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Abstract. In this note, we improve upon results of Steiner [9] and Mimuro [8]
concerning the structure of non-trivial cycles in Collatz’s problem.
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§1. Introduction

Let f be the function defined on the set of all positive integers given by f(m) =
m/2 if m is even and f(m) = (3m+1)/2 otherwise. A well-known conjecture of
Collatz asserts that for every positive integer m there exists a positive integer
n such that fn(m) = 1, where

fn = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

is the nth fold composition of f with itself. Collatz [5] invented this question
in 1928 in the context of dealing with iteration problems represented using
associated graphs and hypergraphs. The exact origin of Collatz’s conjecture
goes back to the past and it is also sometimes called the Syracuse conjecture or
the 3x+1 problem. This conjecture circulated orally among the mathematical
community for many years. In spite of the considerable work which has been
done around this problem (a large database of research papers dealing with
this problem is annotated in [7]), this conjecture is still open. There are
several prizes offered for its solution ($50 by Coxeter in 1970, $500 by Erdős,
and £1000 by Thwaites [10]).

In this paper, we extend a result of Mimuro [8] concerning this conjecture.
We follow the notation and terminology from [8].
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We call m to be a cycle-number if fn(m) = m holds with some positive in-
teger n. Note that Collatz’s conjecture suggests that 1 and 2 are the only cycle
numbers. Furthermore, removal of cycle numbers would lead to an efficient
construction of the Collatz tree as defined in [1] and [2].

Let m be a cycle-number. We assume that m is odd since every even
number is mapped into an odd number by iterating f . Since m = 1 generates
the cycle {1, 2} (possibly the unique such), we assume that m > 1. Such a
cycle will be called non-trivial. For u ≥ 1, we define `u and mu as follows:

(i) We put m1 = m.

(ii) For u ≥ 1, `u is the largest positive integer such that f `u(mu) is odd.

(iii) We put mu+1 = f `u(mu).

Note that

(1.1) mu+1 =
3mu + 1

2`u
.

If m = m1 = mk+1, we then write

C(m) = 〈`1, `2, . . . , `k〉

to record the successive compositions in the cycle generated by m. It is easy
to see that

C(m1) = 〈`1, `2, . . . , `k〉,

while

C(mu) = 〈`u, `u+1, . . . , `k, `1, . . . , `u−1〉 for all u = 2, . . . , k.

We put

n =
k∑

u=1

`u.

We may assume that m = m1 = min{mu : u = 1, . . . , k}. Lemma 2.1 in [8]
shows that `1 = 1. Furthermore, we can assume that `k 6= 1. Indeed, it is
clear that C(m) cannot be 〈1, . . . , 1〉 (as in this case mu+1 = (3mu+1)/2 > mu

holds for all u = 1, . . . , k − 1, which is impossible because m1 = mk), and if
`k = 1, then

C(m1) = 〈1, . . . , `k−1, 1〉 > mk = 〈1, 1, . . . , `k−1〉,

contradicting the fact that m1 is minimal among the mu’s. We let κ0 = 0 and
1 ≤ κ1 < . . . < κj = k be such that

`κi−1+1 = `κi+2 = · · · = `κi 6= `κi+1 for all i = 1, . . . , j − 1.
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For i = 1, . . . , j, we write Ni = κi − κi−1, and we put Li = `κi−1+1. Hence, we
have

(1.2) C(m) = 〈L1, . . . , L1︸ ︷︷ ︸
N1 times

, . . . , Lj , . . . , Lj︸ ︷︷ ︸
Nj times

〉,

where

(1.3) N1 + · · · + Nj = k,

and where L1 = 1 and Li 6= Li+1 for all i = 1, . . . , j. Here, we set Lj+1 = L1.
Note that

(1.4) n =
j∑

i=1

LiNi.

With these notations, Steiner [9] proved that there is no such m with j = 2
and N2 = 1; i.e., that there is no odd cycle-number whose associated com-
positions are of the form 〈1, . . . , 1, `〉. This result was generalized by Mimuro
in [8] who proved that there are at most finitely many odd cycle-numbers m
whose associated compositions have j = 2.

In this note, we generalize Mimuro’s result from [8]. Our precise results are
stated in Section 2 and proved in Section 3.

Throughout this paper, we use the Vinogradov symbols ¿ and À with their
usual meaning. Recall that if A and B are two functions defined on the set of
positive real numbers we say that A ¿ B if there exists a positive constant c
such that the inequality |A(x)| < c|B(x)| holds for all positive real numbers
x. The notation A À B is equivalent to B ¿ A. The constants implied by
them are absolute. We also use c0, c1, . . . for positive computable positive
constants which are absolute and which are labeled increasingly throughout
the paper. For a finite set A we use #A to denote its cardinality.

§2. Results

Let m > 1 be an odd cycle-number given by (1.2) where the positive integers
Li and Ni satisfy (1.3) and (1.4). We write

A(m) = {i ∈ {1, . . . , j} : Li = 1},

and put t = #A(m). Our main result is the following:

Theorem 2.1. The following inequality holds:

(2.1) t À log n.
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The following corollary to Theorem 2.1 generalizes the result from [8]; i.e.,
the result from [8] is obtained from the corollary below with c = 1.

Corollary 2.2. Let c be any positive constant. Then there exist at most
finitely many odd cycle-numbers m having t ≤ c.

§3. Proofs

We start with some general considerations.
It is clear that we may assume that m = m1 is as large as we wish.
We recall that if u ∈ {1, . . . , k}, then there exists a unique value of i ∈

{0, . . . , j − 1} such that u ∈ {ki + 1, . . . , ki+1}. In this case, `u = Li. Further-
more (see [3], or formula (1.2) in [8]),

(3.1) m =
∑k

u=1 3k−s · 2
Pu−1

v=0 `v

2n − 3k
.

Since m > 0, it follows that 2n > 3k. In particular, if n is bounded, then (see
formula (1.4)), there are only finitely many possibilities for k and the k-tuple
(`1, . . . , `k); hence, for m as well. Thus, from now on we may assume that
both n and m = m1 are as large as we wish.

The next result gives a non-trivial bound for m in terms of n.

Lemma 3.1. There exist positive constants c0, c1, c2 such that if n > c0,
then

(i) m < nc1;

(ii)

(3.2)
∑

i∈A(m)

Ni ≥ c2n.

Proof. By formula (1.1), if u ∈ {1, . . . , k − 1}, then

(3.3) mu+1 =
3mu + 1

2`u
=

(
3

2`u

)
mu

(
1 +

1
3mu

)
.

Multiplying relations (3.3) for u = 1, . . . , k, we get

(3.4) m1 = mk+1 =
3k

2n
m1

k∏
u=1

(
1 +

1
3mu

)
.
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Using the fact that the inequality 1 + x < expx holds for all x > 0, we get

(3.5)
k∏

u=1

(
1 +

1
3mu

)
< exp

(
k∑

u=1

1
3mu

)
.

Clearly,

k∑
u=1

1
3mu

≤ 1
3

∑
m1≤λ≤m1+k−1

λ integer

1
λ

(3.6)

<
1

3m1
+

∫ m1+k−1

m1

dν

3ν

≤ 1
3m1

+
1
3

log
(

1 +
k − 1
m1

)
< log

(
1 +

2
3m1

)
+ log

((
1 +

k − 1
m1

)1/3
)

< log
(

1 +
2

3m1

)
+ log

(
1 +

k − 1
3m1

)
= log

(
1 +

k + 1
3m1

+
2(k − 1)

9m2
1

)
< log

(
1 +

2k

3m1

)
< log

(
1 +

n

m1

)
.

In the above chain of inequalities we used, aside from the fact that k < n and
that

1
k
≤

∫ k

k−1

dν

ν
for all k ≥ 2,

also the fact that (1 + x)1/3 < 1 + x/3 holds for all x > 0, as well as the fact
that x < log(1 + 2x) holds for all x ∈ (0, 1). Thus, from estimates (3.5) and
(3.6), we get

(3.7)
k∏

u=1

(
1 +

1
3mu

)
< 1 +

n

m1
.

From equation (3.4) and estimate (3.7), we get that

m1 =
3k

2n
m1 + η,

where η is a positive number such that η < 3kn/2n. Thus, we get that

m1 =
2nη

2n − 3k
<

3kn

2n − 3k
.
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Using a linear form in logarithms á la Baker (see [4], for example), it follows
that there exists a computable positive constant c3 such that the inequality

2n − 3k > 2nn−c3

holds whenever 2n > 3k and n ≥ 2. We thus get

m1 <
3knc3+1

2n
< nc3+1,

which takes care of (i) above with c1 = c3 + 1 and c0 ≥ 2.
To deal with (ii), we let δ > 0 be sufficiently small, and assume that

S(m) =
∑

i∈A(m)

Ni < δn.

Then

k =
j∑

i=1

Ni = S(m) +
∑

i 6∈A(m)

Ni ≤ S(m) +
1
2

∑
i6∈A(m)

LiNi

= S(m) +
1
2

(n − S(m)) =
1
2
(S(m) + n) <

(1 + δ)n
2

.

In the above chain of inequalities we used the fact that Li ≥ 2 if i 6∈ A(m).
We choose δ such that (1 + δ)/2 = log 2/ log 3 − δ. This leads to the choice
δ = (2 log 2/ log 3 − 1)/3 = log(4/3)/(3 log 3). We then get that

3k < 3(1+δ)n/2 = 3(log 2/ log 3−δ)n =
2n

3δn
.

Hence,
m1 <

n

3δn
,

inequality which leads to the absurd conclusion that m1 < 1 for n > c0 ≥ 2.
Thus, if n > c0, then inequality (3.2) holds with c2 = δ.

In what follows, we label the elements of

A(m) = {i1, . . . , it}

increasingly so that 1 = i1 < . . . < it. We put

λs = κis−1 + 1 for all s = 1, . . . , t.

Lemma 3.2. There exist positive constants c4, c5 such that if n > c0, then
both inequalities
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(i) mλs < ncs
4 and

(ii) Nis < cs
5 log n

hold for all s ∈ {1, . . . , t}.

Proof. We use induction on s = 1, . . . , t, to show that assertion (i) above for s
implies both assertion (ii) above for s as well as assertion (i) above for s + 1.
The fact that (i) above holds with s = 1 whenever n ≥ c0 and c4 ≥ c1 follows
from (i) of Lemma 3.1 by noting that λ1 = κ0 + 1 = 1. We assume that s ≤ t
is such that the inequality

(3.8) mλs ≤ nC(s)

holds whenever n ≥ c0, where C(s) is some function of s with C(1) ≥ c1 which
we will determine later. Note that

C(mλs) = 〈1, . . . , 1︸ ︷︷ ︸
Nis times

, . . . , Lis−1〉,

while
3mλs + 1

2
= mλs+1,

so
C(mλs+1) = 〈 1, . . . , 1︸ ︷︷ ︸

Nis−1 times

, . . . , Lis−1, 1〉.

We now observe that if

C(m′) = 〈1, . . . , 1︸ ︷︷ ︸
T times

, . . .〉,

then m′ ≡ −1 (mod 2T ). Indeed, this can be easily proved by induction on
T . If T = 1, then m′ is odd; hence, m′ ≡ −1 (mod 2T ), in this case. Assume
now, by induction, that the above assertion is true for T , and let

C(m′) = 〈 1, . . . , 1︸ ︷︷ ︸
T+1 times

, . . .〉.

Then
3m′ + 1

2
= m′′,

therefore
C(m′′) = 〈1, . . . , 1︸ ︷︷ ︸

T times

, . . .〉,
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so, by the induction hypothesis, m′′ ≡ −1 (mod 2T ). This gives

3m′ + 1
2

≡ −1 (mod 2T ),

which leads to the desired conclusion that m′ ≡ −1 (mod 2T+1).
Hence, we get that mλs ≡ −1 (mod 2Nis ) and mλs+1 ≡ −1 (mod 2Nis−1).

We thus arrive at
2Nis−1|mλs+1 − mλs .

This leads to

2Nis−1 ≤ mλs+1 − mλs =
mλs + 1

2
≤ mλs ≤ nC(s),

therefore, since n ≥ c0 ≥ 2, we have

(3.9) Nis ≤ (C(s) + 1)
log 2

log n.

We now use recurrence (3.3) for u = λs = κis−1 + 1, . . . , λs + Ns − 1 = κis ,
and multiply the resulting relations keeping in mind that `u = 1 for such
values of u, to get that

mλs+Nis
=

(
3
2

)Nis

mλs

∏
λs≤u≤λs+Nis−1

(
1 +

1
3mu

)

≤
(

3
2

)Nis

(mλs + n)

≤ nmλs

(
3
2

)Nis

.

In the last inequality above we used the analog of estimate (3.7) with the
sequence of numbers m1 < . . . < mk replaced by the sequence of numbers
mλs < . . . < mλs+Ns−1, together with the fact that n+mλs ≤ nmλs , inequality
which holds because min{n,m1} ≥ 2. We now note that for all u ∈ {λs+Nis +
1, . . . , λs+1}, we have that C(mu) = 〈`u, . . . , 〉, where `u > 1, therefore

mu =
3mu−1 + 1

2`u
≤ 3mu−1 + 1

4
< mu−1.

In particular,

(3.10) mλs+1 < mλs+Nis
< nmλs

(
3
2

)Nis

.
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From inequalities (3.10), (3.8) and (3.9), we get that

mλs+1 ≤ n1+C(s)+(C(s)+1) log(3/2)/ log 2.

Hence, inequality (3.8) holds with s replaced by s + 1 provided that

C(s + 1) ≥ (C(s) + 1)
(

1 +
log(3/2)

log 2

)
.

The above inequality is satisfied if

C(s + 1) + 1 ≥ (C(s) + 1)
(

2 +
log(3/2)

log 2

)
.

With equality above, we note that the sequence a(s) := C(s) + 1 becomes
simply the geometrical progression of ratio 2 + log(3/2)/ log 2. Since we also
need that a(1) = C(1) + 1 ≥ c1 + 1, it follows easily that if we take C(s) such
that C(s) + 1 = γs, where

(3.11) γ ≥ max
{

c1 + 1, 2 +
log(3/2)

log 2

}
,

then, by (3.8) and the above argument, both inequalities (i) and (ii) are sat-
isfied with c4 = γ and c5 = γ log 2, respectively, which completes the proof of
Lemma 3.2.

We are now ready to prove our results.

Proof of Theorem 2.1. We may, of course, assume that n > c0. Then, by (ii)
of Lemma 3.2, the inequality

Nis ≤ cs
5 log n

holds for all s ∈ {1, . . . , t}. Thus, by (ii) of Lemma 3.1, we have

c2n ≤
∑

i∈A(m)

Ni ≤
t∑

s=1

Nis ≤
t∑

s=1

cs
5 log n < ct+1

5 log n,

because c5 > 2 (see (3.11)). Hence,

t + 1 >
1

log c5
(log n − log log n + log c2) ,

which implies the conclusion of Theorem 2.1. Note that the implied constant
in the inequality (2.1) can be taken to be c6 = 1/(2 log c5) provided that n is
sufficiently large.

Proof of Corollary 2.2. If c is fixed and t ≤ c, then Theorem 2.1 implies that
n < C, where C depends on c. By relation (1.4), we conclude that k and
(`1, . . . , `k) can take only finitely many values, and now relation (3.1) shows
that m can take only finitely many values as well.
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§4. Conclusion

As we pointed out in the Introduction, Steiner [9] proved that there do not exist
odd positive integers m whose associated compositions are C(m) = 〈1, . . . , 1, `〉,
while Mimuro [8] proved that there exist only finitely many whose composi-
tions have the form C(m) = 〈1, . . . , 1, `, . . . , `〉. Our results generalize those of
Steiner and Mimuro, yet Collatz’s conjecture implies that there should be no
such cycles at all. An important next step towards Collatz’s conjecture will
be to prove that there are finitely many possible cycles altogether. It could
be that our method might be of some help here, but we could not prove such
a statement.
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