T , be the same as in Lemma 4.12 and €{, and R, , be the
same as in Lemma 4.13. Then, for all € € [0,¢)],z € RN and s € [1,00), the
equality

(s —A)"! = R. .(s) = R .(5)T: (s — A1

holds on L2.
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Proof. Since the domain of Ty , is H! including the domain of A, we have the
equality
S—A+T. .= (14+To.(s— A)*l)(s —A)

on H? for all e € [0,}], 2 € RY and s € [1,00). As was proved in Lemma 4.13,
the right-hand side operator in this equality is invertible in £(L?) and its
inverse operator is R. ,(s). Hence, an arbitrary s € [1,00) belongs to the
resolvent set of the operator sum A — 7., defined on H? for all € € [0, )] and
z € RV, and the resolvent (s — A + T.,)~! coincides with R. .(s). Now, it is
clear that the equality in this lemma holds, since the equality is nothing but
the second resolvent equation concerning (s —A)~!and (s —A+T..)"t. O

4.2.4. V-boundedness of w;;(—A)""ws,z — (=A)~

Proposition 4.15. Let ¢( be the same as in Lemma 4.13. For any ¢ €
[0,0] and z € RY, the operator w;}(—A)*we . — (—A)* with domain S has
an extension T ¢ . with domain H' satisfying the following V-boundedness:
There exists a constant C > 0 such that

| Taezull2 < CVeE([IVull2 + [lullz)
for alle € [0,¢}],2 € RY and v € H'.

Proof. The assertion in the case of @ =1 is the result in Lemma 4.12, and so
we assume « € (0,1). Let &), Rc .(s) and T; . be the same as in Lemma 4.13
and Lemma 4.12, respectively, for all € € [0,],2 € RY and s € [1,00). We
will use the well-known formula

(—A)%u = sinma /Ooo s s — A)TH(=A)uds

™

for all u € S (see the formula (4) in [20, Chapter IX, Section 11] or [9, (5.13)]),
where the integrand of the right-hand side of this equality is Bochner integrable

on [0,00). By this formula, the following equality holds: For all € € [0, ], z €
RN and u € S,

(4.10)

p— (w;i(—A)o‘w&Zu — (—A)au)

= w;zl / s (s — A)_l(—A)w&Zu ds
0
—/ s Hs — A)TH(=A)uds
0
:/ s t(s — A)TH=A)we Luds
0

- /OO s s — A)TH(=A)uds
0
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1
:/0 s (wik(s = A) N A)wez — (5 A)7H=A) Juds

* /100 07 (wg;(s — A)TH=A)we. — (s — A)—l(fA)>ud8'

We can execute a calculation on the first term of the rightmost side of (4.10)
as follows:

/1 st (w;;(s —A) M (=A)we, — (s — A)*l(—A))uds
’ 1
= /0 sa1 <w€_; (1—s(s—A) Hwe, — (1—s(s — A)_1)>uds
- 130‘ s—A)t — ol s—A)_lw )uds
| (=2 —uzk < Juds,

In addition, (1 — we,-(x) 'we.(y))G1(s;z — y) is the integral kernel of (s —
At —w (s — A)twe; for all € € [0,e0], 2 € RY and s > 0. Hence, for all
e €[0,ep],2 € RY and u € S, the inequality

/RN([/Ols“((s—A)l—w
- /RN ( / 1 s [((s = A) ™ —wzi(s = A) w2 )u] (@) ds)de

/ / a(/RN 1 — we . (2) twe 5 (y ))Gl(s;x—y)u(y)dy) ds)de
< (2*%cy/z 2/RN/ / (1+ |z —y?)

2
x Gi(s; = y)luly)|dy) ds) " da
(by Lemma 4.3 (ii))

s — A)*lw&z)u ds} (.CC)>2 dz

€,z

- (21+2ccﬁ>2 /RN (/RN(l +lz—y)e
X (/01 sYGy(s;x —y) ds) lu(y)| dy>2 dz

(by Fubini’s theorem)

< @ eV ( [ 0| sensnas)ar) fuls

(by Young’s inequality)
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holds. Thus, for all € € [0,&] and z € R, we have
- 1 1 1
H/O 2 w2k = 8) B — (5= 8) 1 (-)) s
1
< 21+260\/§/ (1+ |x|2)c</ s“G1(s;x) ds) dx
RN 0
1
= C\@/ (1+ |£L‘|2)C(/ s‘”g_lGl(l; s%as) ds) dx
RN 0
1
= C\@/ sty -l (/ (1+ |z|*)°G1(1; s%m) dm) ds
0 RN

(by Fubini’s theorem)

_of/ o= 1/ (1457 1a?)°Cr (1 2) dr) ds

<C\f/ 0‘1 (1+s1H)° G1(1;z) dx

|z|<1

+(1+ s_l)c/ lz[%G1(1; ) dx] ds
/21
= C\f/ Y1 +s71Heds

X ( Gi(1;x) dx—l—/ |z|2°G (1; ) dx).
lx|<1 |z|>1

The integrals of the right-hand side of the last equality are finite. More pre-
cisely, the function s +— s* (1 4+ s71)¢ is integrable on (0,1) by ¢ < «, and
the functions z +— G1(1;2) and x +— |2|?*G1(1;z) are integrable on B(0,1)
and B(0, 1) respectively by Remark 4.11. Hence, the operator of the leftmost
side of this equality can be extended to an operator belonging to £(L?) for all
e € [0,e)] and z € RY. In addition, there exists a constant C' > 0 such that
the £(L?)-norm of this operator is not greater than C'/z for all € € [0, &)] and
z € RV,

Next, we can execute a calculation on the second term of the rightmost side
of (4.10) as follows:

(4.11) /100 7 (Wi (s = A)7 (A — (s - A)7H(-A) )uds
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+ (wzk(s — A) we s — (s — A)—l)(—A))uds

— /1 50 (Res(9) e = Reo(9)Tea(1 = (5 = A)71) Juds

for all € € [0,¢(] and z € RN. (To obtain (4.11), note that (w_1(—A)we,. —
(—=A))u € Sforall e € [0,¢)] and z € RV and use Lemma 4.12, 4.13 and 4.14.)

It can be shown that the rightmost side of this equality defines an opera-
tor with domain H' and satisfies the following estimate by Lemma 4.12 and
Lemma 4.13: Indeed, for any u € H',

H/ g1 (R&z(s)Tg,z — Rg,z(s)TE,Z(l —s(s— A)*1)>udSH
1 2
< [Tt 2ds xRNl + <l
1

L A (2 (RIS

+e|l(1—s(s— A)_l)uH2) ds
< C(VelVullz +el|ullz)
for all ¢ € [0,] and 2z € RY.
Thus, for any € € [0,£(] and z € R, the operator w1 (—A)w, . — (—A)*

has an extension T, .. with domain H I satisfying the following estimate:
There exists a constant C' > 0 such that

| To ezl < CVE(IVullz + [lull2)

for all € € [0,),2 € RN and u € H'. O

4.2.5. H,> yv-boundedness of V

Lemma 4.16. Under the assumption (4.1), V is H, 2 v -bounded with relative
bound 0.

Proof. Since (—A)* +V C Hgy 2y by [6, Corollary 2.7] and both of the oper-
ators are self-adjoint, Hy 2y = (—A)® 4+ V. Furthermore, since V is (—A)®-
bounded with relative bound 0 and V' is (—A)“bounded with relative bound
< 1, the assertion of this lemma holds. O
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4.2.6. Completion of the proof

Proof of Proposition 4.7. Let K be any compact subset of p(Hy2yv). As
stated in the proof of Lemma 4.16, Hooy = (—A)* + V. (It is implied
in this equality that D(H,21) = H?*.) By this equality and Proposition 4.15
and Lemma 4.16, for ¢, and T, . , which are the same as in Proposition 4.15,
the estimate

[T zzulla < CVE([[Hapvull2 + [lull2)
holds for all e € [0,¢)],2 € RY and u € H!, where C is a constant which
is independent of ¢ € [0,¢)],z € RY and v € H'. Hence, there exists an
g0 € (0,&(] such that

1
HTa,a,z(Ha,Q,V - C)_1H272 < 5

for all ¢ € K,e € [0,50] and z € RY. On the other hand, the equality
w;; (Ha,Z,V - C)wa,zu == (]— - Ta,e,z(Hoz,Q,V - C)il) (Ha,Q,V - C)'LL

holds for all £ € [0,&0],2 € RY and u € S.
By the estimate above, the operator of the right-hand side of this equality
is invertible in £(L?), hence we can define the operator

Ra,a,z(C) = (Ha,Q,V - C)_l (1 - Ta,e,z(Ha,Q,V - C)_l)il € E(LQ)

for all ¢ € K,e € [0,¢0] and z € RY. This operator satisfies the equality
(4.12) R%QZ(C)w;;(Ha,gy —Queu=u

for all ¢ € K,e € [0,e0],2 € RY and u € S. We can prove that this equal-
ity holds for all u € w;;Hza, where w;leQO‘ is the image of H?* by the
multiplication operator w_l. In fact, since S is a core of (—A)®, for any
u € w;iHQO‘ there exists a sequence {v,}, in S such that v, — w. v and
(=A)*v — (=A)*w,;u in L? as n — oo. Since w jv, € S for all n € N, we
can substitute w_ vy, for u in (4.12) and we have the equality

Ra,e,z(C)w;; (Hoc,2,V - C)'Un = w;zlvn

for all ( € K,e € [0,60],z € R and n € N. As n — oo, the right-hand
side of this equality converges to u in L? by the way of taking the sequence
{vp}n. On the other hand, the left-hand side of this equality converges to
Roc(QwZl(Ha2v — C)we.uin L? as n — oo since (=A)%*v, — (—A)*w; u
in L? as n — oo and also V is (—A)%bounded with relative bound < 1 by the
assumption. Hence, the equality (4.12) holds for all { € K,e € [0,e0],2 €
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RN and u € wg 1H%¢. Now, let v be an arbitrary function in S. Since
w;;(Ha’g,v — C)_lwg,zv € w;iHQO‘, we can substitute w;zl (Hapov — C)_lws,zv
for u in (4.12) and we have the equality

Ra,s,z(C)U = w;zl(Ha,Q,V - C)_lws,zv

for all ¢ € K,e € [0,2¢],2 € RY and v € S. Hence R, -(¢) is an extension of
w;zl(Hag,v — ¢)"lw, . and satisfies the estimate

— —1\—1
1Rac:(Oll22 < [(Hazy = Q)7 2l (1 + Taes(Hazy = ) 7) 7 |55
< 2sup||(Hapy — )7
¢ceK

‘272 < 0

for all ¢ € K,e € [0,&0] and z € RY. The proof of Proposition 4.7 is thus
completed. m

4.3. The case of e_tHg»PvV on bounded sets

In this subsection, we prove LP-spectral independence of a perturbed fractional
Dirichlet Laplacian. Let O be a bounded open subset of RY and let Ap be
the Dirichlet Laplacian in L?(0O). i.e., —Ap is the operator associated with
the sesquilinear form a(u,v) := [, VuVvdz (u,v € D(a) = H}(0)). Since a
is positive, closed and symmetric with dense domain, —Ap is self-adjoint and
positive definite.

For all a € (0,1], the Cy-semigroup (e‘t(_AD)a)t>0
and satisfies a Gaussian estimate of order a (see (4.13) below). In fact, by
the maximal principle [3, Théoreme IX.27] (see also the footnote there), (A —
Ap)~' > 0 for all A > 0. Hence P > 0 (¢t > 0). In addition, by using
[15, Proposition 4.2], 0 < AP < ¢! (t > 0) (this inequality means that
u < ethpy < ety for all positive u € L2(0) and t > 0. Here, the heat
semigroup e’® on L2(RY) operates on any u € L?(O) identified an element
of L?(RY) by considering u to have value 0 on RY \ O). It follows from this
inequality and the formula (2) in [20, Chapter IX, Section 11] that

on L%(0) is positive

(4.13) 0 < e MAD)T < o~t=A)T (1 > ).

Hence, as is proved in [14, Proposition 3.5], there exists a positive Cp-semigroup
UL, = (UL,(t)),s, on LP(O) for each p € [1,00) such that UL (t) and U2 (t)
are consistent for all t > 0 and p,q € [1,00) and U£2(t) = ¢~ H=AD)" for all
t > 0 (by the consistency condition, U£p is unique for each p € [1,00)). Since
(—Ap)® is self-adjoint in L?(RY), U£2(t)(: e~U=AD)%) is self-adjoint for all
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t > 0. Using the term in Definition 2.7, the family {U2;p € [1,00)} is self-
adjoint and consistent. By the consistency above and the self-adjointness of
U£Q, the equality U2 (t)' = Uolé)’p, (t) holds for all ¢ > 0 and p € (1,2) U (2, 00)
(cf. Remark 2.8).

In what follows, for any function f: O — R, we define the function f: RN —
R by f(z) = f(z) (x € 0),0 (z & O). (We write f~ instead of f in some
cases.) This definition is used in the next proposition, which states a suffi-
cient condition for a potential to be erp—admissible for all p € [1,00). For a
ng—admissible V', in the former notation, the perturbed semigroup should be
written as (Uo’ffp)v. However, we will write simply the perturbed semigroup

D
as Ua,p,v-

Proposition 4.17. Let V: O — R be a measurable function. Assume the
following conditions:

(i) V_ € K. and cN,a(f/_) <1,

(i) Q((—Ap)*) NQ(Vy) is dense in L*(0),

(iii) H*RN) N Q(Vy) is dense in L2(RN).

Then V 1is ng—admissz'ble for all p € [1,00) and V is Uq p-admissible for
all p € [1,00). In addition, the domination

0< U v(t) SU,,5(t)
holds for all t > 0.

Proof. As is proved in Theorem 2.14, V is Ua,p-admissible for all p € [1,00).
It is proved that V4 is ng—admissible for all p € [1,00) in a similar way as
in [18, Proposition 5.8]. The domination for V is proved as follows. For any
t > 0,n,m € N and positive u € L?(O), the inequality

0< [(UQQ(%)e_%Vﬁ))mu}N(x) < [(Umg(%)e_%ﬁn))mﬂ (x)

holds for a.e. z € RY. Hence, by using the Trotter product formula, we obtain
that for any n € N,

a,2,V «,

¢ 2,7 (t)u) (x)

for all t > 0, positive u € L2(0) and a.e. x € RV, Hence, the domination
0 < (UPyy, (B0)™(2) < (U, , 7. (07) (@)

holds for all ¢ > 0, positive u € L?(O) and a.e. z € RY.
To prove that —V_ is ng—admissible for all p € [1,00), it suffice to show
that
sup{HeXp(t(Hgl + V_(n)))H ‘ 0<t<l,ne N} < 00
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(see [19, Proposition 2.2] and Proposition 2.9), where H” 'y is the generator of
upb

a1+ By a similar way as in the case of V4, for all £ > 0,n € N and positive
u € L?(0), the inequality

0= (UP, Lo(®u) (@) < (U, , o (0)i0)(2)

holds for a.e. z € RY. Since U (t)and U_ | & (t) are consistent with
a,1,-v" -V

UaD,Q,—vﬁ")( ) and U ) (t), respectively, for all t > 0 and n € N, by this

consistency and the inequality above, we have
D ~ -
0 S (UOl’l,iv_(”) (t)u) (x) S (Ua7177‘7_(n) (t)u) (l’)

for all t > 0,n € N, positive u € L*(0) N L?(O) and a.e. z € RY. Hence the
estimate

102, v @I < T, g @ < U, - @]
holds for all £ > 0 and n € N. Thus, the boundedness above holds.

Since both Vi and —V_ are Uo?p—admissible for all p € [1,00), V is Uo?p—
admissible for all p € [1,00). Now it is easy to prove that

(4.14) 0< UOIZQ, () <U,,p(1)

for all t > 0. In fact, by replacing U 2, Uqa,2 and V. with U£27V+, U, .y, and

«, o2,V
—V_ respectively in the argument in the case of V., we have

0< [(Udav,) _yon(Du]™(2) < [(U,57,) g (1)E] (2)
for all ¢t > 0,n € N, positive u € L?*(O) and a.e. x € RY. Since, as
stated in Remark 2.6, U£27V(t) = s limn_,oo(U£27V+)_v(n) (t) in L(L*(0))
and U_, #(t) = s- limn_,oo(Ua2‘~/+)_‘7<n) (t) in £L(L*(RY)) for all ¢t > 0, the
domination (4.14) holds. O

Theorem 4.18. Under the same assumptions as in Proposition 4.17,
D
(H a,p, V) U(HOL,Q,V)

holds for all p € [1,00), where HY apy 8 the generator of U apv

Proof. Note that H apV an < HU o7 t)Hp’q forallt >0and 1 < p <

g < 00, by the domination in Proposition 4.17. Hence, U(H£27v) C U(Hoj?’p,v)
for all p € [1,00) (for the proof of this spectral inclusion, see the proof of
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Theorem 4.1). To prove the converse inclusion, recall Proposition 4.6. For all

1§p§q§ooandn>%(%—%),Wehave

Iz =), < o0

for real and sufficiently negative A. Next, let K be any compact subset of
p(H£27V). For all n > % and ¢ € K, by taking a real and sufficiently negative
A, the following estimate holds:

2n

_ 2 ; _
H (Ho?,z,v - C) 2nH1,oo = Z < Jn> = AVH(H«QZ,V —A) nHZoo
j=0
< |[(Hay = O ol (a2 = 27"
<C,
where the constant C' is independent of ( € K. Hence, (HD,Q,V — ()27 above

«
is an integral operator and its integral kernel G,,((; z,y) satisfies the estimate

HGR(C; g ')HLOO(OXO) <C

for all ( € K. By using this estimate together with the assumption that O
is bounded, we can define the function G, , for all p € [1,00) in the same
way as in the proof of Theorem 4.2. By the same argument there, we obtain

U(HC?,p,V) - U(HC?’Q,V) for all pE [1, OO) O

Finally, we give a sufficient condition for a potential to satisfy the assump-
tions (ii) and (iii) in Proposition 4.17.

Proposition 4.19. Let O be a bounded open subset of RN whose boundary
00 is a set of Lebesque measure 0 in RY. Assume that V € L} (O), then

loc

Q((=Ap)*)NQ(V) is dense in L*(0) and H*(RY)NQ (‘7) is dense in L*(RY).

Proof. By the assumption, C2°(0O) is included in Q((—AD)O‘) NQ(V), and
hence Q((—Ap)*) NQ(V) is dense in L?(O). Next, we prove the latter asser-
tion. To prove this, for any u € L?(RY), we take a sequence {uy,}, in C°(RY)
such that u, — v in L2(RV) as n — oo. Now we define

K, :={z¢€ RY ’ d(z,00) > 1}

for all n € N, where d(x, A) denotes the distance of a point x € RY from a
closed set A C RN. For all n € N, K, is closed and satisfies K, C K7 4
(K¢, denotes the interior of Kp11) and (J,cy Kn = RY \ 0. For all n € N,

we can take a function ¢, € C*°(RY) such that 0 < ¢,, < 1 and

)1 (7€ Ky),
on(®) = {0 (r € RN\ K2.,).
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It is easy to prove that ¢,u, € H*(RN)N Q(f/) (n € N) and ¢pu, — u in
L?*(RN) as n — oo (note the assumption that the measure of 9O is 0). Thus
H*RN)NQ(V) is dense in L2(RM). O
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