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Abstract. To investigate conditions for strongly continuous semigroups to be
chaotic or hypercyclic, we consider a strongly continuous semigroup {Tt} on a
function space C0([0,∞), C) or Lp([0,∞), C) expressed by Ttf(x) = g(x, t)f(x+
t). We also consider a strongly continuous semigroup {Tt} on a function space
C0([0, 1], C) or Lp([0, 1], C) expressed by Ttf(x) = q(x, t)f(eγtx) with γ < 0,
which have the relation to the solution semigroups to an initial value problem.
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§1. Introduction

A strongly continuous semigroup {Tt} on a Banach space X is called hyper-
cyclic if there exists x ∈ X such that the set {Tt(x)|t ≥ 0} is dense in X. {Tt}
is called chaotic if it is hypercyclic and the set of periodic points is dense in
X. (An element f ∈ X is called periodic if there exists some t > 0 such that
Ttf = f .)

As for strongly continuous semigroups on Banach spaces the conditions to
be hypercyclic or chaotic have been investigated by many people. T. Bermudez
et al. [1] showed that every separable infinite dimensional complex Banach
space admits a hypercyclic uniformly continuous semigroup and there exist
Banach spaces admitting no chaotic strongly continuous semigroups. Desch
et al. [2] considered weighted function spaces on [0,∞) and they gave a nec-
essary and sufficient condition to be hypercyclic for translation semigroups on
weighted function spaces. We examined necessary and sufficient conditions
for a strongly continuous semigroup to be chaotic [5] and applied these results
to partial differential equations [7]. A. Lasota et al.([3],[4]) investigated the
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dynamics of a population of cells undergoing simultaneous proliferation and
maturation and showed that the solution semigroup to a partial differential
equation describing the dynamics, is chaotic by using the theory of Wiener
process.

In this paper, we investigate conditions for a strongly continuous semigroup
{Tt} on C0(I, C) or Lp(I, C) to be hypercyclic or chaotic more deeply than the
results ([5], [6],[7], [8]) and also consider a strongly continuous semigroup {Tt}
on C0([0,∞), C) or Lp([0,∞), C) expressed as Ttf(x) = g(x, t)f(x + t) and a
strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C) expressed
as Stf(x) = q(x, t)f(eγtx) with γ < 0.

In section 2, we treat a strongly continuous semigroup on a function space
on [0,∞). By using a former result by the author et al.(Theorem A), we show
a condition of a partial differential equation for the solution semigroup to be
hypercyclic or chaotic (Theorem 2.1). As an extension of a strongly continuous
semigroup {Tt} in Theorem 2.1 expressed as Ttf(x) = ρ(x)

ρ(x+t)f(x + t), we con-
sider a strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)
expressed as Ttf(x) = g(x, t)f(x+ t) with g(x, t) ∈ C1([0,∞)× [0,∞), C) and
obtain a condition of the function g for the strongly continuous semigroup
to be hypercyclic or chaotic (Theorem 2.3). We examine the relation among
strongly continuous semigroups {Tt} defined in several ways (Proposition 2.4).

Section 3 is devoted to an investigation of a strongly continuous semigroup
on a function space on [0,1]. On such a function space, the translation semi-
group cannot be considered, since x + t goes outside of [0,1] for x ∈ [0, 1] and
t > 0. So by considering a map ψ : [0,∞) → (0, 1] defined by ψ(x) = eγx with
γ < 0, we investigate a strongly continuous semigroup {St} on C0([0, 1], C)
or Lp([0, 1], C) in contrast to Ttf(x) = g(x, t)f(x + t) on C0([0,∞), C) or
Lp([0,∞), C). We introduce an admissible weight function on (0,1] induced
from an admissible weight function on [0,∞) and obtain a condition of an ad-
missible weight function for a strongly continuous semigroup on C0,ρ([0, 1], C)
to be hypercyclic or chaotic (Theorem 3.1). By using the map ψ and Theorems
2.1 and 2.3, we investigate the solution semigroup to an initial value problem
(Theorem 3.2) and a strongly continuous semigroup {St} (Theorem 3.4). As
for the space Lp([0, 1], C), an admissible weight function on (0,1] does not work
well and so by using the spectral property of an infinitesimal generator, we
get a condition of the function q for a strongly continuous semigroup to be
chaotic (Theorem 3.5). We examine the relation among strongly continuous
semigroups {St} defined in several ways (Proposition 2.4).

The author wishes to express many thanks to the referee for his kind sug-
gestions to complete the revised version.
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§2. Translation semigroup on I = [0,∞)

By an admissible weight function on [0,∞) we mean a measurable function
ρ : [0,∞) → R satisfying the following conditions:

(i) ρ(x) > 0 for all x ∈ [0,∞);

(ii) there exist constants M ≥ 1 and ω ∈ R such that ρ(x) ≤ Meωtρ(t + x)
for all x ∈ [0,∞) and t > 0.

With an admissible weight function ρ, we construct the following function
spaces:

C0,ρ([0,∞), C) =
{

f : [0,∞) → C | f continuous, lim
x→∞

ρ(x)f(x) = 0
}

with ‖f‖ρ = sup
τ∈[0,∞)

|f(τ)ρ(τ)|,

Lp
ρ([0,∞), C) =

{
f : [0,∞) → C | f measurable,

∫ ∞

0
|f(τ)ρ(τ)|p dτ < ∞

}
with ‖f‖p,ρ =

(∫ ∞

0
|f(τ)ρ(τ)|p dτ

) 1
p

(p ≥ 1)

and consider a (forward) translation semigroup {T̃t} with parameter t ≥ 0
defined by

(2.1) T̃tf(x) = f(x + t) for f ∈ C0,ρ([0,∞), C) or Lp
ρ([0,∞), C).

Desch et al. [2] defined the space Lp
ρ([0,∞)) by using ‖f‖ρ =(∫ ∞

0
|f(τ)|pρ(τ) dτ

) 1
p

, instead of ‖f‖ρ =
(∫ ∞

0
|f(τ)ρ(τ)|p dτ

) 1
p

. However

in order to extend the following results in Theorem A to an initial value prob-

lem, the norm ‖f‖ρ =
(∫ ∞

0
|f(τ)ρ(τ)|p dτ

) 1
p

is better, since the following

equation (2.4) is obtained by using this norm.
As for the translation semigroup {T̃t}, the following has been obtained.

Theorem A ([2], [6], [5]). Let X̃ be C0,ρ([0,∞), C) or Lp
ρ([0,∞), C) with an

admissible weight function ρ and consider the translation semigroup {T̃t} on
X̃. Then

(1) {T̃t} is hypercyclic if and only if lim inf
t→∞

ρ(t) = 0;

(2) if X̃ is C0,ρ([0,∞), C), then {T̃t} is chaotic if and only if lim
τ→∞

ρ(τ) = 0;
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(3) if X̃ is Lp
ρ([0,∞), C), then {T̃t} is chaotic if and only if for all ε > 0

and for all l > 0, there exists P > 0 such that
∞∑

n=1

(ρ(l + nP ))p < ε.

Let X be a function space on an interval I and u(t, x) be the solution of
the following initial value problem:

(2.2)

{
∂u

∂t
=

∂u

∂x
+ h(x)u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞))

for f ∈ X. Let Tt (t ≥ 0) be defined by Ttf(x) = u(t, x) for f ∈ X and
x ∈ I. When Tt is a strongly continuous semigroup on X, we shall call {Tt}
the solution semigroup to an initial value problem (2.2).

The translation semigroup {T̃t} on a weighted function space X̃ is the
solution semigroup to the following initial value problem:

(2.3)

{
∂u

∂t
=

∂u

∂x
(x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞))

for f ∈ X̃. Let X be the space C0([0,∞), C) = {f ∈ C([0,∞), C) | lim
x→∞

f(x) =

0} or Lp([0,∞), C) and consider the strongly continuous semigroup {Tt} on
X defined by

(2.4) Ttf(x) =
ρ(x)

ρ(x + t)
f(x + t) for f ∈ X.

Let

φ : C0,ρ([0,∞), C) → C0([0,∞), C)(2.5) [
resp. Lp

ρ([0,∞), C) → Lp([0,∞), C)]

be defined by φ(f)(x) = ρ(x)f(x) for f ∈ C0,ρ([0,∞), C)[resp. Lp
ρ([0,∞), C)].

Then φ is isomorphic and φ(T̃tf)(x) = Ttφ(f)(x) holds. Since {Tt} is the
solution semigroup to the following initial value problem [8]:

∂u

∂t
=

∂u

∂x
− ρ′(x)

ρ(x)
u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞)),

we consider the the following initial value problem:

(2.6)

{
∂u

∂t
=

∂u

∂x
+ h(x)u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞)),
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where h is a bounded continuous function on [0,∞) and f ∈ X. A modification
of [8, Theorems 2.1, 2.2 and 2.7] is the following

Theorem 2.1. Let X be C0([0,∞), C) or Lp([0,∞), C). Consider an initial
value problem :{

∂u

∂t
=

∂u

∂x
+ h(x)u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞)),

where h ∈ C([0,∞), C) is bounded and f ∈ X.

Then the solution semigroup {Tt}t≥0

(
Ttf(x) = e

R x+t
x h(s)dsf(x + t)

)
is a

strongly continuous semigroup on X. Moreover

(1) {Tt} is hypercyclic if and only if

lim sup
x→∞

∫ x

0
<h(s)ds = ∞;

(2) if X = C0([0,∞), C), then {Tt}t≥0 is chaotic if and only if∫ ∞

0
<h(s)ds = ∞;

(3) if X = Lp([0,∞), C) and h(x) =
a

x + 1
with a >

1
p
, then {Tt} is chaotic.

Proof. Put κ(x) = exp
{
−

∫ x

0
h(s) ds

}
. Then ρ(x) = |κ(x)| is an admissible

weight function on [0,∞). Consider the space X̃ = C0,ρ([0,∞), C) and the
translation semigroup {T̃t} defined by T̃tf(x) = f(x + t) for f ∈ X̃. Then
by [7, Proposition 3], {Tt} is hypercyclic [resp. chaotic] if and only if {T̃t} is
hypercyclic [resp. chaotic]. Hence (1) and (2) follows from Theorem A.
(3) follows from [8, Theorem 2.2 (2)].

The above theorem is concerned with the strongly continuous semigroup of
the form

Ttf(x) =
κ(x)

κ(x + t)
f(x + t),

where ρ(x) = |κ(x)| is an admissible weight function on [0,∞). As a general-
ization we consider the strongly continuous semigroup {Tt} expressed as

Ttf(x) = g(x, t)f(x + t),

with g(x, t) ∈ C1([0,∞)× [0,∞), C) and consider the condition for {Tt} to be
hypercyclic or chaotic.

The property of g(x, t) is shown in the following
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Lemma 1. Let X be C0([0,∞), C) or Lp([0,∞), C) and {Tt} be a strongly
continuous semigroup on X expressed as

Ttf(x) = g(x, t)f(x + t),

with g(x, t) ∈ C1([0,∞) × [0,∞), C). Then

(1) g(x, s + t) = g(x, s)g(x + s, t) for any x, s, t ∈ [0,∞),

(2) g(x, 0) = 1 for any x ∈ [0,∞),

(3) g(x, s) 6= 0 for any (x, s) ∈ [0,∞) × [0,∞),

(4) g(x, t) =
g(0, x + t)

g(0, x)
.

Proof. (1) By the relations Ts+tf(x) = g(x, s+ t)f(x+s+ t) and Ts(Ttf(x)) =
g(x, s)Ttf(x+s) = g(x, s)g(x+s, t)f(x+s+t), we have g(x, s+t) = g(x, s)g(x+
s, t).
(2) By the definition, f(x) = g(x, 0)f(x) holds for any f ∈ X. So g(x, 0) = 1
holds for any x ∈ [0,∞).
(3) Suppose there exists (x, s) ∈ [0,∞) × [0,∞) satisfying g(x, s) = 0. Then
g(x, s + t) = g(x, s)g(x + s, t) implies g(x, t) = 0 for any t ≥ s. Let s0 =
min{s | g(x, s) = 0}. If s0 > 0, then for t(0 ≤ t ≤ s0), g(x+ t, s0− t) = 0 holds
by the relation g(x, s0) = g(x, t)g(x + t, s0 − t). So g(x + s0, 0) = 0, which
contradicts (2). Hence g(x, s) 6= 0 for any (x, s) ∈ [0,∞) × [0,∞).

(4) By (3),
g(0, x + t)

g(0, x)
is well defined and (4) follows from (1).

Proposition 2.2. Let X be C0([0,∞), C) or Lp([0,∞), C) and {Tt} be a
strongly continuous semigroup on X expressed as

Ttf(x) = g(x, t)f(x + t),

where g(x, t) ∈ C1([0,∞) × [0,∞), C) with
∥∥∥∥gt(x, t)

g(x, t)

∥∥∥∥
∞

< ∞.

(1) If we put ρ(x) =
1

|g(0, x)|
, then ρ is a continuous admissible weight func-

tion on [0,∞).

(2) Let X̃ be the space C0,ρ([0,∞), C) or Lp
ρ([0,∞), C) and

{
T̃t

}
t≥0

be the

translation semigroup on X̃. Then

(i) {Tt}t≥0 is hypercyclic on X iff
{

T̃t

}
t≥0

is hypercyclic on X̃.
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(ii) {Tt}t≥0 is chaotic on X iff
{

T̃t

}
t≥0

is chaotic on X̃.

Proof. (1) By Lemma 1 (3), ρ(x) is well-defined. By the assumption∥∥∥∥gt(x, t)
g(x, t)

∥∥∥∥
∞

= c < ∞ and the relation ρ(τ) =
1

|g(0, τ)|
= | exp{− log g(0, τ) +

log g(0, 0)}| =
∣∣∣∣exp{−

∫ τ

0

gt(0, s)
g(0, s)

ds}
∣∣∣∣, we have

ρ(τ) =
∣∣∣∣exp

{
−

∫ t+τ

0

gt(0, s)
g(0, s)

ds

}
exp

{∫ t+τ

τ

gt(0, s)
g(0, s)

ds

}∣∣∣∣
≤ ρ(τ + t) exp

{∫ t+τ

τ

|gt(0, s)|
|g(0, s)|

ds

}
≤ ρ(τ + t)ect.

So ρ is an admissible weight function on [0,∞).
(2) Define an operator ϕ : X̃ → X as ϕ(f)(x) = ρ(x)f(x) for f ∈ X̃ and for
x ∈ [0,∞). Then ϕ is an isomorphism of X̃ to X and Tt ◦ ϕ = ϕ ◦ T̃t holds.
So we get the conclusion.

Theorem 2.3. Let X be C0([0,∞), C) or Lp([0,∞), C) and {Tt} be a strongly
continuous semigroup on X expressed as

Ttf(x) = g(x, t)f(x + t),

where g(x, t) ∈ C1([0,∞) × [0,∞), C) with
∥∥∥∥gt(x, t)

g(x, t)

∥∥∥∥
∞

< ∞. Then

(1) the semigroup {T (t)} is hypercyclic if and only if

lim sup
τ→∞

|g(0, τ)| = ∞;

(2) if X = C0([0,∞), C), then {T (t)} is chaotic if and only if lim
τ→∞

|g(0, τ)| =
∞;

(3) if X = Lp([0,∞), C) and g(x, t) =
(

1 +
t

x + 1

)b

with b >
1
p
, then

{T (t)} is chaotic.

Proof. Put ρ(τ) =
1

|g(0, τ)|
. Then lim inf

τ→∞
ρ(τ) = 0 [resp. lim

τ→∞
ρ(τ) = 0] is

equivalent to lim sup
τ→∞

|g(0, τ)| = ∞ [resp. lim
τ→∞

|g(0, τ)| = ∞] . So (1) and (2)

follows from Theorem A (1), (2) and Proposition 2.2.

(3) If g(x, t) =
(

1 +
t

x + 1

)b

, then g(x, s)g(x + s, t) = g(x, s + t) holds. So
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Ttf(x) = g(x, t)f(x + t) with g(x, y) =
(

1 +
t

x + 1

)b

is a strongly continuous

semigroup.

Put ρ(τ) =
1

g(0, τ)
= (1 + τ)−b. For any ε > 0 and any l > 0, we have

∞∑
n=1

(ρ(l + nP ))p <

∞∑
n=1

1
(nP )bp

<
1

P bp

(
bp

bp − 1

)
< ε

for P >

(
bp

ε(bp − 1)

) 1
bp

. Then the translation semigroup {T̃t} on a weighted

function space Lp
ρ([0,∞), C) is chaotic by Theorem A (3).

Since g(x, t) =
(

1 +
t

x + 1

)b

,
gt(x, t)
g(x, t)

=
b

x + t + 1
means

∥∥∥∥gt(x, t)
g(x, t)

∥∥∥∥
∞

= b. So

by Proposition 2.2, {Tt} is chaotic.

As for the relation among the strongly continuous semigroups {Tt} men-
tioned above, we have

Proposition 2.4. Consider the following strongly continuous semigroups (1)−
(4) :

(1) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)
expressed as Ttf(x) = g(x, t)f(x+t) where g(x, t) ∈ C1([0,∞)×[0,∞), C)

satisfies
∥∥∥∥gt(x, t)

g(x, t)

∥∥∥∥
∞

< ∞;

(2) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)

expressed as Ttf(x) =
κ(x)

κ(x + t)
f(x + t), where ρ(x) = |κ(x)| is an ad-

missible weight function on [0,∞);

(2’) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)

expressed as Ttf(x) =
ρ(x)

ρ(x + t)
f(x + t), where ρ(x) is an admissible

weight function on [0,∞);

(3) The solution semigroup {Tt} to the following initial value problem:{
∂u

∂t
=

∂u

∂x
+ h(x)u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞)),

where h is a complex-valued bounded continuous function on [0,∞) and
f ∈ C0([0,∞), C) or Lp([0,∞), C);
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(4) The translation semigroup {T̃t} on C0,ρ([0,∞), C) or Lp
ρ([0,∞), C) with

an admissible weight function ρ.

Then (1) ⇔ (3) ⇒ (2) and (2’) ⇔ (4) holds, which means that
there is a bijection between (1) and (3)[resp. (2’) and (4)] and any Tt defined
by (1) or (3) corresponds to some Tt defined by (2).

If we replace (2) by the following ;

(2”) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)

expressed as Ttf(x) =
κ(x)

κ(x + t)
f(x + t), where ρ(x) = |κ(x)| is a differ-

entiable admissible weight function on [0,∞) satisfying
∥∥∥∥κ′(t)

κ(t)

∥∥∥∥
∞

< ∞,

then there is a one-to-one onto correspondence among (1), (2”) and (3).

Proof. (1) ⇒ (2): For g(x, t) defined in (1), put κ(x) = 1
g(0,x) . Then ρ(x) =

|κ(x)| is an admissible weight function on [0,∞).
(1) ⇒ (3): For g(x, t) defined in (1), put h(x) = gt(0,x)

g(0,x) . Then the solution

semigroup {Tt} is obtained by Ttf(x) = exp
{∫ x+t

x

gt(0, x)
g(0, x)

ds

}
f(x + t) =

g(x, t)f(x + t) by Lemma 1.(4).

(3) ⇒ (1): For h defined in (3), put g(x, t) = exp
{∫ x+t

x
h(s)ds

}
. Then

g(x, t) ∈ C1([0,∞) × [0,∞), C) and
∥∥∥∥gt(x, t)

g(x, t)

∥∥∥∥
∞

< ∞, since gt(x,t)
g(x,t) = h(x + t)

holds.
(2’) ⇔ (4) follows from the equation (2.5).
(2”) ⇒ (3): For κ(x) defined in (2”), put h(x) = −κ′(x)

κ(x) . Then h is a bounded
continuous function.

If we consider real-valued functions g(x, t), h(x) and we assume ρ(x) is
differentiable, then we have

Corollary. There is a one-to-one onto correspondence among the following
strongly continuous semigroups (1) − (4) :

(1) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)
expressed as Ttf(x) = g(x, t)f(x+t) where g(x, t) ∈ C1([0,∞)×[0,∞), R)

with
∥∥∥∥gt(x, t)

g(x, t)

∥∥∥∥
∞

< ∞;
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(2) The strongly continuous semigroup {Tt} on C0([0,∞), C) or Lp([0,∞), C)

expressed as Ttf(x) =
ρ(x)

ρ(x + t)
f(x + t), where ρ(x) is a differentiable ad-

missible weight function on [0,∞) satisfying
∥∥∥∥ρ′(t)

ρ(t)

∥∥∥∥
∞

< ∞;

(3) The solution semigroup {Tt} to the following initial value problem:{
∂u

∂t
=

∂u

∂x
+ h(x)u (x ∈ [0,∞), t > 0)

u(x, 0) = f(x) (x ∈ [0,∞)),

where h is a real-valued bounded continuous function on [0,∞) and
f ∈ C0([0,∞), C) or Lp([0,∞), C);

(4) The translation semigroup {T̃t} on C0,ρ([0,∞), C) or Lp
ρ([0,∞), C) with

a differentiable admissible weight function ρ satisfying
∥∥∥∥ρ′(t)

ρ(t)

∥∥∥∥
∞

< ∞.

§3. Transformation semigroup on I = [0, 1]

Now we shall consider the case of I = [0, 1] and a strongly continuous semi-
group {St} on the function space C0([0, 1], C) = {f ∈ C([0, 1], C) | f(0) = 0}
with sup norm or Lp([0, 1], C).

Consider a map ψ : [0,∞) → (0, 1] defined by

(3.1) ψ(x) = eγx

with γ < 0.
By using an admissible weight function ρ on [0,∞), we shall consider a

measurable function η : (0, 1] → R defined by

(3.2) η(x) = ρ(ψ−1(x)) for x ∈ (0, 1].

Then η satisfies the following conditions:

(i) η(x) > 0 for x ∈ (0, 1];

(ii) there exist constants M ≥ 1 and ω ∈ R such that η(x) ≤ Meωtη(eγtx)
for all x ∈ (0, 1] and t > 0.

We shall call η an admissible weight function on (0, 1].
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With an admissible weight function η on (0, 1], we construct the following
function spaces:

C0,η((0, 1], C) =
{

f : (0, 1] → C | f continuous on (0, 1], lim
x→0

η(x)f(x) = 0
}

with ‖f‖η = sup
τ∈(0,1]

|f(τ)η(τ)|,

Lp
η([0, 1], C) =

{
f : [0, 1] → C | f measurable,

∫ 1

0
|f(τ)η(τ)|p dτ < ∞

}
with ‖f‖p,η =

(∫ 1

0
|f(τ)η(τ)|p dτ

) 1
p

(p ≥ 1).

Consider an operator ϕ : C0,η((0, 1], C) → C0,ρ([0,∞), C) defined by

(3.3) ϕ(f)(x) = f(ψ(x))

for f ∈ C0,η((0, 1], C), where ψ is defined by (3.1). Then ϕ is an isomorphism
from C0,η((0, 1], C) to C0,ρ([0,∞), C).

Let S̃t : C0,η((0, 1], C) → C0,η((0, 1], C) be defined by

(3.4) S̃t(f) = ϕ−1 ◦ T̃t ◦ ϕ(f) for f ∈ C0,η((0, 1], C),

where T̃t is a translation operator on C0,ρ([0,∞), C) defined by (2.1). Then

(3.5) S̃tf(x) = f(eγtx).

So {S̃t} is hypercyclic or chaotic if and only if {T̃t} is hypercyclic or chaotic
respectively.

Then the following theorem follows from Theorem A.

Theorem 3.1. Let η be a continuous admissible weight function on (0, 1],
X̃ = C0,η((0, 1], C) and the strongly continuous semigroup

{
S̃t

}
t≥0

be defined

by (3.5).
Then

(1)
{

S̃t

}
t≥0

is hypercyclic if and only if lim inf
τ→0

η(τ) = 0;

(2)
{

S̃t

}
t≥0

is chaotic if and only if lim
τ→0

η(τ) = 0.

As for Lp space, consider ϕ(g)(x) = g(ψ(x)) for g ∈ Lp
η([0, 1], C), where ψ is

defined by (3.1). In this case, ϕ(g) does not necessarily belong to Lp
η([0,∞), C),

since ∫ ∞

0
|ϕ(g)(τ)η̃(τ)|p dτ =

∫ 1

0
|g(x)η(x)|p 1

−γx
dx.
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So we must investigate in a different way and the next Proposition shows
that if lim

τ→0
η(τ) exists, then the strongly continuous semigroup {S̃t} is always

hypercyclic.

Proposition B ([8, Proposition 3.3]). Let X̃ be Lp
η([0, 1], C) and

{
S̃t

}
t≥0

on

X̃ be defined by S̃tg(x) = g(eγtx) for g ∈ X̃.
If η is continuous on (0, 1] and lim

τ→0
η(τ) = c < ∞ exists, then S̃t is a

bounded linear operator on X̃ and the strongly continuous semigroup
{

S̃t

}
t≥0

is hypercyclic.

Since the translation semigroup {T̃t} is a solution semigroup to the initial
value problem (2.3), the strongly continuous semigroup {S̃t} is the solution
semigroup to the following initial value problem{

∂v

∂t
= γx

∂v

∂x
(x ∈ [0, 1], t > 0)

v(0, x) = f(x) (x ∈ [0, 1])

for f ∈ X. Let X be the space C0([0, 1], C) = {f ∈ C([0, 1], C) | f(0) = 0} and
consider a strongly continuous semigroup {St} defined by

(3.6) St(f) = ϕ−1 ◦ Tt ◦ ϕ(f) for f ∈ C0([0, 1], C),

where Tt is an operator on C0([0,∞), C) defined by (2.4). Then

(3.7) Stf(x) =
η(x)

η(eγtx)
f(eγtx).

For v ∈ C([0, 1] × [0,∞), C) with v(0, t) = 0, put u(x, t) = v(ψ(x), t). Then
u ∈ C([0,∞) × [0,∞), C) and lim

x→∞
u(x, t) = 0. If u is a solution of the initial

value problem (2.6), then v is a solution of the following initial value problem:

(3.8)

{
∂v

∂t
= γx

∂v

∂x
+ k(x)v (x ∈ [0, 1], t > 0)

v(x, 0) = f(x) (x ∈ [0, 1]),

where k(x) = h(ψ−1x). In [7, Theorem 1], it is shown that if min {<(k(x)) |
x ∈ [0, 1]} is positive, then the solution semigroup {St}t≥0 on C0([0, 1], C) to

(3.8) is chaotic by using the spectral property of its infinitesimal generator.
However if we use Theorem 2.1, we get a necessary and sufficient condition for
{St} to be chaotic as follows:
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Theorem 3.2. Let X be the space C0([0, 1], C). Consider the following initial
value problem :

(3.9)

{
∂v

∂t
= γx

∂v

∂x
+ k(x)v (x ∈ [0, 1], t > 0)

v(x, 0) = f(x) (x ∈ [0, 1]),

where γ < 0, k ∈ C([0, 1], C) and f ∈ X. Then the strongly continuous

semigroup {St}t≥0

(
Stf(x) = exp

{∫ t

0
k(eγ(t−r)x) dr

}
f(eγtx)

)
is a strongly

continuous semigroup on X.

Moreover {St}t≥0 is chaotic if and only if lim
x→0

∫ 1

x

<k(s)
s

ds = ∞.

Therefore if <k(0) > 0, then {St}t≥0 is chaotic.

Proof. By using k(x) = h(ψ−1(x)), an initial value problem (3.9) corresponds
to the initial value problem (2.6). By the equation∫ ∞

0
<h(s) ds = lim

x→0

∫ 1

x
<h(ψ−1(τ))

dτ

γτ
= lim

x→0

∫ 1

x

<k(s)
γs

ds,

we get that {St}t≥0 is chaotic if and only if lim
x→0

∫ 1

x

<k(s)
s

ds = ∞ by using

Theorem 2.1

As for the space Lp([0, 1], C), we have

Theorem C ([8, Theorem 3.5]). Let X be the space Lp([0, 1], C) with p ≥ 1.
Consider the following initial value problem :{

∂v

∂t
= γx

∂v

∂x
+ k(x)v (x ∈ [0, 1], t > 0)

v(x, 0) = f(x) (x ∈ [0, 1])

where γ < 0, k ∈ C([0, 1], C) and f ∈ X. Then the strongly continuous

semigroup {St}t≥0 (Stf(x) = exp
{∫ t

0
k(eγ(t−r)x) dr

}
f(eγtx)) is a strongly

continuous semigroup on X. Moreover

(1) if there exists δ > 0 such that <(k(x)) ≥ 0 for 0 ≤ ∀x ≤ δ, then {St}t≥0

is hypercyclic ;

(2) if min {<(k(x)) | x ∈ [0, 1]} >
γ

p
, then {St}t≥0 is chaotic.
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By using a strongly continuous semigroup {Tt} on C0([0,∞), C) expressed
as

Ttf(x) = g(x, t)f(x + t),

with g(x, t) ∈ C1([0,∞) × [0,∞), C) , we shall consider a strongly continuous
semigroup {St} on C0([0, 1], C) expressed as

St(f) = ϕ−1 ◦ Tt ◦ ϕ(f) for f ∈ C0([0, 1], C).

Then by putting

(3.10) q(x, t) = g(ψ−1x, t) ∈ C1([0, 1] × [0,∞), C),

Stf(x) = q(x, t)f(eγtx) is a generalization of a strongly continuous semigroup
of the form Stf(x) = η(x)

η(eγtx)f(eγtx).
By Lemma 1, the property of the function q(x, t) is obtained as follows.

Lemma 2. Let γ < 0, X = C0([0, 1], C) or Lp([0, 1], C) and {St} be a strongly
continuous semigroup on X expressed as

Stf(x) = q(x, t)f(eγtx),

where q(x, t) ∈ C1([0, 1] × [0,∞), C). Then

(1) q(x, s + t) = q(x, s)q(eγsx, t) for any x, s, t ∈ [0, 1],

(2) q(x, 0) = 1 for any x ∈ [0, 1],

(3) q(x, s) 6= 0 for any (x, s) ∈ [0, 1] × [0,∞),

(4) q(eγs, t) =
q(1, s + t)

q(1, s)
.

Proposition 3.3. Let X be C0([0, 1], C) [resp. Lp([0, 1], C)] and {St} be a
strongly continuous semigroup on X expressed as

Stf(x) = q(x, t)f(eγtx),

where q(x, t) ∈ C1([0, 1] × [0,∞), C) with
∥∥∥∥qt(x, t)

q(x, t)

∥∥∥∥
∞

< ∞ and γ < 0.

(1) If we put η(x) =
1∣∣∣q(1, log x

γ )
∣∣∣ for x ∈ (0, 1], then η is a continuous ad-

missible weight function on (0, 1].

(2) Let X̃ be the space C0,η((0, 1], C) [resp. Lp
η([0, 1], C)] and

{
S̃t

}
t≥0

be a

strongly continuous semigroup on X̃ defined by Stf(x) = f(eγtx). Then
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(i) {St}t≥0 is hypercyclic on X iff
{

S̃t

}
t≥0

is hypercyclic on X̃.

(ii) {St}t≥0 is chaotic on X iff
{

S̃t

}
t≥0

is chaotic on X̃.

Proof. (1) By using the equations (3.2) and (3.10), η(x) = 1
˛

˛

˛

q(1, log x
γ

)
˛

˛

˛

implies

that ρ(ψ−1(x)) = 1
|q(ψ−1(1),ψ−1(x))| , that is, ρ(s) = 1

|q(0,s)| . So by Proposition
2.2 (1), η is a continuous admissible weight function on (0, 1].
(2) It is obtained by the same way as Proposition 2.2 (2).

By Theorem 2.3, we have

Theorem 3.4. Let {St} be a strongly continuous semigroup on C0([0, 1], C)
expressed as

Stf(x) = q(x, t)f(eγtx),

where q(x, t) ∈ C1([0, 1] × [0,∞), C) with
∥∥∥∥qt(x, t)

q(x, t)

∥∥∥∥
∞

< ∞ and γ < 0. Then

the following are equivalent :

(1) {St}t≥0 is hypercyclic if and only if lim sup
τ→∞

|q(1, τ)| = ∞;

(2) {St}t≥0 is chaotic if and only if lim
τ→∞

|q(1, τ)| = ∞.

In case of C0([0, 1], C), the property of η plays an essential role in proving
that {St} is chaotic or hypercyclic. However, in case of Lp([0, 1], C), we have
not obtained any property of η for a strongly continuous semigroup to be
chaotic. So we use the the following

Theorem D ([2]). Let X be a separable Banach space and let A be the
infinitesimal generator of a strongly continuous semigroup {St}t≥0 on X. Let
U be an open subset of the point spectrum of A, which intersects the imaginary
axis, and for each λ ∈ U let xλ be a nonzero eigenvector, i.e. Axλ = λxλ. For
each φ ∈ X∗ we define a function Fφ : U → C by Fφ(λ) = 〈φ, xλ〉. Assume
that for each φ ∈ X∗ the function Fφ is analytic and that Fφ does not vanish
identically on U unless φ = 0. Then {St}t≥0 is chaotic.

Theorem 3.5. Let {St} be a strongly continuous semigroup on Lp([0, 1], C)
expressed as

Stf(x) = q(x, t)f(eγtx),

where q(x, t) ∈ C1([0, 1] × [0,∞), C) with
∥∥∥∥qt(x, t)

q(x, t)

∥∥∥∥
∞

< ∞ and γ < 0.

Then if there is ε > 0 satisfying |q(1, τ)| > e
( γ

p
+ε)τ for any τ ∈ [0,∞), then

{St} is chaotic.
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Proof. Let A be the infinitesimal generator of a strongly continuous semigroup
{St}. Then

AStf(x) = qt(x, t)f(eγtx) + γeγtxq(x, t)f ′(eγtx).

In order to use Theorem D, we shall prove that the existence of an open set
U of the point spectrum of the infinitesimal generator A which intersects the
imaginary axis.

If fλ(x) =
xλγ

q(1, log x
γ )

belongs to Lp([0, 1], C), then Afλ = λfλ holds. Put

U = {λ ∈ C | <(λ) < ε}.

For λ ∈ U , by using the condition |g(1, τ)| > e
( γ

p
+ε)τ , we have∫ 1

0
|fλ(x)|p dx =

∫ 1

0

∣∣∣∣∣ xλγ

q(1, log x
γ )

∣∣∣∣∣
p

dx ≤
∫ 1

0

∣∣∣∣∣ xλγ

e
( γ

p
+ε) log x

γ

∣∣∣∣∣
p

dx

=
∫ 1

0
x

p(<(λ)−ε)
γ

−1
dx < ∞,

since
p(<(λ) − ε)

γ
> 0. So fλ belongs to Lp([0, 1], C) for λ ∈ U and U is an

open subset of the point spectrum of A, which intersects the imaginary axis.
So we can prove in a similar way to the proof of [7, Theorem 2].

As for the relation among the strongly continuous semigroups {St} men-
tioned above, we have

Proposition 3.6. Consider the following strongly continuous semigroups (1)−
(4) :

(1) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)
expressed as Stf(x) = q(x, t)f(eγtx) where q(x, t) ∈ C1([0, 1]× [0,∞), C)

satisfies
∥∥∥∥qt(x, t)

q(x, t)

∥∥∥∥
∞

< ∞;

(2) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)

expressed as Stf(x) =
κ(x)

κ(eγtx)
f(eγtx), where η(x) = |κ(x)| is an admis-

sible weight function on (0, 1];

(2’) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)

expressed as Stf(x) =
η(x)

η(eγtx)
f(eγtx), where η(x) is an admissible weight

function on (0, 1];
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(3) The solution semigroup {St} to the following initial value problem :{
∂v

∂t
= γx

∂u

∂x
+ k(x)v (x ∈ [0, 1], t > 0)

v(x, 0) = f(x) (x ∈ [0, 1]),

where γ < 0, k ∈ C([0, 1], C) and f ∈ C0([0, 1], C) or Lp([0, 1], C);

(4) The strongly continuous semigroup {S̃t} expressed as S̃tf(x) = f(eγtx)
on C0,η((0, 1], C) or Lp

ρ([0, 1], C) with an admissible weight function η.

Then (1) ⇔ (3) ⇒ (2) and (2’) ⇔ (4) holds, which means that
there is a bijection between (1) and (3)[resp. (2’) and (4)] and any Tt defined
by (1) or (3) corresponds to some Tt defined by (2).

If we replace (2) by the following ;

(2”) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)

expressed as Stf(x) =
κ(x)

κ(eγtx)
f(eγtx), where η(x) = |κ(x)| is a differen-

tiable admissible weight function on (0, 1] satisfying
∥∥∥∥κ′(t)

κ(t)

∥∥∥∥
∞

< ∞,

then there is a one-to-one onto correspondence among (1), (2”) and (3).

Proof. In case of C0([0, 1], C), we get the result by using the relation (3.6) and
Proposition 2.4.

In case of Lp([0, 1], C),

(1) ⇒ (3): For q(x, t) defined in (1), put k(x) =
qt(1, log x

γ
)

q(1, log x
γ

)
. Then the solution

semigroup {St} is obtained by Stf(x) = exp

{∫ t

0

qt(1, t − s + log x
γ )

q(1, t − s + log x
γ )

ds

}
f(eγtx)

=
q(1,t+ log x

γ
)

q(1, log x
γ

)
f(eγtx) = q(x, t)f(eγtx) by Lemma 2.(4).

The other parts will be proved in a similar way to Proposition 2.4.

If we consider real-valued functions q(x, t), k(x) and we assume η(x) is
differentiable, then we have

Corollary. There is a one-to-one onto correspondence among the following
strongly continuous semigroups (1) − (4) :

(1) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)
expressed as Stf(x) = q(x, t)f(eγtx) where q(x, t) ∈ C1([0, 1]× [0,∞), R)

with
∥∥∥∥qt(x, t)

q(x, t)

∥∥∥∥
∞

< ∞;
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(2) The strongly continuous semigroup {St} on C0([0, 1], C) or Lp([0, 1], C)

expressed as Stf(x) =
η(x)

η(eγtx)
f(eγtx), where η(x) is a differentiable ad-

missible weight function on (0, 1] satisfying
∥∥∥∥η′(t)

η(t)

∥∥∥∥
∞

< ∞;

(3) The solution semigroup {St} to the following initial value problem:{
∂v

∂t
= γx

∂u

∂x
+ k(x)v (x ∈ [0, 1]), t > 0

v(x, 0) = f(x) (x ∈ [0, 1]),

where γ < 0, k ∈ C([0, 1], C) and f ∈ C0([0, 1], C) or Lp([0, 1], C);

(4) The strongly continuous semigroup {S̃t} expressed as S̃tf(x) = f(eγtx)
on C0,η((0, 1], C) or Lp

ρ([0, 1], C) with a differentiable admissible weight

function η satisfying
∥∥∥∥η′(t)

η(t)

∥∥∥∥
∞

< ∞.
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