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Abstract. In repeated measures, p dimensional measurements are observed,
then testing a hypothesis for equality of means of p components is one of the
simplest inference. If the hypothesis were accepted, it is interesting to estimate
of the mean. In this paper, we consider the problem of constructing a fixed
width confidence interval of equal normal means, when the covariance matrix
is intraclass correlation model.
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§1. Introduction

Let x1, x2, · · · be independent and identically distributed random vectors hav-
ing p-variate normal distribution with mean μ1p and covariance matrix Σ,
that is Np(μ1p, Σ), where 1p is a p dimensional vector of ones. We assume
that the covariance matrix have the structure Σ = σ2{(1 − ρ)Ip + ρ1p1′

p},
which is called an intraclass correlation model, where −1/(p − 1) < ρ < 1.
Let x̄n =

∑n
i=1 1′

pxi/np. The distribution of x̄n is N(μ, τ/np), where τ =
σ2{1 + (p− 1)ρ}, which is a characteristic root of Σ. The problem is to deter-
mine the sample size satisfying

(1.1) P{|x̄n − μ| ≤ d} ≥ 1 − α,

where d > 0 and α (0 < α < 1) are given. The left hand side of (1.1) is
2Φ(d/

√
τ/np)− 1, where Φ is the cumulative distribution function of N(0, 1).

It is easily seen that if σ2 and ρ were known and the sample size n were
determined such that

(1.2) n ≥ n∗ = z2
α/2τ/pd2,
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where zα/2 is the upper 100α/2% point of N(0, 1), then (1.1) is satisfied.
If σ2 and ρ are unknown, no fixed sample size procedure exists to achieve

(1.1). We propose a two-stage procedure to achieve (1.1). The two-stage pro-
cedure is originally proposed by Stein [6]. Hyakutake, Takada and Aoshima [2]
proposes a two-stage procedure, when the covariance matrix is the intraclass
correlation model and the components of mean vector are not equal, say
µ = (μ1, · · · , μp)′. Testing a hypothesis μ1 = · · · = μp is reviewed in Siotani,
Hayakawa and Fujikoshi [3].

In this paper, we give a two-stage procedure satisfying (1.1) in Section 2.
We consider the problem (1.1) with missing data in Section 3. The problem
of missing data arises in many situation, for example repeated measurement
analysis, familial data analysis, and so on, see Srivastava [5]. It is not easy
to give an exact procedure, so approximated procedures are proposed. In
Section 4, the accuracy of approximation is examined by simulation and a
numerical example by using cholesterol data in Wei and Lachin [7] is given.

§2. Two-stage procedure

It is well known that there exists no fixed width confidence interval for the
mean with the fixed sample size when the variance is unknown. In this section,
we propose a two-stage procedure satisfying (1.1). Healy [1] proposed a mul-
tivariate two-stage procedure, which is an extension of Stein’s [6] univariate
two-stage sampling scheme. In the sampling rule of the two-stage procedure,
one takes samples of size m(> p) and compute the sample covariance matrix

Sm =
1

m − 1

m∑
i=1

(xi − x̄)(xi − x̄)′

and τ̂ = 1′
pSm1p/p, where x̄ =

∑m
i=1 xi/m. Then the total sample size N is

defined by

(2.1) N = max{m, [τ̂ t2/pd2] + 1},

where t is the upper 100α/2% point of the t-distribution with m − 1 degrees
of freedom (d.f.) and [a] denotes the greatest integer not greater than a. Note
that (m − 1)τ̂ /τ has a chi-square distribution with m − 1 d.f. (χ2

m−1), see
e.g. Srivastava [4]. Next take N −m additional observations and compute the
sample mean x̄N . Since N ≥ τ̂ t2/pd2 by (2.1) and (x̄N − μ)/

√
τ̂ /Np has the
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t-distribution with m − 1 d.f.,

P{|x̄N − μ| ≤ d}
≥ P{|√N(x̄N − μ)|/√

τ̂ t2/pd2 ≤ d}
= P{|x̄N − μ|/√

τ̂ /Np ≤ t}
= 1 − α.

Hence (1.1) is satisfied.

§3. Missing observations

In this section, the problem (1.1) is considered, when the observations are
monotone type of missing. Let the ith observation be xi = (xi1, · · · , xipi)

′ (1 ≤
pi ≤ p), say the last p − pi components are missing. Then the distribution of
xi is Npi(μ1pi , σ

2{(1 − ρ)Ipi + ρ1pi1
′
pi
}). Let x̄n =

∑n
i=1 1′

pi
xi/kn, where

(3.1) kn =
n∑

i=1

pi

is the sum of the number of observed components, then the distribution of x̄n

is

(3.2) N
(
μ,

∑n
i=1 piξi

k2
n

)
,

where ξi = σ2{1 + (pi − 1)ρ}. Note that x̄n is not the maximum likelihood
estimator of μ. In (1.1), the equality holds when n = n∗ and data has no
missing. If we define the sample size as (1.2), then (1.1) will not be satisfied
with missing data. The variance in (3.2) depends on pi, hence the required
sample size depends on the observed dimension. So, we wish to give kn defined
in (3.1) in order to satisfy (1.1).

If ρ ≥ 0, then
∑n

i=1 piξi/k2
n ≤ τ/kn by ξi ≤ τ . Hence (1.1) is satisfied when

kn ≥ z2
α/2τ/d2 for ρ ≥ 0. This is same as (1.2) when pi = p (i = 1, · · · , n).

If ρ < 0, then
∑n

i=1 piξi/k2
n ≤ σ2/kn. When kn ≥ z2

α/2σ
2/d2 for ρ < 0, (1.1)

is satisfied. This is equivalent to the case when pi = 1 (i = 1, · · · , n), say all
samples are observed only one dimension. Hence if σ2 and ρ were known and
kn were chosen such that

(3.3) kn ≥ kn∗ = z2
α/2 max{τ, σ2}/d2,

then (1.1) is satisfied. The lower bound kn∗ may not be optimal, the optimal
sample size kn =

∑n
i=1 pi is a solution of∑n

i=1 piσ
2{1 + (pi − 1)ρ}

(
∑n

i=1 pi)2
=

d2

z2
α/2

.



126 H. HYAKUTAKE, M. ANAN AND T. MIZUYOSHI

But it is difficult to give the explicit solution to this equation.
When σ2 and ρ are unknown, we consider two-stage procedures. But it

is not easy to give an exact procedure. The proposed procedures will be
approximately satisfied (1.1). In the procedure, we take samples of size m and
compute

(3.4) vb =
m∑

i=1

pi(x̄(i) − x̄m)2,

where x̄(i) = 1′
pi

xi/pi. In analysis of variance, since
∑

ij(xij − x̄m)2 = vb + vw,
vb and vw are considered as the between group sum of squares and the within
group sum of squares, respectively, where vw =

∑
i,j(xij − x̄(i))2. Noting that

E(vb) =
∑m

i=1(1 − pi/km)ξi and E(vw) = (km − m)σ2(1 − ρ),

σ̂2 =
vb +

∑m
i=1{(1 − pi/km)(pi − 1)/(km − m)}vw∑m

i=1(1 − pi/km)pi
,

is an unbiased estimator of σ2. Let an estimator of ρ be

ρ̂ = 1 − vw/{(km − m)σ̂2},
then an estimator of τ is τ̂ = σ̂2{1 + (p − 1)ρ̂}.

First, we consider a two-stage procedure by asymptotic approximation.
Since the estimators τ̂ and σ̂2 are consistent, (1.1) would be satisfied asymp-
totically, when kn ≥ z2

α/2 max{τ̂ , σ̂2}/d2 by (3.3). So, we define

(3.5) k̃N∗ = max{m, [z2
α/2 max(τ̂ , σ̂2)/d2] + 1}

and take additional samples until satisfying kN ≥ k̃N∗ . By computing x̄N , an
approximated confidence interval is given by

(3.6) x̄N ± zα/2

√
max(τ̂ , σ̂2)/kN .

But the coverage probability of this confidence interval is sometimes less than
1−α in simulation given in the next section. Hence the coverage probability of

the confidence interval x̄N ± zα/2

√
kN

√∑m
i=1 piξ̂i/km would be less than pre-

determined confidence coefficient, because
∑m

i=1 piξ̂i/km ≤ max(τ̂ , σ̂2), where
ξ̂i = σ̂2{1 + (pi − 1)ρ̂}. In (3.5), we use zα/2, because it is difficult to derive
the exact distribution of max(τ̂ , σ̂2).

Next we consider another procedure. The distribution of x̄(i) − μ is
N(0, ξi/pi), so the statistic vb in (3.4) can be expressed by using chi-square
random variables as follows:

vb =
∑m

i=1 pi(x̄(i) − μ)2 − ∑m
i=1 pi(x̄m − μ)2

=
∑m

i=1 ξi(vi − piv0/
∑m

i=1 pi),
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where vi has χ2
1 (i = 0, 1, · · · , m). The statistics v1, · · · , vm are independent,

but v0 is not independent to v1, · · · , vm. If pi = p for all i, then vb/τ is
distributed as χ2

m−1. So, u = vb/(m − 1) would be used for determining the
total number of components. But E(u) ≤ ∑m

i=1 piξi/km by

(3.7) km

m∑
i=1

ξi ≤ m
m∑

i=1

piξi,

which can be obtained by (
∑m

i=1 pi)2 ≤ m
∑m

i=1 p2
i , where

∑m
i=1 piξi/km is

the variance of
√

km(x̄m − μ). If u is used for determining kN , the coverage
probability may be also less than 1 − α. Let the probability that the number
(dimension) of observed components of each individual is j be θj , that is
P (pi = j) = θj (j = 1, · · · p), where 0 ≤ θj ≤ 1 and θ1 + · · · + θp = 1. Then
E(pi) =

∑p
j=1 jθj and E(p2

i ) =
∑p

j=1 j2θj . Let E(pi) = q1 and E(p2
i ) = q2.

Then we have km/m =
∑m

i=1 pi/m → q1 and
∑m

i=1 p2
i /m → q2 as m → ∞.

Hence if kN is defined by a two-stage procedure, then

(3.8)
m∑

i=1

piξi/km ≈
N∑

i=1

piξi/kN

for large m. By (3.7) and k2
m ≤ m

∑m
i=1 p2

i , it is easy to see that km
∑m

i=1 piξi ≤∑m
i=1 p2

i

∑m
i=1 ξi. Hence we have

(3.9)
∑m

i=1 ξivi∑m
i=1 piξi/km

≥ 1
	m

m∑
i=1

vi

by m
∑m

i=1 ξivi ≥ ∑m
i=1 ξi

∑m
i=1 vi, where 	m = m

∑m
i=1 p2

i /k2
m. Note that 	m ≥

1, the equality holds when p1 = · · · = pm. 	m is maximized when p1 = · · · pi′ =
p, pi′+1 = · · · = pm = 1, then 	m = m(i′p2 + m − i′)/(i′p + m − i′)2, where
i′ = [m/(p + 1)] or [m/(p + 1)] + 1. Hence we have 	m ≤ (p + 1)2/4p.

By (3.9),

(3.10) 	mvb ≥ (
m∑

i=1

piξi/km)(
m∑

i=1

vi − 	mv0).

Now we have the following theorem.

Theorem. Let

(3.11) kN∗ = max{m, [	mt′2u/d2] + 1}
and take additional samples until satisfying kN ≥ kN∗ , where t′ is the upper
100α/2% point of the t-distribution with m − 	m d.f. Then the confidence
interval is given by

(3.12) x̄N ± t′
√

	mu/kN ,

whose the coverage probability is 1 − α approximately and t′
√

	mu/kN ≤ d.
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Proof. By (3.10),

P{|x̄N − μ| ≤ t′
√

	mu/kN}

≥ P

{
|x̄N − μ| ≤ t′

√∑m
i=1 vi − 	mv0

kN (m − 1)

∑m
i=1 piξi

km

}

This is approximated by

P

⎧⎨
⎩ |x̄N − μ|√∑N

i=1 piξi/k2
N

≤ t′
√∑m

i=1 vi − 	mv0

m − 1

⎫⎬
⎭ ,

by (3.8), where z = (x̄N − μ)/
√∑N

i=1 piξi/k2
N is a standard normal variable.

The statistic
∑m

i=1 vi−	mv0 would be approximated by χ2
m−�m

variable. Hence
the distribution of z/(

√∑m
i=1 vi − 	mv0)/(m − 	m) can be approximated by t-

distribution with m − 	m d.f., then the coverage probability is approximated
by 1 − α. It is easy to see that the length of the interval (3.12) is not greater
than 2d by (3.11).

If there is no missing, say pi = p (i = 1, 2, · · ·), the two-stage proce-
dure (3.11) is equivalent to (2.1). Since 1 ≤ 	m ≤ 2 for p ≤ 5, t′ would
be approximated by t when p is small.

§4. Simulation and example

In this section, we examine the accuracy of approximation of the proposed
procedure and give a numerical example.

4.1. Simulation

The two-stage procedures given in the previous section are approximated pro-
cedure. We examine the accuracy by simulation. In the simulation, we choose
p = 4, the parameters as μ = 5.0, σ2 = 1, and ρ = 0.2, 0.5, 0.8, predetermined
constants as d = 0.5 and α = 0.05, and the missing rate ε = 0.2, 0.4. For
these values, we construct 10,000 confidence intervals (3.6) and calculate the
proportion that intervals include the true mean μ = 5.0. The results are in
Table 1, in which some of values are smaller than 1 − α = 0.95. Particularly,
the values for ρ = 0.2 are significantly smaller than 0.95.
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Table 1. Coverage probability of (3.6)

ε ρ
0.2 0.5 0.8

0.2 0.9448 0.9466 0.9471
0.4 0.9429 0.9584 0.9599

Next, we construct 10,000 confidence intervals (3.12), when m = 10, 20
and others are same as before. In this simulation, the average of the sample
sizes k̄N are also computed. Table 2 shows the proportion and k̄N is in the
parentheses ( ). The lower bound kn∗ in (3.3) for known σ2 and ρ is stated in
the bottom of the Table 2.

Table 2. Accuracy of approximation and sample size

ε ρ
0.2 0.5 0.8

0.2 m = 10 0.9555 0.9502 0.9497
(38.8) (50.3) (64.0)

0.2 m = 20 0.9537 0.9506 0.9483
(68.0) (68.2) (70.5)

0.4 m = 10 0.9566 0.9537 0.9494
(35.0) (44.2) (54.7)

0.4 m = 20 0.9579 0.9553 0.9516
(56.1) (56.6) (59.0)

kn∗ 24.6 38.4 52.2

From the Table 2, the condition is satisfied in many case. When ρ = 0.8,
the coverage probabilities are less than 0.95, but the differences from 0.95 are
small. Hence the proposed two-stage procedure (3.11) is better than (3.5).
The sample sizes in missing rate 0.4 are smaller than that in missing rate 0.2.

4.2. Example

We give an numerical example by using a part of the cholesterol levels for a
treatment group studied at times 6, 12, 20, and 24 months, which is given in
Wei and Lachin [7] or is tabulated in Srivastava [5]. We first take sample of
size m = 10 at random from Tables 15.3.1 and 15.3.2 of Srivastava [5]. The
first stage sample (m = 10) is in Table 3, in which * is missing.
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Table 3. Cholesterol data (first stage sample)

Subject Months
number 6 12 20 24

1 268 241 260 320
2 334 290 286 320
3 313 251 307 291
4 281 277 235 210
5 252 267 299 *
6 231 285 238 251
7 279 296 262 283
8 283 248 334 271
9 272 222 246 253
10 326 304 * *

We have km = 37, 	m = 1.030, and u = 1426.97 from Table 3. If we choose
d = 10 and α = 0.05 (hence t = 2.262), then kN∗ = 76 by (3.11). Next we
take the second stage sample, which is in Table 4.

Table 4. Cholesterol data (second stage sample)

Subject Months
number 6 12 20 24

11 232 215 220 292
12 219 220 * *
13 270 209 255 213
14 291 291 268 260
15 192 205 253 217
16 261 264 300 *
17 300 313 317 397
18 246 295 228 274
19 243 265 * *
20 260 278 245 340
21 207 167 * *
22 232 265 242 230

The sample mean is calculated as x̄N = 265.09. Since t
√

	mu/kN = 9.82,
where kN = 78, we have the confidence interval [255.27, 274.91].
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