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Abstract. In this paper, we describe the structures of the left Be-modules
τ i

Be(B) and N i
Be(B) for i > 0, where B is a certain finite dimensional self-

injective Nakayama algebra, Be is the enveloping algebra of B, τBe is the
Auslander-Reiten translation in the category mod (Be) of finitely generated
left Be-modules and NBe : mod (Be) → mod (Be) is the Nakayama functor.
Moreover, we compute the τBe -period and the NBe -period of B.
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§1. Introduction

Let A be a finite dimensional self-injective algebra over a field K, and let A◦

be the opposite algebra of A. We denote the category of finitely generated left
A-modules by mod (A) and the Auslander-Reiten translation in mod (A) by
τA. The Nakayama functor NA : mod (A) → mod (A) is defined by the compo-
sition D( )∨, where ( )∨ is the contravariant functor HomA( , A) : mod (A) →
mod (A◦) and D is the duality HomK( ,K) : mod (A◦) → mod (A). In this
paper, we deal with τA and NA in the case where A is the enveloping algebra
Be := B ⊗K B◦ of a certain self-injective Nakayama algebra B.

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices
e1, e2, . . . , es and s arrows a1, a2, . . . , as such that ai starts at ei and ends at
ei+1. So ai = ei+1aiei holds for all 1 � i � s in the path algebra KΓ, where
we regard the subscripts i of ei modulo s. Denote the sum of all arrows of
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Γ by X: X = a1 + a2 + · · · + as ∈ KΓ. If K is an algebraically closed
field, then it is known that a self-injective Nakayama algebra over K which is
basic, indecomposable and nonisomorphic to K is of the form B := KΓ/(Xk)
where k � 2 (see [EH]). And, in [EH] this algebra is denoted by Bk

s . In [P2],
Pogorza�ly computes the τBe-period of the left Be-module B by means of the
Galois covering of Be. In this paper, we determine the structure of the left
Be-modules N i

Be(B) as well as the τ iBe(B) for i � 0 by using the structure of
syzygy module Ω2

Be(B) given in [EH, F], and hence we compute the τBe-period
and the NBe-period of B.

In Section 2, as preliminaries, we describe the definitions and some proper-
ties of τA and NA for any finite dimensional self-injective algebra A. Moreover,
for any finite dimensional algebra C, any algebra automorphism α : C → C
and M ∈ mod (Ce), we give the definition of the left Ce-module 1Mα. In
Section 3, we consider the dual module D(eiB ⊗K Bej) (1 � i, j � s) for the
indecomposable projective right Be-module eiB⊗K Bej (Proposition 3.3). In
Section 4, we give a minimal injective Be-copresentation of τBe(1Bβn) for some
algebra automorphism β : B → B and any integer n with n � 0, and hence we
describe the structures of τ iBe(B) and N i

Be(B) (i � 0) (Theorem). Moreover,
we compute the τBe-period and the NBe-period of B (Corollary 4.6). Finally,
as Appendix, we give an alternative proof of Theorem in Section 4 by means
of the Nakayama automorphism ν of Be.

For general facts on algebras we refer to [ARS]. Throughout this paper, we
will denote ⊗K by ⊗.

§2. Preliminaries

Let A be any finite dimensional self-injective algebra over a field K. We denote
the contravariant functor HomA( , A) : mod (A) → mod (A◦) by ( )∨ and the
duality HomK( ,K) : mod (A◦) → mod (A) by D. Since A is a self-injective
algebra, ( )∨ : mod (A) → mod (A◦) is a duality. So the Nakayama functor
NA := D( )∨ : mod (A) → mod (A) is an equivalence of the categories.

Take any M ∈ mod (A) and fix a minimal projective A-presentation P1
f1→

P0
f0→ M → 0 of M . We define a left A-module ΩA(M) := Ker f0 and we put

Ω0
A(M) := M and Ωi

A(M) := ΩA

(
Ωi−1
A (M)

)
for each i � 1. Then we have the

exact sequence

0 −→ Ω2(M) −−−−→ P1
f1−−−−→ P0

f0−−−−→ M −→ 0.

Also, we define aA◦-module TrA(M) := Coker f∨1 , which is called the transpose
of M . Then we obtain the following exact sequence of left A◦-modules:

0 −→M∨ f∨0−−−−→ P∨
0

f∨1−−−−→ P∨
1 −−−−→ TrA(M) −→ 0,
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where P∨
0

f∨1→ P∨
1 → TrA(M) → 0 is a minimal projective A◦-presentation of

TrA(M). Furthermore, we define a left A-module τA(M) := DTrA(M), which
is called the Auslander-Reiten translation. Then we get the following exact
sequence of left A-modules:

0 −→ τA(M) −−−−→ NA(P1)
NA(f1)−−−−→ NA(P0)

NA(f0)−−−−→ NA(M) −→ 0,

where 0 → τA(M) → NA(P1)
NA(f1)→ NA(P0) is a minimal injective A-copres-

entation. Here, since NA is an equivalence, we easily obtain isomorphisms
τA(M) � Ω2

ANA(M) � NAΩ2
A(M) of left A-modules.

For each M ∈ mod (A), we put τ0
A(M) := M and τ iA(M) := τA

(
τ i−1
A (M)

)
for i � 1. A left A-module N is τA-periodic if τmA (N) � N for some positive
integer m. Then the τA-period of N is the smallest positive integer n with
τnA(N) � N . Similarly, for each M ∈ mod (A), we define N 0

A(M) := M and
N i
A(M) := NA

(N i−1
A (M)

)
for i � 1. A left A-module N said to be NA-

periodic if Nm
A (N) � N for some positive integer m. Then we call the smallest

positive integer n with N n
A(N) � N the NA-period of N .

Let C be any finite dimensional algebra over a fieldK, α : C → C an algebra
automorphism, and M a left Ce-module, equivalently C-bimodule. Then we
will define the left Ce-module 1Mα as follows: 1Mα has the underlying K-
space M , and the action of C on M from the left is the usual one. The action
∗ of C on M from the right is defined as m ∗ b = mα(b) for m ∈ 1Mα and
b ∈ C. Moreover, for each Ce-homomorphism f : M → N , we define a Ce-
homomorphism 1fα : 1Mα → 1Nα by 1fα(m) = f(m) for each m ∈ 1Mα. Then,
by setting Fα(X) := 1Xα for each object X in mod (Ce) and Fα(f) := 1fα for
each morphism f in mod (Ce), we have the functor Fα : mod (Ce) → mod (Ce).
It is easy to check that Fα−1Fα = FαFα−1 = 1mod (Ce) holds. So Fα is an
isomorphism of the categories. In particular, if ψ : P → M is a projective
cover in mod (Ce), then Fα(ψ) = 1ψα : 1Pα → 1Mα is also a projective cover
in mod (Ce).

§3. A self-injective Nakayama algebra and its enveloping algebra

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices
e1, . . . , es and s arrows a1, . . . , as. Denote the sum of all arrows in the path
algebra KΓ by X: X = a1 + · · · + as. Then Xjei = ei+jX

j = ai+j−1 · · · ai,
the path of length j for j � 1, where we regard the subscripts i of ei modulo
s.

We denote the algebra KΓ/(Xk) by B, where k is a positive integer with
k � 2. Note that the set

{
Xjei | 1 � i � s, 0 � j � k − 1

}
is a K-basis of B, so
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dimK B = ks. In this section, we consider the dual module D(eiB⊗Bej) (1 �
i, j � s) of the indecomposable projective right Be-module eiB ⊗Bej .

First we consider the dual modules D(Bem) and D(emB) for each m (1 �
m � s). Clearly the set {Xjem | 0 � j � k − 1} gives a K-basis of Bem and
the set {emXj | 0 � j � k−1} gives a K-basis of emB. We take the dual basis
{(Xjem)∗ | 0 � j � k − 1} of D(Bem), that is, each (Xjem)∗ ∈ D(Bem) (0 �
j � k − 1) satisfies that ((Xjem)∗)(Xqem) = 1 if q = j, 0 if q �= j. Similarly,
we take the dual basis {(emXj)∗ | 0 � j � k − 1} of D(emB).

Lemma 3.1. Let j and m, n be integers with 0 � j � k−1 and 1 � m,n � s.
Then, for (Xjem)∗ ∈ D(Bem), we have

(Xjem)∗X =

{
0 if j = 0,
(Xj−1em)∗ if 1 � j � k − 1,

(Xjem)∗en =

{
0 if n �≡ m+ j (mod s),
(Xjem)∗ if n ≡ m+ j (mod s).

Moreover, for (emXj)∗ ∈ D(emB), we obtain

X(emXj)∗ =

{
0 if j = 0,
(emXj−1)∗ if 1 � j � k − 1,

en(emXj)∗ =

{
0 if n �≡ m+ j (mod s),
(emXj)∗ if n ≡ m+ j (mod s).

Proof. We will show that the first equation holds. For 0 � q � k−2, we obtain
((em)∗X) (Xqem) = (em)∗

(
Xq+1em

)
= 0. Also, we have ((em)∗X)

(
Xk−1em

)
= (em)∗

(
Xkem

)
= (em)∗ (0) = 0. So we get ((em)∗X) (Xqem) = 0 for all

q (0 � q � k − 1), which implies (em)∗X = 0. If 1 � j � k − 1, then we
have

(
(Xjem)∗X

)
(Xj−1em) = (Xjem)∗(Xjem) = 1. Moreover, for 0 � q �

k − 1 with q �= j − 1, we have
(
(Xjem)∗X

)
(Xqep) = (Xjem)∗(Xq+1ep) = 0.

Therefore we obtain (Xjem)∗X = (Xj−1em)∗.
Next, we will verify that the second equation holds. First we deal with

the case n �≡ m + j (mod s). Then, for 0 � p � k − 1 with m ≡ n −
p (mod s), we have em = en−p and p �= j. So we obtain

(
(Xjem)∗en

)
(Xpem) =

(Xjem)∗(enXpem) = (Xjem)∗(Xpen−pem) = (Xjem)∗(Xpem) = 0. Moreover,
for 0 � p � k − 1 with m �≡ n − p (mod s), we have em �= en−p. So we
obtain

(
(Xjem)∗en

)
(Xpem) = (Xjem)∗(enXpem) = (Xjem)∗(Xpen−pem) =

(Xjem)∗(0) = 0. Hence we get
(
(Xjem)∗en

)
(Xpem) = 0 for all p (0 �

p � k − 1), that is, (Xjem)∗en = 0. Next we deal with the case n ≡ m +
j (mod s). Then we have en = em+j . So, it follows that

(
(Xjem)∗en

)
(Xjem) =

(Xjem)∗(em+jX
jem) = (Xjem)∗(Xjem) = 1. Furthermore, for 0 � p � k − 1
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with p �= j and p ≡ j (mod s), we clearly have en = ep+m. Thus we ob-
tain

(
(Xjem)∗en

)
(Xpem) = (Xjem)∗(ep+mXpem) = (Xjem)∗(Xpem) = 0.

Also, for 0 � p � k − 1 with p �≡ j (mod s), we get em �= en−p. So we
obtain

(
(Xjem)∗en

)
(Xpem) = (Xjem)∗(enXpem) = (Xjem)∗(Xpen−pem) =

(Xjem)∗(0) = 0. Therefore we have (Xjem)∗en = (Xjem)∗.
The rest of the lemma is shown in a similar way above.

Since B is a self-injective algebra, we get D(Bem) � etB as right B-modules
for some 1 � t � s and D(emB) � Ber as left B-modules for some 1 � r � s.
In fact, we have the following lemma.

Lemma 3.2. Let m be an integer with 1 � m � s. Then the following
homomorphism of K-spaces is the isomorphism of right B-modules:

Φ : D(Bem) −→ em+k−1B; (Xjem)∗ 	−→ em+k−1X
k−j−1 (0 � j � k − 1).

Also, the following homomorphism of K-spaces is the isomorphism of left B-
modules:

Ψ : D(emB) −→ Bem−k+1; (emXj)∗ 	−→ Xk−j−1em−k+1 (0 � j � k − 1).

Proof. Clearly Φ is an isomorphism of K-spaces. We prove that Φ is a
homomorphism of right B-modules. Since B is generated by ei (1 � i �
s) and X, it suffices to verify that Φ

(
(Xjem)∗X

)
= Φ

(
(Xjem)∗

)
X and

Φ ((emX)∗en) = Φ
(
(emXj)∗

)
en hold for 0 � j � k − 1 and 1 � n � s.

We will show that the first equation holds. If j = 0, then by Lemma 3.1 the
left hand side equals Φ(0) = 0 and the right hand side equals em−k−1X

k−1X =
em−k−1X

k = 0. If 1 � j � k − 1, then by Lemma 3.1 the left hand
side equals Φ

(
(Xj−1em)∗

)
= em−k−1X

k−j and the right hand side equals
em+k−1X

k−j−1X = em+k−1X
k−j . Next we will show the second equation

holds. If n �≡ m + j (mod s), then by Lemma 3.1 the left hand side equals
Φ(0) = 0. On the other hand, since en �= em+j , by Lemma 3.1 the right hand
side equals

(
em+k−1X

k−j−1
)
en = Xk−j−1em+jen = 0. If n ≡ m + j (mod s),

by Lemma 3.1 the left hand side equals Φ
(
(Xjem)∗

)
= em+k−1X

k−j−1 =
Xk−j−1em+j . On the other hand, since en = em+j , by Lemma 3.1 the right
hand side equals

(
em+k−1X

k−j−1
)
en = Xk−j−1em+jen = Xk−j−1em+j .

Similarly, it is shown by Lemma 3.1 that Ψ is an isomorphism of left B-
modules.

It is known that the set {em ⊗ e◦n | 1 � m,n � s} is a complete set
of the primitive orthogonal idempotents of Be (see [H]). Therefore Bem ⊗
enB (� Be(em ⊗ e◦n)) is an indecomposable projective left Be-module and
emB⊗Ben (� (em ⊗ e◦n)Be) is an indecomposable projective right Be-module
for each 1 � m,n � s. Since B is a basic self-injective algebra, Be is also a
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basic self-injective algebra (cf. [P1]). Hence D(emB ⊗ Ben) � Bet ⊗ erB for
some 1 � t, r � s. In fact, we have the following lemma.

Proposition 3.3. Let m, n be integers with 1 � m,n � s. Then, we have the
following isomorphism of left Be-modules:

D(emB ⊗Ben) −→ Bem−k+1 ⊗ en+k−1B;

(emXi ⊗Xjen)∗ 	−→ Xk−i−1em−k+1 ⊗ en+k−1X
k−j−1 (0 � i, j � k − 1).

Proof. By [M, Chapter V, Proposition 4.3], we get the isomorphism F :D(emB)
⊗D(Ben) → D(emB ⊗ Ben) of K-vector spaces given by F (f ⊗ g)(x ⊗ y) =
f(x)g(y) for f ∈ D(emB), g ∈ D(Ben), x ∈ emB and y ∈ Ben. We will show
that F is an isomorphism of left Be-modules. For a⊗ b◦ ∈ Be (a, b ∈ B), f ∈
D(emB), g ∈ D(Ben), x ∈ emB and y ∈ Ben, we get F ((a⊗ b◦)(f ⊗ g)) (x⊗
y) = F ((af)⊗(gb))(x⊗y) = ((af)(x)) ((gb)(y)) = f(xa)g(by) = F (f⊗g)(xa⊗
by) = F (f ⊗ g) ((x⊗ y)(a⊗ b◦)) = ((a⊗ b◦)F (f ⊗ g)) (x ⊗ y). This implies
that F ((a⊗ b◦)(f ⊗ g)) = (a ⊗ b◦)F (f ⊗ g) holds for all a ⊗ b◦ ∈ Be and
f ⊗ g ∈ D(emB) ⊗D(Ben).

Now, it is easy to check that F is an isomorphism of K-spaces given
by F ((emXi)∗ ⊗ (Xjen)∗) = (emXi ⊗ Xjen)∗ for each 0 � i, j � k − 1.
So F−1 : D(emB ⊗ Ben) → D(emB) ⊗ D(Ben) is an isomorphism of K-
spaces given by F−1

(
(emXi ⊗Xjen)∗

)
= (emXi)∗ ⊗ (Xjen)∗. Furthermore,

by Lemma 3.2, we easily obtain the isomorphism G : D(emB) ⊗ D(Ben) →
Bem−k+1 ⊗ en+k−1B of left Be-modules given by G((emXi)∗ ⊗ (Xjen)∗) =
Xk−i−1em−k+1 ⊗ en+k−1X

k−j−1. Consequently, we get the isomorphism

GF−1 : D(emB ⊗Ben) −→ Bem−k+1 ⊗ en+k−1B;

(emXi ⊗Xjen)∗ 	−→ Xk−i−1em−k+1 ⊗ en+k−1X
k−j−1

(0 � i, j � k − 1)

of left Be-modules.

§4. The modules τ iBe(B) and N i
Be(B)

In this section, we describe the structures of the left Be-modules τ iBe(B) and
N i
Be(B) for i � 0, and we compute the τBe-period and the NBe-period of the

K-algebra B = KΓ/(Xk) (k � 2).
We define the projective left Be-modules

P0 =
s⊕
i=1

Bei ⊗ eiB, P1 =
s⊕
i=1

Bei+1 ⊗ eiB.
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Then we obtain the following exact sequence of Be-modules ([EH, F]):

(4.1) 0 −→ 1Bβ−k
κ−−−−→ P1

φ−−−−→ P0
π−−−−→ B −→ 0,

where left Be-homomorphisms φ and κ are given by

φ (ei+1 ⊗ ei) = ei+1 (X ⊗ 1 − 1 ⊗X) ei,

κ(ei) = ei

⎛
⎝k−1∑
j=0

Xj ⊗Xk−j−1

⎞
⎠ ei−k for 1 � i � s,

and π is the multiplication, and P1
φ→ P0

π→ B → 0 is a minimal projective
Be-presentation of B. We define an algebra automorphism β : B → B by
ei 	→ ei−1, ai 	→ ai−1 (1 � i � s). Here, we note that the order of β equals s.

Let n be any integer with n � 0. First, we give a minimal projective
Be-presentation of 1Bβn . We define projective left Be-modules

Q0 =
s⊕
i=1

Bei ⊗ ei+nB, Q1 =
s⊕
i=1

Bei+1 ⊗ ei+nB.

Lemma 4.1. We have the following exact sequence of left Be-modules:

(4.2) 0 −→ 1Bβn−k
ρ−−−−→ Q1

ψ−−−−→ Q0
θ−−−−→ 1Bβn −→ 0,

where the left Be-homomorphisms θ, ψ and ρ are given by

θ(ei ⊗ ei+n) = ei, ψ(ei+1 ⊗ ei+n) = ei+1 (X ⊗ 1 − 1 ⊗X) ei+n

and

ρ(ei) = ei

(
k−1∑
l=0

X l ⊗Xk−l−1

)
ei+n−k for 1 � i � s.

Moreover, Q1
ψ→ Q0

θ→ 1Bβn → 0 is the minimal projective Be-presentation
of 1Bβn.

Proof. Applying the functor Fβn to the exact sequence (4.1) we have the fol-
lowing exact sequence:

0 −→ 1Bβn−k
1κβn−→ 1(P1)βn

1φβn−−−−→ 1(P0)βn
1πβn−−−−→ 1Bβn −→ 0,

where 1(P1)βn
1φβn→ 1(P0)βn

1πβn→ 1Bβn → 0 is the minimal projective Be-
presentation of 1Bβn .
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Let g0 : 1(P0)βn → Q0 and g1 : 1(P1)βn → Q1 be Be-homomorphisms given
by the followings respectively:

g0 (ej ⊗ ej) = ej ⊗ ej+n, g1 (ej+1 ⊗ ej) = ej+1 ⊗ ej+n for 1 � j � s.

Then it is easy to see that g0 and g1 are isomorphisms of left Be-modules.
Also, by setting θ := 1πβn ◦ g−1

0 , ψ := g0 ◦ 1φβn ◦ g−1
1 and ρ := g1 ◦ 1κβn , we

get the commutative diagram

0 −→1Bβn−k
1κβn−−−−→ 1(P1)βn

1φβn−−−−→ 1(P0)βn
1πβn−−−−→ 1Bβn−→ 0∥∥∥ ∼

⏐⏐�g1 ∼

⏐⏐�g0 ∥∥∥
0 −→1Bβn−k

ρ−−−−→ Q1
ψ−−−−→ Q0

θ−−−−→ 1Bβn−→ 0

of left Be-modules. Furthermore, for each j (1 � j � s) we get

θ (ej ⊗ ej+n) = 1πβn (ej ⊗ ej) = ej ,

ψ (ej+1 ⊗ ej+n) = (g0 ◦ 1φβn) (ej+1 ⊗ ej)
= g0 (ej+1 (X ⊗ 1 − 1 ⊗X) ej)
= ej+1 (X ⊗ 1 − 1 ⊗X) ej+n,

and

ρ(ej) = g1

(
ej

( k−1∑
l=0

X l ⊗Xk−l−1

)
ej−k

)

= ej

(
k−1∑
l=0

X l ⊗Xk−l−1

)
ej+n−k.

Hence (4.2) is exact and Q1
ψ→ Q0

θ→ 1Bβn → 0 is the minimal projective
Be-presentation of 1Bβn . So the lemma is proved.

Now, consider the rightBe-module (Bem⊗enB)∨:= HomBe(Bem⊗enB,Be)
for 1 � m,n � s. We identify Be with B ⊗ B as left Be-modules via the
isomorphism Be → B⊗B; x⊗ y◦ 	→ x⊗ y of left Be-modules. Then we easily
obtain the following.

Lemma 4.2. Let m and n be integers such that 1 � m,n � s. Then the
map Θ : (Bem ⊗ enB)∨ → emB ⊗ Ben given by Θ(u) = u(em ⊗ en) (u ∈
(Bem ⊗ enB)∨) is an isomorphism of right Be-modules.
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Proof. By [ARS, Chapter I, Proposition 4.9], Θ is an isomorphism of K-vector
spaces. Then it is easy to see that Θ is an isomorphism of right Be-modules.

Next we will give a minimal projective (Be)◦-presentation of TrBe(1Bβn).
We define the projective right Be-modules

R0 =
s⊕
i=1

eiB ⊗Bei+n, R1 =
s⊕
i=1

ei+1B ⊗Bei+n.

Lemma 4.3. We have the following exact sequences of right Be-modules:

(4.3) 0 −→ (1Bβn)∨ η−−−−→ R0
χ−−−−→ R1 −−−−→ TrBe(1Bβn) −→ 0,

where the Be-homomorphisms η and χ are given by

η(f) = f(1) for f ∈ (1Bβn)∨,
χ(ej ⊗ ej+n) = ej+1X ⊗ ej+n − ej ⊗Xej+n−1 for 1 � j � s.

Moreover, R0
χ→ R1 → TrBe(1Bβn) → 0 is the minimal projective (Be)◦-

presentation of TrBe(1Bβn).

Proof. Applying the duality ( )∨ = HomBe( , Be) to (4.2), we have the exact
sequence

0 −→ (1Bβn)∨ θ∨−−−−→ Q∨
0

ψ∨
−−−−→ Q∨

1 −−−−→ TrBe(1Bβn) −→ 0

of right Be-modules, where Q∨
0

ψ∨
→ Q∨

1 → TrBe(1Bβn) → 0 is the minimal
projective (Be)◦-presentation of TrBe(1Bβn). By Lemma 4.2, we have the
isomorphisms

h0 : Q∨
0

∼−→
s⊕
i=1

(Bei ⊗ ei+nB)∨ ∼−→ R0,

h1 : Q∨
1

∼−→
s⊕
i=1

(Bei+1 ⊗ ei+nB)∨ ∼−→ R1.

of right Be-modules. Here, note that
(
h−1

0 (ei ⊗ ei+n)
)

(ej⊗ej+n) = ei⊗ei+n if
j = i, 0 if j �= i, and h1(u) =

∑s
m=1 u(em+1⊗em+n) for u ∈ Q∨

1 . Furthermore,
these isomorphisms yield the commutative diagram

0 −→ (1Bβn)∨ θ∨−−−−→ Q∨
0

ψ∨
−−−−→ Q∨

1 −−−−→ TrBe(1Bβn) −→ 0∥∥∥ ∼

⏐⏐�h0 ∼

⏐⏐�h1

∥∥∥
0 −→ (1Bβn)∨ η−−−−→ R0

χ−−−−→ R1 −−−−→ TrBe(1Bβn) −→ 0
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of right Be-modules, where we set χ := h1 ◦ ψ∨ ◦ h−1
0 and η := h0 ◦ θ∨. Also,

for each f ∈ (1Bβn)∨, we obtain

η(f) = h0(f ◦ θ) =
s∑

m=1

(f ◦ θ)(em ⊗ em+n) =
s∑

m=1

f(em) = f(1)

and, for each 1 � j � s, we get

χ(ej ⊗ ej+n) = h1

(
h−1

0 (ej ⊗ ej+n) ◦ ψ)
=

s∑
m=1

(
h−1

0 (ej ⊗ ej+n) ◦ ψ) (em+1 ⊗ em+n)

=
s∑

m=1

h−1
0 (ej ⊗ ej+n) (em+1 (X ⊗ 1 − 1 ⊗X) em+n)

=
s∑

m=1

h−1
0 (ej ⊗ ej+n) (Xem ⊗ em+n − em+1 ⊗ em+n+1X)

= ej+1X ⊗ ej+n − ej ⊗Xej+n−1.

So it is verified that (4.3) is exact and R0
χ→ R1 → TrBe(1Bβn) → 0 is the

minimal projective (Be)◦-presentation of TrBe(1Bβn). Hence, the lemma is
proved.

Next, we will give the minimal injective Be-copresentation of τBe(1Bβn) :=
DTrBe(1Bβn). We define projective left Be-modules

L0 =
s⊕
i=1

Bei ⊗ ei+n+2(k−1)B, L1 =
s⊕
i=1

Bei+1 ⊗ ei+n+2(k−1)B.

Lemma 4.4. We have the following exact sequence of left Be-modules:

(4.4) 0 −→ τBe(1Bβn) −−−−→ L1
σ−−−−→ L0 −−−−→ NBe(1Bβn) −→ 0,

where the left Be-homomorphism σ is given by

σ(ei+1 ⊗ ei+n+2(k−1)) = ei+1 (X ⊗ 1 − 1 ⊗X) ei+n+2(k−1) for 1 � i � s.

Furthermore, 0 → τBe(1Bβn) → L1
σ→ L0 is the minimal injective Be-copres-

entation of τBe(1Bβn).

Proof. Applying the duality D = HomK( ,K) to the exact sequence (4.3), we
have the exact sequence

0 −→ τBe(1Bβn) −−−−→ D(R1)
D(χ)−−−−→ D(R0)

D(η)−−−−→ NBe(1Bβn) −→ 0
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of left Be-modules, where 0 → τBe(1Bβn) → D(R1)
D(χ)→ D(R0) is the minimal

injective Be-copresentation of τBe(1Bβn). Moreover, by Proposition 3.3, we
obtain the isomorphisms

g0 : D(R0) ∼−→
s⊕
i=1

D (eiB ⊗Bei+n) ∼−→ L0,

g1 : D(R1) ∼−→
s⊕
i=1

D (ei+1B ⊗Bei+n) ∼−→ L1

of left Be-modules. Here, we note that

g−1
1

(
ei+1 ⊗ ei+n+2(k−1)

)
=
(
ei+kX

k−1 ⊗Xk−1ei+n+k−1

)∗
holds for 1 � i � s. Using these isomorphisms, we obtain the commutative
diagram

0 −→ τBe(1Bβn) −−−−→ D(R1)
D(χ)−−−−→ D(R0)

D(η)−−−−→ NBe(1Bβn) −→ 0∥∥∥ ∼

⏐⏐�g1 ∼

⏐⏐�g0 ∥∥∥
0 −→ τBe(1Bβn) −−−−→ L1

σ−−−−→ L0
ρ−−−−→ NBe(1Bβn) −→ 0

of left Be-modules, where we set σ := g0 ◦D(χ) ◦ g−1
1 and ρ := D(η) ◦ g−1

0 .
Since for 1 � i, l � s and 0 � p, q � k − 1 we get

((
D(χ) ◦ g−1

1

)
(ei+1 ⊗ ei+n+2(k−1))

)
(elXp ⊗Xqel+n)

=
(
D(χ) ◦ (ei+kXk−1 ⊗Xk−1ei+n+k−1)∗

)
(elXp ⊗Xqel+n)

=
((
ei+kX

k−1 ⊗Xk−1ei+n+k−1

)∗ ◦ χ) (elXp ⊗Xqel+n)

=
(
ei+kX

k−1 ⊗Xk−1ei+n+k−1

)∗(
el+1X

p+1 ⊗Xqel+n − elX
p ⊗Xq+1el+n−1

)

=

⎧⎪⎨
⎪⎩

1 if p = k − 2, q = k − 1 and l ≡ i+ k − 1 (mod s),
−1 if p = k − 1, q = k − 2 and l ≡ i+ k (mod s),

0 otherwise,

it follows that

(
D(χ) ◦ g−1

1

) (
ei+1 ⊗ ei+n+2(k−1)

)
=
(
ei+k−1X

k−2 ⊗Xk−1ei+n+k−1

)∗ − (ei+kXk−1 ⊗Xk−2ei+n+k

)∗
.
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Therefore, by Proposition 3.3, for 1 � i � s we have

σ
(
ei+1 ⊗ ei+n+2(k−1)

)
= g0

((
ei+k−1X

k−2 ⊗Xk−1ei+n+k−1

)∗ − (ei+kXk−1 ⊗Xk−2ei+n+k

)∗)
= Xei ⊗ ei+n+2(k−1) − ei+1 ⊗ ei+n+2k−1X

= ei+1 (X ⊗ 1 − 1 ⊗X) ei+n+2(k−1).

Hence (4.4) is an exact sequence of left Be-modules and 0 → τBe(1Bβn) →
L1

σ→ L0 is the minimal injective Be-copresentation of τBe(1Bβn). Therefore,
the lemma is proved.

The following lemma is easily shown by Lemmas 4.1, 4.4.

Lemma 4.5. Let n be any integer with n � 0. Then, we obtain the following
exact sequence of left Be-modules:

0 −→ 1Bβn+k−2
ι−−−−→ L1

σ−−−−→ L0 −−−−→ 1Bβn+2(k−1) −→ 0,

where ι is given by

ι(ei) = ei

⎛
⎝k−1∑
j=0

Xj ⊗Xk−j−1

⎞
⎠ ei+n+k−2 for 1 � i � s.

Furthermore, 0 → 1Bβn+k−2
ι→ L1

σ→ L0 is the minimal injective Be-copres-
entation of 1Bβn+k−2. Hence we obtain the isomorphisms of left Be-modules

τBe(1Bβn) � 1Bβn+k−2 and NBe(1Bβn) � 1Bβn+2(k−1) .

Now, we easily have the following structures of τ iBe(B) and N i
Be(B) for

i � 0 by induction on n.

Theorem. We have the isomorphisms of left Be-modules

τ iBe(B) � 1Bβi(k−2) and N i
Be(B) � 1Bβ2i(k−1)

for all i � 0.

Corollary 4.6. The left Be-module B is τBe-periodic and NBe-periodic, and
the τBe-period is ⎧⎨

⎩
1 if k = 2,

lcm(k − 2, s)
k − 2

if k � 3

and the NBe-period is
lcm
(
2(k − 1), s

)
2(k − 1)

.
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Proof. If k = 2, then obviously the τBe-period of B is 1. Also, if k � 3, then
since the order of β is s, the order of βk−2 equals s/ gcd(k − 2, s) = lcm(k −
2, s)/(k− 2). Similarly the order of β2(k−1) equals lcm(2(k− 1), s)/(2(k− 1)).
This completes the proof.

Remark. The τBe-period of B is given in [P2, Theorem 2].

Corollary 4.7. Let s and k be integers with s � 1 and k � 2. Then the
τBe-period of B is 1 if and only if k ≡ 2 (mod s), and the NBe-period of B is
1 if and only if 2(k − 1) ≡ 0 (mod s).

Appendix

In this Appendix, we will give an alternative proof of Theorem in Section 4.
Throughout this Appendix, we keep the notation in Sections 3 and 4.

First we will investigate the Nakayama automorphism of the enveloping
algebra Be := B ⊗B◦ of B = KΓ/(Xk) (k � 2). We identify Be with B ⊗B
as left Be-modules via the isomorphism Be → B ⊗ B; x ⊗ y◦ 	→ x ⊗ y of left
Be-modules. Define the algebra automorphism ν : Be → Be by β1−k ⊗ βk−1 :
Be → Be.

For any integer m and n with 1 � m,n � s, by Proposition 3.3, we have
the isomorphism

Bem ⊗ enB −→ D(em+k−1B ⊗Ben−k+1);

Xiem ⊗ enX
j 	−→ (em+k−1X

k−i−1 ⊗Xk−j−1en−k+1)∗

(0 � i, j � k − 1)

of left Be-modules. By means of these isomorphisms, we obtain the isomor-
phisms Ψ : Be → D(Be) of left Be-modules. Then we have the following:

Lemma A.1. The map Ψ:Be→1D(Be)ν is the isomorphism ofBe-bimodules.
So ν is the Nakayama automorphism of Be.

Proof. It suffices to show that Ψ: Be → 1D(Be)ν is the isomorphism of right
Be-modules. Since {ep⊗e◦q , Xep⊗e◦q , ep⊗(eqX)◦|1 � p, q � s} generates Be as
an algebra and Ψ is the isomorphism of leftBe-modules, it suffices to check that
the following equations hold: Ψ(ep⊗eq) = Ψ(ep⊗eq)ν(ep⊗e◦q), Ψ(Xep⊗eq) =
Ψ(ep+1 ⊗ eq)ν(Xep ⊗ e◦q), Ψ(ep ⊗ eqX) = Ψ(ep ⊗ eq−1)ν(ep ⊗ (eqX)◦) for
p, q (1 � p, q � s).

We prove that the first equation holds. Take any emXr ⊗Xten ∈ Be (1 �
m,n � s; 0 � r, t � k−1). Note that Ψ(ep⊗eq)=(ep+k−1X

k−1⊗Xk−1eq−k+1)∗
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holds. By direct calculation, we have the equation(
Ψ(ep ⊗ eq)ν(ep ⊗ e◦q)

)
(emXr ⊗Xten)

=

{
1 if m ≡ p+ k − 1 (mod s), n ≡ q − k + 1 (mod s) and r = t = k − 1,
0 otherwise.

So we get Ψ(ep ⊗ eq)ν(ep ⊗ e◦q) = (ep+k−1X
k−1 ⊗Xk−1eq−k+1)∗. This equals

Ψ(ep ⊗ eq). So the desired equation is proved.
Next we prove the second equation holds. Note that Ψ(ep+1 ⊗ eq) =

(ep+kXk−1 ⊗Xk−1eq−k+1)∗ holds. Take any emXr ⊗Xten ∈ Be (1 � m,n �
s; 0 � r, t � k − 1). Then, by direct calculation, we have(

Ψ(ep+1 ⊗ eq)ν(Xep ⊗ e◦q)
)

(emXr ⊗Xten)

=

⎧⎪⎨
⎪⎩

1 if m ≡ p+ k − 1 (mod s), n ≡ q − k + 1 (mod s),
r = k − 2 and t = k − 1,

0 otherwise.

Hence we have Ψ(ep+1⊗eq)ν(Xep⊗e◦q) = (ep+kXk−2⊗Xk−1eq−k+1)∗. Clearly
this equals Ψ(Xep ⊗ eq). So the desired equation is proved.

Similarly, it is shown that the third equation holds. So we get the isomor-
phism Ψ : Be → 1D(Be)ν of left Be-modules. Hence, by [Y, Theorem 2.4.1],
ν is the Nakayama automorphism of Be.

There exists the isomorphism γ = {γX |X ∈ mod (Be)} of the functors
between D(Be) ⊗Be − and NBe , where γX : D(Be) ⊗Be X → NBe(X) is
given by γX(f ⊗ x)(φ) = (f ◦ φ)(x) for f ∈ D(Be), x ∈ X and φ ∈ X∨.
Moreover by Lemma A.1 the functor D(Be)⊗Be − is isomorphic to the functor
ν( ), where the functor ν( ) : mod (Be) → mod (Be) is given as follows: For
any M ∈ mod (Be), νM has the underlying K-vector space M , and the left
operation ∗ of Be is given by x ∗ m = ν(x)m for x ∈ Be and m ∈ νM .
And, for any M , N ∈ mod (Be) and any f ∈ HomBe(M,N), the left Be-
homomorphism νf : νM → νN is given by νf(m) = f(m) for m ∈ νM . Hence
NBe is isomorphic to ν( ) (see [G, Section 2.1], [Y, Section 2.4]). Then we
have the following:

Lemma A.2. Let n be any integer. Then we have an isomorphism ν(1Bβn) �
1Bβn+2(k−1) of left Be-modules. Hence NBe(1Bβn) � 1Bβn+2(k−1) as left Be-
modules.

Proof. Let ξ : ν(1Bβn) → 1Bβn+2(k−1) be the map given by ξ(x) = βk−1(x)
for x ∈ ν(1Bβn). Then it is easy to check that ξ is an isomorphism of left
Be-modules.
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It is shown in [EH] that Ω2i
Be(B) � 1Bβ−ik as left Be-modules for each i � 0.

From this fact and Lemma A.2, we have an alternative proof of Theorem:

Alternative proof of Theorem. By Lemma A.2, we easily obtain the isomor-
phism N i

Be(B) � 1Bβ2i(k−1) of left Be-modules for each i � 0. Further-
more, we get the isomorphism τ iBe(B) � (NBeΩ2

Be)i(B) � N i
BeΩ2i

Be(B) �
N i
Be(1Bβ−ik) � 1Bβi(k−2) of left Be-modules.
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