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Kuramoto-Sivashinsky type equations on a half-line
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Abstract. We study the initial-boundary value problem for a general class of
nonlinear dissipative equations on a half-line

us + N(u,uz) + Ku=f, (z,t) e RT xRT,
(0.1) u(z,0) = uo(z), z€ R,
927 tu(0,t) = hj (t) forj=1,..,M,

where the nonlinear term N(u, us) depends on the unknown function u and its
derivative u, and satisfies the estimate

IN(u, v)| < C'ful” o]
with p,o > 0 and the linear operator K(u) is defined as follows
K(U) = anag + ama;,nv

where the constants an,am € R, n,m are integers, m > n,n < M + 1,n is an
even integer.

The aim of this paper is to prove the global existence of solutions to the
initial-boundary value problem (0.1). We find the main term of the asymptotic
representation of solutions.

AMS 2000 Mathematics Subject Classification. C35Q55, 35B40.

Key words and phrases. Nonlinear dissipative equations, initial-boundary value
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81. Introduction

We consider the initial-boundary value problem on a half-line for nonlinear
equation

up + N(u,uy) + K(u) = f, t>0,2 >0,
(1.1) ' u(z,0) = up(z), x> 0;
O u(0,8) = hj (1), t>0,j=1,..., M,
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154 F. BENITEZ AND E. KAIKINA

where the nonlinear term N(u,u,) depends on the unknown function v and
its derivative u, and satisfies the estimate

IN(w, v)| < C'lul” |v]”
with o > 0, p > 2. The linear operator K(u) is defined as follows
Ku = a,0; + a0y,

where the constants a,,a,, € R, n,m are integers. The number M of the
boundary data depends essentially on the operator K (see [8]).

Equation (1.1) is a simple universal model, which appears as the first ap-
proximation in the description of the dispersive dissipative nonlinear waves
(see [16]), so that a great number of physical problem have dealt with prob-
lem (1.1). We do not even attempt to provide a complete review of these
problem, we give a list of some well-known equations, leading to nonlinear
equation (1.1). The famous Kortweg-de Vries-Burgers equation

Ut + Uzl + QUggy — VUge = 0

appears in the theory of nonlinear acoustics for fluids with gas bubbles. The
Kuramoto-Sivashinsky equation

1
Ut + 5“2 + Ugy + QUzgge = 0
is applied, for instance, in the theory of combustion to model a flame front
and also in the study of two-dimensional turbulence. Finally, we mention the
Kawahara equation

Ut + UgU + Uy — Ugzzgr = 0,

which describes propagation of signals in transmission lines, propagation of
long waves under ice cover in liquids depth, and also gravity waves on the
surface of a liquid with surface tension. In conclusion, we emphasize that the
description of all above-mentioned numerous and various examples of physical
problems are described in a unified way by nonlinear equation (1.1). Thus, the
study of nonlinear equation (1.1) enables one to proceed from the analysis of
individual equations to the investigation of wide classes of nonlinear equations
that are of great interest for physical application.
Note that the operator Ku has the symbol

K(p) = anpn + ampm-

In this paper we assume the dissipation condition Re K (p) > 0 for Rep = 0,
p # 0, and also let m > n, n < M +1, n be an even integer. The number of the
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boundary data is M = [%] If m is an odd integer the number of boundary
data depends on the sign of a,,. If a,, > 0 we need to put [%] boundary
data and, then a,, < 0 the number of boundary data equals to [mT‘H] (see
[8]). The main goal of this paper is to find the large time asymptotics of
solutions to the problem (1.1). A great number of publications have dealt with
asymptotic representations of solutions to the Cauchy problem for nonlinear
evolution equations in the last twenty years. While not attempting to provide
a complete review of this publications, we do list some known results [1], [2],
3], [4], [5], [11], [12], [17] and [18], where there were obtained optimal time
decay estimates and asymptotic formulas of solutions to different nonlinear
local and nonlocal dissipative equations.

Some results on the decay estimates of the solutions in different norms to
the Cauchy problems for the Korteweg-de Vries-Burgers type equations were
obtained in papers [14], [15], [16]. A general theory of nonlinear nonlocal
equations on a half-line was developed in book [8], where it was introduced
the pseudodifferential operator K with homogeneous symbol K (p) = Cp? and

it was shown that the number of the boundary data which are necessary for

the well-posedness of the problem is equal to [g} except the case, when ( is

an odd integer. As far as we know the initial-boundary value problem (1.1) for
nonlinear equations with general nonhomogeneous operator K were not stud-
ied previously. In the present paper we fill this gap, considering as example the
equation (1.1) with a polynomial K (p) = a,p"+a;,p™. To construct the Green
operator for problem (1.1) we can not use the methods of book [8] directly,
also we need to obtain additional estimates for the Green functions, which
have different analyticity properties comparing with the case of homogeneous
symbol K (p). Another difficulty which we overcome in the present paper is in
evaluating the contribution of the boundary data into the large time asymp-
totic behavior of solutions, which can be completely different comparing with
the case of the corresponding Cauchy problem. Indeed as we will see below
the solution of the initial-boundary value problem (1.1) obtains an additional
time decay due to boundary data comparing with the corresponding Cauchy
problem. As a result the nonlinear term in the initial-boundary value problem
(1.1) is super critical in the contrary to the corresponding Cauchy problem. In
particular, the nonlinearity of the shallow water type uu, in the Korteweg-de
Vries-Burgers equations is critical in the case of the Cauchy problem, however
it is super critical in the case of the Dirichlet initial-boundary value problem
(see [9]).

Denote by HS* = {f € 17 || fllyger = || (@) (10,)° fllo <oo} the weighted
P
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Sobolev space and define

Y (61,82) = {e(t) € C(O OO) 6]l < oo, }

m—1

with [[¢lly=sup {ty™ Z _t &) [,
1 €[0,1), 52 > 1. Here and below (z) = V1 + a2, {z} = %. By the same

letter C we denote different positive constants.
In the next theorem we give sufficient conditions for the global existence of
solutions of the initial-boundary value problem (1.1). Denote Q = %

Theorem 1. Suppose ug € HY™ (RT) nHL? (RT),

M

[t} )" £ e 1 (0,00 HY O (RY) ), > e € Y (6, o)

).
Y

with 11 € (O, 1-— %), vy >1,0€(0,1), 51 < ﬁ and the norm

M

S

Juolly, 0255 + olliryro + sup ({t}”<>”2 g0, 252+ )12

where € > 0 s small enough. Then under the condition

QQ+1)(p+o—-1)>n

there exists a unique solution
0,958 n—1,0
weC([0.00):Hy * (RY) ] NC (0,00 H; " (RT))

of the initial-boundary value problem (1.1). Moreover there exists a constant
A such that the solution has the following asymptotics

u(a,t) = ‘nA(I)(\/>+O<

for t — oo uniformly with respect to x > 0, where

Q+l+tp
n )

p=min, (Q+1)(p+o—-1)+0c—ne—1,m—M—Q+nB—n)

and .
100 "
® (q) :/ 17" Q7.

—100
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Remark 1. Note that the decay rate i of solutions to the problem (1.1)

obtained in Theorem 1 is more rapid i?ll comparison with the case of the Cauchy
problem, where the decay rate is t—». This is due to the influence of the
boundary data as in the case of the heat equation.

Remark 2. The restrictions of the dissipation condition and n to be an even
integer are technical ones. We believe that our method could be applied for
more general equations.

Remark 3. For a general type nonlinearity the blow up phenomena is possible
(see [13]) so we restrict our attention to the case of small initial data.

We organize our paper as follows. In Section 2 we consider the linear initial-
boundary value problem corresponding to (1.1). We construct the Green func-
tion of the solution of the linear problem and formulate Theorem 2 on the
existence and uniqueness of the solution. In Section 3 we obtain asymptotic
formula for Green function. In Section 4 we prove some preliminary estimates.
Section 5 is devoted to the proof of Theorem 2 for the linear problem. In Sec-
tion 6 we prove Theorem on the local existence of solutions to the nonlinear
problem (1.1). Theorem 1 is proved in Section 7.

§2. Linear problem

We consider the linear initial-boundary value problem corresponding to (1.1)

uy + Ku = f(z,t), t>0,2>0,
(2.1) A u(z,0) = up(z), x>0,
& u(0,t) = hj(t), t >0, for j=0,..., M,

where integer number M depends on order m. By virtue result of the book [8]
we need to put into initial boundary value problem (2.1) M = [%] boundary
data for its correct solvability.

If m is an odd integer the number of boundary data depends on the sign
of ap,. If a;,, > 0 we need to put [%] boundary data and, then a,, < 0 the
number of boundary data equals to [mTH] We define symbol of operator K
as

K(p) = anpn + ampm,
where n < M + 1,a, # 0,a, # 0. We denote by ¢;(£) = K~1(=¢), j =

1,...,N = m — M, different roots of equation for equation K(p) = —¢&, such
that

Re¢;(§) >0
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for all ¢ € D,Re& > 0. Here D is domain of analyticity of functions ¢;(£) with
boundary I"

I'= {(—z‘oo, —i0) |J ([0, K (pr)e™] U [K (pr), i0]) U (z’O,z’oo)} ,
k

where K'(py) = 0. Also we define matrices A

N—-1 N—-2 N-3

1 1 1
N-1 N-2 ,N-3
A= g 2 g
N-1 yN-2 4N-3
N N N
—
and vector B
e—01(8)
E} _ 67(;52(6)
e—¢n(8)

In this section we follow the method of the book [8] to obtain the explicit
formula for the solution of the linear problem (2.1) under the condition

u € L' (RY), f €L (0, T;L" (RY))

with ¢ > 2. From the book [8] we have that solution of problem (2.1) has the
following form

+oo
u(a, 1) = / uo(y)G .y, )y

+oo
/dT/ f(z,y,7)G(2,y,t — 7)dy

+H[h, ..., har] (, 1),
where

1 100
G(z,y,t) = / e’ H(p,y,t)dp,

211 —ioo

_)
H(py,t) = P10 Z " ]2m/K +£ B)j’

and the function H [hy, ..., has] (x, t) has the following form

[a]
7 pr—K(p)(t—T) —J
H [h} =5 Z/ drH;( /_wo e K(p)p~dp.
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The functions H; are defined as

for j=1,..., M and

T

i 1 Sl O (R d
j+m(t o Z/ 163 C i) ¢
m J
for j =1,...,N. Since for a > j
Oé—j _ 1 8 ’
P i
where
j [w] 5i-1
1 10 f
8wf = / epx dp,
v 21 ) oo =i pi

—
we can rewrite operator H [h] in the following form

H bty ha] (2,8) = > Zaj/ drhi(7)0Y MG (x,0,t — 7).

j=n,m k=1
Denote
~ N —
(22) H(p7 ¢17¢2""7¢N7y) :ZpN_k (A_1B>ka
k=1

We write function H in the form

N N N -

H=Yp"*y e (a7'E}) .

k=1 j=1

where E; is vector with component ¢;,l =1,.., N
1, 1l=j
“ _{ 0, 1 # j.
We have

(2.3) (A_lf;') = (=)"Nop_ 1 (h1, h2bp1, Prr1y oo ON) (pp—a) ",

k
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where o, are symmetrical polynomials, such that

UO(¢27 7¢N) = 1
o1(d2, ..., dN) = 2%7
03(¢a, - ON) = ka,

J#k
¢27 ,¢N H¢j

We prove formula (2.3) by induction. We can see that

e _1\k+3 Uk*1(¢27¢3)
(s B =(=1) (62 — ¢1)(d3 — b1)’

»? ¢ 1
= ¢ ¢ 1 |.
P3¢ 1

In the case k = 1 we directly obtain (2.3). We have for k > 1

where

(AVE)y,

= (D )P (1) ga(ARL B + (1) (AR B

o (03— 02) (04 — d2)...(¢N — ¢2)
(2 — ¢1)..(m — ¢1)

_ (_1)k+1(_1)3N(_1)2k_1¢20k—2(¢37- L oN) + (=D o1 (g3, ..., ON)
1Y s( — o)
M — (—DE Y o—1(P2, s ON) _
Hz o(P1 — ¢1) (¢2 — ¢1)(¢3 — ¢1)--.(on — b1)

Thus by induction we have (2.3). Therefore using (2.3) and Viett Theorem by
direct calculation we obtain

e ¢19PN
2.4
20 Z Ayt
where by Py(p) we denote
N
(2.5) Py(p) =] - o).
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We easily see that function H (p, @1, P2, ..., dN,y) is symmetrical with respect
to variables ¢;(§), such that, for example,

fI(p7 ¢17 ¢27 ceey ¢N7y) = ‘E[(pv ¢27 ¢17 ceey ¢N7 y)

Since Re K (p) >0 for allRep = 0, p # 0 and the function I;T(p, D1y ONLY)
is analytic in the domain D and has the estimate

(2'6) ‘ﬁ(p7 ¢17 "'7¢N7y)‘ S Ce_cym |£‘

for |§] — 0o, Re{ > 0 (see asymptotic formulas ((3.1) below), therefore by the
Cauchy theorem and symmetrical properties of function H we can change the
contour of integration I' to the imaginary axis (—ioco,i00) to get

ﬁiegt d e ﬁiegt d
/p Ko+ e® = L TR e ™

(since Re ¢j(§) > 0 for all Re{ = 0, and taking into account inequality (2.6),
we see that the last integral in the above formula is converges absolutely).
Applying the identities
1
K'(é) =

=5

and using the theory of residues, we obtain

e ﬁl(p’ le, ceey ¢N,y)
—%00 K(p)—i—f

where ¢y, y are “negative” roots of equation K (p) = —¢, such that

Re ¢;(£) <0, Re¢ > 0.

M

epxdp = 27Ti2ﬁ(¢l+]v, ¢15 cey ¢N7 y)€¢l+N(£)m¢E+N (§)7
=1

Making the change of variable p = ¢y n (&), using that for ¢r(§), k =
1,..., N there exists some function ¢;(§), j = 1,..., N, such that for Re{ = 0

or(—€) = ¢;(§) and taking into account symmetrical properties of function H

we get
1 100 . ico IV N egt =
4772/—ioo€p /—ioo-zp j/l“K(p)—l—f(A lB)j
QMZ / S H (G, d1, G2, oo v, )PV O]y (€)dE

QWZZ/F P KW H (p, ¢1 (K (D)), b2, .., v, y)dp

1 100

= — " KW H (p, ¢1(K (D)), b2, .., o, y) D,

21 ) o
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where
Iy ={p=d11n(§),Re =0}.
Therefore taking into account (2.7), (2.4) we obtain the following integral
representation for Green function G(z,y,t) of problem (2.1)

1 100
- pr—K(p)t
(2.8) Glz,y,t) = 5 /iooe H(p,y)dp,
e~ i (K ypN( )
H =e P4
P, Z ) —¢5)

where the function Py is defined in (2.5).
We have

lim O{") H(p,y) = (—1)“p" | 1+

y—+0 ﬁ P, (¢J)(p ¢J)
Since forw =1,...,. N —1
N .
¢wPN PN(p) /zoo uW
2.9 d " dp=—p¥
( ) z::P/ d)J p— (Z)J) 2mi —100,UFD PN(U') (p - u) P P

we get

lim o{")H =0,w=1,..,N—1.
Jm Iy H(p,y) =0,w=1,...

Whence we obtain the following integral representation for solution u(z,t) of
the problem (2.1)

+oo
(2.10) wu(x,t) :/0 uo(y)G(x,y,t)dy

t
+ / drf(z,y, 7)G(z,y,t — )

in(M,j—N)

+ > Z (—1)77*q; /0 t hi(T)0IFG(2,0,t — 7)dr,

j=nm

where function G(z,y,t) is defined by formula (2.8).

Now we formulate the following result, which will be proved below in Sec-
tion 4.

Denote

Y (B1,02) = {cp( ) € C(0,00), [[¢]ly < o0, }
and ||¢[ly= =sup {ty™ ledtMIIL + (0 [l Br < 1,0 > 1.
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Theorem 2. Let

uo € HY (RF) N, O (R) ,7f € L (0,7, H, 9 (RY) ) th € Y (B1 )

with v € (0,1 — ﬁ), 01 < ﬁ,é € [%,Q]. Then for some T > 0 there exists
a unique solution

we € (0,758 (RT)) nC ((0,7]:Hy ™ (RY))

of the initial-boundary value problem (2.1) such that

m—1
l
Sup (”u("ﬂHHgv‘S + E :tmﬂalxu('at)Hm) < COA,
=1

te(0,7
where
M
A = |luolggos + [uollgrro + T sup (t”llf(»t)liﬂw > )
1 1
(0,77 =1y

andulzmax(y+ﬁ,l—ﬁ+ﬁl) <1l,7v>0.

83. Asymptotics of the Green function

Using result of book [8] if K(p) = anp™ + amp™, m > n, then there exist
My = [mT‘H] different inverse functions ¢;(§) = K1 (—¢), such that for £ € D

Re¢;(§) >0

for j =1,2,..., M;. Moreover the asymptotics

(3.1) o1(€) = ei(7r+27rl)% (a;}g)% L0 (g_HTW>

is true as £ — oo. Now we consider case & — 0.
We represent

1 -
P = 3 or pm_”:an( 1+ —¢

anl—i—O() am anp

4 O(p) for [p| < 1.

Hence we get the asymptotic representations for [ = 1,...,Q

27 (l—-1)

(3.2) Gi(&) = Ere T +O(E[7),6— 0
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and for I=Q +1,.... N

(5.3) ae) = (22) 7T Lo e — o
Here number Q = %
We have (see (2.8))
G(z,y,t) = 2; /wo P KW H (p, y)dp,
e~ %K@y py (p)
— 1Y
(3.4) H(p,y)=e ™+ Z o= 67)
Since for [ =0, ..., N — 1 (see (2.9))
N l
ijPN(p) o
;P;wap —6) "
we have
N-1 N
. (—py)’ Py (p)
H(p,y) =P — B(¢;(K :
where
—zy = l(zy)l
B(z) =% — ;(—1) T

Therefore using (3.2)-(3.3) and symmetrical properties of function H (p,y) we
obtain for |p| < 1,

(3.5) SO B (K)o 2YE _ peryen
| R AT R A
and
N
B8 D B s
k=Q+1
N-Q N-Q Q N-Q
= ([ ° [T ][ - 5) Y B
=1 =1 j=1 k=1

£ 0 (1441
Q N-Q
= ()R- ) Y Blrw) + 0 (1454,
j=1 k=1
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where
1 j2r(=1)
Bi=ane n

and

1

an m—n i27r(k71)

re =1\ — e m-n
Am

Substituting (3.5)-(3.6) into (3.4) we easily get
H(p,y) = DpB(y) + O (1 +y**)),
where constant D is defined by

Q
D= (-)"*NCT[(1-p)) #0

J=1

and function B(y)

- ; (rjy)’
5 = 3 (=30 ).

j=1

Note that for [p| > 1
[H(p,y)| < C.

Making the change of variable pt = 2™ we obtain for Green function

(3.7) G(x,y,t)

1 100 K( )t
= — pr—BPIt [ d
omi ), € (p,y)dp
1

o

—1

= </Z ePr P (Dp? B(y) + O (1 +y9*)) dp

" / PP (=P 1O (p? (1 + y@ ) dp

—i
100
+ / e’ KW H (p,y)dp
- 1 _Q+1

ic0 n Q+2
-Dt™ = B(y) / eFm1man" Qg 4 ot = (1+ yQ+1)),

21 —i0o

_1
where x1 = xt™ n.

165
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84. Preliminaries

We introduce the operators

“+oo
(4.1) G@t)f = ; G(z,y,t)f(y)dy
and
t
(4.2) Hw(x,t)h:/O h(7)0, G (x,0,t — T)dr,
where .
L™ ek
G(z,y,t) = 27”/ e H(p,y)dp,
e~ 03 (K ypN( )
H =e P4
P, Z )(p— ¢J)
N
Py(p) = H(p — &)
=1
Lemma 1. The following estimates are valid
|7 GfH <o 5wy <
Ll
and 5 (k) _ 14+2k42Q-26 +'7 Q
|or oar, < o T el >
and

’ r )GfHU <Ot (HfHL2 + H (1 +y*%*7) L1> ’

where v > 0, 6 € [0,Q], k € [0,m — 1], t > 0. Moreover the asymptotics for
large time is true

Q+1+p
n

(43) Gf=t"5A / e#mman" Qg 4 Ot~ (y)

where x1 = l‘t_%, w € 10,1) and constant A
A= (_1)1+N—QH(1 _ (CLEIGZQF(]_I))E)

l

N-Q +o0 Q Tj
3 / (e’“f‘y—lzg<—1>l( lf”)f(z/)dy,
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1

a,ei2mG=1)\ ™"

ri=|—m—— .
J an

Proof. We rewrite the Green function

where

G(x,%t) = Fl(xvyat) + F2(:C - yvt)7

where

e ijN(p)
Fi(x,y,t / ePr—K(p)t dp
27TZZ 100 Py (¢J)(p - ¢J)
and A
1 100
Fy(x,t) = / dpeP* K@)t gy,

211 — 00
Now we prove some estimates for the function F(z,y,t). From (3.2)-(3.3) and
(3.1) we have
N

Pn(p)
LR —ay|<C

Changing the contour of integration to the contour

C={peC, ReK(p) >0,Rep <0}

such that Re ¢;(K(p)) >0, j =1,...,N for p € C we obtain

p:): k b5y (p) -0 — || E—p
‘ Ze Pt —ay = O 7wl
for [p| < 1 and

px k D5y (p) -0 —u, —01 k—0,
‘ Ze s e i G R

where k > 0; p > 0, 81 > 0. Therefore choosing 1 =1 — 1, 1 € [0, 1] we get

Py |<con [ KO ngy
peC,|p|<1
+Cx‘“y”‘1/ e~ Re KDt pFHr=1=ur | gp|
Ip|>1,¢€C

= (0m+0 (),
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where p € [0,1+ k). So choosing

1
=_4+
p=gE

(v > 0 is small enough) we obtain
k J _k
Hﬂ(yg)(-,y,t)HL2 <C (1 +y2 ”) tmm
for all y > 0, t € (0,7]. Also since
k _k
Hng)(-,t)HLl < Ctm.
therefore we obtain
_k 1
oef|| , < ot (Ifle + || (1+v7%)
In another hand we have for d; € [0, Q]
H(p,y) = O™ (1 +y™)), Ip| <1

Ll)’

and
H(p,y) <C,[p| > 1
SO
Gyt < Carpy) [ ROy
peC,|p|<1

1 _ _
+M/ e~ Re KWl p|F=it | gp|
(fL‘ - y) |p|>1,peC

=2 "(1+y")0 (t_w) +(z—y) "0 (6—Ctt—mf”) ;

where p € [0,01 + k + 1). Therefore we obtain

|or o], < e ot
and 14+2k+2Q—268
H Gf” <Ct—— = H Lt>1
where v > 0,9 € [0,Q]. Using formula (3.7) we easily obtain (4.3). Lemma 1
is proved. O
Denote

Y (B1,02) = {cp( ) € C(0,00), [[¢]ly < o0, }
and ||¢[ly= =sup {ty™ Z||dtk¢||1‘ + (0 [l Br < 1,0 > 1.
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Lemma 2. The following estimates are valid

_1+2w 26 _ 14+2k+2w—26
| o @, 0n| , < c i) O (TR )y
and
[Hu (- )Rl < 875 H P Ry 2> 1
fory>0,N<w<m-1,6€[0,1+k+N).
Proof. We have
(w1) 1 e pr—K(p)t Iy
0,V G(x,0,t) = syl H(p,w)dp
where
N w1
~ 1 ¢ Pn(p)
H(p,wy) = (—1)"'p“* | 1+
pwljZ_;PJ,\/(QSJ)(P b;)
Denote
Fifay) = CD 5 /m po oy (69" Pu(p)
Wz, ) = —F—— e p
2mi o Py (65)(p — ¢5)
and

1 100
Fy(z,t) = Z,(—1)“’1/ dpepm*K(p)tpwldp.

27 —100
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Now we prove some estimates for the function Fj(zx,y,t). Changing the con-

tour of integration to the contour
C={peC, ReK(p) >0,Rep <0}

we obtain

< Cx™H|p|“r7H,

x ¢ 1PN )
eP Zp/j ¢)

where k > 0, u > 0. Therefore we get

| Frp(a,t)] < Cm‘“/ e~ Re K@)t |pwi=t | gp|
peC

w1 — M+'Y+1 wy —pt+y+1 )
)

=270 ({t} O

where p € [0,1 4 k4 w). So choosing

1
=_-=x Y
g TV T
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(v > 0 is small enough), § € [0 i+ wl) we obtain

142wy —25 142w —25

| P, s s T

for all ¢ > 0. In the same way as in the proof of the above estimate we have

1+2wq —26 142wy —248

| EP |, <o w0

Since

t

O H,(z,t)h = | h(1)OYT*G(x,0,t — 7)dr

xT

T o~

1

(—=1)7 (K9 (0) — KO (¢ /h 7)0YG(x,0,t — T)dT

<.
Il
o

we obtain for £k =0,...,m — 1

|0 BB, tyn |, < 0 gy~ T gy RS )y
and
Ly (-, )Rl e < £ 557 Ry > 1
Lemma 2 is proved. O

85. Proof of Theorem 2

From Section 2 we see that the solution of problem (2.1) can be rewrite in the
following manner

(5.1) u(z,t) = G(t)ugp + /0 drG(t — 1) f(1)
min(M,j—N)
+ Z Z (—1)jikajHj,k({L',t)hk,
j=n,m

where the operators G and H;_j, are defined in (4.1), (4.2). Let us prove the
following estimate

(5:2) [ullxy <A,

where

m—1
Lgl
HUHXT = Ssup (Hu(ut)HHg"S + lz:tm ||amu(7t)HL2> ;
=0

te(0,T
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M
— 1-
A = [luollggos +lluofmro + 7777 Sup NG D) ggos + || P :
) k=1

Y(3,)
1 1 1

T>0y=max|v+-—,1——+06 ) <1l,y>0,0€ |=,Q],
2m 2m 2

the norm is taken with respect to the space variable x which is denoted by the
dot.
From Lemmas 1-2 we have for [ =1,...,m — 1

(653) bt Dl
< 0t (Jluollge + || (145757 ) o )
L /th<t_T>—1$?-wf< )l
‘ min(M,j—N)
N DY Z R BT Byl

j=n,m

L
< Ct™m | |luollge + [Juoll,2

M
+ T sup 8 F (o) |ggos + ||
e s = sy
< CA.
Applying Lemmas 1-2 we get
1)
1), )2
t
<c||trul,, + € swp #1650l [ e
L! te[0,7) 0
+2(J
oY Yo e
j=n,mk=1
M
< C | ol oo + luollzro + T4 sup /][ £( 1) lggos + || Db
1 te[0,7) 1 1

Y(8y)
< CA

Theorem 2 is proved.
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86. Local existence

Theorem 3. Let
M

ug € H(l)«i (R+)ﬂH;vO (RY),#/f e L™ (0,T; H(l)«i (R+)> ,th €Y (81, 32),
k=1

with v € (0, 1- %), 01 < ﬁﬁ € [%,Q] Then under condition
p+3c<2m+1

for some T > 0 there exists a unique solution
0,6 (1p+ m—1,0

of the initial-boundary value problem (1.1).

Proof. We prove the local existence of solutions by the contraction mapping
principle in the space

X = {¢ €12 |¢]x, < r} :
where

m—1
€
lullxy = sup [ lu(,t)llgos + Yt [[dbul-,t)]ge |,
t€(0,T] 2 =0

)

Let u(x,t) be a solution of the following linear problem

ut + N(w, wy) + K(u) =0, t>0,2>0,
(6.1) - u(w,0) = up(z), x>0,
u(0,t) =0,57=0,...,M t >0,

where N(w, wy) is well defined since w € Xp. Note that the initial-boundary
value problem (6.1) defines a mapping M by v = M(w) and we will show
that M is the contraction mapping from X, into itself for a sufficiently small
T > 0. Since w € X7, we have

sup [N(w, 107) (1) g

tel0,7
) s
< C sup [Jw(, O)llg< l[wa ()T | )2 wl-,1) |32
t€[0,T]
p=2 p=2tc g s 9
<C s lw( D)lly; Nwe( Olln,*  Nwea (S OIL ()2 w5 )l
te|0,

+30—1
< Ct™"am Pt
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Via Theorem 2 under condition
p+30<2m+1
problem (6.1) has a unique solution u(z,t) € Xp , with the norm
ullx, < CA,

where

m—1
€
HUHXT: sup ”U(‘,t)HHo,(s-i- E tha:ltu('?t)HL2 )
te(0,T7] 2 =0

)

A =lluollggos + lluollerro

M
+30—1
+T' isup t”|]f(-,t)||Ho,5—|—tp 2m HN(w,ww)(-,t)HHo,s—i- th ,
e 1 I RN
1 1 30 —1
T > 0,v; = max I/—i-—,l———i-ﬂhﬁia <1,
2m 2m 2m
1
Therefore we obtain
(6.2) lullxr < Clluollaro + [luollggao
M
+CT | sup 8| £C8)lggoo + ||
e L RPN

+ oT et

whence we get ||u||x, < rif T < 1. Thus the mapping M transforms the closed
ball X7, with a center at the origin and a radius 7 into itself. Analogously we
can prove the estimate sup,c(o 71 [|[u—tlx7, < supsejo ) [w—0||x;., for T < 1.
Therefore the mapping M is a contraction mapping in X7, and there exists
a unique solution u(x,t) € X, of the initial-value problem (1.1). Theorem 3
is proved. O

Remark 4. By (6.2) we see that if the norm of the initial data ug, source f
and boundary data are sufficiently small, then for some time T > 1 there exist
a unique solution u such that [lully < Ce.
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87. Large time asymptotics

We consider the initial-boundary value problem (1.1) with small initial data

||uol] 0,258 T ||U(]”H;,0
1

H
M
+{ sup (W= GO s + [ S <a,
t€[0,T) H, 2 —

Y (81,62)

where €1 > 0 is sufficiently small, §; < %,ﬂg > 0,11 < 1,10 > 1.
Let us prove the estimate

n—1
2Q0+1 1 Q—5+1 _ Q+3
R o I (L M

where v, > 0 are small enough, 6 € (0,1). We prove this estimate by the
contradiction. We assume that there exists some T" > 1 such that

n—1
2Q+1 ! Q—5+1 Q+3
7.2) sup t 2n *7+E‘ug) ot ’ 4+t 2 77” 72wt ’ =e.
72) s (}loj o) O 1))

Therefore we get for ¢ € [1,T]

-2 p—2+ao

P g
INCu ) o0 < Cllul Ol TuaC Olly,” e OIE ()7 ul DT

< C€p+at7%(p+071)f%+w

1o

and

p—2+o

£+ a
IN(u, ue) Iy, < ClluC DI, Nual O, luea(HIIE
< OePto— St (pro) =T+

2

Therefore from Lemma 1 and Lemma 2 under conditions

Q@+ 1(p+o—1)>n

Bo>1,v9 >1
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we obtain

l+2Q+1

108 u(-, 1|2 < Ct 7 ol o

N+

# [F = N ) (7) + S g dr
0

+ [N ) (7) + Fa )l (6= 1) Hdr

M
+t———62+1+7 th
k=1 Y
21+2Q+1 £ 214+2Q+1
<Ct” T 1,

(e +e719) < it

Also we have

eER) 541

105 uBllze < O S5 gl
)
# [ 02 i + s <t—T>*Q2n“+'YdT
1
M
t—%—ﬁzﬁ-l-ﬁﬁ th
k=1 Y
Q- 5+ Jr’*/

Q-6
< Ct T ey +6719) < Qf

So we obtain that

n—1
Q-5 Q45
. (Ztm@?H”H“g)("“‘ o 2n+1_WH<.);u<.,t)‘L2) .

t>1 =0

The contradiction obtained proves (7.1).
Now using estimate (7.1) and Lemmas 1-2 we prove that the solution has
the following asymptotics for ¢ — oo uniformly with respect to x > 0

(7.3) u(z, t) = QIlA@(\[) +o( QT"),
where p > 0

p=min(, (Q+1)(p+o—1)+0—n,vra —1,N —Q +nfa —n)
and

100 "
® (q) —/ e*1man=" 0,

—100
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A=D </OOOB(y)u0(y)dy+/Oood7'/OOOB(y)N(u,uy)dy> < o0

Indeed, via Lemma 1 we have

(7.4) u(z,t) =t~ 5 AD ( ) + R(z,1),

4

where

1 < 0“5 (ol + 0300 107) + 1657 g
+ / dr (G(t — ) — G(t)) (N(7) + f(7))
/ dr / 1B (y) (N(u,uy) + f(3, 7)) dy

in(M,j—N)

+ Z Z H;_i(x,t)hg.

j=n,m

Using estimate (7.1) we see that

t
@5 [ ]| oN)|, dr< o Seenten

0

for t > 1.
In the same way as in the proof of Lemma 1 we prove estimate

| (G(t—7) = G N(T) e < Crt= 5 1 IN(u, U)o -

Therefore using (7.5) we have

Q+1 +u1

(7.6) / dr [[(G(t —7) = G(t)) N(7) [ < Ct™
0
where

i< (Q+1D(p+o—1)—n.

Also since from Lemma 2

mm 7‘7 N
14N |
) Z IH, g (2, t)hp || e < Ot T77P2H1

j=n,m

M

S

k=1

Y
Q+14puo

<Ct— =
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where

Since ||(')Q+6U0||L1 +fo-&-oo H<,>Q+6 f(vT)‘ .

p2 < N —Q+nf2 —n.

< C using (7.6) we get
1

Q+1+9

(7.7) IR(z,t)] < Ct~ %5

From (7.4) - (7.7) we obtain the asymptotics (7.3) for the solution. Theo-
rem 1 is proved.
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