Edge-connectivity and the orientation of a graph

P. Katerinis and N. Tsikopoulos

(Received May 6, 2004)

Abstract. Let G be a k-edge-connected graph and let L denote the subset of all vertices having odd degree in G. For every subset $K = \{u_1, u_2, \ldots, u_k\}$ of L with $|K| \leq \frac{|L|}{2}$, and for every function h defined on K having the property that $h(u_i) \in \left\{ \left\lceil \frac{d_G(u_i)}{2} \right\rceil, \left\lfloor \frac{d_G(u_i)}{2} \right\rfloor \right\}$ for all $u_i \in K$, there exists an orientation D of G such that $d_D^+(x) = h(x)$ when $x \in K$ and $\left\lfloor \frac{d_G(x)}{2} \right\rfloor \leq d_D^+(x) \leq \left\lceil \frac{d_G(x)}{2} \right\rceil$ when $x \in V(G) - K$.

AMS 2000 Mathematics Subject Classification. 05C99.

Key words and phrases. Graph, connectivity, orientation.

§1. Introduction

All graphs considered are simple and finite. We refer the reader to [1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree $d_G(u)$ of a vertex u in G is the number of edges of G incident with u. For any subset S of vertices of G, we define the neighbourhood of S in G to be the set of all vertices adjacent to vertices in S; this set is denoted by $N_G(S)$. If $S \subseteq V(G)$, the set V(G) - S will be denoted by \overline{S} . The subgraph of G whose vertex set is S and whose edge set is the set of those edges of G that have both ends in S is called the subgraph of G induced by S and will be denoted by G[S].

If S and T are disjoint subsets of vertices of G, we write $E_G(S,T)$ and $e_G(S,T)$ for the set and the number respectively of the edges of G joining S to T. If e is an edge of G having u and v as end-vertices, it will be denoted by uv. The edge-connectivity k'(G) of G is the minimum number of edges whose removal from G results in a disconnected graph or a trivial graph. We say that G is k-edge-connected if $k'(G) \ge k$.

If we replace the edges of G by arcs, we will get a digraph D which is called an orientation of G. An edge e of G is said to be subdivided when it is deleted and replaced by a path of length two connecting its ends. Note that the internal vertex of this path is a new vertex. If the edges of a walk W in G are distinct, W is called a trail. A closed trail that traverses every edge of G is called an Euler trail. We will say that G is Eulerian if it contains an Euler trail. Let f(x) and g(x) be integer valued functions on the vertex set V(G) such that $0 \le g(x) \le f(x)$ for each vertex $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f)-factor of G if $g(x) \le d_F(x) \le f(x)$ for each vertex $x \in V(G)$.

Let D be a digraph. The indegree $d_D^-(u)$ of a vertex u in D is the number of arcs with head u, and the outdegree $d_D^+(u)$ of u is the number of arcs with tail u.

The following Proposition appears in many textbooks on Graph Theory.

Proposition 1. For every graph G, there exists an orientation D such that

$$\left\lfloor \frac{d_G(x)}{2} \right\rfloor \le d_D^+(x) \le \left\lceil \frac{d_G(x)}{2} \right\rceil \quad for \ all \ x \in V(G).$$

Proof. We first assume that G is a connected graph. Let $L = \{v_1, v_2, \ldots, v_{2r}\}$ be the set of vertices of G, which have odd degree and let G^* be the graph obtained from G by adding the independent edges $v_1v_2, v_3v_4, \ldots, v_{2r-1}v_{2r}$. Since all the vertices of G^* have clearly even degree in G^* , G^* has a closed Eulerian trail T^* [2]. We follow T^* and we orient the edges of G^* in the same direction as that of the Eulerian trail. The above orientation give us a digraph D^* such that

$$\frac{d_{G^*}(x)}{2} = d_{D^*}^+(x) = d_{D^*}^-(x) \text{ for every vertex } x \text{ of } D^*.$$

Now we delete from D^* the arcs arising from the orientation of the edges $v_1v_2, \ldots, v_{2r-1}v_{2r}$. The resulting digraph D is clearly an orientation of G having the following property,

$$\frac{d_G(x)}{2} = d_D^+(x) = d_D^-(x) \text{ when } x \in V(G) - L$$

and

$$|d_D^+(x) - d_D^-(x)| = 1$$
 when $x \in L$.

If G is a disconnected graph, we will get a proof by applying the same arguments to every component of G.

In the following theorem which is the main result of this paper we prove that if the edge-connectivity of G is sufficiently high then G has an orientation D having the property mentioned in Proposition 1 and additionally some of the vertices of odd degree can have the prescribed outdegrees in D. **Theorem 1.** Let G be a k-edge-connected graph and L the set of all vertices with degree odd in G.

For every subset $K = \{u_1, u_2, \dots, u_k\}$ of L with $|K| \leq \frac{|L|}{2}$, and for every function h defined on K having the property that $h(u_i) \in \left\{ \left\lceil \frac{d_G(u_i)}{2} \right\rceil \right\}$, $\left\lfloor \frac{d_G(u_i)}{2} \right\rfloor \right\}$ for all $u_i \in K$, there exists an orientation D of G such that $d_D^+(x) = h(x)$ when $x \in K$ and $\left\lfloor \frac{d_G(x)}{2} \right\rfloor \leq d_D^+(x) \leq \left\lceil \frac{d_G(x)}{2} \right\rceil$ when $x \in V(G) - K$.

§2. Proof of Theorem 1

For the proof of Theorem 1, we will use the following Lemmas.

Lemma 1 ([3]). A bipartite graph G has a (g, f)-factor if and only if for every set $S \subseteq V(G)$,

$$\sum_{x\in\overline{S}}\max\{0,g(x)-d_{G-S}(x)\}\leq \sum_{x\in S}f(x).$$

Lemma 2. Let G be a graph and let $f : V(G) \to Z^+$ and $g : V(G) \to Z^+$ be functions such that $g(x) \leq f(x)$. We subdivide every edge of G and define f and g, to be both 1 for the new vertices. The resulting graph G^* has a (g, f)-factor if and only if G has an orientation D such that $g(x) \leq d_D^+(x) \leq$ f(x) for every $x \in V(D)$.

Proof. Suppose first that G^* has a (g, f)-factor F. Clearly every edge of G^* has an end-vertex in V(G) and the other in $V(G^*) - V(G)$. Define S to be the set of edges belonging to F and $S' = E(G^*) - E(F)$. We orient the elements of S in the following way: the tail of every arc belongs to V(G) and the head belongs to $V(G^*) - V(G)$. We also orient the elements of S' as follows: the tail of every arc belongs to V(G) and the head belongs to $V(G^*) - V(G)$. We also orient the elements of S' as follows: the tail of every arc belongs to $V(G^*) - V(G)$ and the head belongs to V(G). By considering such an orientation of G^* , we get a digraph D^* having the following properties:

$$d_{D^*}^+(x) = 1$$
 when $x \in V(G^*) - V(G)$ and
 $g(x) \le d_{D^*}^+(x) = d_F(x) \le f(x)$ when $x \in V(G)$.

Now we apply the following procedure to every vertex of $V(G^*) - V(G)$. For $u \in V(G^*) - V(G)$, let a_1 be the arc of D^* having u as a tail and let a_2 be the arc having u as a head. Let v_1 also be the tail of a_2 and v_2 the head of a_1 .

We delete u, a_1 , a_2 from D^* and we add an arc having v_1 as a tail and v_2 as a head.

The resulting digraph D is an orientation of G satisfying $g(x) \le d_{D^*}^+(x) = d_D^+(x) \le f(x)$ for every $x \in V(D)$.

By reversing the argument we can prove easily that if G has an orientation D such that $g(x) \leq d_D^+(x) \leq f(x)$ for all $x \in V(D)$, then G^* has a (g, f)-factor.

For the proof of Lemma 2, we used ideas and techniques mentioned in [4].

Proof of Theorem 1.

Let G^* be the graph obtained from G by subdividing its edges. By Lemma 2, G will have an orientation D if and only if G^* has a (g, f)-factor having the following properties:

$$g(x) = f(x) = h(x) \text{ for every } x \in K;$$

$$g(x) = \left\lfloor \frac{d_G(x)}{2} \right\rfloor, f(x) = \left\lceil \frac{d_G(x)}{2} \right\rceil \text{ for every } x \in V(G) - K;$$

and g(x) = f(x) = 1 for every $x \in V(G^*) - V(G) = R$ (We note here that R consists of all the inserted vertices of degree 2).

Suppose that G^* has no (g, f)-factor having the above properties. Clearly G^* is a bipartite graph with bipartition (X, Y) where X = V(G) and $Y = V(G^*) - V(G) = R$. Then by Lemma 1, there exists $S \subseteq V(G^*)$ such that

(2.1)
$$\sum_{x \in \overline{S}} \max \left\{ 0, g(x) - d_{G^* - S}(x) \right\} > \sum_{x \in S} f(x).$$

Define

$$S \cap Y = S_y, \qquad S \cap X = S_x, \\\overline{S} \cap Y = \overline{S}_y, \qquad \overline{S} \cap X = \overline{S}_x, \\S_{y_i} = \{u \in S_y || N_{G^*}(u) \cap S_x| = i\} \\\overline{S}_{y_i} = \{u \in \overline{S}_y || N_{G^*}(u) \cap \overline{S}_x| = i\} \\K_S = K \cap S_x, \quad \text{and} \qquad K_{\overline{S}} = K \cap \overline{S}_x.$$

We assume that S is minimal with respect to (2.1). We will prove that $S_{y_2} = \emptyset$ and $S_{y_1} = \emptyset$.

Suppose that $S_{y_2} \neq \emptyset$ and let $v \in S_{y_2}$. Define $S' = S - \{v\}$. Then

$$\sum_{x \in \overline{S}'} \max \left\{ 0, g(x) - d_{G^* - S'}(x) \right\} > \sum_{x \in S'} f(x)$$

since

$$\sum_{x \in S'} f(x) = \sum_{x \in S} f(x) - 1$$

and

$$\sum_{x \in \overline{S}'} \max\left\{0, g(x) - d_{G^* - S'}(x)\right\} = \sum_{x \in \overline{S}} \max\left\{0, g(x) - d_{G^* - S}(x)\right\} + 1.$$

This contradicts the fact S is minimal with respect to (2.1).

Similarly suppose that $S_{y_1} \neq \emptyset$ and let $v \in S_{y_1}$. Define $S' = S - \{v\}$. Then

$$\sum_{x \in \overline{S}'} \max\{0, g(x) - d_{G^* - S'}(x)\} > \sum_{x \in S'} f(x)$$

since $\sum_{x \in S'} f(x) = \sum_{x \in S} f(x) - 1$, and $\sum_{x \in \overline{S}'} \max\{0, g(x) - d_{G^* - S'}(x)\} \ge \sum_{x \in \overline{S}'} \max\{0, g(x) - d_{G^* - S'}(x)\} - 1$. This is also a contradiction because S is

 $\sum_{x \in \overline{S}} \max \{0, g(x) - d_{G^* - S}(x)\} - 1.$ This is also a contradiction because S is

minimal with respect to (2.1).

Now let $v \in S_{y_0}$ and suppose that $N_{G^*}(v) = \{w_1, w_2\}$. It is obvious that $w_1, w_2 \in \overline{S}_x$. We will prove that $g(w_1) > d_{G^*-S}(w_1)$ and $g(w_2) > d_{G^*-S}(w_2)$. Without loss of generality, we may assume that $g(w_1) \leq d_{G^*-S}(w_1)$. Define $S' = S - \{v\}$. We have

$$\sum_{x \in \overline{S}'} \max \left\{ 0, g(x) - d_{G^* - S'}(x) \right\} > \sum_{x \in S'} f(x)$$

since $\sum_{x \in S'} f(x) = \sum_{x \in S} f(x) - 1$ and $\sum_{x \in \overline{S}'} \max \left\{ 0, g(x) - d_{G^* - S'}(x) \right\} \ge$

 $\sum_{x \in \overline{S}} \max \{0, g(x) - d_{G^* - S}(x)\} - 1.$ This is a contradiction because S is minimal

with respect to (2.1).

Define $M = \{x \in \overline{S}_x | N_{G^*}(x) \cap S_{y_0} \neq \emptyset\}$. In fact we have just proved that (2.2) $d_{G^*-S}(x) \leq g(x) - 1$ for every $x \in M$.

At this point we consider the following cases:

<u>Case 1</u>: M = V(G)In this case $S_x = \emptyset$, $\overline{S}_x - M = \emptyset$, $\overline{S}_{y_1} = \emptyset$, and $\overline{S}_{y_0} = \emptyset$. So from (2.1), we have

$$\sum_{x \in \overline{S}} \max \left\{ 0, g(x) - d_{G^* - S}(x) \right\} > |S_{y_0}|.$$

By $g(x) - d_{G^*-S}(x) < 0$ for each $x \in \overline{S}_{y_2}$, the above inequality implies

$$\sum_{x\in M} \max\left\{0, g(x) - d_{G^*-S}(x)\right\} > |S_{y_0}|.$$

Since $d_{G^*-S}(x) \leq g(x) - 1$ for every $x \in M$, we have

$$\sum_{x \in M} g(x) - \sum_{x \in M} d_{G^* - S}(x) > |S_{y_0}|.$$

This inequality together with $\sum_{x\in M} d_{G^*-S}(x) = 2|\overline{S}_{y_2}|$ yields

$$\sum_{x\in M}g(x)>2|\overline{S}_{y_2}|+|S_{y_0}|.$$

Moreover, it follows from $|V(G)| \ge |L| \ge 2|K|$ that $\frac{1}{2} \sum_{x \in V(G)} d_G(x) \ge 1$

 $\sum_{x \in M} g(x). \text{ Hence } \frac{1}{2} \sum_{x \in M} d_G(x) > 2|\overline{S}_{y_2}| + |S_{y_0}|. \text{ This contradicts the fact} \\ |\overline{S}_{y_2}| + |S_{y_0}| = |E(G)| = \frac{1}{2} \sum_{x \in M} d_G(x). \text{ This completes the proof of this case.}$

<u>Case 2</u>: $M \neq V(G)$ We have from (2.1),

$$\sum_{x \in \overline{S}_x} \max \left\{ 0, g(x) - d_{G^* - S}(x) \right\} + |\overline{S}_{y_0}| > \sum_{x \in S_x} f(x) + |S_{y_0}|$$

 So

$$\sum_{x \in K_{\overline{S}}} \max \left\{ 0, g(x) - d_{G^* - S}(x) \right\} + \sum_{x \in \overline{S}_x - K_{\overline{S}}} \max \left\{ 0, g(x) - d_{G^* - S}(x) \right\} + |\overline{S}_{y_0}|$$
$$> \sum_{x \in K_S} f(x) + \sum_{x \in S_x - K_S} f(x) + |S_{y_0}|.$$

For any $x \in \overline{S}_x - M$, $d_{G^*-S}(x) = d_{G^*}(x)$ holds. Thus the previous relation implies

$$\sum_{x \in K_{\overline{S}} \cap M} \max\left\{0, g(x) - d_{G^* - S}(x)\right\} + \sum_{x \in M - K_{\overline{S}}} \max\left\{0, g(x) - d_{G^* - S}(x)\right\} + |\overline{S}_{y_0}|$$
$$> \sum_{x \in K_S} f(x) + \sum_{x \in S_x - K_S} f(x) + |S_{y_0}|.$$

Now from (2.2), we have

$$g(x) - d_{G^*-S}(x) \ge 1$$
 for every $x \in M$.

If we let $g(x) - d_{G^*-S}(x) = \theta(x)$ for every $x \in M$, then the above can be written as

$$(2.3) \sum_{x \in K_{\overline{S}} \cap M} \theta(x) + \sum_{x \in M - K_{\overline{S}}} \theta(x) + |\overline{S}_{y_0}| > \sum_{x \in K_S} f(x) + \sum_{x \in S_x - K_S} f(x) + |S_{y_0}|.$$

Since

$$\sum_{x \in M \cap K_{\overline{S}}} \left(d_{G^*}(x) - d_{G^* - S}(x) \right) + \sum_{x \in M - K_{\overline{S}}} \left(d_{G^*}(x) - d_{G^* - S}(x) \right) = 2|S_{y_0}|,$$

we have

$$\sum_{x \in K_{\overline{S}} \cap M} \left(d_{G^*}(x) - g(x) + \theta(x) \right) + \sum_{x \in M - K_{\overline{S}}} \left(d_{G^*}(x) - g(x) + \theta(x) \right) = 2|S_{y_0}|.$$

 So

$$\sum_{x \in K_{\overline{S}} \cap M} \left(\left\lfloor \frac{d_{G^*}(x)}{2} \right\rfloor + \theta(x) \right) + \sum_{x \in M - K_{\overline{S}}} \left(\left\lceil \frac{d_{G^*}(x)}{2} \right\rceil + \theta(x) \right) \le 2|S_{y_0}|.$$

Hence

(2.4)
$$\sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil + \sum_{x \in M} \theta(x) \le 2|S_{y_0}| + |M \cap K_{\overline{S}}|.$$

By (2.3) and (2.4),

$$2|S_{y_0}| + |M \cap K_{\overline{S}}| - \sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil + |\overline{S}_{y_0}| > \sum_{x \in K_S} f(x) + \sum_{x \in S_x - K_S} f(x) + |S_{y_0}|,$$

which implies

$$(2.5) \quad |S_{y_0}| + |M \cap K_{\overline{S}}| - \sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil + |\overline{S}_{y_0}| > \sum_{x \in S_x} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil - |K_S|.$$

At this point, we consider the following two subcases:

<u>Case 2a</u>: $S_x \neq \emptyset$ We first point out that $S_x \neq V(G)$. If $S_x = V(G)$, then by $S_{y_0} = \emptyset$ and (2.1),

$$|E(G)| = |\overline{S}_{y_0}| > \sum_{x \in S} f(x) \ge \sum_{x \in V(G)} \frac{d_G(x)}{2}.$$

This is a contradiction.

Since G is k-edge-connected and the number of edges in G joining two vertices of S_x is $|\overline{S}_{y_0}|$, we have $k \leq e_G(S_x, V(G) - S_x) = \sum_{x \in S_x} d_G(x) - 2|\overline{S}_{y_0}|$. Hence

$$2|\overline{S}_{y_0}| + k \le \sum_{x \in S_x} d_{G^*}(x)$$

and so

(2.6)
$$|\overline{S}_{y_0}| \le \sum_{x \in S_x} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil - \frac{k}{2} - \frac{|K_S|}{2}.$$

By (2.5) and (2.6), we have

$$(2.7) |S_{y_0}| + |M \cap K_{\overline{S}}| - \sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil > \frac{k}{2} - \frac{|K_S|}{2}$$

We also should point out here that $M \neq \emptyset$. If $M = \emptyset$, then $|K_S| > k$ holds by (2.7). But this is a contradiction since $|K_S| \leq |K| \leq k$. Therefore $M \neq \emptyset$. By (2.7), $|M \cap K_{\overline{S}}| + |K_S| \leq |K| = k$ and

$$\sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil \ge \frac{1}{2} \sum_{x \in M} d_{G^*}(x),$$

we have $|S_{y_0}| + \frac{k}{2} > \frac{1}{2} \sum_{x \in M} d_{G^*}(x)$ and hence $2|S_{y_0}| + k > \sum_{x \in M} d_{G^*}(x)$. On the other hand, by the edge-connectivity of G,

$$\sum_{x \in M} d_{G^*}(x) = \sum_{x \in M} d_G(x) = 2|E(G[M])| + e_G(M, V(G) - M) \ge 2|S_{y_0}| + k.$$

This is a contradiction.

 $\underline{\text{Case 2b}}: S_x = \emptyset$ We have from (2.5),

$$(2.8) |S_{y_0}| + |M \cap K_{\overline{S}}| > \sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil$$

since $\overline{S}_{y_0} = \emptyset$ and $K_S = \emptyset$ when $S_x = \emptyset$.

We should point out here that $M \neq \emptyset$, since otherwise (2.8) give us a contradiction. By $|E(G[M])| \ge |S_{y_0}|$ and

$$\sum_{x \in M} \left\lceil \frac{d_{G^*}(x)}{2} \right\rceil = \sum_{x \in M} \frac{d_{G^*}(x)}{2} + \frac{|M \cap L|}{2} \ge \sum_{x \in M} \frac{d_{G^*}(x)}{2} + \frac{|M \cap K_{\overline{S}}|}{2},$$

(2.8) implies

$$|E(G[M])| + \frac{|M \cap K_{\overline{S}}|}{2} > \sum_{x \in M} \frac{d_{G^*}(x)}{2}.$$

It follows from $\frac{|M \cap K_{\overline{S}}|}{2} \le \frac{|K_{\overline{S}}|}{2} \le \frac{|K|}{2} = \frac{k}{2}$ that
$$2|E(G[M])| + k > \sum_{x \in M} d_{G^*}(x).$$

This is a contradiction, since by the edge-connectivity of G,

$$\sum_{x \in M} d_{G^*}(x) = 2|E(G[M])| + e_G(M, V(G) - M) \ge 2|E(G[M])| + k.$$

Next, we will describe a family of graphs, which shows that the connectivity condition imposed on graph G in Theorem 1 is necessary.

Let H_1 and H_2 be two (k-1)-edge-connected graphs with $V(H_1) = \{u_1, u_2, \ldots, u_{|V(H_1)|}\}, V(H_2) = \{v_1, v_2, \ldots, v_{|V(H_2)|}\}$ and min $\{|V(H_1)|, |V(H_2)|\} \ge k+1$. We also assume that H_1 and H_2 have the following properties:

- (a) the vertices $u_1, u_2, \ldots, u_{k-1}$ and $v_1, v_2, \ldots, v_{k-1}$ have even degree in H_1 and H_2 respectively,
- (b) the vertices u_k and v_k have odd degree in H_1 and H_2 respectively.

If we add the independent edges $u_1v_1, u_2v_2, \ldots, u_{k-1}v_{k-1}$ to $H_1 \cup H_2$, we obtain a graph G which is clearly (k-1)-edge-connected having at least 2k vertices of odd degree.

However, G has no orientation D such that $d_D^+(x) = \left\lfloor \frac{d_G(x)}{2} \right\rfloor$ when $x \in \{u_1, u_2, \ldots, u_k\} = K$ and $\left\lfloor \frac{d_G(x)}{2} \right\rfloor \leq d_D^+(x) \leq \left\lceil \frac{d_G(x)}{2} \right\rceil$ when $x \in V(G) - K$. In fact, we will show the above claim as follows:

Let G^* be the bipartite graph obtained from G by subdividing all edges. We define functions $f: V(G^*) \to Z^+$, $g: V(G^*) \to Z^+$ such that

(i)
$$f(x) = \left\lceil \frac{d_G(x)}{2} \right\rceil$$
 and $g(x) = \left\lfloor \frac{d_G(x)}{2} \right\rfloor$ when $x \in V(G) - K$,

(ii)
$$f(x) = g(x) = \left\lfloor \frac{d_G(x)}{2} \right\rfloor$$
 when $x \in K$, and

(iii)
$$f(x) = g(x) = 1$$
 when $x \in V(G^*) - V(G)$.

According to Lemma 2, G will have an orientation D having the properties stated before if and only if G^* has a (g, f)-factor having properties (i), (ii) and (iii).

We will prove that G^* has no such a (g, f)-factor. As in the proof of Theorem 1, G^* has bipartition (X, Y) where X = V(G), $Y = V(G^*) - V(G)$. We use the notation defined in Theorem 1. Let $S_x = K$, $S_y = \emptyset$, $\overline{S}_x = V(G) - K$, and $\overline{S}_y = V(G^*) - V(G)$. We have $\sum_{x \in S} f(x) = \sum_{x \in K} f(x) = \sum_{x \in K} \left\lfloor \frac{d_G(x)}{2} \right\rfloor = \sum_{x \in K} \frac{d_G(x)}{2} - \frac{k}{2}$, $\sum_{x \in \overline{S}} \max\{0, g(x) - d_{G^*-S}(x)\} = |\overline{S}_{y_0}| = |E(G[S_x])| = |E(G[S_x])| = |E(G[K])|$ and $2|E(G[K])| = \sum_{x \in K} d_G(x) - e_G(K, V(G) - K) = \sum_{x \in K} d_G(x) - (k-1)$. So $\sum_{x \in \overline{S}} \max\{0, g(x) - d_{G^*-S}(x)\} > \sum_{x \in S} f(x)$

and therefore by Lemma 1, G^* has no (g, f)-factor.

Acknowledgment

The authors would like to express their thanks to the referee for his valuable suggestions.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
- [2] L. Euler, Solutio problematics ad geometriam situs pertinentis. Comment. Academiae Sci.I. Petropolitanae, 8 (1736), 128–140.
- [3] K. Heinrich, P. Hell, D.G. Kirkpatrick, G. Liu, A simple existence criterion for (g < f)-factors, Discrete Math. 85 (1990), 313–317.</p>
- [4] L. Lovász, Combinatorial Problems and Exercises, North Holland, 1979.

P. Katerinis and N. Tsikopoulos Department of Informatics, Athens University of Economics 76 Patission Str., Athens 10434, Greece