Chaotic or hypercyclic semigroups on a function space $C_0(I, \mathbb{C})$ or $L^p(I, \mathbb{C})$

Fukiko Takeo

(Received February 15, 2005)

Abstract. To investigate conditions for strongly continuous semigroups to be chaotic or hypercyclic, we consider a strongly continuous semigroup $\{T_t\}$ on a function space $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed by $T_tf(x) = g(x,t)f(x+t)$. We also consider a strongly continuous semigroup $\{T_t\}$ on a function space $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed by $T_tf(x) = q(x,t)f(e^{\gamma t}x)$ with $\gamma < 0$, which have the relation to the solution semigroups to an initial value problem.

AMS 2000 Mathematics Subject Classification. 47D06.

Key words and phrases. Chaotic semigroups, hypercyclic semigroups, admissible weight function, initial value problem.

§1. Introduction

A strongly continuous semigroup $\{T_t\}$ on a Banach space X is called *hyper-cyclic* if there exists $x \in X$ such that the set $\{T_t(x) | t \ge 0\}$ is dense in X. $\{T_t\}$ is called *chaotic* if it is hypercyclic and the set of periodic points is dense in X. (An element $f \in X$ is called periodic if there exists some t > 0 such that $T_t f = f$.)

As for strongly continuous semigroups on Banach spaces the conditions to be hypercyclic or chaotic have been investigated by many people. T. Bermudez et al. [1] showed that every separable infinite dimensional complex Banach space admits a hypercyclic uniformly continuous semigroup and there exist Banach spaces admitting no chaotic strongly continuous semigroups. Desch et al. [2] considered weighted function spaces on $[0, \infty)$ and they gave a necessary and sufficient condition to be hypercyclic for translation semigroups on weighted function spaces. We examined necessary and sufficient conditions for a strongly continuous semigroup to be chaotic [5] and applied these results to partial differential equations [7]. A. Lasota et al.([3],[4]) investigated the dynamics of a population of cells undergoing simultaneous proliferation and maturation and showed that the solution semigroup to a partial differential equation describing the dynamics, is chaotic by using the theory of Wiener process.

In this paper, we investigate conditions for a strongly continuous semigroup $\{T_t\}$ on $C_0(I, \mathbb{C})$ or $L^p(I, \mathbb{C})$ to be hypercyclic or chaotic more deeply than the results ([5], [6], [7], [8]) and also consider a strongly continuous semigroup $\{T_t\}$ on $C_0([0, \infty), \mathbb{C})$ or $L^p([0, \infty), \mathbb{C})$ expressed as $T_t f(x) = g(x, t) f(x + t)$ and a strongly continuous semigroup $\{S_t\}$ on $C_0([0, 1], \mathbb{C})$ or $L^p([0, 1], \mathbb{C})$ expressed as $S_t f(x) = q(x, t) f(e^{\gamma t} x)$ with $\gamma < 0$.

In section 2, we treat a strongly continuous semigroup on a function space on $[0, \infty)$. By using a former result by the author et al. (Theorem A), we show a condition of a partial differential equation for the solution semigroup to be hypercyclic or chaotic (Theorem 2.1). As an extension of a strongly continuous semigroup $\{T_t\}$ in Theorem 2.1 expressed as $T_t f(x) = \frac{\rho(x)}{\rho(x+t)} f(x+t)$, we consider a strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = g(x,t) f(x+t)$ with $g(x,t) \in C^1([0,\infty) \times [0,\infty),\mathbb{C})$ and obtain a condition of the function g for the strongly continuous semigroup to be hypercyclic or chaotic (Theorem 2.3). We examine the relation among strongly continuous semigroups $\{T_t\}$ defined in several ways (Proposition 2.4).

Section 3 is devoted to an investigation of a strongly continuous semigroup on a function space on [0,1]. On such a function space, the translation semigroup cannot be considered, since x + t goes outside of [0,1] for $x \in [0,1]$ and t > 0. So by considering a map $\psi : [0, \infty) \to (0, 1]$ defined by $\psi(x) = e^{\gamma x}$ with $\gamma < 0$, we investigate a strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ in contrast to $T_t f(x) = g(x,t)f(x+t)$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$. We introduce an admissible weight function on (0,1] induced from an admissible weight function on $[0,\infty)$ and obtain a condition of an admissible weight function for a strongly continuous semigroup on $C_{0,\rho}([0,1],\mathbb{C})$ to be hypercyclic or chaotic (Theorem 3.1). By using the map ψ and Theorems 2.1 and 2.3, we investigate the solution semigroup to an initial value problem (Theorem 3.2) and a strongly continuous semigroup $\{S_t\}$ (Theorem 3.4). As for the space $L^p([0,1],\mathbb{C})$, an admissible weight function on (0,1] does not work well and so by using the spectral property of an infinitesimal generator, we get a condition of the function q for a strongly continuous semigroup to be chaotic (Theorem 3.5). We examine the relation among strongly continuous semigroups $\{S_t\}$ defined in several ways (Proposition 2.4).

The author wishes to express many thanks to the referee for his kind suggestions to complete the revised version.

§2. Translation semigroup on $I = [0, \infty)$

By an *admissible weight function* on $[0, \infty)$ we mean a measurable function $\rho: [0, \infty) \to \mathbb{R}$ satisfying the following conditions:

- (i) $\rho(x) > 0$ for all $x \in [0, \infty)$;
- (ii) there exist constants $M \ge 1$ and $\omega \in \mathbb{R}$ such that $\rho(x) \le M e^{\omega t} \rho(t+x)$ for all $x \in [0, \infty)$ and t > 0.

With an admissible weight function ρ , we construct the following function spaces:

$$C_{0,\rho}([0,\infty),\mathbb{C}) = \left\{ f: [0,\infty) \to \mathbb{C} \mid f \text{ continuous, } \lim_{x \to \infty} \rho(x)f(x) = 0 \right\}$$

with $\|f\|_{\rho} = \sup_{\tau \in [0,\infty)} |f(\tau)\rho(\tau)|,$
$$L^p_{\rho}([0,\infty),\mathbb{C}) = \left\{ f: [0,\infty) \to \mathbb{C} \mid f \text{ measurable, } \int_0^\infty |f(\tau)\rho(\tau)|^p \ d\tau < \infty \right\}$$

with $\|f\|_{p,\rho} = \left(\int_0^\infty |f(\tau)\rho(\tau)|^p \ d\tau \right)^{\frac{1}{p}} \quad (p \ge 1)$

and consider a (forward) translation semigroup $\{\widetilde{T}_t\}$ with parameter $t \ge 0$ defined by

(2.1)
$$\widetilde{T}_t f(x) = f(x+t)$$
 for $f \in C_{0,\rho}([0,\infty),\mathbb{C})$ or $L^p_{\rho}([0,\infty),\mathbb{C})$.

Desch et al. [2] defined the space $L^p_{\rho}([0,\infty))$ by using $||f||_{\rho} = \left(\int_0^{\infty} |f(\tau)|^p \rho(\tau) d\tau\right)^{\frac{1}{p}}$, instead of $||f||_{\rho} = \left(\int_0^{\infty} |f(\tau)\rho(\tau)|^p d\tau\right)^{\frac{1}{p}}$. However in order to extend the following results in Theorem A to an initial value problem, the norm $||f||_{\rho} = \left(\int_0^{\infty} |f(\tau)\rho(\tau)|^p d\tau\right)^{\frac{1}{p}}$ is better, since the following equation (2.4) is obtained by using this norm.

As for the translation semigroup $\{T_t\}$, the following has been obtained.

Theorem A ([2], [6], [5]). Let \widetilde{X} be $C_{0,\rho}([0,\infty),\mathbb{C})$ or $L^p_{\rho}([0,\infty),\mathbb{C})$ with an admissible weight function ρ and consider the translation semigroup $\{\widetilde{T}_t\}$ on \widetilde{X} . Then

- (1) $\{\widetilde{T}_t\}$ is hypercyclic if and only if $\liminf_{t\to\infty} \rho(t) = 0$;
- (2) if \widetilde{X} is $C_{0,\rho}([0,\infty),\mathbb{C})$, then $\{\widetilde{T}_t\}$ is chaotic if and only if $\lim_{\tau\to\infty}\rho(\tau)=0$;

(3) if \widetilde{X} is $L^p_{\rho}([0,\infty),\mathbb{C})$, then $\{\widetilde{T}_t\}$ is chaotic if and only if for all $\varepsilon > 0$ and for all l > 0, there exists P > 0 such that

$$\sum_{n=1}^{\infty} (\rho(l+nP))^p < \varepsilon.$$

Let X be a function space on an interval I and u(t, x) be the solution of the following initial value problem:

(2.2)
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u & (x \in [0, \infty), t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)) \end{cases}$$

for $f \in X$. Let T_t $(t \ge 0)$ be defined by $T_t f(x) = u(t, x)$ for $f \in X$ and $x \in I$. When T_t is a strongly continuous semigroup on X, we shall call $\{T_t\}$ the solution semigroup to an initial value problem (2.2).

The translation semigroup $\{T_t\}$ on a weighted function space X is the solution semigroup to the following initial value problem:

(2.3)
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} & (x \in [0, \infty), \ t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)) \end{cases}$$

for $f \in \widetilde{X}$. Let X be the space $C_0([0,\infty),\mathbb{C}) = \{f \in C([0,\infty),\mathbb{C}) \mid \lim_{x\to\infty} f(x) = 0\}$ or $L^p([0,\infty),\mathbb{C})$ and consider the strongly continuous semigroup $\{T_t\}$ on X defined by

(2.4)
$$T_t f(x) = \frac{\rho(x)}{\rho(x+t)} f(x+t) \quad \text{for } f \in X.$$

Let

(2.5)
$$\phi: C_{0,\rho}([0,\infty),\mathbb{C}) \to C_0([0,\infty),\mathbb{C})$$

[resp. $L^p_{\rho}([0,\infty),\mathbb{C}) \to L^p([0,\infty),\mathbb{C})$]

be defined by $\phi(f)(x) = \rho(x)f(x)$ for $f \in C_{0,\rho}([0,\infty),\mathbb{C})[\text{resp. } L^p_{\rho}([0,\infty),\mathbb{C})].$ Then ϕ is isomorphic and $\phi(\tilde{T}_t f)(x) = T_t \phi(f)(x)$ holds. Since $\{T_t\}$ is the solution semigroup to the following initial value problem [8]:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} - \frac{\rho'(x)}{\rho(x)}u & (x \in [0, \infty), \ t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)), \end{cases}$$

we consider the following initial value problem:

(2.6)
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u & (x \in [0, \infty), t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)), \end{cases}$$

46

where h is a bounded continuous function on $[0, \infty)$ and $f \in X$. A modification of [8, Theorems 2.1, 2.2 and 2.7] is the following

Theorem 2.1. Let X be $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$. Consider an initial value problem :

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u & (x \in [0, \infty), \ t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)), \end{cases}$$

where $h \in C([0,\infty), \mathbb{C})$ is bounded and $f \in X$.

Then the solution semigroup $\{T_t\}_{t\geq 0} \left(T_t f(x) = e^{\int_x^{x+t} h(s)ds} f(x+t)\right)$ is a strongly continuous semigroup on X. Moreover

(1) $\{T_t\}$ is hypercyclic if and only if

$$\limsup_{x \to \infty} \int_0^x \Re h(s) ds = \infty;$$

(2) if $X = C_0([0,\infty),\mathbb{C})$, then $\{T_t\}_{t>0}$ is chaotic if and only if

$$\int_0^\infty \Re h(s) ds = \infty;$$

(3) if
$$X = L^p([0,\infty),\mathbb{C})$$
 and $h(x) = \frac{a}{x+1}$ with $a > \frac{1}{p}$, then $\{T_t\}$ is chaotic.

Proof. Put $\kappa(x) = \exp\left\{-\int_0^x h(s) \, ds\right\}$. Then $\rho(x) = |\kappa(x)|$ is an admissible weight function on $[0, \infty)$. Consider the space $\widetilde{X} = C_{0,\rho}([0, \infty), \mathbb{C})$ and the translation semigroup $\{\widetilde{T}_t\}$ defined by $\widetilde{T}_t f(x) = f(x+t)$ for $f \in \widetilde{X}$. Then by [7, Proposition 3], $\{T_t\}$ is hypercyclic [resp. chaotic] if and only if $\{\widetilde{T}_t\}$ is hypercyclic [resp. chaotic]. Hence (1) and (2) follows from Theorem A. (3) follows from [8, Theorem 2.2 (2)].

The above theorem is concerned with the strongly continuous semigroup of the form

$$T_t f(x) = \frac{\kappa(x)}{\kappa(x+t)} f(x+t),$$

where $\rho(x) = |\kappa(x)|$ is an admissible weight function on $[0, \infty)$. As a generalization we consider the strongly continuous semigroup $\{T_t\}$ expressed as

$$T_t f(x) = g(x, t) f(x+t),$$

with $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$ and consider the condition for $\{T_t\}$ to be hypercyclic or chaotic.

The property of g(x,t) is shown in the following

Lemma 1. Let X be $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ and $\{T_t\}$ be a strongly continuous semigroup on X expressed as

$$T_t f(x) = g(x, t) f(x+t),$$

with $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$. Then

- (1) g(x, s+t) = g(x, s)g(x+s, t) for any $x, s, t \in [0, \infty)$,
- (2) g(x,0) = 1 for any $x \in [0,\infty)$,
- (3) $g(x,s) \neq 0$ for any $(x,s) \in [0,\infty) \times [0,\infty)$,

(4)
$$g(x,t) = \frac{g(0,x+t)}{g(0,x)}.$$

Proof. (1) By the relations $T_{s+t}f(x) = g(x, s+t)f(x+s+t)$ and $T_s(T_tf(x)) = g(x,s)T_tf(x+s) = g(x,s)g(x+s,t)f(x+s+t)$, we have g(x,s+t) = g(x,s)g(x+s,t)f(x+s+t).

(2) By the definition, f(x) = g(x, 0)f(x) holds for any $f \in X$. So g(x, 0) = 1 holds for any $x \in [0, \infty)$.

(3) Suppose there exists $(x,s) \in [0,\infty) \times [0,\infty)$ satisfying g(x,s) = 0. Then g(x,s+t) = g(x,s)g(x+s,t) implies g(x,t) = 0 for any $t \ge s$. Let $s_0 = \min\{s \mid g(x,s) = 0\}$. If $s_0 > 0$, then for $t(0 \le t \le s_0)$, $g(x+t,s_0-t) = 0$ holds by the relation $g(x,s_0) = g(x,t)g(x+t,s_0-t)$. So $g(x+s_0,0) = 0$, which contradicts (2). Hence $g(x,s) \ne 0$ for any $(x,s) \in [0,\infty) \times [0,\infty)$.

(4) By (3), $\frac{g(0, x+t)}{g(0, x)}$ is well defined and (4) follows from (1).

Proposition 2.2. Let X be $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ and $\{T_t\}$ be a strongly continuous semigroup on X expressed as

$$T_t f(x) = g(x, t) f(x+t),$$

where $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$ with $\left\| \frac{g_t(x,t)}{g(x,t)} \right\|_{\infty} < \infty$.

(1) If we put $\rho(x) = \frac{1}{|g(0,x)|}$, then ρ is a continuous admissible weight function on $[0,\infty)$.

(2) Let \widetilde{X} be the space $C_{0,\rho}([0,\infty),\mathbb{C})$ or $L^p_{\rho}([0,\infty),\mathbb{C})$ and $\left\{\widetilde{T}_t\right\}_{t\geq 0}$ be the translation semigroup on \widetilde{X} . Then

(i)
$$\{T_t\}_{t\geq 0}$$
 is hypercyclic on X iff $\{\widetilde{T}_t\}_{t\geq 0}$ is hypercyclic on \widetilde{X} .

(ii) $\{T_t\}_{t\geq 0}$ is chaotic on X iff $\{\widetilde{T}_t\}_{t\geq 0}$ is chaotic on \widetilde{X} .

$$\begin{split} & Proof. \ (1) \ \text{By Lemma 1} \ (3), \ \rho(x) \ \text{is well-defined.} \quad \text{By the assumption} \\ & \left\|\frac{g_t(x,t)}{g(x,t)}\right\|_{\infty} = c < \infty \ \text{and the relation} \ \rho(\tau) = \frac{1}{|g(0,\tau)|} = |\exp\{-\log g(0,\tau) + \log g(0,0)\}| = \left|\exp\{-\int_0^\tau \frac{g_t(0,s)}{g(0,s)}ds\}\right|, \ \text{we have} \\ & \rho(\tau) = \left|\exp\left\{-\int_0^{t+\tau} \frac{g_t(0,s)}{g(0,s)}ds\right\}\exp\{\int_{\tau}^{t+\tau} \frac{g_t(0,s)}{g(0,s)}ds\}\right| \\ & \leq \rho(\tau+t)\exp\left\{\int_{\tau}^{t+\tau} \frac{|g_t(0,s)|}{|g(0,s)|}ds\right\} \le \rho(\tau+t)e^{ct}. \end{split}$$

So ρ is an admissible weight function on $[0, \infty)$. (2) Define an operator $\varphi : \widetilde{X} \to X$ as $\varphi(f)(x) = \rho(x)f(x)$ for $f \in \widetilde{X}$ and for $x \in [0, \infty)$. Then φ is an isomorphism of \widetilde{X} to X and $T_t \circ \varphi = \varphi \circ \widetilde{T}_t$ holds. So we get the conclusion.

Theorem 2.3. Let X be $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ and $\{T_t\}$ be a strongly continuous semigroup on X expressed as

$$T_t f(x) = g(x, t) f(x+t),$$

where $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$ with $\left\| \frac{g_t(x,t)}{g(x,t)} \right\|_{\infty} < \infty$. Then

(1) the semigroup $\{T(t)\}$ is hypercyclic if and only if

$$\limsup_{\tau \to \infty} |g(0,\tau)| = \infty;$$

(2) if $X = C_0([0,\infty), \mathbb{C})$, then $\{T(t)\}$ is chaotic if and only if $\lim_{\tau \to \infty} |g(0,\tau)| = \infty$;

(3) if
$$X = L^p([0,\infty),\mathbb{C})$$
 and $g(x,t) = \left(1 + \frac{t}{x+1}\right)^b$ with $b > \frac{1}{p}$, then $\{T(t)\}$ is chaotic.

Proof. Put $\rho(\tau) = \frac{1}{|g(0,\tau)|}$. Then $\liminf_{\tau \to \infty} \rho(\tau) = 0$ [resp. $\lim_{\tau \to \infty} \rho(\tau) = 0$] is equivalent to $\limsup_{\tau \to \infty} |g(0,\tau)| = \infty$ [resp. $\lim_{\tau \to \infty} |g(0,\tau)| = \infty$]. So (1) and (2) follows from Theorem A (1), (2) and Proposition 2.2. (3) If $g(x,t) = \left(1 + \frac{t}{x+1}\right)^b$, then g(x,s)g(x+s,t) = g(x,s+t) holds. So $T_t f(x) = g(x,t)f(x+t)$ with $g(x,y) = \left(1 + \frac{t}{x+1}\right)^b$ is a strongly continuous semigroup.

Put $\rho(\tau) = \frac{1}{g(0,\tau)} = (1+\tau)^{-b}$. For any $\varepsilon > 0$ and any l > 0, we have

$$\sum_{n=1}^{\infty} (\rho(l+nP))^p < \sum_{n=1}^{\infty} \frac{1}{(nP)^{bp}} < \frac{1}{P^{bp}} \left(\frac{bp}{bp-1}\right) < \varepsilon$$

for $P > \left(\frac{bp}{\varepsilon(bp-1)}\right)^{\frac{1}{bp}}$. Then the translation semigroup $\{\widetilde{T}_t\}$ on a weighted function space $L^p_{\rho}([0,\infty),\mathbb{C})$ is chaotic by Theorem A (3). Since $g(x,t) = \left(1 + \frac{t}{x+1}\right)^b$, $\frac{g_t(x,t)}{g(x,t)} = \frac{b}{x+t+1}$ means $\left\|\frac{g_t(x,t)}{g(x,t)}\right\|_{\infty} = b$. So by Proposition 2.2, $\{T_t\}$ is chaotic.

As for the relation among the strongly continuous semigroups $\{T_t\}$ mentioned above, we have

Proposition 2.4. Consider the following strongly continuous semigroups (1)-(4):

- (1) The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = g(x,t)f(x+t)$ where $g(x,t) \in C^1([0,\infty) \times [0,\infty),\mathbb{C})$ satisfies $\left\|\frac{g_t(x,t)}{g(x,t)}\right\|_{\infty} < \infty;$
- (2) The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = \frac{\kappa(x)}{\kappa(x+t)} f(x+t)$, where $\rho(x) = |\kappa(x)|$ is an admissible weight function on $[0,\infty)$;
- (2') The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = \frac{\rho(x)}{\rho(x+t)} f(x+t)$, where $\rho(x)$ is an admissible weight function on $[0,\infty)$;
- (3) The solution semigroup $\{T_t\}$ to the following initial value problem:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u & (x \in [0, \infty), \ t > 0) \\ u(x, 0) = f(x) & (x \in [0, \infty)), \end{cases}$$

where h is a complex-valued bounded continuous function on $[0, \infty)$ and $f \in C_0([0, \infty), \mathbb{C})$ or $L^p([0, \infty), \mathbb{C})$;

(4) The translation semigroup $\{\widetilde{T}_t\}$ on $C_{0,\rho}([0,\infty),\mathbb{C})$ or $L^p_{\rho}([0,\infty),\mathbb{C})$ with an admissible weight function ρ .

Then $(1) \Leftrightarrow (3) \Rightarrow (2)$ and $(2') \Leftrightarrow (4)$ holds, which means that there is a bijection between (1) and (3)[resp. (2') and (4)] and any T_t defined by (1) or (3) corresponds to some T_t defined by (2).

If we replace (2) by the following;

(2") The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = \frac{\kappa(x)}{\kappa(x+t)} f(x+t)$, where $\rho(x) = |\kappa(x)|$ is a differentiable admissible weight function on $[0,\infty)$ satisfying $\left\|\frac{\kappa'(t)}{\kappa(t)}\right\|_{\infty} < \infty$,

then there is a one-to-one onto correspondence among (1), (2") and (3).

Proof. (1) \Rightarrow (2): For g(x,t) defined in (1), put $\kappa(x) = \frac{1}{g(0,x)}$. Then $\rho(x) = |\kappa(x)|$ is an admissible weight function on $[0,\infty)$. (1) \Rightarrow (3): For g(x,t) defined in (1), put $h(x) = \frac{g_t(0,x)}{g(0,x)}$. Then the solution semigroup $\{T_t\}$ is obtained by $T_t f(x) = \exp\left\{\int_x^{x+t} \frac{g_t(0,x)}{g(0,x)} ds\right\} f(x+t) = g(x,t)f(x+t)$ by Lemma 1.(4). (3) \Rightarrow (1): For h defined in (3), put $g(x,t) = \exp\left\{\int_x^{x+t} h(s) ds\right\}$. Then $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$ and $\left\|\frac{g_t(x,t)}{g(x,t)}\right\|_{\infty} < \infty$, since $\frac{g_t(x,t)}{g(x,t)} = h(x+t)$ holds. (2') \Leftrightarrow (4) follows from the equation (2.5).

(2") \Rightarrow (3): For $\kappa(x)$ defined in (2"), put $h(x) = -\frac{\kappa'(x)}{\kappa(x)}$. Then h is a bounded continuous function.

If we consider real-valued functions g(x,t), h(x) and we assume $\rho(x)$ is differentiable, then we have

Corollary. There is a one-to-one onto correspondence among the following strongly continuous semigroups (1) - (4):

(1) The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = g(x,t)f(x+t)$ where $g(x,t) \in C^1([0,\infty) \times [0,\infty),\mathbb{R})$ with $\left\| \frac{g_t(x,t)}{g(x,t)} \right\|_{\infty} < \infty;$

- (2) The strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ or $L^p([0,\infty),\mathbb{C})$ expressed as $T_t f(x) = \frac{\rho(x)}{\rho(x+t)} f(x+t)$, where $\rho(x)$ is a differentiable admissible weight function on $[0,\infty)$ satisfying $\left\|\frac{\rho'(t)}{\rho(t)}\right\|_{\infty} < \infty$;
- (3) The solution semigroup $\{T_t\}$ to the following initial value problem:

$$\left\{ \begin{array}{ll} \displaystyle \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u & (x \in [0,\infty), \ t > 0) \\ u(x,0) = f(x) & (x \in [0,\infty)), \end{array} \right.$$

where h is a real-valued bounded continuous function on $[0, \infty)$ and $f \in C_0([0, \infty), \mathbb{C})$ or $L^p([0, \infty), \mathbb{C})$;

(4) The translation semigroup $\{\widetilde{T}_t\}$ on $C_{0,\rho}([0,\infty),\mathbb{C})$ or $L^p_{\rho}([0,\infty),\mathbb{C})$ with a differentiable admissible weight function ρ satisfying $\left\|\frac{\rho'(t)}{\rho(t)}\right\|_{\infty} < \infty$.

§3. Transformation semigroup on I = [0, 1]

Now we shall consider the case of I = [0, 1] and a strongly continuous semigroup $\{S_t\}$ on the function space $C_0([0, 1], \mathbb{C}) = \{f \in C([0, 1], \mathbb{C}) \mid f(0) = 0\}$ with sup norm or $L^p([0, 1], \mathbb{C})$.

Consider a map $\psi : [0, \infty) \to (0, 1]$ defined by

(3.1)
$$\psi(x) = e^{\gamma x}$$

with $\gamma < 0$.

By using an admissible weight function ρ on $[0, \infty)$, we shall consider a measurable function $\eta : (0, 1] \to \mathbb{R}$ defined by

(3.2)
$$\eta(x) = \rho(\psi^{-1}(x))$$
 for $x \in (0, 1]$.

Then η satisfies the following conditions:

- (i) $\eta(x) > 0$ for $x \in (0, 1]$;
- (ii) there exist constants $M \ge 1$ and $\omega \in \mathbb{R}$ such that $\eta(x) \le M e^{\omega t} \eta(e^{\gamma t} x)$ for all $x \in (0, 1]$ and t > 0.

We shall call η an *admissible weight function* on (0, 1].

52

With an admissible weight function η on (0, 1], we construct the following function spaces:

$$C_{0,\eta}((0,1],\mathbb{C}) = \left\{ f: (0,1] \to \mathbb{C} \mid f \text{ continuous on } (0,1], \lim_{x \to 0} \eta(x) f(x) = 0 \right\}$$

with $\|f\|_{\eta} = \sup_{\tau \in (0,1]} |f(\tau)\eta(\tau)|,$
$$L^p_{\eta}([0,1],\mathbb{C}) = \left\{ f: [0,1] \to \mathbb{C} \mid f \text{ measurable}, \int_0^1 |f(\tau)\eta(\tau)|^p \ d\tau < \infty \right\}$$

with $\|f\|_{p,\eta} = \left(\int_0^1 |f(\tau)\eta(\tau)|^p \ d\tau\right)^{\frac{1}{p}} \quad (p \ge 1).$

Consider an operator $\varphi: C_{0,\eta}((0,1],\mathbb{C}) \to C_{0,\rho}([0,\infty),\mathbb{C})$ defined by

(3.3)
$$\varphi(f)(x) = f(\psi(x))$$

for $f \in C_{0,\eta}((0,1],\mathbb{C})$, where ψ is defined by (3.1). Then φ is an isomorphism from $C_{0,\eta}((0,1],\mathbb{C})$ to $C_{0,\rho}([0,\infty),\mathbb{C})$.

Let $\widetilde{S}_t : C_{0,\eta}((0,1],\mathbb{C}) \to C_{0,\eta}((0,1],\mathbb{C})$ be defined by

(3.4)
$$\widetilde{S}_t(f) = \varphi^{-1} \circ \widetilde{T}_t \circ \varphi(f) \quad \text{for } f \in C_{0,\eta}((0,1],\mathbb{C}),$$

where \widetilde{T}_t is a translation operator on $C_{0,\rho}([0,\infty),\mathbb{C})$ defined by (2.1). Then

(3.5)
$$\widetilde{S}_t f(x) = f(e^{\gamma t} x)$$

So $\{\widetilde{S}_t\}$ is hypercyclic or chaotic if and only if $\{\widetilde{T}_t\}$ is hypercyclic or chaotic respectively.

Then the following theorem follows from Theorem A.

Theorem 3.1. Let η be a continuous admissible weight function on (0, 1], $\widetilde{X} = C_{0,\eta}((0, 1], \mathbb{C})$ and the strongly continuous semigroup $\left\{\widetilde{S}_t\right\}_{t\geq 0}$ be defined by (3.5).

Then

(1) {S_t}_{t≥0} is hypercyclic if and only if limit η(τ) = 0;
(2) {S_t}_{t≥0} is chaotic if and only if lim η(τ) = 0.

As for L^p space, consider $\varphi(g)(x) = g(\psi(x))$ for $g \in L^p_{\eta}([0,1],\mathbb{C})$, where ψ is defined by (3.1). In this case, $\varphi(g)$ does not necessarily belong to $L^p_{\eta}([0,\infty),\mathbb{C})$, since

$$\int_0^\infty |\varphi(g)(\tau)\tilde{\eta}(\tau)|^p \ d\tau = \int_0^1 |g(x)\eta(x)|^p \frac{1}{-\gamma x} dx.$$

So we must investigate in a different way and the next Proposition shows that if $\lim_{\tau \to 0} \eta(\tau)$ exists, then the strongly continuous semigroup $\{\widetilde{S}_t\}$ is always hypercyclic.

Proposition B ([8, Proposition 3.3]). Let \widetilde{X} be $L^p_{\eta}([0,1], \mathbb{C})$ and $\left\{\widetilde{S}_t\right\}_{t\geq 0}$ on \widetilde{X} be defined by $\widetilde{S}_t g(x) = g(e^{\gamma t} x)$ for $g \in \widetilde{X}$. If η is continuous on (0,1] and $\lim_{\tau \to 0} \eta(\tau) = c < \infty$ exists, then \widetilde{S}_t is a bounded linear operator on \widetilde{X} and the strongly continuous semigroup $\left\{\widetilde{S}_t\right\}_{t\geq 0}$ is hypercyclic.

Since the translation semigroup $\{\tilde{T}_t\}$ is a solution semigroup to the initial value problem (2.3), the strongly continuous semigroup $\{\tilde{S}_t\}$ is the solution semigroup to the following initial value problem

$$\begin{cases} \frac{\partial v}{\partial t} = \gamma x \frac{\partial v}{\partial x} & (x \in [0, 1], \ t > 0) \\ v(0, x) = f(x) & (x \in [0, 1]) \end{cases}$$

for $f \in X$. Let X be the space $C_0([0,1],\mathbb{C}) = \{f \in C([0,1],\mathbb{C}) \mid f(0) = 0\}$ and consider a strongly continuous semigroup $\{S_t\}$ defined by

(3.6)
$$S_t(f) = \varphi^{-1} \circ T_t \circ \varphi(f) \quad \text{for } f \in C_0([0,1],\mathbb{C}),$$

where T_t is an operator on $C_0([0,\infty),\mathbb{C})$ defined by (2.4). Then

(3.7)
$$S_t f(x) = \frac{\eta(x)}{\eta(e^{\gamma t} x)} f(e^{\gamma t} x).$$

For $v \in C([0,1] \times [0,\infty), \mathbb{C})$ with v(0,t) = 0, put $u(x,t) = v(\psi(x),t)$. Then $u \in C([0,\infty) \times [0,\infty), \mathbb{C})$ and $\lim_{x \to \infty} u(x,t) = 0$. If u is a solution of the initial value problem (2.6), then v is a solution of the following initial value problem:

(3.8)
$$\begin{cases} \frac{\partial v}{\partial t} = \gamma x \frac{\partial v}{\partial x} + k(x)v & (x \in [0,1], t > 0) \\ v(x,0) = f(x) & (x \in [0,1]), \end{cases}$$

where $k(x) = h(\psi^{-1}x)$. In [7, Theorem 1], it is shown that if min $\{\Re(k(x)) \mid x \in [0,1]\}$ is positive, then the solution semigroup $\{S_t\}_{t\geq 0}$ on $C_0([0,1],\mathbb{C})$ to (3.8) is chaotic by using the spectral property of its infinitesimal generator. However if we use Theorem 2.1, we get a necessary and sufficient condition for $\{S_t\}$ to be chaotic as follows: **Theorem 3.2.** Let X be the space $C_0([0,1],\mathbb{C})$. Consider the following initial value problem :

(3.9)
$$\begin{cases} \frac{\partial v}{\partial t} = \gamma x \frac{\partial v}{\partial x} + k(x)v & (x \in [0, 1], t > 0) \\ v(x, 0) = f(x) & (x \in [0, 1]), \end{cases}$$

where $\gamma < 0, \ k \in C([0,1],\mathbb{C})$ and $f \in X$. Then the strongly continuous semigroup $\{S_t\}_{t\geq 0} \left(S_t f(x) = \exp\left\{\int_0^t k(e^{\gamma(t-r)}x) dr\right\} f(e^{\gamma t}x)\right)$ is a strongly continuous semigroup on X.

Moreover $\{S_t\}_{t\geq 0}$ is chaotic if and only if $\lim_{x\to 0} \int_x^1 \frac{\Re k(s)}{s} ds = \infty$. Therefore if $\Re k(0) > 0$, then $\{S_t\}_{t\geq 0}$ is chaotic.

Proof. By using $k(x) = h(\psi^{-1}(x))$, an initial value problem (3.9) corresponds to the initial value problem (2.6). By the equation

$$\int_0^\infty \Re h(s) \ ds = \lim_{x \to 0} \int_x^1 \Re h(\psi^{-1}(\tau)) \frac{d\tau}{\gamma \tau} = \lim_{x \to 0} \int_x^1 \frac{\Re k(s)}{\gamma s} \ ds,$$

we get that $\{S_t\}_{t\geq 0}$ is chaotic if and only if $\lim_{x\to 0} \int_x^1 \frac{\Re k(s)}{s} ds = \infty$ by using Theorem 2.1

As for the space $L^p([0,1],\mathbb{C})$, we have

Theorem C ([8, Theorem 3.5]). Let X be the space $L^p([0,1], \mathbb{C})$ with $p \ge 1$. Consider the following initial value problem :

$$\left\{ \begin{array}{ll} \displaystyle \frac{\partial v}{\partial t} = \gamma x \frac{\partial v}{\partial x} + k(x) v & (x \in [0,1], \ t > 0) \\ \displaystyle v(x,0) = f(x) & (x \in [0,1]) \end{array} \right.$$

where $\gamma < 0, k \in C([0,1],\mathbb{C})$ and $f \in X$. Then the strongly continuous semigroup $\{S_t\}_{t\geq 0}$ $(S_tf(x) = \exp\left\{\int_0^t k(e^{\gamma(t-r)}x)dr\right\}f(e^{\gamma t}x))$ is a strongly continuous semigroup on X. Moreover

- (1) if there exists $\delta > 0$ such that $\Re(k(x)) \ge 0$ for $0 \le \forall x \le \delta$, then $\{S_t\}_{t\ge 0}$ is hypercyclic;
- (2) if $\min \{ \Re(k(x)) \mid x \in [0,1] \} > \frac{\gamma}{p}$, then $\{S_t\}_{t \ge 0}$ is chaotic.

By using a strongly continuous semigroup $\{T_t\}$ on $C_0([0,\infty),\mathbb{C})$ expressed as

$$T_t f(x) = g(x, t) f(x+t),$$

with $g(x,t) \in C^1([0,\infty) \times [0,\infty), \mathbb{C})$, we shall consider a strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ expressed as

$$S_t(f) = \varphi^{-1} \circ T_t \circ \varphi(f)$$
 for $f \in C_0([0,1], \mathbb{C})$.

Then by putting

(3.10)
$$q(x,t) = g(\psi^{-1}x,t) \in C^1([0,1] \times [0,\infty), \mathbb{C}),$$

 $S_t f(x) = q(x,t) f(e^{\gamma t} x)$ is a generalization of a strongly continuous semigroup of the form $S_t f(x) = \frac{\eta(x)}{\eta(e^{\gamma t} x)} f(e^{\gamma t} x)$.

By Lemma 1, the property of the function q(x, t) is obtained as follows.

Lemma 2. Let $\gamma < 0$, $X = C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ and $\{S_t\}$ be a strongly continuous semigroup on X expressed as

$$S_t f(x) = q(x, t) f(e^{\gamma t} x),$$

where $q(x,t) \in C^1([0,1] \times [0,\infty), \mathbb{C})$. Then

- (1) $q(x, s+t) = q(x, s)q(e^{\gamma s}x, t)$ for any $x, s, t \in [0, 1]$,
- (2) q(x,0) = 1 for any $x \in [0,1]$,
- (3) $q(x,s) \neq 0$ for any $(x,s) \in [0,1] \times [0,\infty)$,
- (4) $q(e^{\gamma s},t) = \frac{q(1,s+t)}{q(1,s)}.$

Proposition 3.3. Let X be $C_0([0,1],\mathbb{C})$ [resp. $L^p([0,1],\mathbb{C})$] and $\{S_t\}$ be a strongly continuous semigroup on X expressed as

$$S_t f(x) = q(x, t) f(e^{\gamma t} x),$$

where $q(x,t) \in C^1([0,1] \times [0,\infty), \mathbb{C})$ with $\left\| \frac{q_t(x,t)}{q(x,t)} \right\|_{\infty} < \infty$ and $\gamma < 0$.

- (1) If we put $\eta(x) = \frac{1}{\left|q(1, \frac{\log x}{\gamma})\right|}$ for $x \in (0, 1]$, then η is a continuous admissible weight function on (0, 1].
- (2) Let \widetilde{X} be the space $C_{0,\eta}((0,1],\mathbb{C})$ [resp. $L^p_{\eta}([0,1],\mathbb{C})$] and $\left\{\widetilde{S}_t\right\}_{t\geq 0}$ be a strongly continuous semigroup on \widetilde{X} defined by $S_t f(x) = f(e^{\gamma t}x)$. Then

- (i) $\{S_t\}_{t\geq 0}$ is hypercyclic on X iff $\{\widetilde{S}_t\}_{t\geq 0}$ is hypercyclic on \widetilde{X} . (ii) $\{\widetilde{S}_t\}_{t\geq 0}$ is hypercyclic on \widetilde{X} .
- (ii) $\{S_t\}_{t\geq 0}$ is chaotic on X iff $\{\widetilde{S}_t\}_{t\geq 0}$ is chaotic on \widetilde{X} .

Proof. (1) By using the equations (3.2) and (3.10), $\eta(x) = \frac{1}{\left|q(1, \frac{\log x}{\gamma})\right|}$ implies that $\rho(\psi^{-1}(x)) = \frac{1}{\left|q(\psi^{-1}(1),\psi^{-1}(x))\right|}$, that is, $\rho(s) = \frac{1}{\left|q(0,s)\right|}$. So by Proposition 2.2 (1), η is a continuous admissible weight function on (0, 1]. (2) It is obtained by the same way as Proposition 2.2 (2).

By Theorem 2.3, we have

Theorem 3.4. Let $\{S_t\}$ be a strongly continuous semigroup on $C_0([0,1],\mathbb{C})$ expressed as

$$S_t f(x) = q(x, t) f(e^{\gamma t} x),$$

where $q(x,t) \in C^1([0,1] \times [0,\infty), \mathbb{C})$ with $\left\| \frac{q_t(x,t)}{q(x,t)} \right\|_{\infty} < \infty$ and $\gamma < 0$. Then the following are equivalent:

- (1) $\{S_t\}_{t\geq 0}$ is hypercyclic if and only if $\limsup_{\tau\to\infty} |q(1,\tau)| = \infty$;
- (2) $\{S_t\}_{t\geq 0}$ is chaotic if and only if $\lim_{\tau\to\infty} |q(1,\tau)| = \infty$.

In case of $C_0([0,1],\mathbb{C})$, the property of η plays an essential role in proving that $\{S_t\}$ is chaotic or hypercyclic. However, in case of $L^p([0,1],\mathbb{C})$, we have not obtained any property of η for a strongly continuous semigroup to be chaotic. So we use the the following

Theorem D ([2]). Let X be a separable Banach space and let A be the infinitesimal generator of a strongly continuous semigroup $\{S_t\}_{t\geq 0}$ on X. Let U be an open subset of the point spectrum of A, which intersects the imaginary axis, and for each $\lambda \in U$ let x_{λ} be a nonzero eigenvector, i.e. $Ax_{\lambda} = \lambda x_{\lambda}$. For each $\phi \in X^*$ we define a function $F_{\phi}: U \to \mathbb{C}$ by $F_{\phi}(\lambda) = \langle \phi, x_{\lambda} \rangle$. Assume that for each $\phi \in X^*$ the function F_{ϕ} is analytic and that F_{ϕ} does not vanish identically on U unless $\phi = 0$. Then $\{S_t\}_{t\geq 0}$ is chaotic.

Theorem 3.5. Let $\{S_t\}$ be a strongly continuous semigroup on $L^p([0,1],\mathbb{C})$ expressed as

$$S_t f(x) = q(x, t) f(e^{\gamma t} x),$$

where $q(x,t) \in C^1([0,1] \times [0,\infty), \mathbb{C})$ with $\left\| \frac{q_t(x,t)}{q(x,t)} \right\|_{\infty} < \infty$ and $\gamma < 0$.

Then if there is $\varepsilon > 0$ satisfying $|q(1,\tau)| > e^{(\frac{\gamma}{p} + \varepsilon)\tau}$ for any $\tau \in [0,\infty)$, then $\{S_t\}$ is chaotic.

Proof. Let A be the infinitesimal generator of a strongly continuous semigroup $\{S_t\}$. Then

$$AS_t f(x) = q_t(x, t) f(e^{\gamma t} x) + \gamma e^{\gamma t} x q(x, t) f'(e^{\gamma t} x).$$

In order to use Theorem D, we shall prove that the existence of an open set U of the point spectrum of the infinitesimal generator A which intersects the imaginary axis.

If
$$f_{\lambda}(x) = \frac{x^{\lambda}\gamma}{q(1,\frac{\log x}{\gamma})}$$
 belongs to $L^{p}([0,1],\mathbb{C})$, then $Af_{\lambda} = \lambda f_{\lambda}$ holds. Put

$$U = \{\lambda \in \mathbb{C} \mid \Re(\lambda) < \varepsilon\}.$$

For $\lambda \in U$, by using the condition $|g(1,\tau)| > e^{(\frac{\gamma}{p} + \varepsilon)\tau}$, we have

$$\begin{split} \int_0^1 |f_{\lambda}(x)|^p \, dx &= \int_0^1 \left| \frac{x^{\lambda} \gamma}{q(1, \frac{\log x}{\gamma})} \right|^p \, dx \le \int_0^1 \left| \frac{x^{\lambda} \gamma}{e^{\left(\frac{\gamma}{p} + \varepsilon\right)\frac{\log x}{\gamma}}} \right|^p \, dx \\ &= \int_0^1 x^{\frac{p(\Re(\lambda) - \varepsilon)}{\gamma} - 1} \, dx < \infty, \end{split}$$

since $\frac{p(\Re(\lambda) - \varepsilon)}{\gamma} > 0$. So f_{λ} belongs to $L^p([0, 1], \mathbb{C})$ for $\lambda \in U$ and U is an open subset of the point spectrum of A, which intersects the imaginary axis. So we can prove in a similar way to the proof of [7, Theorem 2].

As for the relation among the strongly continuous semigroups $\{S_t\}$ mentioned above, we have

Proposition 3.6. Consider the following strongly continuous semigroups (1)-(4):

- (1) The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = q(x,t)f(e^{\gamma t}x)$ where $q(x,t) \in C^1([0,1] \times [0,\infty),\mathbb{C})$ satisfies $\left\| \frac{q_t(x,t)}{q(x,t)} \right\|_{\infty} < \infty;$
- (2) The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = \frac{\kappa(x)}{\kappa(e^{\gamma t}x)} f(e^{\gamma t}x)$, where $\eta(x) = |\kappa(x)|$ is an admissible weight function on (0,1];
- (2) The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = \frac{\eta(x)}{\eta(e^{\gamma t}x)} f(e^{\gamma t}x)$, where $\eta(x)$ is an admissible weight function on (0,1];

(3) The solution semigroup $\{S_t\}$ to the following initial value problem :

$$\begin{cases} \frac{\partial v}{\partial t} = \gamma x \frac{\partial u}{\partial x} + k(x)v & (x \in [0, 1], t > 0) \\ v(x, 0) = f(x) & (x \in [0, 1]), \end{cases}$$

where $\gamma < 0, \ k \in C([0,1],\mathbb{C})$ and $f \in C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$;

(4) The strongly continuous semigroup $\{\widetilde{S}_t\}$ expressed as $\widetilde{S}_t f(x) = f(e^{\gamma t}x)$ on $C_{0,\eta}((0,1],\mathbb{C})$ or $L^p_\rho([0,1],\mathbb{C})$ with an admissible weight function η .

Then $(1) \Leftrightarrow (3) \Rightarrow (2)$ and $(2') \Leftrightarrow (4)$ holds, which means that there is a bijection between (1) and (3)[resp. (2') and (4)] and any T_t defined by (1) or (3) corresponds to some T_t defined by (2). If we replace (2) by the following ;

(2") The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = \frac{\kappa(x)}{\kappa(e^{\gamma t}x)} f(e^{\gamma t}x)$, where $\eta(x) = |\kappa(x)|$ is a differentiable admissible weight function on (0,1] satisfying $\left\|\frac{\kappa'(t)}{\kappa(t)}\right\|_{\infty} < \infty$,

then there is a one-to-one onto correspondence among (1), (2") and (3).

Proof. In case of $C_0([0,1],\mathbb{C})$, we get the result by using the relation (3.6) and Proposition 2.4.

In case of $L^p([0,1],\mathbb{C})$,

(1) \Rightarrow (3): For q(x,t) defined in (1), put $k(x) = \frac{q_t(1,\frac{\log x}{\gamma})}{q(1,\frac{\log x}{\gamma})}$. Then the solution semigroup $\{S_t\}$ is obtained by $S_t f(x) = \exp\left\{\int_0^t \frac{q_t(1,t-s+\frac{\log x}{\gamma})}{q(1,t-s+\frac{\log x}{\gamma})}ds\right\} f(e^{\gamma t}x)$

$$= \frac{q(1,t+\frac{\gamma}{\gamma})}{q(1,\frac{\log x}{\gamma})} f(e^{\gamma t}x) = q(x,t)f(e^{\gamma t}x)$$
 by Lemma 2.(4).

The other parts will be proved in a similar way to Proposition 2.4.

If we consider real-valued functions q(x,t), k(x) and we assume $\eta(x)$ is differentiable, then we have

Corollary. There is a one-to-one onto correspondence among the following strongly continuous semigroups (1) - (4):

(1) The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = q(x,t)f(e^{\gamma t}x)$ where $q(x,t) \in C^1([0,1] \times [0,\infty),\mathbb{R})$ with $\left\| \frac{q_t(x,t)}{q(x,t)} \right\|_{\infty} < \infty;$

- (2) The strongly continuous semigroup $\{S_t\}$ on $C_0([0,1],\mathbb{C})$ or $L^p([0,1],\mathbb{C})$ expressed as $S_t f(x) = \frac{\eta(x)}{\eta(e^{\gamma t}x)} f(e^{\gamma t}x)$, where $\eta(x)$ is a differentiable admissible weight function on (0,1] satisfying $\left\|\frac{\eta'(t)}{\eta(t)}\right\|_{\infty} < \infty$;
- (3) The solution semigroup $\{S_t\}$ to the following initial value problem:

$$\begin{cases} \frac{\partial v}{\partial t} = \gamma x \frac{\partial u}{\partial x} + k(x)v & (x \in [0,1]), \ t > 0\\ v(x,0) = f(x) & (x \in [0,1]), \end{cases}$$

where $\gamma < 0, k \in C([0,1], \mathbb{C})$ and $f \in C_0([0,1], \mathbb{C})$ or $L^p([0,1], \mathbb{C})$;

(4) The strongly continuous semigroup $\{\widetilde{S}_t\}$ expressed as $\widetilde{S}_t f(x) = f(e^{\gamma t}x)$ on $C_{0,\eta}((0,1],\mathbb{C})$ or $L^p_{\rho}([0,1],\mathbb{C})$ with a differentiable admissible weight function η satisfying $\left\|\frac{\eta'(t)}{\eta(t)}\right\|_{\infty} < \infty$.

References

- T. Bermudez, A. Bonilla, and A. Martinon, On the existence of chaotic and Hypercyclic semigroups on Banach spaces, Proc. Amer. Math. Soc. 131 (2002), 2435-2441.
- [2] W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergod. Th. & Dynam. Sys. 17 (1997), 793-819.
- [3] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspect of Dynamics (Applied Math. Sci. 97), Springer, 1994.
- [4] A. Lasota, M. C. Mackey and M. Ważewska-Czyzewska, Minimizing therapeutically induced anemia, J. Math. Biology 13 (1981), 149-158.
- [5] M.Matsui, M. Yamada and F. Takeo, Supercyclic and chaotic translation semigroups, Proc. Amer. Math. Soc. 131 (2003), 3535-3546.
- [6] M.Matsui, M. Yamada and F. Takeo, Erratum to "Supercyclic and chaotic translation semigroups", Proc. Amer. Math. Soc. 132 (2004), 3751-3752.
- [7] M.Matsui and F. Takeo, *Chaotic semigroups generated by certain differential operators of order 1*, SUT Journal of Mathematics. **37** (2001), 51-67.
- [8] F. Takeo, Chaos and hypercyclicity for solution semigroups to some partial differential equations, Nonlinear Analysis, Theory, Methods & Applications, to appear.

60

Fukiko Takeo Department of Information Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan *E-mail*: takeo@is.ocha.ac.jp