Edge-connectivity and the orientation of a graph

P. Katerinis and N. Tsikopoulos

(Received May 6, 2004)

Abstract

Let G be a k-edge-connected graph and let L denote the subset of all vertices having odd degree in G. For every subset $K=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ of L with $|K| \leq \frac{|L|}{2}$, and for every function h defined on K having the property that $h\left(u_{i}\right) \in\left\{\left\lceil\frac{d_{G}\left(u_{i}\right)}{2}\right\rceil,\left\lfloor\frac{d_{G}\left(u_{i}\right)}{2}\right\rfloor\right\}$ for all $u_{i} \in K$, there exists an orientation D of G such that $d_{D}^{+}(x)=h(x)$ when $x \in K$ and $\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor \leq d_{D}^{+}(x) \leq\left\lceil\frac{d_{G}(x)}{2}\right\rceil$ when $x \in V(G)-K$.

AMS 2000 Mathematics Subject Classification. 05C99.
Key words and phrases. Graph, connectivity, orientation.

§1. Introduction

All graphs considered are simple and finite. We refer the reader to [1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree $d_{G}(u)$ of a vertex u in G is the number of edges of G incident with u. For any subset S of vertices of G, we define the neighbourhood of S in G to be the set of all vertices adjacent to vertices in S; this set is denoted by $N_{G}(S)$. If $S \subseteq V(G)$, the set $V(G)-S$ will be denoted by \bar{S}. The subgraph of G whose vertex set is S and whose edge set is the set of those edges of G that have both ends in S is called the subgraph of G induced by S and will be denoted by $G[S]$.

If S and T are disjoint subsets of vertices of G, we write $E_{G}(S, T)$ and $e_{G}(S, T)$ for the set and the number respectively of the edges of G joining S to T. If e is an edge of G having u and v as end-vertices, it will be denoted by $u v$. The edge-connectivity $k^{\prime}(G)$ of G is the minimum number of edges whose removal from G results in a disconnected graph or a trivial graph. We say that G is k-edge-connected if $k^{\prime}(G) \geq k$.

If we replace the edges of G by arcs, we will get a digraph D which is called an orientation of G. An edge e of G is said to be subdivided when it is deleted and replaced by a path of length two connecting its ends. Note that the internal vertex of this path is a new vertex. If the edges of a walk W in G are distinct, W is called a trail. A closed trail that traverses every edge of G is called an Euler trail. We will say that G is Eulerian if it contains an Euler trail. Let $f(x)$ and $g(x)$ be integer valued functions on the vertex set $V(G)$ such that $0 \leq g(x) \leq f(x)$ for each vertex $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f)-factor of G if $g(x) \leq d_{F}(x) \leq f(x)$ for each vertex $x \in V(G)$.

Let D be a digraph. The indegree $d_{D}^{-}(u)$ of a vertex u in D is the number of arcs with head u, and the outdegree $d_{D}^{+}(u)$ of u is the number of arcs with tail u.

The following Proposition appears in many textbooks on Graph Theory.
Proposition 1. For every graph G, there exists an orientation D such that

$$
\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor \leq d_{D}^{+}(x) \leq\left\lceil\frac{d_{G}(x)}{2}\right\rceil \text { for all } x \in V(G)
$$

Proof. We first assume that G is a connected graph. Let $L=\left\{v_{1}, v_{2}, \ldots, v_{2 r}\right\}$ be the set of vertices of G, which have odd degree and let G^{*} be the graph obtained from G by adding the independent edges $v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{2 r-1} v_{2 r}$. Since all the vertices of G^{*} have clearly even degree in G^{*}, G^{*} has a closed Eulerian trail $T^{*}[2]$. We follow T^{*} and we orient the edges of G^{*} in the same direction as that of the Eulerian trail. The above orientation give us a digraph D^{*} such that

$$
\frac{d_{G^{*}}(x)}{2}=d_{D^{*}}^{+}(x)=d_{D^{*}}^{-}(x) \text { for every vertex } x \text { of } D^{*}
$$

Now we delete from D^{*} the arcs arising from the orientation of the edges $v_{1} v_{2}, \ldots, v_{2 r-1} v_{2 r}$. The resulting digraph D is clearly an orientation of G having the following property,

$$
\frac{d_{G}(x)}{2}=d_{D}^{+}(x)=d_{D}^{-}(x) \text { when } x \in V(G)-L
$$

and

$$
\left|d_{D}^{+}(x)-d_{D}^{-}(x)\right|=1 \text { when } x \in L
$$

If G is a disconnected graph, we will get a proof by applying the same arguments to every component of G.

In the following theorem which is the main result of this paper we prove that if the edge-connectivity of G is sufficiently high then G has an orientation D having the property mentioned in Proposition 1 and additionally some of the vertices of odd degree can have the prescribed outdegrees in D.

Theorem 1. Let G be a k-edge-connected graph and L the set of all vertices with degree odd in G.

For every subset $K=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ of L with $|K| \leq \frac{|L|}{2}$, and for every function h defined on K having the property that $h\left(u_{i}\right) \in\left\{\left\lceil\frac{d_{G}\left(u_{i}\right)}{2}\right\rceil\right.$, $\left.\left\lfloor\frac{d_{G}\left(u_{i}\right)}{2}\right\rfloor\right\}$ for all $u_{i} \in K$, there exists an orientation D of G such that $d_{D}^{+}(x)=h(x)$ when $x \in K$ and $\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor \leq d_{D}^{+}(x) \leq\left\lceil\frac{d_{G}(x)}{2}\right\rceil$ when $x \in$ $V(G)-K$.

§2. Proof of Theorem 1

For the proof of Theorem 1, we will use the following Lemmas.
Lemma 1 ([3]). A bipartite graph G has $a(g, f)$-factor if and only if for every set $S \subseteq V(G)$,

$$
\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G-S}(x)\right\} \leq \sum_{x \in S} f(x)
$$

Lemma 2. Let G be a graph and let $f: V(G) \rightarrow Z^{+}$and $g: V(G) \rightarrow Z^{+}$ be functions such that $g(x) \leq f(x)$. We subdivide every edge of G and define f and g, to be both 1 for the new vertices. The resulting graph G^{*} has a (g, f)-factor if and only if G has an orientation D such that $g(x) \leq d_{D}^{+}(x) \leq$ $f(x)$ for every $x \in V(D)$.

Proof. Suppose first that G^{*} has a (g, f)-factor F. Clearly every edge of G^{*} has an end-vertex in $V(G)$ and the other in $V\left(G^{*}\right)-V(G)$. Define S to be the set of edges belonging to F and $S^{\prime}=E\left(G^{*}\right)-E(F)$. We orient the elements of S in the following way: the tail of every arc belongs to $V(G)$ and the head belongs to $V\left(G^{*}\right)-V(G)$. We also orient the elements of S^{\prime} as follows: the tail of every arc belongs to $V\left(G^{*}\right)-V(G)$ and the head belongs to $V(G)$. By considering such an orientation of G^{*}, we get a digraph D^{*} having the following properties:

$$
\begin{gathered}
d_{D^{*}}^{+}(x)=1 \quad \text { when } x \in V\left(G^{*}\right)-V(G) \text { and } \\
g(x) \leq d_{D^{*}}^{+}(x)=d_{F}(x) \leq f(x) \quad \text { when } x \in V(G)
\end{gathered}
$$

Now we apply the following procedure to every vertex of $V\left(G^{*}\right)-V(G)$. For $u \in V\left(G^{*}\right)-V(G)$, let a_{1} be the arc of D^{*} having u as a tail and let a_{2} be the arc having u as a head. Let v_{1} also be the tail of a_{2} and v_{2} the head of a_{1}.

We delete u, a_{1}, a_{2} from D^{*} and we add an arc having v_{1} as a tail and v_{2} as a head.

The resulting digraph D is an orientation of G satisfying $g(x) \leq d_{D^{*}}^{+}(x)=$ $d_{D}^{+}(x) \leq f(x)$ for every $x \in V(D)$.

By reversing the argument we can prove easily that if G has an orientation D such that $g(x) \leq d_{D}^{+}(x) \leq f(x)$ for all $x \in V(D)$, then G^{*} has a (g, f)-factor.

For the proof of Lemma 2, we used ideas and techniques mentioned in [4].
Proof of Theorem 1.
Let G^{*} be the graph obtained from G by subdividing its edges. By Lemma 2, G will have an orientation D if and only if G^{*} has a (g, f)-factor having the following properties:

$$
\begin{gathered}
g(x)=f(x)=h(x) \text { for every } x \in K \\
g(x)=\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor, f(x)=\left\lceil\frac{d_{G}(x)}{2}\right\rceil \text { for every } x \in V(G)-K
\end{gathered}
$$

and $g(x)=f(x)=1$ for every $x \in V\left(G^{*}\right)-V(G)=R$ (We note here that R consists of all the inserted vertices of degree 2).

Suppose that G^{*} has no (g, f)-factor having the above properties. Clearly G^{*} is a bipartite graph with bipartition (X, Y) where $X=V(G)$ and $Y=$ $V\left(G^{*}\right)-V(G)=R$. Then by Lemma 1 , there exists $S \subseteq V\left(G^{*}\right)$ such that

$$
\begin{equation*}
\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}>\sum_{x \in S} f(x) \tag{2.1}
\end{equation*}
$$

Define

$$
\begin{aligned}
& \underline{S} \cap Y=S_{y}, \quad \underline{S} \cap X=S_{x}, \\
& \bar{S} \cap Y=\bar{S}_{y}, \\
& \bar{S} \cap X=\bar{S}_{x}, \\
& \left.\begin{array}{rl}
S_{y_{i}} & =\left\{u \in S_{y} \| N_{G^{*}}(u) \cap S_{x} \mid=i\right\} \\
\bar{S}_{y_{i}} & =\left\{u \in \bar{S}_{y} \| N_{G^{*}}(u) \cap \bar{S}_{x} \mid=i\right\}
\end{array}\right\} \text { for } i=0,1,2, \\
& K_{S}=K \cap S_{x}, \quad \text { and } \quad K_{\bar{S}}=K \cap \bar{S}_{x} .
\end{aligned}
$$

We assume that S is minimal with respect to (2.1). We will prove that $S_{y_{2}}=\emptyset$ and $S_{y_{1}}=\emptyset$.

Suppose that $S_{y_{2}} \neq \emptyset$ and let $v \in S_{y_{2}}$. Define $S^{\prime}=S-\{v\}$. Then

$$
\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\}>\sum_{x \in S^{\prime}} f(x)
$$

since

$$
\sum_{x \in S^{\prime}} f(x)=\sum_{x \in S} f(x)-1
$$

and

$$
\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\}=\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}+1
$$

This contradicts the fact S is minimal with respect to (2.1).
Similarly suppose that $S_{y_{1}} \neq \emptyset$ and let $v \in S_{y_{1}}$. Define $S^{\prime}=S-\{v\}$. Then

$$
\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\}>\sum_{x \in S^{\prime}} f(x)
$$

since $\sum_{x \in S^{\prime}} f(x)=\sum_{x \in S} f(x)-1$, and $\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\} \geq$ $\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}-1$. This is also a contradiction because S is minimal with respect to (2.1).

Now let $v \in S_{y_{0}}$ and suppose that $N_{G^{*}}(v)=\left\{w_{1}, w_{2}\right\}$. It is obvious that $w_{1}, w_{2} \in \bar{S}_{x}$. We will prove that $g\left(w_{1}\right)>d_{G^{*}-S}\left(w_{1}\right)$ and $g\left(w_{2}\right)>d_{G^{*}-S}\left(w_{2}\right)$. Without loss of generality, we may assume that $g\left(w_{1}\right) \leq d_{G^{*}-S}\left(w_{1}\right)$. Define $S^{\prime}=S-\{v\}$. We have

$$
\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\}>\sum_{x \in S^{\prime}} f(x)
$$

since $\sum_{x \in S^{\prime}} f(x)=\sum_{x \in S} f(x)-1$ and $\sum_{x \in \bar{S}^{\prime}} \max \left\{0, g(x)-d_{G^{*}-S^{\prime}}(x)\right\} \geq$ $\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}-1$. This is a contradiction because S is minimal with respect to (2.1).

Define $M=\left\{x \in \bar{S}_{x} \mid N_{G^{*}}(x) \cap S_{y_{0}} \neq \emptyset\right\}$. In fact we have just proved that

$$
\begin{equation*}
d_{G^{*}-S}(x) \leq g(x)-1 \text { for every } x \in M \tag{2.2}
\end{equation*}
$$

At this point we consider the following cases:
Case 1: $M=V(G)$
In this case $S_{x}=\emptyset, \bar{S}_{x}-M=\emptyset, \bar{S}_{y_{1}}=\emptyset$, and $\bar{S}_{y_{0}}=\emptyset$.
So from (2.1), we have

$$
\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}>\left|S_{y_{0}}\right|
$$

By $g(x)-d_{G^{*}-S}(x)<0$ for each $x \in \bar{S}_{y_{2}}$, the above inequality implies

$$
\sum_{x \in M} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}>\left|S_{y_{0}}\right|
$$

Since $d_{G^{*}-S}(x) \leq g(x)-1$ for every $x \in M$, we have

$$
\sum_{x \in M} g(x)-\sum_{x \in M} d_{G^{*}-S}(x)>\left|S_{y_{0}}\right| .
$$

This inequality together with $\sum_{x \in M} d_{G^{*}-S}(x)=2\left|\bar{S}_{y_{2}}\right|$ yields

$$
\sum_{x \in M} g(x)>2\left|\bar{S}_{y_{2}}\right|+\left|S_{y_{0}}\right| .
$$

Moreover, it follows from $|V(G)| \geq|L| \geq 2|K|$ that $\frac{1}{2} \sum_{x \in V(G)} d_{G}(x) \geq$ $\sum_{x \in M} g(x)$. Hence $\frac{1}{2} \sum_{x \in M} d_{G}(x)>2\left|\bar{S}_{y_{2}}\right|+\left|S_{y_{0}}\right|$. This contradicts the fact $\left|\bar{S}_{y_{2}}\right|+\left|S_{y_{0}}\right|=|E(G)|=\frac{1}{2} \sum_{x \in M} d_{G}(x)$. This completes the proof of this case.
Case 2: $M \neq V(G)$
We have from (2.1),

$$
\sum_{x \in \bar{S}_{x}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}+\left|\bar{S}_{y_{0}}\right|>\sum_{x \in S_{x}} f(x)+\left|S_{y_{0}}\right| .
$$

So

$$
\begin{aligned}
\sum_{x \in K_{\bar{S}}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\} & +\sum_{x \in \bar{S}_{x}-K_{\bar{S}}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}+\left|\bar{S}_{y_{0}}\right| \\
& >\sum_{x \in K_{S}} f(x)+\sum_{x \in S_{x}-K_{S}} f(x)+\left|S_{y_{0}}\right| .
\end{aligned}
$$

For any $x \in \bar{S}_{x}-M, d_{G^{*}-S}(x)=d_{G^{*}}(x)$ holds. Thus the previous relation implies

$$
\begin{aligned}
\sum_{x \in K_{\bar{S}} \cap M} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\} & +\sum_{x \in M-K_{\bar{S}}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}+\left|\bar{S}_{y_{0}}\right| \\
& >\sum_{x \in K_{S}} f(x)+\sum_{x \in S_{x}-K_{S}} f(x)+\left|S_{y_{0}}\right| .
\end{aligned}
$$

Now from (2.2), we have

$$
g(x)-d_{G^{*}-S}(x) \geq 1 \text { for every } x \in M
$$

If we let $g(x)-d_{G^{*}-S}(x)=\theta(x)$ for every $x \in M$, then the above can be written as

$$
\begin{equation*}
\sum_{x \in K_{\bar{S}} \cap M} \theta(x)+\sum_{x \in M-K_{\bar{S}}} \theta(x)+\left|\bar{S}_{y_{0}}\right|>\sum_{x \in K_{S}} f(x)+\sum_{x \in S_{x}-K_{S}} f(x)+\left|S_{y_{0}}\right| \tag{2.3}
\end{equation*}
$$

Since

$$
\sum_{x \in M \cap K_{\bar{S}}}\left(d_{G^{*}}(x)-d_{G^{*}-S}(x)\right)+\sum_{x \in M-K_{\bar{S}}}\left(d_{G^{*}}(x)-d_{G^{*}-S}(x)\right)=2\left|S_{y_{0}}\right|
$$

we have

$$
\sum_{x \in K_{\bar{S}} \cap M}\left(d_{G^{*}}(x)-g(x)+\theta(x)\right)+\sum_{x \in M-K_{\bar{S}}}\left(d_{G^{*}}(x)-g(x)+\theta(x)\right)=2\left|S_{y_{0}}\right|
$$

So

$$
\sum_{x \in K_{\bar{S}} \cap M}\left(\left\lfloor\frac{d_{G^{*}}(x)}{2}\right\rfloor+\theta(x)\right)+\sum_{x \in M-K_{\bar{S}}}\left(\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil+\theta(x)\right) \leq 2\left|S_{y_{0}}\right|
$$

Hence

$$
\begin{equation*}
\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil+\sum_{x \in M} \theta(x) \leq 2\left|S_{y_{0}}\right|+\left|M \cap K_{\bar{S}}\right| \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4),
$2\left|S_{y_{0}}\right|+\left|M \cap K_{\bar{S}}\right|-\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil+\left|\bar{S}_{y_{0}}\right|>\sum_{x \in K_{S}} f(x)+\sum_{x \in S_{x}-K_{S}} f(x)+\left|S_{y_{0}}\right|$,
which implies

$$
\begin{equation*}
\left|S_{y_{0}}\right|+\left|M \cap K_{\bar{S}}\right|-\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil+\left|\bar{S}_{y_{0}}\right|>\sum_{x \in S_{x}}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil-\left|K_{S}\right| \tag{2.5}
\end{equation*}
$$

At this point, we consider the following two subcases:
Case 2a: $S_{x} \neq \emptyset$
We first point out that $S_{x} \neq V(G)$. If $S_{x}=V(G)$, then by $S_{y_{0}}=\emptyset$ and (2.1),

$$
|E(G)|=\left|\bar{S}_{y_{0}}\right|>\sum_{x \in S} f(x) \geq \sum_{x \in V(G)} \frac{d_{G}(x)}{2}
$$

This is a contradiction.

Since G is k-edge-connected and the number of edges in G joining two vertices of S_{x} is $\left|\bar{S}_{y_{0}}\right|$, we have $k \leq e_{G}\left(S_{x}, V(G)-S_{x}\right)=\sum_{x \in S_{x}} d_{G}(x)-2\left|\bar{S}_{y_{0}}\right|$. Hence

$$
2\left|\bar{S}_{y_{0}}\right|+k \leq \sum_{x \in S_{x}} d_{G^{*}}(x)
$$

and so

$$
\begin{equation*}
\left|\bar{S}_{y_{0}}\right| \leq \sum_{x \in S_{x}}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil-\frac{k}{2}-\frac{\left|K_{S}\right|}{2} . \tag{2.6}
\end{equation*}
$$

By (2.5) and (2.6), we have

$$
\begin{equation*}
\left|S_{y_{0}}\right|+\left|M \cap K_{\bar{S}}\right|-\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil>\frac{k}{2}-\frac{\left|K_{S}\right|}{2} . \tag{2.7}
\end{equation*}
$$

We also should point out here that $M \neq \emptyset$. If $M=\emptyset$, then $\left|K_{S}\right|>k$ holds by (2.7). But this is a contradiction since $\left|K_{S}\right| \leq|K| \leq k$. Therefore $M \neq \emptyset$. $\operatorname{By}(2.7),\left|M \cap K_{\bar{S}}\right|+\left|K_{S}\right| \leq|K|=k$ and

$$
\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil \geq \frac{1}{2} \sum_{x \in M} d_{G^{*}}(x),
$$

we have $\left|S_{y_{0}}\right|+\frac{k}{2}>\frac{1}{2} \sum_{x \in M} d_{G^{*}}(x)$ and hence $2\left|S_{y_{0}}\right|+k>\sum_{x \in M} d_{G^{*}}(x)$. On the other hand, by the edge-connectivity of G,

$$
\sum_{x \in M} d_{G^{*}}(x)=\sum_{x \in M} d_{G}(x)=2|E(G[M])|+e_{G}(M, V(G)-M) \geq 2\left|S_{y_{0}}\right|+k .
$$

This is a contradiction.
Case 2b: $S_{x}=\emptyset$
We have from (2.5),

$$
\begin{equation*}
\left|S_{y_{0}}\right|+\left|M \cap K_{\bar{S}}\right|>\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil \tag{2.8}
\end{equation*}
$$

since $\bar{S}_{y_{0}}=\emptyset$ and $K_{S}=\emptyset$ when $S_{x}=\emptyset$.
We should point out here that $M \neq \emptyset$, since otherwise (2.8) give us a contradiction. By $|E(G[M])| \geq\left|S_{y_{0}}\right|$ and

$$
\sum_{x \in M}\left\lceil\frac{d_{G^{*}}(x)}{2}\right\rceil=\sum_{x \in M} \frac{d_{G^{*}}(x)}{2}+\frac{|M \cap L|}{2} \geq \sum_{x \in M} \frac{d_{G^{*}}(x)}{2}+\frac{\left|M \cap K_{\bar{S}}\right|}{2}
$$

(2.8) implies

$$
|E(G[M])|+\frac{\left|M \cap K_{\bar{S}}\right|}{2}>\sum_{x \in M} \frac{d_{G^{*}}(x)}{2}
$$

It follows from $\frac{\left|M \cap K_{\bar{S}}\right|}{2} \leq \frac{\left|K_{\bar{S}}\right|}{2} \leq \frac{|K|}{2}=\frac{k}{2}$ that

$$
2|E(G[M])|+k>\sum_{x \in M} d_{G^{*}}(x) .
$$

This is a contradiction, since by the edge-connectivity of G,

$$
\sum_{x \in M} d_{G^{*}}(x)=2|E(G[M])|+e_{G}(M, V(G)-M) \geq 2|E(G[M])|+k
$$

Next, we will describe a family of graphs, which shows that the connectivity condition imposed on graph G in Theorem 1 is necessary.

Let H_{1} and H_{2} be two ($k-1$)-edge-connected graphs with $V\left(H_{1}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{\left|V\left(H_{1}\right)\right|}\right\}, \quad V\left(H_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\left|V\left(H_{2}\right)\right|}\right\}$ and $\min \left\{\left|V\left(H_{1}\right)\right|\right.$, $\left.\left|V\left(H_{2}\right)\right|\right\} \geq k+1$. We also assume that H_{1} and H_{2} have the following properties:
(a) the vertices $u_{1}, u_{2}, \ldots, u_{k-1}$ and $v_{1}, v_{2}, \ldots, v_{k-1}$ have even degree in H_{1} and H_{2} respectively,
(b) the vertices u_{k} and v_{k} have odd degree in H_{1} and H_{2} respectively.

If we add the independent edges $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k-1} v_{k-1}$ to $H_{1} \cup H_{2}$, we obtain a graph G which is clearly $(k-1)$-edge-connected having at least $2 k$ vertices of odd degree.

However, G has no orientation D such that $d_{D}^{+}(x)=\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor$ when $x \in$ $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}=K$ and $\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor \leq d_{D}^{+}(x) \leq\left\lceil\frac{d_{G}(x)}{2}\right\rceil$ when $x \in V(G)-K$. In fact, we will show the above claim as follows:

Let G^{*} be the bipartite graph obtained from G by subdividing all edges. We define functions $f: V\left(G^{*}\right) \rightarrow Z^{+}, g: V\left(G^{*}\right) \rightarrow Z^{+}$such that
(i) $f(x)=\left\lceil\frac{d_{G}(x)}{2}\right\rceil$ and $g(x)=\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor$ when $x \in V(G)-K$,
(ii) $f(x)=g(x)=\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor$ when $x \in K$, and
(iii) $f(x)=g(x)=1$ when $x \in V\left(G^{*}\right)-V(G)$.

According to Lemma 2, G will have an orientation D having the properties stated before if and only if G^{*} has a (g, f)-factor having properties (i), (ii) and (iii).

We will prove that G^{*} has no such a (g, f)-factor. As in the proof of Theorem 1, G^{*} has bipartition (X, Y) where $X=V(G), Y=V\left(G^{*}\right)-V(G)$. We use the notation defined in Theorem 1. Let $S_{x}=K, S_{y}=\emptyset, \bar{S}_{x}=V(G)-K$, and $\bar{S}_{y}=V\left(G^{*}\right)-V(G)$. We have $\sum_{x \in S} f(x)=\sum_{x \in K} f(x)=\sum_{x \in K}\left\lfloor\frac{d_{G}(x)}{2}\right\rfloor=$ $\sum_{x \in K} \frac{d_{G}(x)}{2}-\frac{k}{2}, \sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}=\left|\bar{S}_{y_{0}}\right|=\left|E\left(G\left[S_{x}\right]\right)\right|=$ $|E(G[K])|$ and $2|E(G[K])|=\sum_{x \in K} d_{G}(x)-e_{G}(K, V(G)-K)=\sum_{x \in K} d_{G}(x)-$ $(k-1)$. So

$$
\sum_{x \in \bar{S}} \max \left\{0, g(x)-d_{G^{*}-S}(x)\right\}>\sum_{x \in S} f(x)
$$

and therefore by Lemma $1, G^{*}$ has no (g, f)-factor.

Acknowledgment

The authors would like to express their thanks to the referee for his valuable suggestions.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[2] L. Euler, Solutio problematics ad geometriam situs pertinentis. Comment. Academiae Sci.I. Petropolitanae, 8 (1736), 128-140.
[3] K. Heinrich, P. Hell, D.G. Kirkpatrick, G. Liu, A simple existence criterion for $(g<f)$-factors, Discrete Math. 85 (1990), 313-317.
[4] L. Lovász, Combinatorial Problems and Exercises, North Holland, 1979.

[^0]
[^0]: P. Katerinis and N. Tsikopoulos

 Department of Informatics, Athens University of Economics 76 Patission Str., Athens 10434, Greece

