On the periodicity of the Auslander-Reiten translation and the Nakayama functor for the enveloping algebra of self-injective Nakayama algebras

Takahiko Furuya

(Received August 1, 2005)

Abstract

In this paper, we describe the structures of the left B^{e}-modules $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)$ for $i \geqslant 0$, where B is a certain finite dimensional selfinjective Nakayama algebra, B^{e} is the enveloping algebra of $B, \tau_{B^{e}}$ is the Auslander-Reiten translation in the category $\bmod \left(B^{e}\right)$ of finitely generated left B^{e}-modules and $\mathcal{N}_{B^{e}}: \bmod \left(B^{e}\right) \rightarrow \bmod \left(B^{e}\right)$ is the Nakayama functor. Moreover, we compute the $\tau_{B^{e}}$-period and the $\mathcal{N}_{B^{e}}$-period of B.

AMS 2000 Mathematics Subject Classification. 16D50, 16E05.
Key words and phrases. Auslander-Reiten translation, Nakayama functor, selfinjective Nakayama algebra.

§1. Introduction

Let A be a finite dimensional self-injective algebra over a field K, and let A° be the opposite algebra of A. We denote the category of finitely generated left A-modules by $\bmod (A)$ and the Auslander-Reiten translation in $\bmod (A)$ by τ_{A}. The Nakayama functor $\mathcal{N}_{A}: \bmod (A) \rightarrow \bmod (A)$ is defined by the composition $D()^{\vee}$, where ()$^{\vee}$ is the contravariant functor $\operatorname{Hom}_{A}(, A): \bmod (A) \rightarrow$ $\bmod \left(A^{\circ}\right)$ and D is the duality $\operatorname{Hom}_{K}(, K): \bmod \left(A^{\circ}\right) \rightarrow \bmod (A)$. In this paper, we deal with τ_{A} and \mathcal{N}_{A} in the case where A is the enveloping algebra $B^{e}:=B \otimes_{K} B^{\circ}$ of a certain self-injective Nakayama algebra B.

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices $e_{1}, e_{2}, \ldots, e_{s}$ and s arrows $a_{1}, a_{2}, \ldots, a_{s}$ such that a_{i} starts at e_{i} and ends at e_{i+1}. So $a_{i}=e_{i+1} a_{i} e_{i}$ holds for all $1 \leqslant i \leqslant s$ in the path algebra $K \Gamma$, where we regard the subscripts i of e_{i} modulo s. Denote the sum of all arrows of
Γ by $X: X=a_{1}+a_{2}+\cdots+a_{s} \in K \Gamma$. If K is an algebraically closed field, then it is known that a self-injective Nakayama algebra over K which is basic, indecomposable and nonisomorphic to K is of the form $B:=K \Gamma /\left(X^{k}\right)$ where $k \geqslant 2$ (see $[\mathrm{EH}]$). And, in $[\mathrm{EH}]$ this algebra is denoted by B_{s}^{k}. In [P2], Pogorzaly computes the $\tau_{B^{e}}$-period of the left B^{e}-module B by means of the Galois covering of B^{e}. In this paper, we determine the structure of the left B^{e}-modules $\mathcal{N}_{B^{e}}^{i}(B)$ as well as the $\tau_{B^{e}}^{i}(B)$ for $i \geqslant 0$ by using the structure of syzygy module $\Omega_{B^{e}}^{2}(B)$ given in $[\mathrm{EH}, \mathrm{F}]$, and hence we compute the $\tau_{B^{e}}$-period and the $\mathcal{N}_{B^{e-}}$ period of B.

In Section 2, as preliminaries, we describe the definitions and some properties of τ_{A} and \mathcal{N}_{A} for any finite dimensional self-injective algebra A. Moreover, for any finite dimensional algebra C, any algebra automorphism $\alpha: C \rightarrow C$ and $M \in \bmod \left(C^{e}\right)$, we give the definition of the left C^{e}-module ${ }_{1} M_{\alpha}$. In Section 3 , we consider the dual module $D\left(e_{i} B \otimes_{K} B e_{j}\right)(1 \leqslant i, j \leqslant s)$ for the indecomposable projective right B^{e}-module $e_{i} B \otimes_{K} B e_{j}$ (Proposition 3.3). In Section 4, we give a minimal injective B^{e}-copresentation of $\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$ for some algebra automorphism $\beta: B \rightarrow B$ and any integer n with $n \geqslant 0$, and hence we describe the structures of $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)(i \geqslant 0)$ (Theorem). Moreover, we compute the $\tau_{B^{e}}$-period and the $\mathcal{N}_{B^{e}-\text { period of }} B$ (Corollary 4.6). Finally, as Appendix, we give an alternative proof of Theorem in Section 4 by means of the Nakayama automorphism ν of B^{e}.

For general facts on algebras we refer to [ARS]. Throughout this paper, we will denote \otimes_{K} by \otimes.

§2. Preliminaries

Let A be any finite dimensional self-injective algebra over a field K. We denote the contravariant functor $\operatorname{Hom}_{A}(, A): \bmod (A) \rightarrow \bmod \left(A^{\circ}\right)$ by ()$^{\vee}$ and the duality $\operatorname{Hom}_{K}(, K): \bmod \left(A^{\circ}\right) \rightarrow \bmod (A)$ by D. Since A is a self-injective algebra, ()$^{\vee}: \bmod (A) \rightarrow \bmod \left(A^{\circ}\right)$ is a duality. So the Nakayama functor $\mathcal{N}_{A}:=D()^{\vee}: \bmod (A) \rightarrow \bmod (A)$ is an equivalence of the categories.

Take any $M \in \bmod (A)$ and fix a minimal projective A-presentation $P_{1} \xrightarrow{f_{1}}$ $P_{0} \xrightarrow{f_{0}} M \rightarrow 0$ of M. We define a left A-module $\Omega_{A}(M):=\operatorname{Ker} f_{0}$ and we put $\Omega_{A}^{0}(M):=M$ and $\Omega_{A}^{i}(M):=\Omega_{A}\left(\Omega_{A}^{i-1}(M)\right)$ for each $i \geqslant 1$. Then we have the exact sequence

$$
0 \longrightarrow \Omega^{2}(M) \longrightarrow P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} M \longrightarrow 0
$$

Also, we define a A°-module $\operatorname{Tr}_{A}(M):=$ Coker f_{1}^{\vee}, which is called the transpose of M. Then we obtain the following exact sequence of left A°-modules:

$$
0 \longrightarrow M^{\vee} \xrightarrow{f_{0}^{\vee}} P_{0}^{\vee} \xrightarrow{f_{1}^{\vee}} P_{1}^{\vee} \longrightarrow \operatorname{Tr}_{A}(M) \longrightarrow 0
$$

where $P_{0}^{\vee} \xrightarrow{f_{1}^{\vee}} P_{1}^{\vee} \rightarrow \operatorname{Tr}_{A}(M) \rightarrow 0$ is a minimal projective A°-presentation of $\operatorname{Tr}_{A}(M)$. Furthermore, we define a left A-module $\tau_{A}(M):=D \operatorname{Tr}_{A}(M)$, which is called the Auslander-Reiten translation. Then we get the following exact sequence of left A-modules:

$$
0 \longrightarrow \tau_{A}(M) \longrightarrow \mathcal{N}_{A}\left(P_{1}\right) \xrightarrow{\mathcal{N}_{A}\left(f_{1}\right)} \mathcal{N}_{A}\left(P_{0}\right) \xrightarrow{\mathcal{N}_{A}\left(f_{0}\right)} \mathcal{N}_{A}(M) \longrightarrow 0,
$$

where $0 \rightarrow \tau_{A}(M) \rightarrow \mathcal{N}_{A}\left(P_{1}\right) \xrightarrow{\mathcal{N}_{A}\left(f_{1}\right)} \mathcal{N}_{A}\left(P_{0}\right)$ is a minimal injective A-copresentation. Here, since \mathcal{N}_{A} is an equivalence, we easily obtain isomorphisms $\tau_{A}(M) \simeq \Omega_{A}^{2} \mathcal{N}_{A}(M) \simeq \mathcal{N}_{A} \Omega_{A}^{2}(M)$ of left A-modules.

For each $M \in \bmod (A)$, we put $\tau_{A}^{0}(M):=M$ and $\tau_{A}^{i}(M):=\tau_{A}\left(\tau_{A}^{i-1}(M)\right)$ for $i \geqslant 1$. A left A-module N is τ_{A}-periodic if $\tau_{A}^{m}(N) \simeq N$ for some positive integer m. Then the τ_{A}-period of N is the smallest positive integer n with $\tau_{A}^{n}(N) \simeq N$. Similarly, for each $M \in \bmod (A)$, we define $\mathcal{N}_{A}^{0}(M):=M$ and $\mathcal{N}_{A}^{i}(M):=\mathcal{N}_{A}\left(\mathcal{N}_{A}^{i-1}(M)\right)$ for $i \geqslant 1$. A left A-module N said to be $\mathcal{N}_{A^{-}}$ periodic if $\mathcal{N}_{A}^{m}(N) \simeq N$ for some positive integer m. Then we call the smallest positive integer n with $\mathcal{N}_{A}^{n}(N) \simeq N$ the \mathcal{N}_{A}-period of N.

Let C be any finite dimensional algebra over a field $K, \alpha: C \rightarrow C$ an algebra automorphism, and M a left C^{e}-module, equivalently C-bimodule. Then we will define the left C^{e}-module ${ }_{1} M_{\alpha}$ as follows: ${ }_{1} M_{\alpha}$ has the underlying K space M, and the action of C on M from the left is the usual one. The action * of C on M from the right is defined as $m * b=m \alpha(b)$ for $m \in{ }_{1} M_{\alpha}$ and $b \in C$. Moreover, for each C^{e}-homomorphism $f: M \rightarrow N$, we define a C^{e} homomorphism ${ }_{1} f_{\alpha}:{ }_{1} M_{\alpha} \rightarrow{ }_{1} N_{\alpha}$ by ${ }_{1} f_{\alpha}(m)=f(m)$ for each $m \in{ }_{1} M_{\alpha}$. Then, by setting $F_{\alpha}(X):={ }_{1} X_{\alpha}$ for each object X in $\bmod \left(C^{e}\right)$ and $F_{\alpha}(f):={ }_{1} f_{\alpha}$ for each morphism f in $\bmod \left(C^{e}\right)$, we have the functor $F_{\alpha}: \bmod \left(C^{e}\right) \rightarrow \bmod \left(C^{e}\right)$. It is easy to check that $F_{\alpha^{-1}} F_{\alpha}=F_{\alpha} F_{\alpha^{-1}}=1_{\bmod \left(C^{e}\right)}$ holds. So F_{α} is an isomorphism of the categories. In particular, if $\psi: P \rightarrow M$ is a projective cover in $\bmod \left(C^{e}\right)$, then $F_{\alpha}(\psi)={ }_{1} \psi_{\alpha}:{ }_{1} P_{\alpha} \rightarrow{ }_{1} M_{\alpha}$ is also a projective cover in $\bmod \left(C^{e}\right)$.

§3. A self-injective Nakayama algebra and its enveloping algebra

Let K be a field, s a positive integer and Γ the cyclic quiver with s vertices e_{1}, \ldots, e_{s} and s arrows a_{1}, \ldots, a_{s}. Denote the sum of all arrows in the path algebra $K \Gamma$ by $X: X=a_{1}+\cdots+a_{s}$. Then $X^{j} e_{i}=e_{i+j} X^{j}=a_{i+j-1} \cdots a_{i}$, the path of length j for $j \geqslant 1$, where we regard the subscripts i of e_{i} modulo s.

We denote the algebra $K \Gamma /\left(X^{k}\right)$ by B, where k is a positive integer with $k \geqslant 2$. Note that the set $\left\{X^{j} e_{i} \mid 1 \leqslant i \leqslant s, 0 \leqslant j \leqslant k-1\right\}$ is a K-basis of B, so
$\operatorname{dim}_{K} B=k s$. In this section, we consider the dual module $D\left(e_{i} B \otimes B e_{j}\right)(1 \leqslant$ $i, j \leqslant s)$ of the indecomposable projective right B^{e}-module $e_{i} B \otimes B e_{j}$.

First we consider the dual modules $D\left(B e_{m}\right)$ and $D\left(e_{m} B\right)$ for each $m(1 \leqslant$ $m \leqslant s$). Clearly the set $\left\{X^{j} e_{m} \mid 0 \leqslant j \leqslant k-1\right\}$ gives a K-basis of $B e_{m}$ and the set $\left\{e_{m} X^{j} \mid 0 \leqslant j \leqslant k-1\right\}$ gives a K-basis of $e_{m} B$. We take the dual basis $\left\{\left(X^{j} e_{m}\right)^{*} \mid 0 \leqslant j \leqslant k-1\right\}$ of $D\left(B e_{m}\right)$, that is, each $\left(X^{j} e_{m}\right)^{*} \in D\left(B e_{m}\right)(0 \leqslant$ $j \leqslant k-1)$ satisfies that $\left(\left(X^{j} e_{m}\right)^{*}\right)\left(X^{q} e_{m}\right)=1$ if $q=j, 0$ if $q \neq j$. Similarly, we take the dual basis $\left\{\left(e_{m} X^{j}\right)^{*} \mid 0 \leqslant j \leqslant k-1\right\}$ of $D\left(e_{m} B\right)$.

Lemma 3.1. Let j and m, n be integers with $0 \leqslant j \leqslant k-1$ and $1 \leqslant m, n \leqslant s$. Then, for $\left(X^{j} e_{m}\right)^{*} \in D\left(B e_{m}\right)$, we have

$$
\begin{aligned}
& \left(X^{j} e_{m}\right)^{*} X= \begin{cases}0 & \text { if } j=0, \\
\left(X^{j-1} e_{m}\right)^{*} & \text { if } 1 \leqslant j \leqslant k-1,\end{cases} \\
& \left(X^{j} e_{m}\right)^{*} e_{n}= \begin{cases}0 & \text { if } n \not \equiv m+j \\
\left(X^{j} e_{m}\right)^{*} & \text { if } n \equiv m+j \\
(\bmod s),\end{cases}
\end{aligned}
$$

Moreover, for $\left(e_{m} X^{j}\right)^{*} \in D\left(e_{m} B\right)$, we obtain

$$
\begin{aligned}
X\left(e_{m} X^{j}\right)^{*} & = \begin{cases}0 & \text { if } j=0, \\
\left(e_{m} X^{j-1}\right)^{*} & \text { if } 1 \leqslant j \leqslant k-1,\end{cases} \\
e_{n}\left(e_{m} X^{j}\right)^{*} & = \begin{cases}0 & \text { if } n \not \equiv m+j \quad(\bmod s), \\
\left(e_{m} X^{j}\right)^{*} & \text { if } n \equiv m+j \quad(\bmod s) .\end{cases}
\end{aligned}
$$

Proof. We will show that the first equation holds. For $0 \leqslant q \leqslant k-2$, we obtain $\left(\left(e_{m}\right)^{*} X\right)\left(X^{q} e_{m}\right)=\left(e_{m}\right)^{*}\left(X^{q+1} e_{m}\right)=0$. Also, we have $\left(\left(e_{m}\right)^{*} X\right)\left(X^{k-1} e_{m}\right)$ $=\left(e_{m}\right)^{*}\left(X^{k} e_{m}\right)=\left(e_{m}\right)^{*}(0)=0$. So we get $\left(\left(e_{m}\right)^{*} X\right)\left(X^{q} e_{m}\right)=0$ for all $q(0 \leqslant q \leqslant k-1)$, which implies $\left(e_{m}\right)^{*} X=0$. If $1 \leqslant j \leqslant k-1$, then we have $\left(\left(X^{j} e_{m}\right)^{*} X\right)\left(X^{j-1} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{j} e_{m}\right)=1$. Moreover, for $0 \leqslant q \leqslant$ $k-1$ with $q \neq j-1$, we have $\left(\left(X^{j} e_{m}\right)^{*} X\right)\left(X^{q} e_{p}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{q+1} e_{p}\right)=0$. Therefore we obtain $\left(X^{j} e_{m}\right)^{*} X=\left(X^{j-1} e_{m}\right)^{*}$.

Next, we will verify that the second equation holds. First we deal with the case $n \not \equiv m+j(\bmod s)$. Then, for $0 \leqslant p \leqslant k-1$ with $m \equiv n-$ $p(\bmod s)$, we have $e_{m}=e_{n-p}$ and $p \neq j$. So we obtain $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{p} e_{m}\right)=$ $\left(X^{j} e_{m}\right)^{*}\left(e_{n} X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{p} e_{n-p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{p} e_{m}\right)=0$. Moreover, for $0 \leqslant p \leqslant k-1$ with $m \not \equiv n-p(\bmod s)$, we have $e_{m} \neq e_{n-p}$. So we obtain $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(e_{n} X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{p} e_{n-p} e_{m}\right)=$ $\left(X^{j} e_{m}\right)^{*}(0)=0$. Hence we get $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{p} e_{m}\right)=0$ for all $p(0 \leqslant$ $p \leqslant k-1)$, that is, $\left(X^{j} e_{m}\right)^{*} e_{n}=0$. Next we deal with the case $n \equiv m+$ $j(\bmod s)$. Then we have $e_{n}=e_{m+j}$. So, it follows that $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{j} e_{m}\right)=$ $\left(X^{j} e_{m}\right)^{*}\left(e_{m+j} X^{j} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{j} e_{m}\right)=1$. Furthermore, for $0 \leqslant p \leqslant k-1$
with $p \neq j$ and $p \equiv j(\bmod s)$, we clearly have $e_{n}=e_{p+m}$. Thus we obtain $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(e_{p+m} X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{p} e_{m}\right)=0$. Also, for $0 \leqslant p \leqslant k-1$ with $p \not \equiv j(\bmod s)$, we get $e_{m} \neq e_{n-p}$. So we obtain $\left(\left(X^{j} e_{m}\right)^{*} e_{n}\right)\left(X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(e_{n} X^{p} e_{m}\right)=\left(X^{j} e_{m}\right)^{*}\left(X^{p} e_{n-p} e_{m}\right)=$ $\left(X^{j} e_{m}\right)^{*}(0)=0$. Therefore we have $\left(X^{j} e_{m}\right)^{*} e_{n}=\left(X^{j} e_{m}\right)^{*}$.

The rest of the lemma is shown in a similar way above.
Since B is a self-injective algebra, we get $D\left(B e_{m}\right) \simeq e_{t} B$ as right B-modules for some $1 \leqslant t \leqslant s$ and $D\left(e_{m} B\right) \simeq B e_{r}$ as left B-modules for some $1 \leqslant r \leqslant s$. In fact, we have the following lemma.

Lemma 3.2. Let m be an integer with $1 \leqslant m \leqslant s$. Then the following homomorphism of K-spaces is the isomorphism of right B-modules:

$$
\Phi: D\left(B e_{m}\right) \longrightarrow e_{m+k-1} B ; \quad\left(X^{j} e_{m}\right)^{*} \longmapsto e_{m+k-1} X^{k-j-1} \quad(0 \leqslant j \leqslant k-1) .
$$

Also, the following homomorphism of K-spaces is the isomorphism of left B modules:

$$
\Psi: D\left(e_{m} B\right) \longrightarrow B e_{m-k+1} ; \quad\left(e_{m} X^{j}\right)^{*} \longmapsto X^{k-j-1} e_{m-k+1} \quad(0 \leqslant j \leqslant k-1) .
$$

Proof. Clearly Φ is an isomorphism of K-spaces. We prove that Φ is a homomorphism of right B-modules. Since B is generated by $e_{i}(1 \leqslant i \leqslant$ $s)$ and X, it suffices to verify that $\Phi\left(\left(X^{j} e_{m}\right)^{*} X\right)=\Phi\left(\left(X^{j} e_{m}\right)^{*}\right) X$ and $\Phi\left(\left(e_{m} X\right)^{*} e_{n}\right)=\Phi\left(\left(e_{m} X^{j}\right)^{*}\right) e_{n}$ hold for $0 \leqslant j \leqslant k-1$ and $1 \leqslant n \leqslant s$. We will show that the first equation holds. If $j=0$, then by Lemma 3.1 the left hand side equals $\Phi(0)=0$ and the right hand side equals $e_{m-k-1} X^{k-1} X=$ $e_{m-k-1} X^{k}=0$. If $1 \leqslant j \leqslant k-1$, then by Lemma 3.1 the left hand side equals $\Phi\left(\left(X^{j-1} e_{m}\right)^{*}\right)=e_{m-k-1} X^{k-j}$ and the right hand side equals $e_{m+k-1} X^{k-j-1} X=e_{m+k-1} X^{k-j}$. Next we will show the second equation holds. If $n \not \equiv m+j(\bmod s)$, then by Lemma 3.1 the left hand side equals $\Phi(0)=0$. On the other hand, since $e_{n} \neq e_{m+j}$, by Lemma 3.1 the right hand side equals $\left(e_{m+k-1} X^{k-j-1}\right) e_{n}=X^{k-j-1} e_{m+j} e_{n}=0$. If $n \equiv m+j(\bmod s)$, by Lemma 3.1 the left hand side equals $\Phi\left(\left(X^{j} e_{m}\right)^{*}\right)=e_{m+k-1} X^{k-j-1}=$ $X^{k-j-1} e_{m+j}$. On the other hand, since $e_{n}=e_{m+j}$, by Lemma 3.1 the right hand side equals $\left(e_{m+k-1} X^{k-j-1}\right) e_{n}=X^{k-j-1} e_{m+j} e_{n}=X^{k-j-1} e_{m+j}$.

Similarly, it is shown by Lemma 3.1 that Ψ is an isomorphism of left B modules.

It is known that the set $\left\{e_{m} \otimes e_{n}^{\circ} \mid 1 \leqslant m, n \leqslant s\right\}$ is a complete set of the primitive orthogonal idempotents of B^{e} (see $[\mathrm{H}]$). Therefore $B e_{m} \otimes$ $e_{n} B\left(\simeq B^{e}\left(e_{m} \otimes e_{n}^{\circ}\right)\right)$ is an indecomposable projective left B^{e}-module and $e_{m} B \otimes B e_{n}\left(\simeq\left(e_{m} \otimes e_{n}^{\circ}\right) B^{e}\right)$ is an indecomposable projective right B^{e}-module for each $1 \leqslant m, n \leqslant s$. Since B is a basic self-injective algebra, B^{e} is also a
basic self-injective algebra (cf. [P1]). Hence $D\left(e_{m} B \otimes B e_{n}\right) \simeq B e_{t} \otimes e_{r} B$ for some $1 \leqslant t, r \leqslant s$. In fact, we have the following lemma.

Proposition 3.3. Let m, n be integers with $1 \leqslant m, n \leqslant s$. Then, we have the following isomorphism of left B^{e}-modules:

$$
\begin{aligned}
& D\left(e_{m} B \otimes B e_{n}\right) \longrightarrow B e_{m-k+1} \otimes e_{n+k-1} B ; \\
& \left(e_{m} X^{i} \otimes X^{j} e_{n}\right)^{*} \longmapsto X^{k-i-1} e_{m-k+1} \otimes e_{n+k-1} X^{k-j-1} \quad(0 \leqslant i, j \leqslant k-1) .
\end{aligned}
$$

Proof. By [M, Chapter V, Proposition 4.3], we get the isomorphism F:D($\left.e_{m} B\right)$ $\otimes D\left(B e_{n}\right) \rightarrow D\left(e_{m} B \otimes B e_{n}\right)$ of K-vector spaces given by $F(f \otimes g)(x \otimes y)=$ $f(x) g(y)$ for $f \in D\left(e_{m} B\right), g \in D\left(B e_{n}\right), x \in e_{m} B$ and $y \in B e_{n}$. We will show that F is an isomorphism of left B^{e}-modules. For $a \otimes b^{\circ} \in B^{e}(a, b \in B), f \in$ $D\left(e_{m} B\right), g \in D\left(B e_{n}\right), x \in e_{m} B$ and $y \in B e_{n}$, we get $F\left(\left(a \otimes b^{\circ}\right)(f \otimes g)\right)(x \otimes$ $y)=F((a f) \otimes(g b))(x \otimes y)=((a f)(x))((g b)(y))=f(x a) g(b y)=F(f \otimes g)(x a \otimes$ $b y)=F(f \otimes g)\left((x \otimes y)\left(a \otimes b^{\circ}\right)\right)=\left(\left(a \otimes b^{\circ}\right) F(f \otimes g)\right)(x \otimes y)$. This implies that $F\left(\left(a \otimes b^{\circ}\right)(f \otimes g)\right)=\left(a \otimes b^{\circ}\right) F(f \otimes g)$ holds for all $a \otimes b^{\circ} \in B^{e}$ and $f \otimes g \in D\left(e_{m} B\right) \otimes D\left(B e_{n}\right)$.

Now, it is easy to check that F is an isomorphism of K-spaces given by $F\left(\left(e_{m} X^{i}\right)^{*} \otimes\left(X^{j} e_{n}\right)^{*}\right)=\left(e_{m} X^{i} \otimes X^{j} e_{n}\right)^{*}$ for each $0 \leqslant i, j \leqslant k-1$. So $F^{-1}: D\left(e_{m} B \otimes B e_{n}\right) \rightarrow D\left(e_{m} B\right) \otimes D\left(B e_{n}\right)$ is an isomorphism of K spaces given by $F^{-1}\left(\left(e_{m} X^{i} \otimes X^{j} e_{n}\right)^{*}\right)=\left(e_{m} X^{i}\right)^{*} \otimes\left(X^{j} e_{n}\right)^{*}$. Furthermore, by Lemma 3.2, we easily obtain the isomorphism $G: D\left(e_{m} B\right) \otimes D\left(B e_{n}\right) \rightarrow$ $B e_{m-k+1} \otimes e_{n+k-1} B$ of left B^{e}-modules given by $G\left(\left(e_{m} X^{i}\right)^{*} \otimes\left(X^{j} e_{n}\right)^{*}\right)=$ $X^{k-i-1} e_{m-k+1} \otimes e_{n+k-1} X^{k-j-1}$. Consequently, we get the isomorphism

$$
\begin{aligned}
G F^{-1}: & D\left(e_{m} B \otimes B e_{n}\right) \longrightarrow B e_{m-k+1} \otimes e_{n+k-1} B \\
& \left(e_{m} X^{i} \otimes X^{j} e_{n}\right)^{*} \longmapsto X^{k-i-1} e_{m-k+1} \otimes e_{n+k-1} X^{k-j-1} \\
& (0 \leqslant i, j \leqslant k-1)
\end{aligned}
$$

of left B^{e}-modules.

§4. The modules $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)$

In this section, we describe the structures of the left B^{e}-modules $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)$ for $i \geqslant 0$, and we compute the $\tau_{B^{e}}$-period and the $\mathcal{N}_{B^{e}}$-period of the K-algebra $B=K \Gamma /\left(X^{k}\right)(k \geqslant 2)$.

We define the projective left B^{e}-modules

$$
P_{0}=\bigoplus_{i=1}^{s} B e_{i} \otimes e_{i} B, \quad P_{1}=\bigoplus_{i=1}^{s} B e_{i+1} \otimes e_{i} B
$$

Then we obtain the following exact sequence of B^{e}-modules ([EH, F$]$):

$$
\begin{equation*}
0 \longrightarrow{ }_{1} B_{\beta^{-k}} \xrightarrow{\kappa} P_{1} \xrightarrow{\phi} P_{0} \xrightarrow{\pi} B \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

where left B^{e}-homomorphisms ϕ and κ are given by

$$
\begin{aligned}
\phi\left(e_{i+1} \otimes e_{i}\right) & =e_{i+1}(X \otimes 1-1 \otimes X) e_{i} \\
\kappa\left(e_{i}\right) & =e_{i}\left(\sum_{j=0}^{k-1} X^{j} \otimes X^{k-j-1}\right) e_{i-k} \quad \text { for } 1 \leqslant i \leqslant s
\end{aligned}
$$

and π is the multiplication, and $P_{1} \xrightarrow{\phi} P_{0} \xrightarrow{\pi} B \rightarrow 0$ is a minimal projective B^{e}-presentation of B. We define an algebra automorphism $\beta: B \rightarrow B$ by $e_{i} \mapsto e_{i-1}, a_{i} \mapsto a_{i-1}(1 \leqslant i \leqslant s)$. Here, we note that the order of β equals s.

Let n be any integer with $n \geqslant 0$. First, we give a minimal projective B^{e}-presentation of ${ }_{1} B_{\beta^{n}}$. We define projective left B^{e}-modules

$$
Q_{0}=\bigoplus_{i=1}^{s} B e_{i} \otimes e_{i+n} B, \quad Q_{1}=\bigoplus_{i=1}^{s} B e_{i+1} \otimes e_{i+n} B
$$

Lemma 4.1. We have the following exact sequence of left B^{e}-modules:

$$
\begin{equation*}
0 \longrightarrow{ }_{1} B_{\beta^{n-k}} \xrightarrow{\rho} Q_{1} \xrightarrow{\psi} Q_{0} \xrightarrow{\theta}{ }_{1} B_{\beta^{n}} \longrightarrow 0 \tag{4.2}
\end{equation*}
$$

where the left B^{e}-homomorphisms θ, ψ and ρ are given by

$$
\theta\left(e_{i} \otimes e_{i+n}\right)=e_{i}, \quad \psi\left(e_{i+1} \otimes e_{i+n}\right)=e_{i+1}(X \otimes 1-1 \otimes X) e_{i+n}
$$

and

$$
\rho\left(e_{i}\right)=e_{i}\left(\sum_{l=0}^{k-1} X^{l} \otimes X^{k-l-1}\right) e_{i+n-k} \quad \text { for } 1 \leqslant i \leqslant s
$$

Moreover, $Q_{1} \xrightarrow{\psi} Q_{0} \xrightarrow{\theta}{ }_{1} B_{\beta^{n}} \rightarrow 0$ is the minimal projective B^{e}-presentation of ${ }_{1} B_{\beta^{n}}$.

Proof. Applying the functor $F_{\beta^{n}}$ to the exact sequence (4.1) we have the following exact sequence:

$$
0 \longrightarrow{ }_{1} B_{\beta^{n-k}} \xrightarrow{1_{\beta^{n}}}{ }_{1}\left(P_{1}\right)_{\beta^{n}} \xrightarrow{1_{\beta^{n}}}{ }_{1}\left(P_{0}\right)_{\beta^{n}} \xrightarrow{1 \pi_{\beta^{n}}}{ }_{1} B_{\beta^{n}} \longrightarrow 0,
$$

where ${ }_{1}\left(P_{1}\right)_{\beta^{n}} \xrightarrow{1 \phi_{\beta^{n}}}{ }_{1}\left(P_{0}\right)_{\beta^{n}} \xrightarrow{1 \pi_{\beta^{n}}}{ }_{1} B_{\beta^{n}} \rightarrow 0$ is the minimal projective $B^{e}{ }_{-}$ presentation of ${ }_{1} B_{\beta^{n}}$.

Let $g_{0}:{ }_{1}\left(P_{0}\right)_{\beta^{n}} \rightarrow Q_{0}$ and $g_{1}:{ }_{1}\left(P_{1}\right)_{\beta^{n}} \rightarrow Q_{1}$ be B^{e}-homomorphisms given by the followings respectively:

$$
g_{0}\left(e_{j} \otimes e_{j}\right)=e_{j} \otimes e_{j+n}, \quad g_{1}\left(e_{j+1} \otimes e_{j}\right)=e_{j+1} \otimes e_{j+n} \quad \text { for } 1 \leqslant j \leqslant s
$$

Then it is easy to see that g_{0} and g_{1} are isomorphisms of left B^{e}-modules. Also, by setting $\theta:={ }_{1} \pi_{\beta^{n}} \circ g_{0}^{-1}, \psi:=g_{0} \circ{ }_{1} \phi_{\beta^{n}} \circ g_{1}^{-1}$ and $\rho:=g_{1} \circ{ }_{1} \kappa_{\beta^{n}}$, we get the commutative diagram

of left B^{e}-modules. Furthermore, for each $j(1 \leqslant j \leqslant s)$ we get

$$
\begin{aligned}
\theta\left(e_{j} \otimes e_{j+n}\right) & ={ }_{1} \pi_{\beta^{n}}\left(e_{j} \otimes e_{j}\right)=e_{j}, \\
\psi\left(e_{j+1} \otimes e_{j+n}\right) & =\left(g_{0} \circ{ }_{1} \phi_{\beta^{n}}\right)\left(e_{j+1} \otimes e_{j}\right) \\
& =g_{0}\left(e_{j+1}(X \otimes 1-1 \otimes X) e_{j}\right) \\
& =e_{j+1}(X \otimes 1-1 \otimes X) e_{j+n},
\end{aligned}
$$

and

$$
\begin{aligned}
\rho\left(e_{j}\right) & =g_{1}\left(e_{j}\left(\sum_{l=0}^{k-1} X^{l} \otimes X^{k-l-1}\right) e_{j-k}\right) \\
& =e_{j}\left(\sum_{l=0}^{k-1} X^{l} \otimes X^{k-l-1}\right) e_{j+n-k} .
\end{aligned}
$$

Hence (4.2) is exact and $Q_{1} \xrightarrow{\psi} Q_{0} \xrightarrow{\theta}{ }_{1} B_{\beta^{n}} \rightarrow 0$ is the minimal projective B^{e}-presentation of ${ }_{1} B_{\beta^{n}}$. So the lemma is proved.

Now, consider the right B^{e}-module $\left(B e_{m} \otimes e_{n} B\right)^{\vee}:=\operatorname{Hom}_{B^{e}}\left(B e_{m} \otimes e_{n} B, B^{e}\right)$ for $1 \leqslant m, n \leqslant s$. We identify B^{e} with $B \otimes B$ as left B^{e}-modules via the isomorphism $B^{e} \rightarrow B \otimes B ; x \otimes y^{\circ} \mapsto x \otimes y$ of left B^{e}-modules. Then we easily obtain the following.

Lemma 4.2. Let m and n be integers such that $1 \leqslant m, n \leqslant s$. Then the map $\Theta:\left(B e_{m} \otimes e_{n} B\right)^{\vee} \rightarrow e_{m} B \otimes B e_{n}$ given by $\Theta(u)=u\left(e_{m} \otimes e_{n}\right)(u \in$ $\left.\left(B e_{m} \otimes e_{n} B\right)^{\vee}\right)$ is an isomorphism of right B^{e}-modules.

Proof. By [ARS, Chapter I, Proposition 4.9], Θ is an isomorphism of K-vector spaces. Then it is easy to see that Θ is an isomorphism of right B^{e}-modules.

Next we will give a minimal projective $\left(B^{e}\right)^{\circ}$-presentation of $\operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. We define the projective right B^{e}-modules

$$
R_{0}=\bigoplus_{i=1}^{s} e_{i} B \otimes B e_{i+n}, \quad R_{1}=\bigoplus_{i=1}^{s} e_{i+1} B \otimes B e_{i+n}
$$

Lemma 4.3. We have the following exact sequences of right B^{e}-modules:

$$
\begin{equation*}
0 \longrightarrow\left({ }_{1} B_{\beta^{n}}\right)^{\vee} \xrightarrow{\eta} R_{0} \xrightarrow{\chi} R_{1} \longrightarrow \operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \longrightarrow 0, \tag{4.3}
\end{equation*}
$$

where the B^{e}-homomorphisms η and χ are given by

$$
\begin{aligned}
\eta(f) & =f(1) \quad \text { for } f \in\left({ }_{1} B_{\beta^{n}}\right)^{\vee}, \\
\chi\left(e_{j} \otimes e_{j+n}\right) & =e_{j+1} X \otimes e_{j+n}-e_{j} \otimes X e_{j+n-1} \quad \text { for } 1 \leqslant j \leqslant s .
\end{aligned}
$$

Moreover, $R_{0} \xrightarrow{\chi} R_{1} \rightarrow \operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow 0$ is the minimal projective $\left(B^{e}\right)^{\circ}$ presentation of $\operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$.
Proof. Applying the duality ()$^{\vee}=\operatorname{Hom}_{B^{e}}\left(, B^{e}\right)$ to (4.2), we have the exact sequence

$$
\left.0 \longrightarrow\left({ }_{1} B_{\beta^{n}}\right)^{\vee} \xrightarrow{\theta^{\vee}} Q_{0}^{\vee} \xrightarrow{\psi^{\vee}} Q_{1}^{\vee} \longrightarrow \operatorname{Tr}_{B^{e}(1} B_{\beta^{n}}\right) \longrightarrow 0
$$

of right B^{e}-modules, where $Q_{0}^{\vee} \xrightarrow{\psi^{\vee}} Q_{1}^{\vee} \rightarrow \operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow 0$ is the minimal projective $\left(B^{e}\right)^{\circ}$-presentation of $\operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. By Lemma 4.2, we have the isomorphisms

$$
\begin{aligned}
& h_{0}: Q_{0}^{\vee} \xrightarrow{\sim} \bigoplus_{i=1}^{s}\left(B e_{i} \otimes e_{i+n} B\right)^{\vee} \xrightarrow{\sim} R_{0}, \\
& h_{1}: Q_{1}^{\vee} \xrightarrow{\sim} \bigoplus_{i=1}^{s}\left(B e_{i+1} \otimes e_{i+n} B\right)^{\vee} \xrightarrow{\sim} R_{1} .
\end{aligned}
$$

of right B^{e}-modules. Here, note that $\left(h_{0}^{-1}\left(e_{i} \otimes e_{i+n}\right)\right)\left(e_{j} \otimes e_{j+n}\right)=e_{i} \otimes e_{i+n}$ if $j=i, 0$ if $j \neq i$, and $h_{1}(u)=\sum_{m=1}^{s} u\left(e_{m+1} \otimes e_{m+n}\right)$ for $u \in Q_{1}^{\vee}$. Furthermore, these isomorphisms yield the commutative diagram

of right B^{e}-modules, where we set $\chi:=h_{1} \circ \psi^{\vee} \circ h_{0}^{-1}$ and $\eta:=h_{0} \circ \theta^{\vee}$. Also, for each $f \in\left({ }_{1} B_{\beta^{n}}\right)^{\vee}$, we obtain

$$
\eta(f)=h_{0}(f \circ \theta)=\sum_{m=1}^{s}(f \circ \theta)\left(e_{m} \otimes e_{m+n}\right)=\sum_{m=1}^{s} f\left(e_{m}\right)=f(1)
$$

and, for each $1 \leqslant j \leqslant s$, we get

$$
\begin{aligned}
\chi\left(e_{j} \otimes e_{j+n}\right) & =h_{1}\left(h_{0}^{-1}\left(e_{j} \otimes e_{j+n}\right) \circ \psi\right) \\
& =\sum_{m=1}^{s}\left(h_{0}^{-1}\left(e_{j} \otimes e_{j+n}\right) \circ \psi\right)\left(e_{m+1} \otimes e_{m+n}\right) \\
& =\sum_{m=1}^{s} h_{0}^{-1}\left(e_{j} \otimes e_{j+n}\right)\left(e_{m+1}(X \otimes 1-1 \otimes X) e_{m+n}\right) \\
& =\sum_{m=1}^{s} h_{0}^{-1}\left(e_{j} \otimes e_{j+n}\right)\left(X e_{m} \otimes e_{m+n}-e_{m+1} \otimes e_{m+n+1} X\right) \\
& =e_{j+1} X \otimes e_{j+n}-e_{j} \otimes X e_{j+n-1}
\end{aligned}
$$

So it is verified that (4.3) is exact and $R_{0} \xrightarrow{\chi} R_{1} \rightarrow \operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow 0$ is the minimal projective $\left(B^{e}\right)^{\circ}$-presentation of $\operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. Hence, the lemma is proved.

Next, we will give the minimal injective B^{e}-copresentation of $\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right):=$ $D \operatorname{Tr}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. We define projective left B^{e}-modules

$$
L_{0}=\bigoplus_{i=1}^{s} B e_{i} \otimes e_{i+n+2(k-1)} B, \quad L_{1}=\bigoplus_{i=1}^{s} B e_{i+1} \otimes e_{i+n+2(k-1)} B
$$

Lemma 4.4. We have the following exact sequence of left B^{e}-modules:

$$
\begin{equation*}
0 \longrightarrow \tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \longrightarrow L_{1} \xrightarrow{\sigma} L_{0} \longrightarrow \mathcal{N}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \longrightarrow 0 \tag{4.4}
\end{equation*}
$$

where the left B^{e}-homomorphism σ is given by

$$
\sigma\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right)=e_{i+1}(X \otimes 1-1 \otimes X) e_{i+n+2(k-1)} \quad \text { for } 1 \leqslant i \leqslant s
$$

Furthermore, $0 \rightarrow \tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow L_{1} \xrightarrow{\sigma} L_{0}$ is the minimal injective B^{e}-copresentation of $\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$.

Proof. Applying the duality $D=\operatorname{Hom}_{K}(, K)$ to the exact sequence (4.3), we have the exact sequence

$$
0 \longrightarrow \tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \longrightarrow D\left(R_{1}\right) \xrightarrow{D(\chi)} D\left(R_{0}\right) \xrightarrow{D(\eta)} \mathcal{N}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \longrightarrow 0
$$

of left B^{e}-modules, where $0 \rightarrow \tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow D\left(R_{1}\right) \xrightarrow{D(\chi)} D\left(R_{0}\right)$ is the minimal injective B^{e}-copresentation of $\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. Moreover, by Proposition 3.3, we obtain the isomorphisms

$$
\begin{aligned}
& g_{0}: D\left(R_{0}\right) \xrightarrow{\sim} \bigoplus_{i=1}^{s} D\left(e_{i} B \otimes B e_{i+n}\right) \xrightarrow{\sim} L_{0} \\
& g_{1}: D\left(R_{1}\right) \xrightarrow{\sim} \bigoplus_{i=1}^{s} D\left(e_{i+1} B \otimes B e_{i+n}\right) \xrightarrow{\sim} L_{1}
\end{aligned}
$$

of left B^{e}-modules. Here, we note that

$$
g_{1}^{-1}\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right)=\left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1}\right)^{*}
$$

holds for $1 \leqslant i \leqslant s$. Using these isomorphisms, we obtain the commutative diagram

of left B^{e}-modules, where we set $\sigma:=g_{0} \circ D(\chi) \circ g_{1}^{-1}$ and $\rho:=D(\eta) \circ g_{0}^{-1}$.
Since for $1 \leqslant i, l \leqslant s$ and $0 \leqslant p, q \leqslant k-1$ we get

$$
\begin{aligned}
& \left(\left(D(\chi) \circ g_{1}^{-1}\right)\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right)\right)\left(e_{l} X^{p} \otimes X^{q} e_{l+n}\right) \\
& =\left(D(\chi) \circ\left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1}\right)^{*}\right)\left(e_{l} X^{p} \otimes X^{q} e_{l+n}\right) \\
& =\left(\left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1}\right)^{*} \circ \chi\right)\left(e_{l} X^{p} \otimes X^{q} e_{l+n}\right) \\
& =\left(e_{i+k} X^{k-1} \otimes X^{k-1} e_{i+n+k-1}\right)^{*}\left(e_{l+1} X^{p+1} \otimes X^{q} e_{l+n}-e_{l} X^{p} \otimes X^{q+1} e_{l+n-1}\right) \\
& =\left\{\begin{array}{cl}
1 & \text { if } p=k-2, q=k-1 \text { and } l \equiv i+k-1 \quad(\bmod s), \\
-1 & \text { if } p=k-1, q=k-2 \text { and } l \equiv i+k \quad(\bmod s), \\
0 & \text { otherwise },
\end{array}\right.
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \left(D(\chi) \circ g_{1}^{-1}\right)\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right) \\
& =\left(e_{i+k-1} X^{k-2} \otimes X^{k-1} e_{i+n+k-1}\right)^{*}-\left(e_{i+k} X^{k-1} \otimes X^{k-2} e_{i+n+k}\right)^{*}
\end{aligned}
$$

Therefore, by Proposition 3.3, for $1 \leqslant i \leqslant s$ we have

$$
\begin{aligned}
& \sigma\left(e_{i+1} \otimes e_{i+n+2(k-1)}\right) \\
& =g_{0}\left(\left(e_{i+k-1} X^{k-2} \otimes X^{k-1} e_{i+n+k-1}\right)^{*}-\left(e_{i+k} X^{k-1} \otimes X^{k-2} e_{i+n+k}\right)^{*}\right) \\
& =X e_{i} \otimes e_{i+n+2(k-1)}-e_{i+1} \otimes e_{i+n+2 k-1} X \\
& =e_{i+1}(X \otimes 1-1 \otimes X) e_{i+n+2(k-1)} .
\end{aligned}
$$

Hence (4.4) is an exact sequence of left B^{e}-modules and $\left.0 \rightarrow \tau_{B^{e}(1} B_{\beta^{n}}\right) \rightarrow$ $L_{1} \xrightarrow{\sigma} L_{0}$ is the minimal injective B^{e}-copresentation of $\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right)$. Therefore, the lemma is proved.

The following lemma is easily shown by Lemmas 4.1, 4.4.
Lemma 4.5. Let n be any integer with $n \geqslant 0$. Then, we obtain the following exact sequence of left B^{e}-modules:

$$
0 \longrightarrow{ }_{1} B_{\beta^{n+k-2}} \xrightarrow{\iota} L_{1} \xrightarrow{\sigma} L_{0} \longrightarrow{ }_{1} B_{\beta^{n+2(k-1)}} \longrightarrow 0
$$

where \llcorner is given by

$$
\iota\left(e_{i}\right)=e_{i}\left(\sum_{j=0}^{k-1} X^{j} \otimes X^{k-j-1}\right) e_{i+n+k-2} \quad \text { for } 1 \leqslant i \leqslant s
$$

Furthermore, $0 \rightarrow{ }_{1} B_{\beta^{n+k-2}} \xrightarrow{\iota} L_{1} \xrightarrow{\sigma} L_{0}$ is the minimal injective B^{e}-copresentation of ${ }_{1} B_{\beta^{n+k-2}}$. Hence we obtain the isomorphisms of left B^{e}-modules

$$
\tau_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \simeq{ }_{1} B_{\beta^{n+k-2}} \quad \text { and } \quad \mathcal{N}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \simeq{ }_{1} B_{\beta^{n+2(k-1)}} .
$$

Now, we easily have the following structures of $\tau_{B^{e}}^{i}(B)$ and $\mathcal{N}_{B^{e}}^{i}(B)$ for $i \geqslant 0$ by induction on n.

Theorem. We have the isomorphisms of left B^{e}-modules

$$
\tau_{B^{e}}^{i}(B) \simeq{ }_{1} B_{\beta^{i}(k-2)} \quad \text { and } \quad \mathcal{N}_{B^{e}}^{i}(B) \simeq{ }_{1} B_{\beta^{2 i(k-1)}}
$$

for all $i \geqslant 0$.
Corollary 4.6. The left B^{e}-module B is $\tau_{B^{e}}$-periodic and $\mathcal{N}_{B^{e}}$-periodic, and the $\tau_{B^{e}}$-period is

$$
\left\{\begin{array}{cl}
1 & \text { if } k=2 \\
\frac{\operatorname{lcm}(k-2, s)}{k-2} & \text { if } k \geqslant 3
\end{array}\right.
$$

and the $\mathcal{N}_{B^{e}}$-period is

$$
\frac{\operatorname{lcm}(2(k-1), s)}{2(k-1)}
$$

Proof. If $k=2$, then obviously the $\tau_{B^{e}}$-period of B is 1 . Also, if $k \geqslant 3$, then since the order of β is s, the order of β^{k-2} equals $s / \operatorname{gcd}(k-2, s)=\operatorname{lcm}(k-$ $2, s) /(k-2)$. Similarly the order of $\beta^{2(k-1)}$ equals $\operatorname{lcm}(2(k-1), s) /(2(k-1))$. This completes the proof.

Remark. The $\tau_{B^{e}}$-period of B is given in [P2, Theorem 2].
Corollary 4.7. Let s and k be integers with $s \geqslant 1$ and $k \geqslant 2$. Then the $\tau_{B^{e}}$-period of B is 1 if and only if $k \equiv 2(\bmod s)$, and the $\mathcal{N}_{B^{e}}-$ period of B is 1 if and only if $2(k-1) \equiv 0(\bmod s)$.

Appendix

In this Appendix, we will give an alternative proof of Theorem in Section 4. Throughout this Appendix, we keep the notation in Sections 3 and 4.

First we will investigate the Nakayama automorphism of the enveloping algebra $B^{e}:=B \otimes B^{\circ}$ of $B=K \Gamma /\left(X^{k}\right)(k \geqslant 2)$. We identify B^{e} with $B \otimes B$ as left B^{e}-modules via the isomorphism $B^{e} \rightarrow B \otimes B ; x \otimes y^{\circ} \mapsto x \otimes y$ of left B^{e}-modules. Define the algebra automorphism $\nu: B^{e} \rightarrow B^{e}$ by $\beta^{1-k} \otimes \beta^{k-1}$: $B^{e} \rightarrow B^{e}$.

For any integer m and n with $1 \leqslant m, n \leqslant s$, by Proposition 3.3, we have the isomorphism

$$
\begin{aligned}
B e_{m} \otimes e_{n} B \longrightarrow D\left(e_{m+k-1} B \otimes B e_{n-k+1}\right) ; & \\
X^{i} e_{m} \otimes e_{n} X^{j} \longmapsto\left(e_{m+k-1} X^{k-i-1} \otimes\right. & \left.X^{k-j-1} e_{n-k+1}\right)^{*} \\
& (0 \leqslant i, j \leqslant k-1)
\end{aligned}
$$

of left B^{e}-modules. By means of these isomorphisms, we obtain the isomorphisms $\Psi: B^{e} \rightarrow D\left(B^{e}\right)$ of left B^{e}-modules. Then we have the following:

Lemma A.1. The map $\Psi: B^{e} \rightarrow_{1} D\left(B^{e}\right)_{\nu}$ is the isomorphism of B^{e}-bimodules. So ν is the Nakayama automorphism of B^{e}.

Proof. It suffices to show that $\Psi: B^{e} \rightarrow{ }_{1} D\left(B^{e}\right)_{\nu}$ is the isomorphism of right B^{e}-modules. Since $\left\{e_{p} \otimes e_{q}^{\circ}, X e_{p} \otimes e_{q}^{\circ}, e_{p} \otimes\left(e_{q} X\right)^{\circ} \mid 1 \leqslant p, q \leqslant s\right\}$ generates B^{e} as an algebra and Ψ is the isomorphism of left B^{e}-modules, it suffices to check that the following equations hold: $\Psi\left(e_{p} \otimes e_{q}\right)=\Psi\left(e_{p} \otimes e_{q}\right) \nu\left(e_{p} \otimes e_{q}^{0}\right), \Psi\left(X e_{p} \otimes e_{q}\right)=$ $\Psi\left(e_{p+1} \otimes e_{q}\right) \nu\left(X e_{p} \otimes e_{q}^{\circ}\right), \Psi\left(e_{p} \otimes e_{q} X\right)=\Psi\left(e_{p} \otimes e_{q-1}\right) \nu\left(e_{p} \otimes\left(e_{q} X\right)^{\circ}\right)$ for $p, q(1 \leqslant p, q \leqslant s)$.

We prove that the first equation holds. Take any $e_{m} X^{r} \otimes X^{t} e_{n} \in B^{e}(1 \leqslant$ $m, n \leqslant s ; 0 \leqslant r, t \leqslant k-1)$. Note that $\Psi\left(e_{p} \otimes e_{q}\right)=\left(e_{p+k-1} X^{k-1} \otimes X^{k-1} e_{q-k+1}\right)^{*}$
holds. By direct calculation, we have the equation
$\left(\Psi\left(e_{p} \otimes e_{q}\right) \nu\left(e_{p} \otimes e_{q}^{\circ}\right)\right)\left(e_{m} X^{r} \otimes X^{t} e_{n}\right)$
$= \begin{cases}1 & \text { if } m \equiv p+k-1(\bmod s), n \equiv q-k+1(\bmod s) \text { and } r=t=k-1, \\ 0 & \text { otherwise. }\end{cases}$
So we get $\Psi\left(e_{p} \otimes e_{q}\right) \nu\left(e_{p} \otimes e_{q}^{\circ}\right)=\left(e_{p+k-1} X^{k-1} \otimes X^{k-1} e_{q-k+1}\right)^{*}$. This equals $\Psi\left(e_{p} \otimes e_{q}\right)$. So the desired equation is proved.

Next we prove the second equation holds. Note that $\Psi\left(e_{p+1} \otimes e_{q}\right)=$ $\left(e_{p+k} X^{k-1} \otimes X^{k-1} e_{q-k+1}\right)^{*}$ holds. Take any $e_{m} X^{r} \otimes X^{t} e_{n} \in B^{e}(1 \leqslant m, n \leqslant$ $s ; 0 \leqslant r, t \leqslant k-1)$. Then, by direct calculation, we have

$$
\begin{aligned}
& \left(\Psi\left(e_{p+1} \otimes e_{q}\right) \nu\left(X e_{p} \otimes e_{q}^{\circ}\right)\left(e_{m} X^{r} \otimes X^{t} e_{n}\right)\right. \\
& = \begin{cases}1 & \text { if } m \equiv p+k-1(\bmod s), n \equiv q-k+1(\bmod s), \\
& r=k-2 \text { and } t=k-1, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence we have $\Psi\left(e_{p+1} \otimes e_{q}\right) \nu\left(X e_{p} \otimes e_{q}^{0}\right)=\left(e_{p+k} X^{k-2} \otimes X^{k-1} e_{q-k+1}\right)^{*}$. Clearly this equals $\Psi\left(X e_{p} \otimes e_{q}\right)$. So the desired equation is proved.

Similarly, it is shown that the third equation holds. So we get the isomorphism $\Psi: B^{e} \rightarrow{ }_{1} D\left(B^{e}\right)_{\nu}$ of left B^{e}-modules. Hence, by [Y, Theorem 2.4.1], ν is the Nakayama automorphism of B^{e}.

There exists the isomorphism $\gamma=\left\{\gamma_{X} \mid X \in \bmod \left(B^{e}\right)\right\}$ of the functors between $D\left(B^{e}\right) \otimes_{B^{e}}-$ and $\mathcal{N}_{B^{e}}$, where $\gamma_{X}: D\left(B^{e}\right) \otimes_{B^{e}} X \rightarrow \mathcal{N}_{B^{e}}(X)$ is given by $\gamma_{X}(f \otimes x)(\phi)=(f \circ \phi)(x)$ for $f \in D\left(B^{e}\right), x \in X$ and $\phi \in X^{\vee}$. Moreover by Lemma A. 1 the functor $D\left(B^{e}\right) \otimes_{B^{e}}$ - is isomorphic to the functor $\nu()$, where the functor ${ }_{\nu}(): \bmod \left(B^{e}\right) \rightarrow \bmod \left(B^{e}\right)$ is given as follows: For any $M \in \bmod \left(B^{e}\right),{ }_{\nu} M$ has the underlying K-vector space M, and the left operation $*$ of B^{e} is given by $x * m=\nu(x) m$ for $x \in B^{e}$ and $m \in{ }_{\nu} M$. And, for any $M, N \in \bmod \left(B^{e}\right)$ and any $f \in \operatorname{Hom}_{B^{e}}(M, N)$, the left $B^{e}-$ homomorphism ${ }_{\nu} f:{ }_{\nu} M \rightarrow{ }_{\nu} N$ is given by ${ }_{\nu} f(m)=f(m)$ for $m \in{ }_{\nu} M$. Hence $\mathcal{N}_{B^{e}}$ is isomorphic to ${ }_{\nu}()$ (see [G, Section 2.1], [Y, Section 2.4]). Then we have the following:

Lemma A.2. Let n be any integer. Then we have an isomorphism ${ }_{\nu}\left({ }_{1} B_{\beta^{n}}\right) \simeq$ ${ }_{1} B_{\beta^{n+2(k-1)}}$ of left B^{e}-modules. Hence $\mathcal{N}_{B^{e}}\left({ }_{1} B_{\beta^{n}}\right) \simeq{ }_{1} B_{\beta^{n+2(k-1)}}$ as left B^{e} modules.

Proof. Let $\xi:{ }_{\nu}\left({ }_{1} B_{\beta^{n}}\right) \rightarrow{ }_{1} B_{\beta^{n+2(k-1)}}$ be the map given by $\xi(x)=\beta^{k-1}(x)$ for $x \in{ }_{\nu}\left({ }_{1} B_{\beta^{n}}\right)$. Then it is easy to check that ξ is an isomorphism of left B^{e}-modules.

It is shown in $[\mathrm{EH}]$ that $\Omega_{B^{e}}^{2 i}(B) \simeq{ }_{1} B_{\beta^{-i k}}$ as left B^{e}-modules for each $i \geqslant 0$. From this fact and Lemma A.2, we have an alternative proof of Theorem:

Alternative proof of Theorem. By Lemma A.2, we easily obtain the isomorphism $\mathcal{N}_{B^{e}}^{i}(B) \simeq{ }_{1} B_{\beta^{2 i(k-1)}}$ of left B^{e}-modules for each $i \geqslant 0$. Furthermore, we get the isomorphism $\tau_{B^{e}}^{i}(B) \simeq\left(\mathcal{N}_{B^{e}} \Omega_{B^{e}}^{2}\right)^{i}(B) \simeq \mathcal{N}_{B^{e}}^{i} \Omega_{B^{e}}^{2 i}(B) \simeq$ $\mathcal{N}_{B^{e}}^{i}\left({ }_{1} B_{\beta^{-i k}}\right) \simeq{ }_{1} B_{\beta^{i(k-2)}}$ of left B^{e}-modules.

Acknowledgment

I would like to thank my supervisor, Professor Katsunori Sanada, for many valuable discussions and valuable comments. Also I would like to thank the referee for the valuable suggestions and comments.

References

[ARS] M. Auslander, I. Reiten and S. Smalø, Representation theory of artin algebras, Cambridge studies in advanced mathematics 36, Cambridge University Press, 1995.
[EH] K. Erdmann and T. Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_{n}, Forum Math. 11 (1999), 177-201.
[F] T. Furuya, On an algebra associated with a circular quiver and the periodic projective bimodule resolution, Tsukuba J. Math. 29 (2005), 247-258.
[G] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, SLMN 831, Springer, Berlin (1980), 1-71.
[H] D. Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin (ed. M.-P. Malliavin), Lecture Notes in Math., 1404 (Springer, New York, 1989), 108-126.
[M] S. MacLane, Homology, Springer-Verlag, Berlin, Heidelberg, New York, 1963.
[P1] Z. Pogorzały, A new invariant of stable equivalences of Morita type, Proc. Amer. Math. Soc. 131 (2003), 343-349.
[P2] Z. Pogorzały, On Galois coverings of the enveloping algebras of self-injective Nakayama algebras, Communications in Algebra, 31(6) (2003), 2985-2999.
[Y] K. Yamagata, Frobenius algebras, Handbook of algebra, Vol. 1, North-Holland, Amsterdam, (1996), 841-887.

Takahiko FURUYA
Department of Mathematics, Tokyo University of Science,
Wakamiya 26, Shinjuku, Tokyo 162-0827, Japan
E-mail: furuya@minserver.ma.kagu.sut.ac.jp

