On the periodicity of the Auslander-Reiten translation and the Nakayama functor for the enveloping algebra of self-injective Nakayama algebras

Takahiko Furuya

(Received August 1, 2005)

Abstract. In this paper, we describe the structures of the left B^{e} -modules $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)$ for $i \ge 0$, where B is a certain finite dimensional selfinjective Nakayama algebra, B^{e} is the enveloping algebra of B, $\tau_{B^{e}}$ is the Auslander-Reiten translation in the category mod (B^{e}) of finitely generated left B^{e} -modules and $\mathcal{N}_{B^{e}}$: mod $(B^{e}) \to \text{mod}(B^{e})$ is the Nakayama functor. Moreover, we compute the $\tau_{B^{e}}$ -period and the $\mathcal{N}_{B^{e}}$ -period of B.

AMS 2000 Mathematics Subject Classification. 16D50, 16E05.

Key words and phrases. Auslander-Reiten translation, Nakayama functor, selfinjective Nakayama algebra.

§1. Introduction

Let A be a finite dimensional self-injective algebra over a field K, and let A° be the opposite algebra of A. We denote the category of finitely generated left A-modules by mod (A) and the Auslander-Reiten translation in mod (A) by τ_A . The Nakayama functor $\mathcal{N}_A \colon \text{mod}(A) \to \text{mod}(A)$ is defined by the composition $D(\)^{\vee}$, where $(\)^{\vee}$ is the contravariant functor $\text{Hom}_A(\,A) \colon \text{mod}(A) \to \text{mod}(A^{\circ})$ and D is the duality $\text{Hom}_K(\,K) \colon \text{mod}(A^{\circ}) \to \text{mod}(A)$. In this paper, we deal with τ_A and \mathcal{N}_A in the case where A is the enveloping algebra $B^e := B \otimes_K B^{\circ}$ of a certain self-injective Nakayama algebra B.

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices e_1, e_2, \ldots, e_s and s arrows a_1, a_2, \ldots, a_s such that a_i starts at e_i and ends at e_{i+1} . So $a_i = e_{i+1}a_ie_i$ holds for all $1 \leq i \leq s$ in the path algebra $K\Gamma$, where we regard the subscripts i of e_i modulo s. Denote the sum of all arrows of

 Γ by X: $X = a_1 + a_2 + \cdots + a_s \in K\Gamma$. If K is an algebraically closed field, then it is known that a self-injective Nakayama algebra over K which is basic, indecomposable and nonisomorphic to K is of the form $B := K\Gamma/(X^k)$ where $k \ge 2$ (see [EH]). And, in [EH] this algebra is denoted by B_s^k . In [P2], Pogorzały computes the τ_{B^e} -period of the left B^e -module B by means of the Galois covering of B^e . In this paper, we determine the structure of the left B^e -modules $\mathcal{N}_{B^e}^i(B)$ as well as the $\tau_{B^e}^i(B)$ for $i \ge 0$ by using the structure of syzygy module $\Omega_{B^e}^2(B)$ given in [EH, F], and hence we compute the τ_{B^e} -period and the \mathcal{N}_{B^e} -period of B.

In Section 2, as preliminaries, we describe the definitions and some properties of τ_A and \mathcal{N}_A for any finite dimensional self-injective algebra A. Moreover, for any finite dimensional algebra C, any algebra automorphism $\alpha \colon C \to C$ and $M \in \text{mod}(C^e)$, we give the definition of the left C^e -module ${}_1M_\alpha$. In Section 3, we consider the dual module $D(e_iB \otimes_K Be_j)$ $(1 \leq i, j \leq s)$ for the indecomposable projective right B^e -module $e_iB \otimes_K Be_j$ (Proposition 3.3). In Section 4, we give a minimal injective B^e -copresentation of $\tau_{B^e}({}_1B_{\beta^n})$ for some algebra automorphism $\beta \colon B \to B$ and any integer n with $n \geq 0$, and hence we describe the structures of $\tau^i_{B^e}(B)$ and $\mathcal{N}^i_{B^e}(B)$ ($i \geq 0$) (Theorem). Moreover, we compute the τ_{B^e} -period and the \mathcal{N}_{B^e} -period of B (Corollary 4.6). Finally, as Appendix, we give an alternative proof of Theorem in Section 4 by means of the Nakayama automorphism ν of B^e .

For general facts on algebras we refer to [ARS]. Throughout this paper, we will denote \otimes_K by \otimes .

§2. Preliminaries

Let A be any finite dimensional self-injective algebra over a field K. We denote the contravariant functor $\operatorname{Hom}_A(\ , A) \colon \operatorname{mod}(A) \to \operatorname{mod}(A^\circ)$ by ()^{\vee} and the duality $\operatorname{Hom}_K(\ , K) \colon \operatorname{mod}(A^\circ) \to \operatorname{mod}(A)$ by D. Since A is a self-injective algebra, ()^{\vee}: $\operatorname{mod}(A) \to \operatorname{mod}(A^\circ)$ is a duality. So the Nakayama functor $\mathcal{N}_A := D(\)^{\vee} \colon \operatorname{mod}(A) \to \operatorname{mod}(A)$ is an equivalence of the categories.

Take any $M \in \text{mod}(A)$ and fix a minimal projective A-presentation $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ of M. We define a left A-module $\Omega_A(M) := \text{Ker } f_0$ and we put $\Omega^0_A(M) := M$ and $\Omega^i_A(M) := \Omega_A(\Omega^{i-1}_A(M))$ for each $i \ge 1$. Then we have the exact sequence

$$0 \longrightarrow \Omega^2(M) \longrightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \longrightarrow 0.$$

Also, we define a A° -module $\operatorname{Tr}_{A}(M) := \operatorname{Coker} f_{1}^{\vee}$, which is called the *transpose* of M. Then we obtain the following exact sequence of left A° -modules:

$$0 \longrightarrow M^{\vee} \xrightarrow{f_0^{\vee}} P_0^{\vee} \xrightarrow{f_1^{\vee}} P_1^{\vee} \xrightarrow{} \operatorname{Tr}_A(M) \longrightarrow 0,$$

where $P_0^{\vee} \xrightarrow{f_1^{\vee}} P_1^{\vee} \to \operatorname{Tr}_A(M) \to 0$ is a minimal projective A° -presentation of $\operatorname{Tr}_A(M)$. Furthermore, we define a left A-module $\tau_A(M) := D\operatorname{Tr}_A(M)$, which is called the Auslander-Reiten translation. Then we get the following exact sequence of left A-modules:

$$0 \longrightarrow \tau_A(M) \longrightarrow \mathcal{N}_A(P_1) \xrightarrow{\mathcal{N}_A(f_1)} \mathcal{N}_A(P_0) \xrightarrow{\mathcal{N}_A(f_0)} \mathcal{N}_A(M) \longrightarrow 0,$$

where $0 \to \tau_A(M) \to \mathcal{N}_A(P_1) \xrightarrow{\mathcal{N}_A(f_1)} \mathcal{N}_A(P_0)$ is a minimal injective A-copresentation. Here, since \mathcal{N}_A is an equivalence, we easily obtain isomorphisms $\tau_A(M) \simeq \Omega_A^2 \mathcal{N}_A(M) \simeq \mathcal{N}_A \Omega_A^2(M)$ of left A-modules.

For each $M \in \text{mod}(A)$, we put $\tau_A^0(M) := M$ and $\tau_A^i(M) := \tau_A\left(\tau_A^{i-1}(M)\right)$ for $i \ge 1$. A left A-module N is τ_A -periodic if $\tau_A^m(N) \simeq N$ for some positive integer m. Then the τ_A -period of N is the smallest positive integer n with $\tau_A^n(N) \simeq N$. Similarly, for each $M \in \text{mod}(A)$, we define $\mathcal{N}_A^0(M) := M$ and $\mathcal{N}_A^i(M) := \mathcal{N}_A\left(\mathcal{N}_A^{i-1}(M)\right)$ for $i \ge 1$. A left A-module N said to be \mathcal{N}_A periodic if $\mathcal{N}_A^m(N) \simeq N$ for some positive integer m. Then we call the smallest positive integer n with $\mathcal{N}_A^n(N) \simeq N$ the \mathcal{N}_A -period of N.

Let C be any finite dimensional algebra over a field K, $\alpha: C \to C$ an algebra automorphism, and M a left C^e -module, equivalently C-bimodule. Then we will define the left C^e -module ${}_1M_{\alpha}$ as follows: ${}_1M_{\alpha}$ has the underlying Kspace M, and the action of C on M from the left is the usual one. The action * of C on M from the right is defined as $m * b = m\alpha(b)$ for $m \in {}_1M_{\alpha}$ and $b \in C$. Moreover, for each C^e -homomorphism $f: M \to N$, we define a C^e homomorphism ${}_1f_{\alpha}: {}_1M_{\alpha} \to {}_1N_{\alpha}$ by ${}_1f_{\alpha}(m) = f(m)$ for each $m \in {}_1M_{\alpha}$. Then, by setting $F_{\alpha}(X) := {}_1X_{\alpha}$ for each object X in mod (C^e) and $F_{\alpha}(f) := {}_1f_{\alpha}$ for each morphism f in mod (C^e) , we have the functor $F_{\alpha}: \text{mod } (C^e) \to \text{mod } (C^e)$. It is easy to check that $F_{\alpha^{-1}}F_{\alpha} = F_{\alpha}F_{\alpha^{-1}} = {}_{\text{mod } (C^e)}$ holds. So F_{α} is an isomorphism of the categories. In particular, if $\psi: P \to M$ is a projective cover in mod (C^e) , then $F_{\alpha}(\psi) = {}_1\psi_{\alpha}: {}_1P_{\alpha} \to {}_1M_{\alpha}$ is also a projective cover in mod (C^e) .

§3. A self-injective Nakayama algebra and its enveloping algebra

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices e_1, \ldots, e_s and s arrows a_1, \ldots, a_s . Denote the sum of all arrows in the path algebra $K\Gamma$ by X: $X = a_1 + \cdots + a_s$. Then $X^j e_i = e_{i+j}X^j = a_{i+j-1}\cdots a_i$, the path of length j for $j \ge 1$, where we regard the subscripts i of e_i modulo s.

We denote the algebra $K\Gamma/(X^k)$ by B, where k is a positive integer with $k \ge 2$. Note that the set $\{X^j e_i \mid 1 \le i \le s, 0 \le j \le k-1\}$ is a K-basis of B, so

 $\dim_K B = ks$. In this section, we consider the dual module $D(e_i B \otimes Be_j)$ $(1 \leq i, j \leq s)$ of the indecomposable projective right B^e -module $e_i B \otimes Be_j$.

First we consider the dual modules $D(Be_m)$ and $D(e_mB)$ for each m $(1 \leq m \leq s)$. Clearly the set $\{X^j e_m \mid 0 \leq j \leq k-1\}$ gives a K-basis of Be_m and the set $\{e_m X^j \mid 0 \leq j \leq k-1\}$ gives a K-basis of $e_m B$. We take the dual basis $\{(X^j e_m)^* \mid 0 \leq j \leq k-1\}$ of $D(Be_m)$, that is, each $(X^j e_m)^* \in D(Be_m)$ $(0 \leq j \leq k-1)$ satisfies that $((X^j e_m)^*)(X^q e_m) = 1$ if q = j, 0 if $q \neq j$. Similarly, we take the dual basis $\{(e_m X^j)^* \mid 0 \leq j \leq k-1\}$ of $D(e_m B)$.

Lemma 3.1. Let j and m, n be integers with $0 \leq j \leq k-1$ and $1 \leq m, n \leq s$. Then, for $(X^j e_m)^* \in D(Be_m)$, we have

$$\begin{split} (X^{j}e_{m})^{*}X &= \begin{cases} 0 & \text{if } j = 0, \\ (X^{j-1}e_{m})^{*} & \text{if } 1 \leqslant j \leqslant k-1, \end{cases} \\ (X^{j}e_{m})^{*}e_{n} &= \begin{cases} 0 & \text{if } n \not\equiv m+j \pmod{s}, \\ (X^{j}e_{m})^{*} & \text{if } n \equiv m+j \pmod{s}. \end{cases} \end{split}$$

Moreover, for $(e_m X^j)^* \in D(e_m B)$, we obtain

$$X(e_m X^j)^* = \begin{cases} 0 & \text{if } j = 0, \\ (e_m X^{j-1})^* & \text{if } 1 \leq j \leq k-1, \end{cases}$$
$$e_n(e_m X^j)^* = \begin{cases} 0 & \text{if } n \not\equiv m+j \pmod{s}, \\ (e_m X^j)^* & \text{if } n \equiv m+j \pmod{s}. \end{cases}$$

Proof. We will show that the first equation holds. For $0 \leq q \leq k-2$, we obtain $((e_m)^* X) (X^q e_m) = (e_m)^* (X^{q+1} e_m) = 0$. Also, we have $((e_m)^* X) (X^{k-1} e_m) = (e_m)^* (X^k e_m) = (e_m)^* (0) = 0$. So we get $((e_m)^* X) (X^q e_m) = 0$ for all q $(0 \leq q \leq k-1)$, which implies $(e_m)^* X = 0$. If $1 \leq j \leq k-1$, then we have $((X^j e_m)^* X) (X^{j-1} e_m) = (X^j e_m)^* (X^j e_m) = 1$. Moreover, for $0 \leq q \leq k-1$ with $q \neq j-1$, we have $((X^j e_m)^* X) (X^q e_p) = (X^j e_m)^* (X^{q+1} e_p) = 0$. Therefore we obtain $(X^j e_m)^* X = (X^{j-1} e_m)^*$.

Next, we will verify that the second equation holds. First we deal with the case $n \not\equiv m + j \pmod{s}$. Then, for $0 \leqslant p \leqslant k - 1$ with $m \equiv n - p \pmod{s}$, we have $e_m = e_{n-p}$ and $p \neq j$. So we obtain $((X^j e_m)^* e_n) (X^p e_m) = (X^j e_m)^* (e_n X^p e_m) = (X^j e_m)^* (X^p e_{n-p} e_m) = (X^j e_m)^* (X^p e_m) = 0$. Moreover, for $0 \leqslant p \leqslant k - 1$ with $m \not\equiv n - p \pmod{s}$, we have $e_m \neq e_{n-p}$. So we obtain $((X^j e_m)^* e_n) (X^p e_m) = (X^j e_m)^* (e_n X^p e_m) = (X^j e_m)^* (X^p e_{n-p} e_m) = (X^j e_m)^* (0) = 0$. Hence we get $((X^j e_m)^* e_n) (X^p e_m) = 0$ for all $p \ (0 \leqslant p \leqslant k - 1)$, that is, $(X^j e_m)^* e_n = 0$. Next we deal with the case $n \equiv m + j \pmod{s}$. Then we have $e_n = e_{m+j}$. So, it follows that $((X^j e_m)^* e_n) (X^j e_m) = (X^j e_m)^* (e_{m+j} X^j e_m) = (X^j e_m)^* (X^j e_m) = 1$. Furthermore, for $0 \leqslant p \leqslant k - 1$ with $p \neq j$ and $p \equiv j \pmod{s}$, we clearly have $e_n = e_{p+m}$. Thus we ob- $\tan \left((X^{j}e_{m})^{*}e_{n} \right) (X^{p}e_{m}) = (X^{j}e_{m})^{*}(e_{p+m}X^{p}e_{m}) = (X^{j}e_{m})^{*}(X^{p}e_{m}) = 0.$ Also, for $0 \leq p \leq k-1$ with $p \not\equiv j \pmod{s}$, we get $e_m \neq e_{n-p}$. So we obtain $((X^j e_m)^* e_n)(X^p e_m) = (X^j e_m)^*(e_n X^p e_m) = (X^j e_m)^*(X^p e_{n-p} e_m) =$ $(X^j e_m)^*(0) = 0$. Therefore we have $(X^j e_m)^* e_n = (X^j e_m)^*$.

The rest of the lemma is shown in a similar way above.

Since B is a self-injective algebra, we get $D(Be_m) \simeq e_t B$ as right B-modules for some $1 \leq t \leq s$ and $D(e_m B) \simeq Be_r$ as left B-modules for some $1 \leq r \leq s$. In fact, we have the following lemma.

Lemma 3.2. Let m be an integer with $1 \leq m \leq s$. Then the following homomorphism of K-spaces is the isomorphism of right B-modules:

$$\Phi: D(Be_m) \longrightarrow e_{m+k-1}B; \quad (X^j e_m)^* \longmapsto e_{m+k-1}X^{k-j-1} \quad (0 \le j \le k-1).$$

Also, the following homomorphism of K-spaces is the isomorphism of left Bmodules:

$$\Psi: D(e_m B) \longrightarrow Be_{m-k+1}; \quad (e_m X^j)^* \longmapsto X^{k-j-1} e_{m-k+1} \quad (0 \le j \le k-1).$$

Proof. Clearly Φ is an isomorphism of K-spaces. We prove that Φ is a homomorphism of right B-modules. Since B is generated by $e_i (1 \leq i \leq i)$ s) and X, it suffices to verify that $\Phi\left((X^{j}e_{m})^{*}X\right) = \Phi\left((X^{j}e_{m})^{*}\right)X$ and $\Phi\left((e_m X)^* e_n\right) = \Phi\left((e_m X^j)^*\right) e_n \text{ hold for } 0 \leq j \leq k-1 \text{ and } 1 \leq n \leq s.$ We will show that the first equation holds. If j = 0, then by Lemma 3.1 the left hand side equals $\Phi(0) = 0$ and the right hand side equals $e_{m-k-1}X^{k-1}X =$ $e_{m-k-1}X^k = 0$. If $1 \leq j \leq k-1$, then by Lemma 3.1 the left hand side equals $\Phi\left((X^{j-1}e_m)^*\right) = e_{m-k-1}X^{k-j}$ and the right hand side equals $e_{m+k-1}X^{k-j-1}X = e_{m+k-1}X^{k-j}$. Next we will show the second equation holds. If $n \not\equiv m + j \pmod{s}$, then by Lemma 3.1 the left hand side equals $\Phi(0) = 0$. On the other hand, since $e_n \neq e_{m+j}$, by Lemma 3.1 the right hand side equals $(e_{m+k-1}X^{k-j-1})e_n = X^{k-j-1}e_{m+j}e_n = 0$. If $n \equiv m+j \pmod{s}$, by Lemma 3.1 the left hand side equals $\Phi\left((X^{j}e_{m})^{*}\right) = e_{m+k-1}X^{k-j-1} =$ $X^{k-j-1}e_{m+j}$. On the other hand, since $e_n = e_{m+j}$, by Lemma 3.1 the right hand side equals $(e_{m+k-1}X^{k-j-1})e_n = X^{k-j-1}e_{m+j}e_n = X^{k-j-1}e_{m+j}$.

Similarly, it is shown by Lemma 3.1 that Ψ is an isomorphism of left *B*modules.

It is known that the set $\{e_m \otimes e_n^{\circ} | 1 \leq m, n \leq s\}$ is a complete set of the primitive orthogonal idempotents of B^e (see [H]). Therefore $Be_m \otimes$ $e_n B \ (\simeq B^e(e_m \otimes e_n^\circ))$ is an indecomposable projective left B^e -module and $e_m B \otimes B e_n \ (\simeq (e_m \otimes e_n^\circ) B^e)$ is an indecomposable projective right B^e -module for each $1 \leq m, n \leq s$. Since B is a basic self-injective algebra, B^e is also a

basic self-injective algebra (cf. [P1]). Hence $D(e_m B \otimes Be_n) \simeq Be_t \otimes e_r B$ for some $1 \leq t, r \leq s$. In fact, we have the following lemma.

Proposition 3.3. Let m, n be integers with $1 \le m, n \le s$. Then, we have the following isomorphism of left B^e -modules:

$$D(e_m B \otimes Be_n) \longrightarrow Be_{m-k+1} \otimes e_{n+k-1}B;$$

$$(e_m X^i \otimes X^j e_n)^* \longmapsto X^{k-i-1} e_{m-k+1} \otimes e_{n+k-1} X^{k-j-1} \quad (0 \leq i, j \leq k-1).$$

Proof. By [M, Chapter V, Proposition 4.3], we get the isomorphism $F: D(e_m B) \otimes D(Be_n) \to D(e_m B \otimes Be_n)$ of K-vector spaces given by $F(f \otimes g)(x \otimes y) = f(x)g(y)$ for $f \in D(e_m B)$, $g \in D(Be_n)$, $x \in e_m B$ and $y \in Be_n$. We will show that F is an isomorphism of left B^e -modules. For $a \otimes b^\circ \in B^e$ $(a, b \in B), f \in D(e_m B), g \in D(Be_n), x \in e_m B$ and $y \in Be_n$, we get $F((a \otimes b^\circ)(f \otimes g))(x \otimes y) = F((af) \otimes (gb))(x \otimes y) = ((af)(x))((gb)(y)) = f(xa)g(by) = F(f \otimes g)(xa \otimes by) = F(f \otimes g)((x \otimes y)(a \otimes b^\circ)) = ((a \otimes b^\circ)F(f \otimes g))(x \otimes y)$. This implies that $F((a \otimes b^\circ)(f \otimes g)) = (a \otimes b^\circ)F(f \otimes g)$ holds for all $a \otimes b^\circ \in B^e$ and $f \otimes g \in D(e_m B) \otimes D(Be_n)$.

Now, it is easy to check that F is an isomorphism of K-spaces given by $F((e_m X^i)^* \otimes (X^j e_n)^*) = (e_m X^i \otimes X^j e_n)^*$ for each $0 \leq i, j \leq k-1$. So $F^{-1}: D(e_m B \otimes Be_n) \to D(e_m B) \otimes D(Be_n)$ is an isomorphism of Kspaces given by $F^{-1}((e_m X^i \otimes X^j e_n)^*) = (e_m X^i)^* \otimes (X^j e_n)^*$. Furthermore, by Lemma 3.2, we easily obtain the isomorphism $G: D(e_m B) \otimes D(Be_n) \to Be_{m-k+1} \otimes e_{n+k-1}B$ of left B^e -modules given by $G((e_m X^i)^* \otimes (X^j e_n)^*) = X^{k-i-1}e_{m-k+1} \otimes e_{n+k-1}X^{k-j-1}$. Consequently, we get the isomorphism

$$GF^{-1} \colon D(e_m B \otimes Be_n) \longrightarrow Be_{m-k+1} \otimes e_{n+k-1}B;$$
$$(e_m X^i \otimes X^j e_n)^* \longmapsto X^{k-i-1} e_{m-k+1} \otimes e_{n+k-1} X^{k-j-1}$$
$$(0 \leqslant i, j \leqslant k-1)$$

of left B^e -modules.

§4. The modules $\tau^i_{B^e}(B)$ and $\mathcal{N}^i_{B^e}(B)$

In this section, we describe the structures of the left B^e -modules $\tau^i_{B^e}(B)$ and $\mathcal{N}^i_{B^e}(B)$ for $i \ge 0$, and we compute the τ_{B^e} -period and the \mathcal{N}_{B^e} -period of the K-algebra $B = K\Gamma/(X^k)$ $(k \ge 2)$.

We define the projective left B^e -modules

$$P_0 = \bigoplus_{i=1}^s Be_i \otimes e_i B, \qquad P_1 = \bigoplus_{i=1}^s Be_{i+1} \otimes e_i B.$$

Then we obtain the following exact sequence of B^e -modules ([EH, F]):

(4.1)
$$0 \longrightarrow {}_{1}B_{\beta^{-k}} \xrightarrow{\kappa} P_{1} \xrightarrow{\phi} P_{0} \xrightarrow{\pi} B \longrightarrow 0,$$

where left B^e -homomorphisms ϕ and κ are given by

$$\phi(e_{i+1} \otimes e_i) = e_{i+1} \left(X \otimes 1 - 1 \otimes X \right) e_i,$$

$$\kappa(e_i) = e_i \left(\sum_{j=0}^{k-1} X^j \otimes X^{k-j-1} \right) e_{i-k} \quad \text{for } 1 \leq i \leq s,$$

and π is the multiplication, and $P_1 \xrightarrow{\phi} P_0 \xrightarrow{\pi} B \to 0$ is a minimal projective B^e -presentation of B. We define an algebra automorphism $\beta \colon B \to B$ by $e_i \mapsto e_{i-1}, a_i \mapsto a_{i-1} \ (1 \leq i \leq s)$. Here, we note that the order of β equals s.

Let n be any integer with $n \ge 0$. First, we give a minimal projective B^e -presentation of ${}_1B_{\beta^n}$. We define projective left B^e -modules

$$Q_0 = \bigoplus_{i=1}^s Be_i \otimes e_{i+n}B, \qquad Q_1 = \bigoplus_{i=1}^s Be_{i+1} \otimes e_{i+n}B.$$

Lemma 4.1. We have the following exact sequence of left B^e -modules:

$$(4.2) 0 \longrightarrow {}_{1}B_{\beta^{n-k}} \xrightarrow{\rho} Q_{1} \xrightarrow{\psi} Q_{0} \xrightarrow{\theta} {}_{1}B_{\beta^{n}} \longrightarrow 0,$$

where the left B^e -homomorphisms θ , ψ and ρ are given by

$$\theta(e_i \otimes e_{i+n}) = e_i, \quad \psi(e_{i+1} \otimes e_{i+n}) = e_{i+1} \left(X \otimes 1 - 1 \otimes X \right) e_{i+n}$$

and

$$\rho(e_i) = e_i \left(\sum_{l=0}^{k-1} X^l \otimes X^{k-l-1} \right) e_{i+n-k} \quad for \ 1 \leqslant i \leqslant s.$$

Moreover, $Q_1 \xrightarrow{\psi} Q_0 \xrightarrow{\theta} {}_1B_{\beta^n} \to 0$ is the minimal projective B^e -presentation of ${}_1B_{\beta^n}$.

Proof. Applying the functor F_{β^n} to the exact sequence (4.1) we have the following exact sequence:

$$0 \longrightarrow {}_{1}B_{\beta^{n-k}} \xrightarrow{{}_{1}\kappa_{\beta^{n}}} {}_{1}(P_{1})_{\beta^{n}} \xrightarrow{{}_{1}\phi_{\beta^{n}}} {}_{1}(P_{0})_{\beta^{n}} \xrightarrow{{}_{1}\pi_{\beta^{n}}} {}_{1}B_{\beta^{n}} \longrightarrow 0,$$

where $_1(P_1)_{\beta^n} \stackrel{_{1}\phi_{\beta^n}}{\to} _1(P_0)_{\beta^n} \stackrel{_{1}\pi_{\beta^n}}{\to} _1B_{\beta^n} \to 0$ is the minimal projective B^e -presentation of $_{1}B_{\beta^n}$.

Let $g_0: {}_1(P_0)_{\beta^n} \to Q_0$ and $g_1: {}_1(P_1)_{\beta^n} \to Q_1$ be B^e -homomorphisms given by the followings respectively:

$$g_0(e_j \otimes e_j) = e_j \otimes e_{j+n}, \quad g_1(e_{j+1} \otimes e_j) = e_{j+1} \otimes e_{j+n} \quad \text{for } 1 \leq j \leq s.$$

Then it is easy to see that g_0 and g_1 are isomorphisms of left B^e -modules. Also, by setting $\theta := {}_1\pi_{\beta^n} \circ g_0^{-1}$, $\psi := g_0 \circ {}_1\phi_{\beta^n} \circ g_1^{-1}$ and $\rho := g_1 \circ {}_1\kappa_{\beta^n}$, we get the commutative diagram

of left B^e -modules. Furthermore, for each $j (1 \leq j \leq s)$ we get

$$\theta\left(e_{j}\otimes e_{j+n}\right)={}_{1}\pi_{\beta^{n}}\left(e_{j}\otimes e_{j}\right)=e_{j},$$

$$\psi(e_{j+1} \otimes e_{j+n}) = (g_0 \circ {}_1\phi_{\beta^n}) (e_{j+1} \otimes e_j)$$

= $g_0 (e_{j+1} (X \otimes 1 - 1 \otimes X) e_j)$
= $e_{j+1} (X \otimes 1 - 1 \otimes X) e_{j+n},$

and

$$\rho(e_j) = g_1 \left(e_j \left(\sum_{l=0}^{k-1} X^l \otimes X^{k-l-1} \right) e_{j-k} \right)$$
$$= e_j \left(\sum_{l=0}^{k-1} X^l \otimes X^{k-l-1} \right) e_{j+n-k}.$$

Hence (4.2) is exact and $Q_1 \xrightarrow{\psi} Q_0 \xrightarrow{\theta} {}_1B_{\beta^n} \to 0$ is the minimal projective B^e -presentation of ${}_1B_{\beta^n}$. So the lemma is proved.

Now, consider the right B^e -module $(Be_m \otimes e_n B)^{\vee} := \operatorname{Hom}_{B^e}(Be_m \otimes e_n B, B^e)$ for $1 \leq m, n \leq s$. We identify B^e with $B \otimes B$ as left B^e -modules via the isomorphism $B^e \to B \otimes B$; $x \otimes y^{\circ} \mapsto x \otimes y$ of left B^e -modules. Then we easily obtain the following.

Lemma 4.2. Let m and n be integers such that $1 \leq m, n \leq s$. Then the map $\Theta : (Be_m \otimes e_n B)^{\vee} \to e_m B \otimes Be_n$ given by $\Theta(u) = u(e_m \otimes e_n)$ $(u \in (Be_m \otimes e_n B)^{\vee})$ is an isomorphism of right B^e -modules.

Proof. By [ARS, Chapter I, Proposition 4.9], Θ is an isomorphism of K-vector spaces. Then it is easy to see that Θ is an isomorphism of right B^e -modules.

Next we will give a minimal projective $(B^e)^\circ$ -presentation of $\operatorname{Tr}_{B^e}({}_1B_{\beta^n})$. We define the projective right B^e -modules

$$R_0 = \bigoplus_{i=1}^s e_i B \otimes B e_{i+n}, \qquad R_1 = \bigoplus_{i=1}^s e_{i+1} B \otimes B e_{i+n}.$$

Lemma 4.3. We have the following exact sequences of right B^e -modules:

$$(4.3) \qquad 0 \longrightarrow ({}_{1}B_{\beta^{n}})^{\vee} \xrightarrow{\eta} R_{0} \xrightarrow{\chi} R_{1} \longrightarrow \operatorname{Tr}_{B^{e}}({}_{1}B_{\beta^{n}}) \longrightarrow 0,$$

where the B^e -homomorphisms η and χ are given by

$$\eta(f) = f(1) \quad \text{for } f \in ({}_{1}B_{\beta^{n}})^{\vee},$$

$$\chi(e_{j} \otimes e_{j+n}) = e_{j+1}X \otimes e_{j+n} - e_{j} \otimes Xe_{j+n-1} \quad \text{for } 1 \leq j \leq s.$$

Moreover, $R_0 \xrightarrow{\chi} R_1 \to \operatorname{Tr}_{B^e}({}_1B_{\beta^n}) \to 0$ is the minimal projective $(B^e)^\circ$ -presentation of $\operatorname{Tr}_{B^e}({}_1B_{\beta^n})$.

Proof. Applying the duality $()^{\vee} = \operatorname{Hom}_{B^e}(, B^e)$ to (4.2), we have the exact sequence

$$0 \longrightarrow ({}_{1}B_{\beta^{n}})^{\vee} \xrightarrow{\theta^{\vee}} Q_{0}^{\vee} \xrightarrow{\psi^{\vee}} Q_{1}^{\vee} \xrightarrow{\psi^{\vee}} \operatorname{Tr}_{B^{e}}({}_{1}B_{\beta^{n}}) \longrightarrow 0$$

of right B^e -modules, where $Q_0^{\vee} \xrightarrow{\psi^{\vee}} Q_1^{\vee} \to \operatorname{Tr}_{B^e}({}_1B_{\beta^n}) \to 0$ is the minimal projective $(B^e)^{\circ}$ -presentation of $\operatorname{Tr}_{B^e}({}_1B_{\beta^n})$. By Lemma 4.2, we have the isomorphisms

$$h_0 \colon Q_0^{\vee} \xrightarrow{\sim} \bigoplus_{i=1}^s (Be_i \otimes e_{i+n}B)^{\vee} \xrightarrow{\sim} R_0,$$
$$h_1 \colon Q_1^{\vee} \xrightarrow{\sim} \bigoplus_{i=1}^s (Be_{i+1} \otimes e_{i+n}B)^{\vee} \xrightarrow{\sim} R_1$$

of right B^e -modules. Here, note that $(h_0^{-1}(e_i \otimes e_{i+n}))(e_j \otimes e_{j+n}) = e_i \otimes e_{i+n}$ if j = i, 0 if $j \neq i$, and $h_1(u) = \sum_{m=1}^s u(e_{m+1} \otimes e_{m+n})$ for $u \in Q_1^{\vee}$. Furthermore, these isomorphisms yield the commutative diagram

of right B^e -modules, where we set $\chi := h_1 \circ \psi^{\vee} \circ h_0^{-1}$ and $\eta := h_0 \circ \theta^{\vee}$. Also, for each $f \in ({}_1B_{\beta^n})^{\vee}$, we obtain

$$\eta(f) = h_0(f \circ \theta) = \sum_{m=1}^s (f \circ \theta)(e_m \otimes e_{m+n}) = \sum_{m=1}^s f(e_m) = f(1)$$

and, for each $1 \leq j \leq s$, we get

$$\chi(e_j \otimes e_{j+n}) = h_1 \left(h_0^{-1} \left(e_j \otimes e_{j+n} \right) \circ \psi \right)$$

$$= \sum_{m=1}^s \left(h_0^{-1} \left(e_j \otimes e_{j+n} \right) \circ \psi \right) \left(e_{m+1} \otimes e_{m+n} \right)$$

$$= \sum_{m=1}^s h_0^{-1} \left(e_j \otimes e_{j+n} \right) \left(e_{m+1} \left(X \otimes 1 - 1 \otimes X \right) e_{m+n} \right)$$

$$= \sum_{m=1}^s h_0^{-1} \left(e_j \otimes e_{j+n} \right) \left(Xe_m \otimes e_{m+n} - e_{m+1} \otimes e_{m+n+1} X \right)$$

$$= e_{j+1} X \otimes e_{j+n} - e_j \otimes Xe_{j+n-1}.$$

So it is verified that (4.3) is exact and $R_0 \xrightarrow{\chi} R_1 \to \operatorname{Tr}_{B^e}({}_1B_{\beta^n}) \to 0$ is the minimal projective $(B^e)^\circ$ -presentation of $\operatorname{Tr}_{B^e}({}_1B_{\beta^n})$. Hence, the lemma is proved.

Next, we will give the minimal injective B^e -corresonation of $\tau_{B^e}({}_1B_{\beta^n}) := D \operatorname{Tr}_{B^e}({}_1B_{\beta^n})$. We define projective left B^e -modules

$$L_{0} = \bigoplus_{i=1}^{s} Be_{i} \otimes e_{i+n+2(k-1)}B, \qquad L_{1} = \bigoplus_{i=1}^{s} Be_{i+1} \otimes e_{i+n+2(k-1)}B.$$

Lemma 4.4. We have the following exact sequence of left B^e -modules:

$$(4.4) \quad 0 \longrightarrow \tau_{B^e}({}_1B_{\beta^n}) \longrightarrow L_1 \xrightarrow{\sigma} L_0 \longrightarrow \mathcal{N}_{B^e}({}_1B_{\beta^n}) \longrightarrow 0,$$

where the left B^e -homomorphism σ is given by

$$\sigma(e_{i+1} \otimes e_{i+n+2(k-1)}) = e_{i+1} (X \otimes 1 - 1 \otimes X) e_{i+n+2(k-1)} \quad \text{for } 1 \le i \le s.$$

Furthermore, $0 \to \tau_{B^e}({}_1B_{\beta^n}) \to L_1 \xrightarrow{\sigma} L_0$ is the minimal injective B^e -copresentation of $\tau_{B^e}({}_1B_{\beta^n})$.

Proof. Applying the duality $D = \text{Hom}_{K}(, K)$ to the exact sequence (4.3), we have the exact sequence

$$0 \longrightarrow \tau_{B^e}({}_1B_{\beta^n}) \longrightarrow D(R_1) \xrightarrow{D(\chi)} D(R_0) \xrightarrow{D(\eta)} \mathcal{N}_{B^e}({}_1B_{\beta^n}) \longrightarrow 0$$

of left B^e -modules, where $0 \to \tau_{B^e}({}_1B_{\beta^n}) \to D(R_1) \xrightarrow{D(\chi)} D(R_0)$ is the minimal injective B^e -copresentation of $\tau_{B^e}({}_1B_{\beta^n})$. Moreover, by Proposition 3.3, we obtain the isomorphisms

$$g_0 \colon D(R_0) \xrightarrow{\sim} \bigoplus_{i=1}^s D(e_i B \otimes Be_{i+n}) \xrightarrow{\sim} L_0,$$
$$g_1 \colon D(R_1) \xrightarrow{\sim} \bigoplus_{i=1}^s D(e_{i+1} B \otimes Be_{i+n}) \xrightarrow{\sim} L_1$$

of left B^e -modules. Here, we note that

$$g_1^{-1}\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right) = \left(e_{i+k}X^{k-1} \otimes X^{k-1}e_{i+n+k-1}\right)^*$$

holds for $1\leqslant i\leqslant s.$ Using these isomorphisms, we obtain the commutative diagram

of left B^e -modules, where we set $\sigma := g_0 \circ D(\chi) \circ g_1^{-1}$ and $\rho := D(\eta) \circ g_0^{-1}$. Since for $1 \leq i, l \leq s$ and $0 \leq p, q \leq k-1$ we get

$$\begin{split} & \left(\left(D(\chi) \circ g_{1}^{-1} \right) \left(e_{i+1} \otimes e_{i+n+2(k-1)} \right) \right) \left(e_{l} X^{p} \otimes X^{q} e_{l+n} \right) \\ &= \left(D(\chi) \circ \left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1} \right)^{*} \right) \left(e_{l} X^{p} \otimes X^{q} e_{l+n} \right) \\ &= \left(\left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1} \right)^{*} \circ \chi \right) \left(e_{l} X^{p} \otimes X^{q} e_{l+n} \right) \\ &= \left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1} \right)^{*} \left(e_{l+1} X^{p+1} \otimes X^{q} e_{l+n} - e_{l} X^{p} \otimes X^{q+1} e_{l+n-1} \right) \\ &= \begin{cases} 1 & \text{if } p = k-2, \ q = k-1 \ \text{and} \ l \equiv i+k-1 \pmod{s}, \\ -1 & \text{if } p = k-1, \ q = k-2 \ \text{and} \ l \equiv i+k \pmod{s}, \\ 0 & \text{otherwise}, \end{cases} \end{split}$$

it follows that

$$(D(\chi) \circ g_1^{-1}) (e_{i+1} \otimes e_{i+n+2(k-1)})$$

= $(e_{i+k-1}X^{k-2} \otimes X^{k-1}e_{i+n+k-1})^* - (e_{i+k}X^{k-1} \otimes X^{k-2}e_{i+n+k})^*.$

Therefore, by Proposition 3.3, for $1 \leq i \leq s$ we have

$$\sigma \left(e_{i+1} \otimes e_{i+n+2(k-1)} \right) = g_0 \left(\left(e_{i+k-1} X^{k-2} \otimes X^{k-1} e_{i+n+k-1} \right)^* - \left(e_{i+k} X^{k-1} \otimes X^{k-2} e_{i+n+k} \right)^* \right) = X e_i \otimes e_{i+n+2(k-1)} - e_{i+1} \otimes e_{i+n+2k-1} X = e_{i+1} \left(X \otimes 1 - 1 \otimes X \right) e_{i+n+2(k-1)}.$$

Hence (4.4) is an exact sequence of left B^e -modules and $0 \to \tau_{B^e}({}_1B_{\beta^n}) \to$ $L_1 \xrightarrow{\sigma} L_0$ is the minimal injective B^e -copresentation of $\tau_{B^e}({}_1B_{\beta^n})$. Therefore, the lemma is proved.

The following lemma is easily shown by Lemmas 4.1, 4.4.

Lemma 4.5. Let n be any integer with $n \ge 0$. Then, we obtain the following exact sequence of left B^e -modules:

$$0 \longrightarrow {}_{1}B_{\beta^{n+k-2}} \xrightarrow{\iota} L_{1} \xrightarrow{\sigma} L_{0} \xrightarrow{} {}_{1}B_{\beta^{n+2(k-1)}} \longrightarrow 0,$$

where ι is given by

$$\iota(e_i) = e_i \left(\sum_{j=0}^{k-1} X^j \otimes X^{k-j-1} \right) e_{i+n+k-2} \quad \text{for } 1 \leqslant i \leqslant s.$$

Furthermore, $0 \to {}_{1}B_{\beta^{n+k-2}} \xrightarrow{\iota} L_{1} \xrightarrow{\sigma} L_{0}$ is the minimal injective B^{e} -copresentation of ${}_{1}B_{\beta^{n+k-2}}$. Hence we obtain the isomorphisms of left B^{e} -modules

 $\tau_{B^e}(_1B_{\beta^n}) \simeq {}_1B_{\beta^{n+k-2}} \quad and \quad \mathcal{N}_{B^e}(_1B_{\beta^n}) \simeq {}_1B_{\beta^{n+2(k-1)}}.$

Now, we easily have the following structures of $\tau_{B^e}^i(B)$ and $\mathcal{N}_{B^e}^i(B)$ for $i \ge 0$ by induction on n.

Theorem. We have the isomorphisms of left B^e -modules

$$au_{B^e}^i(B) \simeq {}_1B_{\beta^{i(k-2)}} \quad and \quad \mathcal{N}_{B^e}^i(B) \simeq {}_1B_{\beta^{2i(k-1)}}$$

for all $i \ge 0$.

Corollary 4.6. The left B^e -module B is τ_{B^e} -periodic and \mathcal{N}_{B^e} -periodic, and the τ_{B^e} -period is

$$\begin{cases} 1 & \text{if } k = 2, \\ \frac{\operatorname{lcm}(k-2,s)}{k-2} & \text{if } k \ge 3 \end{cases}$$

and the \mathcal{N}_{B^e} -period is

$$\frac{\operatorname{lcm}(2(k-1),s)}{2(k-1)}$$

148

Proof. If k = 2, then obviously the τ_{B^e} -period of B is 1. Also, if $k \ge 3$, then since the order of β is s, the order of β^{k-2} equals $s/\gcd(k-2,s) = \operatorname{lcm}(k-2,s)/(k-2)$. Similarly the order of $\beta^{2(k-1)}$ equals $\operatorname{lcm}(2(k-1),s)/(2(k-1))$. This completes the proof.

Remark. The τ_{B^e} -period of B is given in [P2, Theorem 2].

Corollary 4.7. Let s and k be integers with $s \ge 1$ and $k \ge 2$. Then the τ_{B^e} -period of B is 1 if and only if $k \equiv 2 \pmod{s}$, and the \mathcal{N}_{B^e} -period of B is 1 if and only if $k \equiv 2 \pmod{s}$.

Appendix

In this Appendix, we will give an alternative proof of Theorem in Section 4. Throughout this Appendix, we keep the notation in Sections 3 and 4.

First we will investigate the Nakayama automorphism of the enveloping algebra $B^e := B \otimes B^\circ$ of $B = K\Gamma/(X^k)$ $(k \ge 2)$. We identify B^e with $B \otimes B$ as left B^e -modules via the isomorphism $B^e \to B \otimes B$; $x \otimes y^\circ \mapsto x \otimes y$ of left B^e -modules. Define the algebra automorphism $\nu : B^e \to B^e$ by $\beta^{1-k} \otimes \beta^{k-1} : B^e \to B^e$.

For any integer m and n with $1 \leq m, n \leq s$, by Proposition 3.3, we have the isomorphism

$$Be_m \otimes e_n B \longrightarrow D(e_{m+k-1}B \otimes Be_{n-k+1});$$

$$X^i e_m \otimes e_n X^j \longmapsto (e_{m+k-1}X^{k-i-1} \otimes X^{k-j-1}e_{n-k+1})^*$$

$$(0 \leq i, j \leq k-1)$$

of left B^e -modules. By means of these isomorphisms, we obtain the isomorphisms $\Psi: B^e \to D(B^e)$ of left B^e -modules. Then we have the following:

Lemma A.1. The map $\Psi: B^e \to {}_1D(B^e)_{\nu}$ is the isomorphism of B^e -bimodules. So ν is the Nakayama automorphism of B^e .

Proof. It suffices to show that $\Psi: B^e \to {}_1D(B^e)_{\nu}$ is the isomorphism of right B^e -modules. Since $\{e_p \otimes e_q^\circ, Xe_p \otimes e_q^\circ, e_p \otimes (e_q X)^\circ | 1 \leq p, q \leq s\}$ generates B^e as an algebra and Ψ is the isomorphism of left B^e -modules, it suffices to check that the following equations hold: $\Psi(e_p \otimes e_q) = \Psi(e_p \otimes e_q)\nu(e_p \otimes e_q^\circ), \Psi(Xe_p \otimes e_q) = \Psi(e_{p+1} \otimes e_q)\nu(Xe_p \otimes e_q^\circ), \Psi(e_p \otimes e_q X) = \Psi(e_p \otimes e_{q-1})\nu(e_p \otimes (e_q X)^\circ)$ for $p, q \ (1 \leq p, q \leq s)$.

We prove that the first equation holds. Take any $e_m X^r \otimes X^t e_n \in B^e$ $(1 \leq m, n \leq s; 0 \leq r, t \leq k-1)$. Note that $\Psi(e_p \otimes e_q) = (e_{p+k-1}X^{k-1} \otimes X^{k-1}e_{q-k+1})^*$

holds. By direct calculation, we have the equation

$$\left(\Psi(e_p \otimes e_q) \nu(e_p \otimes e_q^\circ) \right) (e_m X^r \otimes X^t e_n)$$

=
$$\begin{cases} 1 & \text{if } m \equiv p+k-1 \pmod{s}, \ n \equiv q-k+1 \pmod{s} \text{ and } r=t=k-1, \\ 0 & \text{otherwise.} \end{cases}$$

So we get $\Psi(e_p \otimes e_q)\nu(e_p \otimes e_q^\circ) = (e_{p+k-1}X^{k-1} \otimes X^{k-1}e_{q-k+1})^*$. This equals $\Psi(e_p \otimes e_q)$. So the desired equation is proved.

Next we prove the second equation holds. Note that $\Psi(e_{p+1} \otimes e_q) = (e_{p+k}X^{k-1} \otimes X^{k-1}e_{q-k+1})^*$ holds. Take any $e_mX^r \otimes X^te_n \in B^e$ $(1 \leq m, n \leq s; 0 \leq r, t \leq k-1)$. Then, by direct calculation, we have

$$\left(\Psi(e_{p+1} \otimes e_q) \nu(Xe_p \otimes e_q^\circ) \right) (e_m X^r \otimes X^t e_n)$$

$$= \begin{cases} 1 & \text{if } m \equiv p+k-1 \pmod{s}, \ n \equiv q-k+1 \pmod{s}, \\ r = k-2 \text{ and } t = k-1, \\ 0 & \text{otherwise.} \end{cases}$$

Hence we have $\Psi(e_{p+1} \otimes e_q) \nu(Xe_p \otimes e_q^\circ) = (e_{p+k}X^{k-2} \otimes X^{k-1}e_{q-k+1})^*$. Clearly this equals $\Psi(Xe_p \otimes e_q)$. So the desired equation is proved.

Similarly, it is shown that the third equation holds. So we get the isomorphism $\Psi: B^e \to {}_1D(B^e)_{\nu}$ of left B^e -modules. Hence, by [Y, Theorem 2.4.1], ν is the Nakayama automorphism of B^e .

There exists the isomorphism $\gamma = \{\gamma_X | X \in \text{mod}(B^e)\}$ of the functors between $D(B^e) \otimes_{B^e} - \text{and } \mathcal{N}_{B^e}$, where $\gamma_X : D(B^e) \otimes_{B^e} X \to \mathcal{N}_{B^e}(X)$ is given by $\gamma_X(f \otimes x)(\phi) = (f \circ \phi)(x)$ for $f \in D(B^e)$, $x \in X$ and $\phi \in X^{\vee}$. Moreover by Lemma A.1 the functor $D(B^e) \otimes_{B^e} -$ is isomorphic to the functor $\nu(\)$, where the functor $\nu(\)$: mod $(B^e) \to \text{mod}(B^e)$ is given as follows: For any $M \in \text{mod}(B^e)$, νM has the underlying K-vector space M, and the left operation * of B^e is given by $x * m = \nu(x)m$ for $x \in B^e$ and $m \in \nu M$. And, for any M, $N \in \text{mod}(B^e)$ and any $f \in \text{Hom}_{B^e}(M, N)$, the left B^e homomorphism $\nu f : \nu M \to \nu N$ is given by $\nu f(m) = f(m)$ for $m \in \nu M$. Hence \mathcal{N}_{B^e} is isomorphic to $\nu(\)$ (see [G, Section 2.1], [Y, Section 2.4]). Then we have the following:

Lemma A.2. Let *n* be any integer. Then we have an isomorphism $_{\nu}(_{1}B_{\beta^{n}}) \simeq _{1}B_{\beta^{n+2(k-1)}}$ of left B^{e} -modules. Hence $\mathcal{N}_{B^{e}}(_{1}B_{\beta^{n}}) \simeq _{1}B_{\beta^{n+2(k-1)}}$ as left B^{e} -modules.

Proof. Let $\xi : {}_{\nu}({}_{1}B_{\beta^{n}}) \to {}_{1}B_{\beta^{n+2(k-1)}}$ be the map given by $\xi(x) = \beta^{k-1}(x)$ for $x \in {}_{\nu}({}_{1}B_{\beta^{n}})$. Then it is easy to check that ξ is an isomorphism of left B^{e} -modules.

It is shown in [EH] that $\Omega_{B^e}^{2i}(B) \simeq {}_1B_{\beta^{-ik}}$ as left B^e -modules for each $i \ge 0$. From this fact and Lemma A.2, we have an alternative proof of Theorem:

Alternative proof of Theorem. By Lemma A.2, we easily obtain the isomorphism $\mathcal{N}_{B^e}^i(B) \simeq {}_{1}B_{\beta^{2i(k-1)}}$ of left B^e -modules for each $i \ge 0$. Furthermore, we get the isomorphism $\tau_{B^e}^i(B) \simeq (\mathcal{N}_{B^e}\Omega_{B^e}^2)^i(B) \simeq \mathcal{N}_{B^e}^i\Omega_{B^e}^{2i}(B) \simeq \mathcal{N}_{B^e}^i(1B_{\beta^{-ik}}) \simeq {}_{1}B_{\beta^{i(k-2)}}$ of left B^e -modules.

Acknowledgment

I would like to thank my supervisor, Professor Katsunori Sanada, for many valuable discussions and valuable comments. Also I would like to thank the referee for the valuable suggestions and comments.

References

- [ARS] M. Auslander, I. Reiten and S. Smalø, Representation theory of artin algebras, Cambridge studies in advanced mathematics 36, Cambridge University Press, 1995.
- [EH] K. Erdmann and T. Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_n , Forum Math. **11** (1999), 177–201.
- [F] T. Furuya, On an algebra associated with a circular quiver and the periodic projective bimodule resolution, Tsukuba J. Math. 29 (2005), 247–258.
- [G] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, SLMN 831, Springer, Berlin (1980), 1–71.
- [H] D. Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin (ed. M.-P. Malliavin), Lecture Notes in Math., 1404 (Springer, New York, 1989), 108–126.
- [M] S. MacLane, *Homology*, Springer-Verlag, Berlin, Heidelberg, New York, 1963.
- [P1] Z. Pogorzały, A new invariant of stable equivalences of Morita type, Proc. Amer. Math. Soc. 131 (2003), 343–349.
- [P2] Z. Pogorzały, On Galois coverings of the enveloping algebras of self-injective Nakayama algebras, Communications in Algebra, 31(6) (2003), 2985–2999.
- [Y] K. Yamagata, Frobenius algebras, Handbook of algebra, Vol. 1, North-Holland, Amsterdam, (1996), 841–887.

Takahiko FURUYA

Department of Mathematics, Tokyo University of Science, Wakamiya 26, Shinjuku, Tokyo 162-0827, Japan *E-mail*: furuya@minserver.ma.kagu.sut.ac.jp