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Abstract. This paper deals with a slight improvement on the results of the
1-D semilinear Schrodinger equations with quadratic nonlinearities. We study
the local well-posedness of the initial value problem in particular function spaces
containing the Sobolev spaces H® with s > —1/4 for the nonlinearity uu, and
with s > —3/4 for u® or @2, in which the local well-posedness was proved by
Kenig, Ponce and Vega. Our improvement lies in the estimate of the Fourier
restriction norm with a homogeneous weight |£]°. It makes the behavior of the
initial data at £ = 0 in the phase space less restrictive.
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§1. Introduction

This paper is devoted to the well-posedness of the initial value problem (IVP)
for the 1-D quadratic semilinear Schrodinger equations.

Well-posedness here means that the existence, the uniqueness, the persis-
tence property of the solution and the continuous dependence of the solution
on the initial data.

Owu = i0%u + N(u,u), z,t € R,
u(z,0) = up(z).

1.1. The former results due to Kenig, Ponce and Vega

In [15], C.E. Kenig, G. Ponce and L. Vega verified the local well-posedness of
the IVP (1.1) in the Sobolev space H*(R) with s > —3/4 for N(u,u) = cu?,
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cu?, and with s > —1/4 for N(u,@) = cui.

They showed these local well-posedness by combining the following nonlin-
ear estimates. These estimates evaluate directly the quadratic nonlinearities
of the equations:

Theorem 1.1 (Kenig, Ponce and Vega [15])
(i) Let s € (—3/4,0]. Then there exist b € (1/2,1) and C > 0 such that

IFGN x40 < CIFlx 1G] x,05 (1.2)
IFGx. o < ClIFlx Gl X, - (1.3)

for any F,G € Xgp.
(ii) Let s € (—1/4,0]. Then there exist b € (1/2,1) and C > 0 such that

IFGlIx. -, < CIFllx.,[IG]x. , (1.4)

for any F,G € X,

Here X denotes the completion of the Schwartz class S(R?) with respect to
the norm

T ( | | - £2>2b<€>25|f~”(§77)l2d€d7> T

where (-) = (14]-|2)1/2. Here f and f (or F,(f)) denote the Fourier transform
of f with respect to the space-time and the space variables respectively.

On the other hand, it is known that the above nonlinear estimates do not
generally hold for the other cases s < —3/4 and s < —1/4.

Theorem 1.2 (Kenig, Ponce and Vega [15], Nakanishi, Takaoka and Tsutsumi
19))

(i) For any s < —3/4 and any b € R, the estimates (1.2) and (1.3) fail.

(ii) For any s < —1/4 and any b € R, the estimate (1.4) fails.

(ii’) For s = —1/4 and any b with b > 1/2, the estimate (1.4) fails.

The failure of the estimates of the critical exponents (i) s = —3/4 and (ii’)
s = —1/4 are proved in [19].

Following the argument by Bourgain [4, 5], Kenig, Ponce and Vega used
the above Fourier restriction norm. However, the norm in the argument is not
entirely new in the theory of partial differential equations. Actually in [1], M.
Beals dealt with the propagation of the singularity in the analogous way.

The arguments with the Fourier restriction norm enable us to solve the
initial value problem in weaker function spaces, and are presently applied to
several equations. See e.g. [2], [8], [14], [16], [20], [23] and [24]. Also see [7].

The IVP (1.1) in the 2-dimensional setting are studied in [22] and [6].
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Before stating our results, we shall present a few examples which is not
contained as the initial data of the IVP (1.1) in the framework of the argument
by Kenig, Ponce and Vega.

When we consider the IVP (1.1) with N(u, %) = cu? (or cu?), the function
uo(z) = |z| % with 3/4 < k < 1 is an example as the initial data which is not
in H*(R) with s > —3/4, indeed F,(|z|7%) = cx|¢|F~1, where 0 < 1 -k < 1/4.
Hence it is clear that (¢)=3/4t<F,(|z|7*) ¢ L?(R), which implies that |z| 7% ¢
H5(R) with s > —3/4.

In the case of the IVP (1.1) with N(u,u) = cuu, we present an concrete

example;
cos(|t[€)
/ / g e (1.6)

Indeed, putting

@) = e o) =e [ g (1.7)
we write ug(x) = (f * g)(x). Hence
R —2e
() = e = erirtr (19

which is not in H*(R) with s > —1/4.

However, in our framework stating below, we can treat these examples as
the initial data of the IVP (1.1). We shall state our results including these
topics in the next section.

1.2. Statement of our results

We shall improve the results of Kenig, Ponce and Vega by using the Fourier
restriction norm with a homogeneous weight |£|°. Our proofs are, however,
analogous as that of Kenig, Ponce and Vega [15].

We set the function space below;

Definition 1.3 For s,s,b € R, X;’ o denotes the completion of the Schwartz
class S(R?) with respect to the norm

1Pl , = (/ |- erere e >Pd§dr)1/2. (1.9)

Also we shall use the following function space;
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Definition 1.4 H** (R) is defined by

{f €S'R): (©)°1]° J(€) € L’ (R)} (1.10)

with the norm
1f Lo = I4E) 1€ F() I 2-

Remark 1.5 According to [17], we can not solve the initial value problem for
the Benjamin-Ono equation in the Sobolev space H*(R) via iterative methods.
Recently, it was announced by K. Kato [10] that it is possible to show the
existence of the solution to the BO equation in H'*&~1/2(R) via iterative
methods.

The function spaces defined in Definitions 1.3 and 1.4 are also used in [3]
in a different context.

We first state our results in the case of N(u,u) = cua.

Theorem 1.6 Let s € (—1/4,0) and s € (0,1/4). Then there exists b €
(1/2,1) such that for any ug € H*=*"* (R) there exist T = T(|Juo| go—s' ) >0
and a unique solution u(t) of the IVP (1.1) with N (u,u) = cuu satisfying

ue C([-T,T]; H~*"*(R)), (1.11)
uwe Xl gy, (1.12)
ut € Xg:slcs,, O, (ﬁu € X;’:sl,_zs, N Xg:;@s/—z (1.13)

Moreover, for a given T' € (0,T) there exists R = R(T') > 0 such that
the map vy — v(t) is Lipschitz, where the map is from {vg € H*~**(R):
lvo — wo| fs—sr.s < R} into the class C([-T,T]; H"(R) N Xb_, ..

This theorem will be assured by the following nonlinear estimate.
Proposition 1.7 Let s = —p € (—1/4,0) and s’ € (0,1/4). Then there exist
be (1/2,1—2p) and V' € (1/2,b] such that

1FGl -y <elFllxw  IGlxw (1.14)

for any F,G € Xf/_s,,s,.
The results in the cases of u? and @? are followings:
In the case of N(u, ) = cu?.

Theorem 1.8 For the IVP (1.1) with the nonlinear term N(u,u) = cu?
the results in Theorem 1.6 (with u? in (1.13) instead of uw) hold for s €
(—3/4,—1/2) and s’ € (0,1/4).
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Proposition 1.9 Let s = —p € (—3/4,—1/2) and s’ € (0,1/4). Then there
exist b€ (1/2,5/4 — p) and b’ € (1/2,b] such that

[FGll o1, <cllFlixy NGy (1.15)
s—sl s ol gl ol ol

for any F,G € XV

s—s’ 5
In the case of N(u, @) = cu?.

Theorem 1.10 For the IVP (1.1) with the nonlinear term N(u,u) = cu?
the results in Theorem 1.6 (with @? in (1.13) instead of uw) hold for s €
(—3/4,—1/2) and s' € (0,1/4).

Proposition 1.11 Let s = —p € (=3/4,—1/2) and s’ € (0,1/4). Then there
exist b € (1/2,5/4 — p) and b/ € (1/2,b] such that

TGl <cllFllgr, ICler , (116)

forcmyFGeXs ol
Remark 1.12 We note that

H*'(R) € H**'(R), (1.17)
provided s’ > 0. In this sense, we improve the results of Kenig, Ponce and
Vega.

Furthermore, we find that the counterexamples considered in the previous
section are indeed adopted as the initial data of the IVP (1.1) in our framework.

In the case of the IVP (1.1) with N(u,u) = cu® (or cu?), the function
ug(z) = |z|™% with 3/4 < k < 1 is not in H*(R), s > —3/4 as is seen
in the previous section. Noting that F,(|z|7%) = c|¢[F~1, we find that
()R F(E17F) = en(§)VHF € LX(R), where 0 < 1 —k < 1/4.
This implies |z| ™% € H*=**(R) with s > —3/4 and &' € (0,1/4).

In the case of the IVP (1.1) with N(u,u) = cuu, the function

cos(|t[€)
/ / |z — t[3/4+e(£)2e dgdt (1.18)

is not in H*(R) but in H*~**'(R) with s > —1/4 and s’ € (0,1/4). Indeed,
as is seen in the previous section

—2¢
() = erit (1.19)

from which ug(z) is in H5~%"%(R) with s > —1/4 and ' € (0,1/4).
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1.3. The related known results
Extensions of the results of Kenig, Ponce and Vega

Recently, T. Muramatu and S. Taoka proved in [18] the existence of the
unique solution in Besov-type spaces, which are extensions of the results of
Kenig, Ponce and Vega.

Let B‘;:Zf (R) denote the completion of S(R) with the norm
— g, j
ol = e + 12 sl ey

where @ (€) = @o(I€))(1 + | log|€[)2@(€). 5(€) = ¢, (1€DAE), and ¢;(2) €
C>(R) ( =0,1,...) have the following properties;

pj(2) = pj(—2) 20
0i(2) =p1(2772) forj>1
supp o C {2: |2 <2}, supp ¢1 C {2z:1 <|z] <4},

> pi(z) =1.
=0

Theorem 1.13 (Muramatu and Taoka [18], cf. [25])
(i) For any ugy € B;f/él(]R), there exist T = T(|luol| 5-3/4) > 0 and a unique
’ 2,1
solution u(z,t) of the IVP (1.1) with N(u,u) = cu® or cu?.
(ii) For any ug € B;ll/4’#(R), there exist T = T(||uoll g-1/2.#) > 0 and a
) 2,1
unique solution u(x,t) of the IVP (1.1) with N(u,u) = cud.

Note that By, " (R) > By1/*(R) > H*(R) with s > —1/4.

Remark 1.14 The space B, 11/ 4’#(R) does not properly include our space
H*=*"(R) with s € (—1/4,0) and s’ € (0,1/4) (cf. Theorem 1.6). Indeed let-

P

ting u € S’'(R) such that 7 € L*(R) and putting f(£) = (1+]¢]) 5T |¢|~*"a(¢),
we clearly find that f € H*~**(R). On the contrary, for |¢] < 2

(1+ lEh—**"a(e) < @)l

.
IO AR G Thog e | < e

which means the first term of right-hand side of the norm || - || ;—1/4.# is not
2,1

finite. Hence f & B;ll/4’#(R).
Thus we find that the improvement by Muramatu and Taoka is different
from ours.
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Nonlinear terms and the asymptotic behavior as t — oo

As Kenig, Ponce and Vega already raised in [13], the Sobolev exponent s is
affected by the kinds of the nonlinear terms in the studies of the well-posedness
of the nonlinear Schrédinger equations in H® (gauge-invariant or not, e.g. |u|u
or u?, u? ). Also, it is gradually made clear that the asymptotic behavior of
the solutions as ¢ — oo vary with nonlinearities, which are accompanied by
the well-posedness results.

Recently several studies show the relations between the nonlinearities and
the asymptotic behavior. Hayashi, Naumkin, Shimomura and Tonegawa [9],
Shimomura and Tonegawa [21], and Kawahara [11] deal with these problems in
the scattering theory for the nonlinear Schrédinger equations with non-gauge-
invariant nonlinearities.

This paper is organized as follows: Sections 2 and 3 treat the proofs of
Proposition 1.7 and Theorem 1.6 respectively. Sections 4 and 5 contain the
proofs of the nonlinear estimates of the nonlinearities N (u, %) = cu? and cu?
respectively. Since the proofs of Theorems 1.8 and 1.10 are almost the same
as that of Theorem 1.6, they are omitted.

It is a pleasure to thank Professor Keiichi Kato for a number of suggestions
and discussions. The author also thanks the referee for his kind advices.

§2. Proof of Proposition 1.7
Let s=—p € (—1/4,0) and s’ € (0,1/4). Putting
F(&7) = (r =N I F (&, 7)
and  g(¢,7) = (7 +€)0(€)° ¢ G (~¢€, )

for F,G € X%, we have ||f| ;22 = ||Fllxs  and ||gll 22 = [|Gllx» . We
£ 5,8’ §-T s,s!

/
75’

note that é(ﬁ, T) = E(—ﬁ, —7). Thus we write for F,G € X;’LS, o

|FCl s, = tr = €376l FGi(s. )|

LZL2
€]
(r — E2)L-b(g)pts’

(€ —&,7—m)(€— &)+ g(&, n)&)rts
// (T—m— (=&)Y - &l (m+ &)Y |&]Y derdn

=C

L3212
Next we note the following algebraic relation;

(m+&)+(r—m—(E—&)°) — (r— &) =24,



48 M. OTANI

and consequently

max{|r — &, [m + &7, |1 = — (€= &)1} > 2/¢6l/3. (2.1)
Lemma 2.1 ([14], [15]) If 1/2 < b < 1, b > 1/2, there exists ¢ > 0 such that
> dx e
/_Oo (x — )2 (x — )2 < (o — B)2 (2.2)
o dx Is
/ (z )2b|\/a—g;| = ()72’ (2.3)
= c
/ iE — a 2(1- b) <$ — ﬁ>26 < <Oé _ ﬂ>2(1—6)7 (24)
& < - 2.5
/ (x — a)2(=0)(x — B)2V' = (o — B)2(1-D) (2.5)
dz (B)2(b-1/2)+
" /I:v|<6 (2)20-0)| /o — x| s¢ ()12 (2.6)

Remark 2.2 The hypothesis in Lemma 2.1 that b < 1 is not necessary for
(2.2) and (2.3).

Remark 2.3 If there are some positive constants ¢ > 0 such that A < ¢B and
B < cA, we shall often write A ~ B to denote these relations.

Remark 2.4 To establish Proposition 1.7, we shall use Lemmas 2.5-2.8 in the
region [£1| > 1 and |£ — &1| > 1. In this region, it follows that (£1)(§ — &) <
4|1€1(€ — &1)|. In particular,

(€1)%05) (€ — &)+

|£l|28 |£ é— |25 C|£1(£ - 51)|2p'

Lemma 2.5 If p = —s € (0,1/4) and s’ > 0, then there exist b > 1/2 and
b > 1/2 such that

[
P T e

&€& 12
<// (114 &)? |17'(—7'11)’(§ 51)2>2b/d€1d71> <o (27)

(G,m) €R?: |r—m = (§ &)%) < 7 — €|
A= [+ & < | — &7
Sl =1, E-&l =1

where
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Proof. From the definition of A,
r—@42aa|=|n+D)+r-n-E-a)?) <A - (28)
holds. By (2.1)
€1(6 — &) < 20¢6l” < 9)r — €22/2 (2.9)
holds in A with |{] > 1. If 4p < 1, then there exists b > 1/2 such that
€16 — )P < elr — €3] < cfr — P00, (2.10)

It follows from (2.10) that

1 &&= &) 1/2
(r —e2)i=b <// R eee— 51)2>2b,d§1al7-1)

- d§1dﬁ 2
=¢ 7—521 b<// (r1 + &5)%( Tl—(§—§1)2>2b/> '

(2.11)

From (2.2) and (2.8), we get

dm Y ((r— & +286)/2(t — %))

/neA (m+&)*(r - — (£ = &)H)* =¢ (r— &2 +206)% ’
(2.12)

where ¢ € C{°(R) with supp ¢ C [-2,2], ¥» = 1 on [—1,1]. We shall often
use this cut-off function 1 hereafter. Hence the right-hand side of (2.11) is

dominated by
1/2
C / d§y
g4 0eey|<2lr—e2| (T — &%+ 2661)%

Changing variables 11 = 7 — £2 4 2£€; and diy = 2€d€;, we obtain

1/2
o[ dé;
r—g242eey|<2lr—e2) (T — &% +2661)%

i i/ o 1/2
€] Ji<2ir—e2) (m)®

C
€12

< (2.13)
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Noting that || > 1, we conclude Lemma 2.5. O
Lemma 2.6 If p = —s € (0,1/4) and s’ > 0, then there exist b € (1/2,1—2p)
and b’ € (1/2,b] such that

1
sup sup ———s—
=1 m (T +E7)°

o a(€ — &) "
<// ) T-g2>2<1—b><f—n—<£—51>2>2"’d§d7> o
(2.14)

where
T eR?: |- —((-&)?* <|n+&

B = T — &% < |m + €3
) >1, [E-&l=>1

Proof. 1t follows from the definition of B that
mt&-2al=1(r-) - (r-n—-(E-&))<2An -+l (215)
By (2.1)

€1(6 — &)l < 2086 < 9 + &7 /2 (2.16)
holds in B with [£;| > 1. From (2.16), we have

1/2
// ’61(5 _ gl)/|2p dde
71+51 2(”+8 (r— 71— (§—&)2)* (T — ¢2)200)

71 (i + &% dedr 12
=¢ (i + )Y (// (r—m—(§— &) (r - €2>2(1_b)> '

(2.17)
From (2.5) and (2.15), it follows that
/ dr < C¢(Tl+§%—2§fl/2(ﬁ+§%))
Y R e B T
(2.18)

Hence the right-hand side of (2.17) is bounded by

1/2
' §
Cl{m +&7)%° / d |
1 |T1+€7—2861|<2|m1+€3) (71 + f% — 2§§1>2(1—b)
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Changing variables n = 71 + &2 — 2¢&; and dn = —2£1d€, we obtain

4 1/2
_y n
C(m +&1)%° / S —

' ml<2im+e2| (230 & |

C ;
< S+ gy (219)
& |V
Since
<,7_1 +£%>2p+b—b’—1/2+e
sup sup < 00, (2.20)
€21 7 €111/
we establish our statement. O

Lemma 2.7 If p=—s € (0,1/2) and s’ > 0, then there exist b € (1/2,1 — p)
and b’ € (1/2,b] such that

sup sup —————
>1 n (T

(Jf (e — € i) o
2(p+s') 7- -7 — (5 _ {1)2>2b’ <7. _ 52)2(1—1:) ’
(2.21)

where
Em)eR?: In+&|<|r—n—(£-&)°

D= T—&<|r—m1—(E—&)°
€1>1, [€-&|>1

Proof. We change variables 71 = 7 — 71 and & = £ — &;. It suffices to show
that

sup sup —————s7
l€1>1 T (] — (f’)2>b

(Jf = |£|25 L6 — DI )
e T E T L |
(2.22)

(&) €R?: | =1+ (£ =€) < ] — (€)%
D = [r =& < — (&)°
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For simplicity, we put 7 = 71 and & = &.

It follows from the definition of D’ that
=& — 266 - &)l = (T =€) = (T -+ (€= &)*) < 2lm — &F|. (2.23)
And it follows from (2.1) that
£(6 = &) < — €71 (2.24)
The left-hand side of (2.22) is bounded by

&1(E = &) ded )1/2
C|§Sll|1£1871_11p (11 — 51 <// 7—52 (1= b 7_7'1‘1‘(5 f)>2b/ s .

(2.25)
From (2.5) and (2.23), it follows that
dr
/TGD/ (r = P01 =+ (€ = €)*)»
ol = 266 - 6)/2(n — &) (2.26)

(r—&F —26(6—&))*0°

For a domain F, we define

1 161(& — &) PPde 2
I8 =—aw </E =TT sl>>2<1b>> - e

And we put
EeD: |n—&—-26(E—-&) <2/m— &
p= 21 Je-al>1

and divide ) into three regions,

Dr={¢&eD: |&] <100[¢ },
Do ={&€P: |&] >100[], |&] <500]m — &7 },
Ps={&€P: |&] =100, 500|m — &F] < |&1] }.

Estimate in ;.
From (2.24), |&1(€ — &)| < c|€(€ = &)| < cfm — €3] holds in P;. We change
variables

n=m—& —2(E-&), dnp=2(& —2)d¢ =2y/2m — 2n — £1dE. (2.28)
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With the aid of (2.6), we obtain

] 1/2
2\ p—b’ 7
1Py ={n=ar </|ngzn£% <77>2(1"’)\/M>

T — &P/
(2m —&g)1/4
< o0. (2.29)

< Cln -y

Estimate in Ds.
With €] > 1 and (2.24),

€1(€ — &)1 < |Gl — &)
< cl&)*|m — &|* (2.30)

holds in Do U P3. In the region Do, dn = c£1d€ holds since |§ — 28| ~ |&1].
Under the change of variable (2.28), we get

1/2
[ {m — £3)° _dn
1P2) < C (n =&)Y </In<2n—£% \51’1/2<77>2(1b)>

< ClalP7 P — &) (- ) (2.31)
With p+b—18 —1/2+ € < 0, we obtain

I(P2) < Cl&[PH/2pHb=b=1/24e o o (2.32)

Estimate in Ds.
We can also estimate I(D3) as in [a:

1 < e a )"
- (=&)Y ml<2ir—2| ()20

< Cla|P Y2y — eDP Y (1 — €)1/, (2.33)

With p —1/2 < 0, we obtain
I(Ds) < Clmy — &)P~HHetbt=1/2te < o0 (2.34)

Therefore it suffices to collect (2.29), (2.32) and (2.34) to conclude Lemma
2.7. g
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Lemma 2.8 If p = —s € (0,1/4) and s’ > 0, then there exist b € (1/2,1—2p)
and b’ € (1/2,b] such that

1
sup sup ————5—
>1 m (T €D

// |§|2S |§1(€ _51)|2p dde 2 < 00
gl<1 (2T (T — )20 (7 — 7y — (€ — &)%) '

(2.35)

Proof. In this case, from || < 1 and |£;]| > 1, we have

€ -l <lal+lal” <2a/”
The left-hand side of (2.35) is bounded by

1/2
1 &6 = &)
(11 + €20 déd
a4 <// <t 7= 0D (= — (€~ )PP )

<C &[> // dgdr v
< C sup sup ; .
G R gj<1 (T — €200 (7 — 7 — (£ — &1)%)*

(2.36)

Using (2.5), we find that

drd¢ dé
/ / e Y A /mq (r+&F — 26602070

(2.37)
Changing variables n = 71 + £2 — 2££1 and dn = —2&,d€, we get
1/2
I h).
el<1 (11 + &F — 26£1)20-0)
) J 1/2
1
<o / o
|1 ]1/2 ( In|<|m1+€7]+2l€1 | <n>2(1_b)>
< Cléa| V2 [(m + €0)0 12 4 |12, (2.38)
Hence the left-hand side of in (2.36) is dominated by
sup sup L (1 4 @jp1/2ve gy i (2:39)
=1 n (T + &)
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which yields the result. ]

Lemma 2.9 Let p= —s >0 and 0 < s’ < 1/4. Then there exist b > 1/2 and
b' > 1/2 such that

€1
TP T ey gy

/ /2
(626 (€ = €220+ 1
<// e+ TGP (- - e E-—Gpr ) <

(2.40)

where E = {(¢1,11) € R?: |&| < 1or|€ —&| <1},

Proof. If |£1]| < 1 or |€ — &1| < 1, then we find that (£;)(€ — &) < 4(£). Using
this inequality, we obtain

€25 (&)%) (€ — &) 20+ < 1 (&) 2o+ (¢ — )2t
(€)2pts)  [&1]2 & — &> (€)% &> & — &%

1 2s’ 1 25’
C — S .
< (” w) (” \5—&\)

(2.41)

The left-hand side of (2.40) is bounded by

o (//( |§1> <1+|§__1&|>28'

y dé1dm )1/2
(M + &)W (T —11— (£ = &)%)

<sw =gy (/] =
SUp ———5—— — _—
er (T =170 \ e« or fe—e1 <1} &1 € — &

dé 1/2
TatEam) < (242)
from which the conclusion follows when 0 < s’ < 1/4, b,b’ > 1/2. O

Proof of Proposition 1.7. By duality argument, it suffices to show that for any
ve Xy with ol <1,

s'—s,s’

= [(FG o) < ClIFlyw | NGlixy Il - (2.43)
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Putting

F&,7) = (r =) e F(g,7),
g(&,7) = (1 + () 1¢) G(~¢, —T)
and  h(£,7) = (1 — €))7 e~ u(e, 1),

we find that our aim is to show
1] < C||f||L§L£||9”L§Lz||h”Lng- (2.44)

And we can rewrite I as follows:

1= [ Fae e dsar
RQ

- /]R ST e, ) E(E - &7 — m)dédrdeydn

= /R4 56, 7) G(~€1, —m)F(€ — €1, 7 — 71)dédrdgydry

. / hEDIE g(&r,m) )t
pa (T — EIEPT (- E1)Y [

L JE-g ) —&)*
(T—m— (=&)Y~ &

_dédrdédr. (2.45)

We divide R?* into the following two integral regions:

Dy = {(&,7,61,m1) €R*: |&] > Tand |6 — & > 1},
Dy ={(&,7,&,m) eRY: |G| <lor € —&l <1},

Moreover we split D1 into four regions:

Dy = {(&,7&,m) € D1: [¢] > 1, |o| = max{|o], 01|, |o2]} },
Dy = {(&,7,&1,m) € D11 €] > 1, |on| = max{|o|, o], [0} },
Dz ={(§,7&,m) € D1: [¢] > 1, |og| = max{|o], |01, |o2]} },
Diy = {(&,7,6,m) € Dy: J€] <1},

where 027—52, 01271+§%, 0227'—7'1—(5—51)2-

For these integral regions, the integral I is divided into each part;

I= 1511 + Iﬁu + 1513 + 1514 + 152’
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where

Iy = / REDET g, )€

P Jp (r = )1 (m + )Y [l

o SE—& T 7)€ — &)t
(T—m— (=&)Y - &
Each I is estimated according to the following two cases:

Case I

This case applies to the integral regions D = 512 U 513 U 514. By using
Schwarz inequality with respect to (£,7), [I5| is dominated by

/ (&) g(&,m)
(r1+ &)Y [&]”

-dedrde dr.

/ ! /2
s (€ = )20+ 1
X (/5 <7. _ §2>2(1—b) <§>2(p+s’) <T -7 — (5 _ 51)2>2b/|£ _ §1|25/ d&dr
1/2
< ([ InemPiste—nr —mPdear ) devin. (2.46)

With the aid of Lemmas 2.6, 2.7, 2.8 and Schwarz inequality, (2.46) is domi-
nated by

1/2
¢ [ ot ( / rh<5,r>12|f<s—sm—n>stdr) dérdr,
]RQ ]RQ

1/2
<C </R2 |9(51,7'1)|2d§1d7'1>

1/2
: </RQ </Rz R(&, )P f(€ = &1, — Tl)‘2dfd7'> dfldﬁ)

= C”f”L?LZHQ”LgLZ”h”LgLE‘ (2.47)

Case I1I

This case applies to the integral regions D = Dy1 U Ds. By using Schwarz
inequality with respect to (&1,71), [/5] is dominated by

[ e
(r— g

/ , /2
(€)20rs) (€ — &>t :
g </15 (1 + 2|62 (1 — 11 — (£ — )2 ]E — &[> d&idm

1/2
x (/5 l9(&, 1) PIF(€ = &1, — T1)!2d€1dﬁ) dédr. (2.48)
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By virtue of Lemmas 2.5, 2.9 and Schwarz inequality, (2.48) is dominated by

_ 1/2
¢ [ wen ( / |g<a,n>|2|f<s—&,f—n>|2d51dﬁ> dédr
R2 B2
< Cllflzza lollzrs Al zrs. (2.49)

Summing up, we establish our statement. O

§3. Proof of Theorem 1.6
Lemma 3.1 If s,s' € R and b € (1/2,1], then for 6 € (0,1]

|ve e || , <02 )|y, (31)
[o(@ ) F || < ed"F |y (3.2)
t , :
H¢(5—1t) / % B (¢ )at! < S22\ Pl (3.3)
0 Xb , s,s/
t
and Hw(é_lt) /0 e =% (¢! lgcé(l_%)/QHFHXb_}. (3.4)
Hs»s s,8

Here ¢ € C°(R) with ¢ =1 on [—1,1] and supp ¢ C (—2,2).

Proof. Replacing (£)° and the unitary group {W(t)}>°, associated to the
linearized KAV equation by (£)*|¢[s" and {ei% 1> respectively, it suffices to

follow the proofs of Lemmas 3.1-3.3 of [12]. Therefore the proofs are omitted.
O

3.1. Existence

For ug € H*~**'(R) with s € (—1/4,0) and s’ € (0,1/4), and for b € (1/2,1),
we define

< M}, (3.5)

s ,s!

BM = {U € Xg—s/,s’ : HUHXS_
where M = 2Cy||ug|| jys—s'.' - For w € Byr, we define the map
t
Ty (w) = T(w) = () e™ug + cip(t) / =% [y P ()t (3.6)
0

where 95(t) = (6 't). We shall show that T, is a contraction map on Byy.
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Following the similar argument in [14], we get

loto™ Yullgr | < eo® S ull o

s ,s!

for 1/2 < b/ < b.

59

(3.7)

With the aid of (3.1), (3.3) of Lemma 3.1 with § = 1, Proposition 1.7 and

(3.7),
IT@)lxe, , < O |,
+c|l(t) /t T | () P () !
0 X,
< Colluolls—v s + CH(%W)WH@:;/ y
< Colluo| ge-s .« + CWWH%{Z/_SI ,
< Colluo|| gs—s' .0 + 015“||w||_2xg_s, .
< M/2+ Cy 6" M?, |
where = (b —b")/4. Choosing 0* < 1/4Cy M, we obtain
1Tl , | <3M/4 <A,
which means T'(w) € Byy.
Similar calculation yields
T(w) ~ Tl
< oo [ OB st Pramtt) - ey |

< cll[obs|* (wiTT — uam)| o1

s—s',s

< (It —wlley |+ Wsurstn =l )

<c(Iwsmllyy ,, +lsaly ) st~ )l

8! 8!

<o (fullxe ,  +lulxe ) lu —usllxs

s ,s’
S QCl(SMMHul — UQHXb

s!,s!
s!,s!

1
< gl —uallxe.

s,s!

Sl

(3.10)
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Hence Ty, is a contraction, thus there exists a unique solution u(t) in By, for
T < 6 such that

t
u(t) = () [eitaguo—i—c / =% s (¢ V(¢ dt | . (3.11)
0

Therefore u(t) solves the integral equation associated to the IVP (1.1) with
N (u,u) = cuw in the time interval [T, 7.

3.2. Uniqueness

We define

HUHXT - H’uljf { HU}HXb7 . Tw e Xg_s/7s/ SUCh that

w(t) =w(t) tel0,T] inH ™} (3.12)

Let uq be the solution obtained above. And let us be a solution to the integral
equation with the same initial data ug. We assume for some M > 0

lullxe |, > Iuzllxe <M. (3.13)

We may assume M > 1, T < 1. For some T* < T', we get

t
Dus(t) = ()% ug + e (t) /O % . P Pugtip ()t (3.14)

for t € [0,7%]. From the definition of the norm, it follows that for any € > 0,
there exists w € X2 _, , such that for ¢ € [0, %],

s—s’

w(t) = ur(t) — Y (t)ua(?) (3.15)
and
e, , <l = puslx, +e. (3.16)
We define for ¢t € R
w(t) = colt) [ O o () () + (). (317)
For ¢t € [0,T%], we get

W(t) = w(t) = ui () — P(t)us(t). (3.18)
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Hence
lur = Yullxre < lwlixe (3.19)
From the similar calculation as in Section 3.1, it follows that
lur = duzllxz. < iy,
< |||y P(mw(t') + w%)HXb:l/ )
S Cl(T*)‘u <||U1||X.g—s’ s/ + HwUQHXE—s’ s’) HwHX:—s’ s/
<2C (TP M ||w|| b o (3.20)
where = (b—1b")/4. If (T*)* < 1/4C1 M, for any € > 0 we have
1
o = el < sllwllxe
1
<3 (llur — Pzl x,. +e€). (3.21)
Therefore
Jur — Pusallxp. <e (3.22)

which implies u; = ug on [0,7*]. Repeating this procedure, we obtain the
uniqueness result for any existence interval.

Remark 3.2 In [12], [14] and [15], Kenig, Ponce and Vega do not carry out
the proof of the uniqueness result completely. We referred to the proof by
Bekiranov, Ogawa and Ponce [2].

3.3. Other properties
We shall prove the persistence property;
u(t) € C([-T,T); H"*(R)). (3.23)

Using the integral equation (3.11), (3.4), Proposition 1.7 and (3.2), for 0 <
t<t<1andt—t<At, we obtain

Jou(t) = w@® g < 1% 0(d) = )] e

t / g
o t—1
pit—t )92
/L; ,l/} At 7 gl
Hsfs ,S

i —_N\H2 ~ ~ _K
< % u(l) = w(@)l| ro-vr.o + (AT ull

s—s',s

2

+c wu(t')dt

=o(1) (3.24)
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as At — 0, which is the persistence property.

Next we find the continuous dependence on the initial data from the following
(3.25) and (3.26):
Using the integral equation (3.11), (3.1), (3.3) and Proposition 1.7, we get

lu—vllxe = <cllug—vollgs—s.s
s—s’,s

tellullye |, Flvllxe
S§— S S—

sl s’

Mu=vlxe_,

s/,
1
< cflup — UOHHsfs’,s’ + §||U — 0| xo ’
o

s’

ie. |lu-— UHXE_S/ LS 2¢||ug — vol| ype—s (3.25)

and similarly by (3.1), (3.4) and Proposition 1.7

[u(t) = v(®) | gramsr.r < (0™ (o — o)l prsmst

2]
oIt~ Vllxy_

s,s!
1
S CHuO - UOHHS—S,,S, + _||u - UHXb
2 s—sl,s!
S C,H’U,O — UO”HS_317317

ie. sup  [u(t) — v(t)|| gaes o < NJuo — vol| gams - (3.26)
te[—T,T]

Therefore the map vy — v(t) is Lipschitz from {vg € H*~**(R): |jvg —
Ul pyo-vr o < R} into X2, , N C([=T,T]; H*"*(R)).

Thus the proof of Theorem 1.6 is completed. O

§4. Proof of Proposition 1.9 (the case of N(u,u) = cu?)

Let s = —p € (—3/4,—1/2) and s’ € (0,1/4). Putting

F&,7) = (1 — EXP(E)|E|T F (¢, T)
and  g(&,7) = (1 — £2)2(€)%|¢] " G(¢, 7)
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for F,G € Xb &> we have ||f||Lng = [|Fllx»
we write for F,G € X o'

SSS

and |lgll ;22 = |Gllxs - Thus

IFGlxe,
= [ —enr=Her e Fae, 7|

¥
(r — €2)1=b(g)r+s’

(€ — &, 7 — )€ — &) g(&r,m) (&)t
R e ey e e ]

LZL2

=C

L212
Next we note the following algebraic relation;
(m—&)+(r—m—(E-&)?) - (r-8) =2a(-&).

Consequently we have

max{lr ~ &, I~ €, Ir—n - (€~ &N > laE-&) (@)

We may assume that |7 — 7 — (€ — £1)?| < |71 — €2| without loss of generality.

Remark 4.1 To establish Proposition 1.9, we use Lemmas 4.2 and 4.3 in the
region |£1] > 1 and |£ — &;| > 1. In this region, it follows that (£1)(£ — &) <
41&1(€ — &1)|. In particular,

(£1)20PFs) (€ — &) 2+

‘é. ’25/’§ — § |25/ C|§1(£ - 51)’2’0'

Lemma 4.2 If p = —s € (1/2,3/4) and s’ > 0, then there existb € (1/2,5/4—
p) and V' € (1/2,b] such that

sup—L L&l
er (T — €10 (Gt

&€ —&)I* 1/2
: <//A (11 — €)W (1 — 1y — (£ — £1)2)2 dfldﬁ) <oo,  (4.2)

A={&m)eR: |r—-n— (- < |In-&l<|m—&|}.

where
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Proof. Since |£1(€ — &1)] < ¢t — €2| holds in this case from (4.1), it follows
that

€l < |&£ gm% )”2
(7 — €2)1-b(g)p+s // ) Y. éh1>2>2b,d§1al7-1

7_ _ 52 p+b 1 dfldTl >l/2
< /] e ) -

From the definition of A,

r—E 26— &) =ln—&)+(r-n—(E-a))|<20r-¢ (44)
holds. And we get from (2.2) and (4.4)

/ dr < C¢(T—§2+251(€—§1))/2(T—52)
nea(rn =& (r—m — (- &)H% — (T—8+26(E— &) ( '
4.5)

Hence the right-hand side of (4.3) is dominated by

olr =gyt / dg, 1/
(&)” Ir—g249e, (e—61)| <2)r—e2| (T — &2 +261(§ — &1))% '
(4.6)

We change variables

n=1-&+24(E— &), dn=2({—2&)dEr.

1
Moreover from & = §(§i 21 — €2 —2n), or |28 — &] = /21 — &2 — 21, we
get

dn = c\/21 — €2 — 2ndé;. (4.7)
With the aid of (2.3), the left-hand side of (4.2) is dominated by

(r — €2
C'sup

p+b—1 1/2
T £2) (/ dn )
T (€)” mi<2ir—e2| (MY |\/21 — 21 — &2
< C'sup {r - €2>p+b—1

er (E)r(r — €2/

which yields the result. O




1-D QUADRATIC SEMILINEAR SCHRODINGER EQUATIONS 65

Lemma 4.3 If p = —s € (1/2,3/4) and s’ > 0, then there existb € (1/2,5/4—
p) and b’ € (1/2,b] such that

1
sup sup .
>1 m (11— &7)°

(Jf 2 (€ — &l i) <o
26 {7~ B0 (7 — 71 — (€~ &) |

(4.8)
where
&) eR?: |[T—m—(£-&)?* <|n— ¢
b= =€ < [ — €3]
Proof. 1t is clear that
1/2
|€|2S ’51(5 §1)|2p d d
(1 — 451 b/ <// Apts') )20 — 1 — (£ — &)%) s
€1 — &) )”2
déd )
~ (- '51 (// P(T—€2)20-0(r — 7 — (£ - &) s
(4.9)

It follows from the definition of B that

m =&+ 266~ Ol =(r -7 — (€~ &) — (1 =€) < 2ln — €F]. (4.10)
By virtue of (2.5), the left-hand side of (4.9) is bounded by

1 1 [&1(E = &) )1/2
C - d 4.11
ey U v s sate S #11)
with D={£ € R: |1 — & + 26, (& — &) <2l — €3]}
Since 2[&1 (& — &) < |m — &+ 26(& — 9|+ |11 — & < 3| — €| in D, we
can divide D into two domains D7 and Ds:
Dy ={¢ € D: |a(§— &) < |m —&51/4},
Dy ={¢ € D: |n —&l/A< |6 — &)l < 3m - &1/2}

For a domain C, we put

1 1 €1 — &) 2
10 =r—ap </c 6% (m & + 266 - O)F 1b>df> - (412)
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Estimate in D;.
From [&1 (€ — &)| < |11 — &7]/4, we get

T — €3] < |m— €8 + 261 (€ — &)+ 2|66 — &)
<|m— & +26(E - &)l +Im — &1/2.

Hence
m = &1l < 2ln — € + 2606 - &)l
On the other hand,
Blm —&51/2 > |Im — & +26(E - &)l
Therefore it follows in D7 that
Im = &l ~ I = & + 26 (6 = 6]
With the aid of (4.13), we get

1Dy < =& </D <d£ d§>1/2<oo'

=

L (6%

Estimate in Ds.
In D5, it follows that

61(€ = &)~ m = &l
We subdivide D3 into three regions:

Dy ={€ € Dy: [€]/4 < |61 < 100(¢[},
Dop={£ € Dy: 1< |&] <[€]/4},
Dy3 = {£ € Da: 100[¢] < |&1]}.

(4.13)

(4.14)

(4.15)

In Dy, it follows that [£1(€ — &1)| < ¢[&1]? and [&| > 1. Therefore we obtain

T — | ~ |&1(€ — &) < & ]?

and moreover
(1 — &) <&/

Changing variables

n=m1—&+26(&4 —€), dn=-2&dE,

(4.16)

(4.17)
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and noting (4.15) and (4.16), we obtain
1/2
iy de
I(D — &t
(D21) < c(m — &) </D2,1 1266 - §)>2(1—b)>

g 1/2
_p Ui
= cln — )77 / VRYARTEwY

! nl<aim—e2| |€1](m)20=Y)

<c(n — £f>p*bl*1/4+b71/2+6 < 0. (4.18)

We should estimate I(Da2) more carefully. It follows in Dj 5 that

€ =&l < €]+ [€]/4 = 5]¢] /4.
Also it follows that
€] < 1€ = &1] + €]
<6 =&+ [€]/4
e 3[¢|/4 <€~ &l

Hence we get

€]~ |€ — &l (4.19)
In particular, from (4.19) and (4.15)
€] < 1€1€] ~ (€ = &)l ~ Im — & (4.20)
Therefore we obtain
&) < [€]/4 < elm — £]). (4.21)

By virtue of (4.19), we get

€€l ] V2
2 PPl — G+ 2606 — PO D

1/2
v 6]
< C<7-1 - §%> b (/Dgg <7_1 — 5% + 2511(£1 — £)>2(1—b) d§> (422)

Making the change of variables (4.17) and noting (4.21), we obtain

I(DQ 2) < C<7'1 — §2>_bl / wdn 1/2
s = 1 _
nl<2lr—¢z] ()20

p 1/2
IRV Ui
§C<7'1—§2> b 4+p—1/2 / —_—

' nl<2im—¢2| (m)217)

< C<7'1 . £%>fb/+pfl/2+bfl/2+e < 0. (423>

I(Dy2) < Clm — €)Y ( /D
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Finally noting that |1] ~ |€ — &1] holds in Da 3, we get |&1]2 ~ |71 — &2 from
(4.15). Therefore making the change of variables (4.17), we obtain

1/2
Ly d§
I(Dy3) < Clm — P70 </DZB (11— €21 26,(€1 — £))20D) d€>

d 1/2

Ly "

com-arr ([ m
L nl<2lr—e2) [€1]{n)2(1 =)

< Cm — e2)p=b=1/a+b-1/24e (4.24)

Summing up, we complete the proof. O

Lemma 4.4 Let p=—s >0 and 0 < s’ < 1/4. Then there exist b > 1/2 and
b > 1/2 such that

€
S g

2(p+s) (€ — £)20+) 1/2
dérd
<// (r1— 51 V2 |€1 (28" (1 — 7y — (€ — £1)2)2V|€ — &2 &1 Tl) < 00,

(4.25)

where E = {(¢1,11) € R?: |&| < 1or|€ —&| <1},
Proof. The proof is same as that of Lemma 2.9. Therefore it is omitted. 0O

§5. Proof of Proposition 1.11 (the case of N(u,u) = cu?)
Let s = —p € (—3/4,—1/2) and s’ € (0,1/4). Putting
£(&:7) = {r + €M) 1€l F(=¢, —m)
and  g(€,7) = (T +63)"(€)°[¢] G(~¢,~)

for F,G € Xg,s” we have ||f||L§L3 = [[Flx , and ||9||L§Lz = |Gl x ,- Thus
we write for F,G € X", s

b =
TGl = = el T,

€l
=

// FlE—&,m—m){E-&)Pr g (51,7'1)<§1>p+8,d£1d71
(T—n+ -l (n+ehHvial”

=C

L2L2
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Next we note the following algebraic relation;

M+ +T—n+E-a)?) - (- =8+ (E-a)P’+¢.

Consequently we have

max{|7 — €|, |n + &, [T -7+ (€ &)} 2 (5 +(E =&’ +&). (5.1)

We may assume that |7 — 71 + (£ — &1)?| < |71 + &F| without loss of generality.
Remark 5.1 We note that [£1(€ — &) < €2 + (€ — &1)% + €2 holds.

Remark 5.2 To establish Proposition 1.11, we use Lemmas 5.3 and 5.4 in the
region [£1| > 1 and |£ — &1| > 1. In this region, it follows that (£1)(§ — &) <
4|1€1(€ — &1)|. In particular,

(£1)20P ) (€ — &) 20+
€12 |€ — &)

Lemma 5.3 If p= —s € (1/2,3/4) and s’ > 0, then there exist b € (1/2,5/4—
p) and b’ € (1/2,b] such that

sup—L L&l
er (T =) (gt

616 — &) 12
<// (11 + EH2 (1 — 7 + (£ = &)2)2 d§1d71> < 00, (5-2)

A={&,n)eR: |r—n+E-&)? < |In+&| < |7 - &€}

<clG(E—&)*.

where

Proof. In this case, [£1(€ — &1)| < 3|7 — €2| holds. Hence the left-hand side of
(5.2) is dominated by

€€ — ) is
er (T _52 15 | <// iy e—— £1)2>2b,d£1d7'1>

C'sup
(T — 52 prb—l < d¢ydm >1/2
SR 3T // A+ r—n+ (- )

(5.3)

Changing (7,71) by (—7,—71) and following the argument in Lemma 4.2, we
find the bound of (5.3)

2\ p+b—1
Csup 1 {(1+&9)

P eV (7 — g2y (5.4)
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which yields the result. ]
Lemma 5.4 If p=—s € (1/2,3/4) and s’ > 0, then there exist b € (1/2,5/4—
p) and b’ € (1/2,b] such that

1
sup sup —————=—
Ea>1 m (11 &)

(Jf = e e~ &) i) <o
) 7 PRI 1 (€~ Q)P |
(5.5)

where

ET)eRY: |[1—m+(E-&)? <|n+ &
b= T < |m + €3]

Proof. In B, €2 + (¢ — &)% + €2 < 3|1 + &2 holds.
With the aid of (2.5),

94/ 5 1/2
// |£| ® ‘gl(g_glﬂ P dé-d’r
rar T {7~ N+ (€ G

[&1(€ = &) T> 1/2
Tl +£1 <// — )20 — 1 4 (6 - &)%) e
1 1 |§1(§ 61)|2p >1/2
= C<ﬁ +epY </D (€)20 (1 — €2 — (€ — &)2)2(1~ 5 9 (5.6)

with D ={{ e R: &+ (£ - &)* + & <3| + &7}
We divide D into D and Ds:

Di={(eD: &+ (E-a)2+€<|n+/2},
Dy={(eD:|n+&|/2<+(E-&)°+& <3n+ &I}

Estimate in D;.
‘We observe that

T+ & ~ |1 — €2 — (€= &) (5.7)
holds in D;.

Indeed it is clear that |7 — €2 — (€ —&)?| < |(T =€) = (t —m + (£ = &)?)| <
2l + &3,



1-D QUADRATIC SEMILINEAR SCHRODINGER EQUATIONS

Conversely, in D1, we get

Im+ &I <|(m+&)+ (T —n+(E—&)*) — (7€)
+(r - = (r -+ (- &)?)|
=8+ (- +8+In - - E-&)
<|m+ €24 |n - - (E-&)%
Hence |71 + £2[/2 < |11 — €2 — (€ — &)?| holds.

With (5.7) and Remark 5.1, we obtain the bound of (5.6);

1 &1(€ = &)|* )1/2
oy </D P m -2 (- enpan®

- L €n(€ — &) )1/2
e </D BRI

1/2
< Oy + &yrrttt </D <£‘l>£2p>

<C(n+ &) < o0

Estimate in Ds.
We split D into D271, D272 and D273;

Dy ={€ € Dy: [€]/4 < |61 < 100(¢]},
Dy ={€ € Dy: 1 <61 < [€]/4},
Dy 3 = {§ € Da: 100[¢] < [&1]}

In the region Dj 1, we make the change of variables
n=m—&—(-&)° dn=2(& —29)dE.
From & = %(51 + /27 — £2 — 27), we note that

|61 — 26| =\/2m — &2 — 20, dn = cy/2m1 — & — 2ndE.

In this domain, it follows that

ERISTE

71

(5.10)

(5.11)
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By virtue of (5.1), (5.11), (5.10) and (2.6), the left-hand side of (5.6) is bounded

by
1 (11 +&2)P / de¢ 2
(m+&)y  (&)r Dy, (11— €2 — (£ = £1)%)20-0)

’ 2
ol () di Y
(€1)? <3z (m20-0/2m — & — 21

colnt )Y (m + )P/
B (&1)P (2m — &7)1/4
In Dy, the proof is similar to that in Do 1.

Finally we consider Ds 3. In this region |£1(€ — &1)| < ¢[&1|? holds. Hence
(5.6) is bounded by

1/2
& ¢
Cm+ﬁw<émm—e (- &Hmb> - 6

Since [£1] ~ |26 — &1 holds in Dy 3, we change variables (5.9) and dn = ¢|&;|d€.
Hence (5.13) is dominated by

. 1/2
o lal” / o dn
(11 + &Y \ini<sim+ez) (m20-0]&1]

2p—1/2

<c ISl -
(11 +&7)

< C<7’1 +€%>p—1/4—b’+b—1/2+e < 00, (5'14)

< 0. (5.12)

<7_1 + £%>b71/2+e

where we use, in the second term, & |? < 3|7 — ¢2| derived from (5.1). Sum-
ming up, we conclude this lemma. O

Lemma 5.5 Let p= —s >0 and 0 < s’ < 1/4. Then there exist b > 1/2 and
b' > 1/2 such that

(4
S%p83p<7-—§2>k4%5>ﬂ+f

o+ (€ — &)+ e )
// n+&%K#sv—n+@ P g i) <

(5.15)

where E = {(&, 1) € R%: |&4] < 1or|€ —&| < 1}

Proof. The proof is the same as that of Lemma 2.9. Therefore it is omitted.
O
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