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Abstract. We use an asymptotic expansion to study the behavior of American-
style interest rate caplets and floorlets close to expiry, under the assumption
that interest rates obey a mean-reverting random walk as given by the Vasicek
model. Series solutions are obtained for the location of the free boundary and
the price of the option for both the caplet and floorlet.
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§1. Introduction

Over the past thirty years, there has been a revolution in quantitative finance
and mathematicians have used powerful mathematical tools to model count-
less diverse assets such as equity options, interest rate swaps, and electricity
futures. Amongst options, closed form expressions have been found for many
European-style options, meaning options that can only be exercised at expiry.
The most well-known of these closed form expressions is of course the Black-
Scholes option pricing formula [9, 21] for equity options, but a number of such
solutions are also known for interest rate options, with a selection of these
given in for example [13].

American-style options, which can be exercised at any time up to and in-
cluding expiry, are harder to price analytically, and except for a few special
cases, closed form pricing formulas for American-style options have remained
elusive. This is in large part because the American-style early exercise fea-
ture often leads to a free boundary problem somewhat similar to the Stefan
problems that arise in physical problems such as melting and solidification,
and in order to price American-style options, it is necessary to first locate
the free boundary. Because of this, analytical research on American options
has taken a different path. Over the past several years, a number of papers
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have appeared on vanilla American equity puts and calls, which are contracts
where the holder can exchange the option at or before expiry for the amount
max(S−E, 0) for a call and max(E−S, 0) for a put, where S is the equity price
at the time of exercise and E is the strike price of the option. One approach
has involved using techniques such as integral transforms to reformulate the
problem as an integral equation [16, 15, 12, 14, 25], while another has been to
use a technique due to Tao [26]-[34] to find series solutions for both the value
of the option and the location of the free boundary close to expiry [11, 2, 3, 18].

While these approaches have been used successfully for American-style
vanilla and exotic equity options [4, 6, 7], few if any such studies have looked
at American-style interest rate options. In the present study, we will consider
interest rate caplets and floorlets. A caplet is the interest rate counterpart
of a call, and an American caplet pays the amount max(r − E, 0) at or be-
fore expiry, where r is the underlying spot interest rate and E is the strike,
while an American floorlet is the counterpart of a put and pays the amount
max(E − r, 0) at or before expiry. Typically, a caplet might be purchased by
an investor who has to make a stream of payments based on a floating interest
rate such as LIBOR, the London InterBank Offer Rate, and who wishes to
protect himself against sharp increases in interest rates, while a floorlet might
be purchased by an investor receiving such a payment stream who wishes to
protect himself against sharp decreases. Thus it follows that a caplet is an in-
surance against high interest rates, whilst a floorlet is an insurance against low
rates. These interest rate derivatives can be used individually, as envisaged
in the present study, or combined into portfolios: a portfolio of caplets with
payoffs on a series of different dates is known as a cap, with a similar portfolio
of floorlets being known as a floor. The market for caplets and floorlets, and
caps and floors, is OTC (over the counter) rather than exchange traded, and
according to [23], the market makers for these types of OTC interest rate op-
tions tend to be the large investment banks and commercial banks, but there
are fewer market makers and generally wider spreads than in the markets for
options on either mortgages or treasury securities. The end use buyers tend
to be institutions with risks they need to cover. For example, for caplets and
caps, buyers include institutions that lend money on a long term basis but
are funded by short term deposits and businesses that fund by rolling over
short term debt; both categories face losses if short-term interest rates rise
and caplets or caps can protect against the risk of such losses. Buyers of a
floorlet and floors tend to be firms that face losses if short-term rates fall. The
sellers of caplets and floorlets are quite varied, and include outright sellers who
wish to generate premium income, hedgers who are seeking to smooth out the
cash flows on other fixed income securities, and even buyers of capped floating
rate notes (FRN) who are if effect buying an uncapped FRN and selling a cap.

In this study, we will use Tao’s method, originally formulated in the context
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of physical Stefan problems, to find series solutions both for the prices of
American caplets and floorlets close to expiry, and also for the location of
the associated free boundaries. This approach involves expanding the solution
and the location of the free boundary as a series in the time remaining until
expiry, which is treated as a small parameter. This method has previously
been used for both vanilla and exotic equity options [11, 2, 3, 18, 4, 6, 7], and
the analysis here will follow the same lines as those studies, in part because in
order to use Tao’s method, we must first use a change of variables to transform
the governing equation into the nonhomogeneous diffusion equation. This
transformation is straightforward for equity options, where the price obeys the
Black-Scholes-Merton partial differential equation [9, 21], and is discussed in
standard texts such as [36]. However, while the Black-Scholes-Merton partial
differential equation is widely accepted for equity options, a variety of different
models are used for interest rate derivatives. In the present work, we will use
the Vasicek model, which is a mean reverting model popular amongst academic
practitioners. The main reason for choosing the Vasicek model is precisely
because it is also straightforward to transform the governing equation for this
model into the nonhomogeneous diffusion equation [5]. The details of this
model will be given in the next section, where we present our analysis.

§2. Analysis

In this section, we will use the method of Tao [26]-[34] to study the behavior
of American caplets and floorlets close to expiry. These are the interest rate
counterparts of vanilla American call and put equity options. If held to expiry,
an American caplet pays an amount max(r − E, 0) and an American floorlet
pays max(E − r, 0), where r is the interest rate and E is the strike. Because
these options are American, they can be exercised at any time prior to expiry,
paying at exercise max(r − E, 0) for a caplet and max(E − r, 0) for a floorlet.

To price interest rate derivatives, it is necessary to model the behavior of
interest rates. It is usual to assume that the spot interest rate r obeys the
stochastic differential equation,

dr = u(r, t)dt + w(r, t)dX,(2.1)

where dX is normally distributed with zero mean and variance dt and w is
the volatility. The random walk described by (2.1) can be somewhat different
to the lognormal random walk usually assumed for equity prices,

dS = µSdt + σSdX,(2.2)

which leads to the celebrated Black-Scholes option pricing model [9, 21] for
equity options. Returning to the equation (2.1) for interest rates, constructing
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a risk neutral portfolio leads us to the following partial differential equation
(PDE) for the price V (r, t) of an interest rate derivative,

∂V

∂t
+

w2

2
∂2V

∂r2
+ (u − λw)

∂V

∂r
− rV = 0,(2.3)

where λ(r, t) is the market price of interest rate risk, and u − λw is the risk
adjusted drift. This equation is valid for times t ≤ T , where T is the expiry
of the derivative. The derivation of (2.3) can be found in for example [36],
and this equation governs the behavior of all interest rate derivatives: the
boundary and initial conditions rather than the PDE differentiate amongst
them [22].

There are a number of popular interest rate models, and several of these
are special cases of the general affine model, for which u − λw = a(t) − b(t)r
and w = (c(t)r − d(t))1/2; a table of these special cases can be found in §46.2
of [36]. One popular model is the Vasicek model [35], for which u−λw = a−br
and w = σ, with a, b and σ constants rather than functions of time, so that
(2.3) becomes

∂V

∂t
+

σ2

2
∂2V

∂r2
+ (a − br)

∂V

∂r
− rV = 0 .(2.4)

This model is mean-reverting to a constant level, which is a desirable property
for interest rates, and is popular amongst academic practitioners because it
is highly tractable and it is possible to find closed form expressions for many
interest rate derivatives using this model, and it has also been used to model
the interest rate element of convertible securities [19, 17]. This equation must
be solved together with the pay-off at expiry of V (r, T ) = max(r −E, 0) for a
caplet and max(E − r, 0) for a floorlet.

Because we are considering American-style derivatives, we can exercise
them at any time at or before expiry, and this leads to the constraint that
the price of the derivatives cannot fall below the pay-off from immediate ex-
ercise, which is max(r − E, 0) for a caplet and max(E − r, 0) for a floorlet.
The possibility of early exercise leads to a free boundary problem similar to
that for American options, and also to the Stefan problems which occur in
the physical processes of melting and solidification. On the free boundary,
which we label r = rf (t), we exchange the option for the pay-off, and this
leads to the condition that the value of the option and it’s derivative with
respect to r must be continuous across the boundary. For a caplet, we require
V = r − E and (∂V/∂r) = 1 at the free boundary, while for a floorlet, we
require V = E − r and (∂V/∂r) = −1 there. These are essentially the same
conditions as for American equity options, although of course for the equity
options the conditions will involve the derivatives with respect to the stock
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price rather than the interest rate; the condition on the derivative is known
as the high contact condition [24].

Having presented the governing PDE (2.4) and associated boundary and
initial conditions, we will now present our analysis. To use Tao’s method [26]-
[34], we will follow the approach taken for equity options [11, 2, 3, 18], and
transform the PDE (2.4) into the nonhomogeneous diffusion equation. To do
so, we make the transformation [5]

V (r, t) = exp

[(
σ2

2b2
− a

b

)
(T − t) − r

b
+

a

b2
− σ2

b3
+

σx0

2b3/2

]
v (x, τ)

+V0(r),(2.5)

where V0(r) = r − E for the caplet and E − r for the floorlet, and we have
introduced the new variables

τ = 1 − e−2b(T−t)

x =
2
√

b

σ

[
r − a

b
+

σ2

b2

]
e−b(T−t),(2.6)

which we can invert,

r =
a

b
− σ2

b2
+

σx

2
√

b (1 − τ)

t = T +
ln(1 − τ)

2b
(2.7)

This leads to the nonhomogeneous diffusion equation

∂v

∂τ
=

∂2v

∂x2
+ f(x, τ),(2.8)

where the nonhomogeneous term f(x, τ) = g(x, τ) for the caplet and −g(x, τ)
for the floorlet, with

g(x, τ) =
[
a + r (E − b) − r2

]
2b

× exp

[
r

b
+
(
4b3 + 2ab − σ2

)
(T − t)

2b2
− a

b2
− σ2

b3
+

σx0

2b3/2

]

=
1

2b2
exp

[
σ

2b3/2

(
x√

1 − τ
− x0

)]
(1 − τ)

σ2−2ab−4b3

4b3

×
[
aE + σ2 − a2 + Eσ2

b
+

2aσ2

b2
− σ4

b3

+
σ
(
2σ2 + Eb2 − 2ab − b3

)
2b3/2

√
1 − τ

− σ2x2

4 (1 − τ)

]
.(2.9)
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The equation (2.8) must be solved together with the boundary condition that
v = (∂v/∂x) = 0 on the free boundary x = xf (τ), and the pay-off at expiry.
For the caplet, this pay-off is

v(x, 0) =
{ 0 x > x∗
−σ(x−x∗)

2
√

b
exp

[
σ(x−x0)

2b3/2

]
x < x∗

,(2.10)

where x∗ = 2
√

b
(
E − a/b + σ2/b2

)
/σ. For the floorlet, we have

v(x, 0) =
{ 0 x < x∗

σ(x−x∗)
2
√

b
exp

[
σ(x−x0)

2b3/2

]
x > x∗

.(2.11)

It is possible to deduce the location of the free boundary in the limit τ → ∞
by considering perpetual options, which do not expire. These obey the time-
independent version of (2.4), which has a solution,

V∞(r) =

√
σb3/2

b2r + σ2 − ab
exp

[
r (br − 2a)

2σ2

]

×
⎛
⎝A1W

⎡
⎣b3 + σ2 − 2ab

4b3
,
1
4
;

(
b2r + σ2 − ab

σb3/2

)2
⎤
⎦

+A2M

⎡
⎣b3 + σ2 − 2ab

4b3
,
1
4
;

(
b2r + σ2 − ab

σb3/2

)2
⎤
⎦
⎞
⎠ ,(2.12)

where W and M are Whittaker functions [1]. The constants A1 and A2 in
this expression and also the location r∞ of the free boundary can be found by
applying the conditions on the free boundary.

We can also deduce the location of the free boundary at expiry by substi-
tuting the pay-off V (r, T ) into the PDE (2.4) to calculate (∂V/∂t) at expiry:
if (∂V/∂t) > 0, then the value of the option will drop below the pay-off from
immediate exercise as we move backwards in time from expiry. For the caplet,
this yields

∂V

∂t
(r, T ) =

{
r2 + r(b− E) − a r > E

0 r < E
,(2.13)

so that if a ≤ bE the free boundary at expiry is situated at r0 = E or x0 =
2b1/2E/σ − 2a/(σb1/2) + 2σ/b3/2, while for a > bE, it is situated at the root
of a + r0 (E − b) − r2

0 = 0 or equivalently the root of

x2
0 + x0

[
2b3/2 − 2b1/2E

σ
+

4a

σb1/2
− 4σ

b3/2

]

−4 +
4a2

σ2b
− 8a

b2
− 4aE

σ2
+

4σ2

b3
+

4E

b
= 0,(2.14)
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so that

r0 =
1
2

[
E − b +

√
(E − b)2 + 4a

]

x0 =
2σ

b3/2
− 2a

σb1/2
+

b1/2

σ

[
E − b +

√
(E − b)2 + 4a

]
.(2.15)

Similarly, for the floorlet, we find

∂V

∂t
(r, T ) =

{−r2 − r(b − E) + a r < E
0 r > E

,(2.16)

so that if a ≥ bE the free boundary at expiry is situated at r0 = E or x0 =
2b1/2E/σ − 2a(σb1/2) + 2σ/b3/2, while for a < bE, it is situated at

r0 =
1
2

[
E − b +

√
(E − b)2 + 4a

]

x0 =
2σ

b3/2
− 2a

σb1/2
+

b1/2

σ

[
E − b +

√
(E − b)2 + 4a

]
.(2.17)

The location of the free boundary at expiry tells us that we must consider the
cases a < bE, a = bE and a > bE separately, and we must also consider the
caplet and floorlet separately.

2.1. Caplet with a > bE

For this case, the free boundary starts from

x0 =
2σ

b3/2
− 2a

σb1/2
+

b1/2

σ

[
E − b +

√
(E − b)2 + 4a

]
(2.18)

at expiry. We will follow [11, 2] and pose an expansion

v(x, τ) ∼
∞∑

n=3

τn/2V (0)
n (ξ),

xf (τ) ∼
∞∑

n=0

xnτn/2,(2.19)

where the similarity variable ξ = (x−x0)/(2
√

t). This expansion is essentially
the approach due to Tao [26]-[34]. To simplify the analysis, we introduce the
operator

Ln ≡ 1
4

d2

dξ2
+

ξ

2
d

dξ
− n

2
.(2.20)
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If we substitute the expansion for v(x, τ) into the PDE (2.8), at the first few
orders, we find

L3V
(0)
3 =

[
1

2b1/2
+

x0σ

2b2
− a

b5/2
+

E

2b3/2
+

σ2

b7/2

]
σξ,

L4V
(0)
4 =

σ2 + aE

2b2
− Eσ2 + a2

2b3
+

aσ2

b4
− σ4

2b5

+
x0σ

4b1/2

(
E

2b
− a

b2
+

σ2

b3
− 1

2

)
+

[
1 − E

2b
+

a

b2
− σ2

b3
+

x0σ

2b3/2

]
σ2ξ2

b2
,

L5V
(0)
5 =

[
x0σ

2b5
+

1
b7/2

(
3
2
− E

2b
+

a

b2
− σ2

b3

)]
σ3ξ3

2

+

[
x0σ

b3/2

(
3 +

E

b
− a

b2
+

3σ2

2b3

)
+ 3 − 3E

b
+

7a

b2
+

6Ea − 5σ2

2b3

−4a2 − 7Eσ2

2b4
+

5aσ2

b5
− 3σ4

b6

]
σξ

4b1/2
.(2.21)

It is straightforward to find solutions to (2.21) that satisfy the condition at
τ = 0,

V
(0)
3 = C

(0)
3

[(
3ξ + 2ξ3

)
erfc (−ξ) +

2
(
1 + ξ2

)
e−ξ2

√
π

]

+

[
E

2b
+

σ2

b3
− 1

2
− x0σ

2b3/2
− a

b2

]
σξ

b1/2
,

V
(0)
4 = C

(0)
4

[(
3 + 12ξ2 + 4ξ4

)
erfc (−ξ) +

2
(
5 + 2ξ2

)
e−ξ2

√
π

]

+

[
−1 +

E

2b
− a

b2
+

σ2

b3
− x0σ

2b3/2

]
σ2ξ2

b2

+
x0σ

4b1/2

[
1
4
− E

4b
+

a

2b2
− σ2

b3

]

− 2σ2 + aE

4b2
+

3Eσ2 + 2a2

8b3
− 3aσ2

4b4
+

σ4

2b5
,

V
(0)
5 = C

(0)
5

[(
15ξ + 20ξ3 + 4ξ5

)
erfc (−ξ) +

2
(
4 + 9ξ2 + 2ξ4

)
e−ξ2

√
π

]

+

[
E

2b
− a

b2
− σx0

2b3/2
+

σ2

b3
− 3

2

]
σ3ξ3

2b7/2

+

[
a

b2
− E

b
− 3 − 3σ2

b3

]
x0σ

2ξ

8b2
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+

[
3E

2b
− 3

2
− 7a

2b2
− 2σ2 + 3Ea

2b3
+

2a2 + 5Eσ2

2b4
− 4aσ2

b5
+

3σ4

b6

]
σξ

4b1/2
.(2.22)

We should note that in deriving this solution, we have only imposed the con-
dition at τ = 0 for E < r < r0, where v(x, 0) = 0. For r > r0 the caplet would
already have been exercised, so the condition does not apply. To impose the
condition for r < E, it would be necessary to pose a second expansion about
r = E and match that expansion to the present one; since the main goal of
this study is to find the location of the free boundary close to expiry, we do not
need to do that, just as Dewynne [11] did not need to do it for the American
put.

If we apply the conditions on the free boundary by substituting the assumed
form (2.19) for xf (τ) into the solution (2.22), at leading order we get the pair
of equations,

C
(0)
3

[
6x1 + x3

1

4
erfc

(
−x1

2

)
+
(
4 + x2

1

)
e−x2

1/4

2
√

π

]

+
σx1

(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
4b7/2

= 0,

3C
(0)
3

[(
1 +

x2
1

2

)
erfc

(
−x1

2

)
+

x1e−x2
1/4

√
π

]

+
σ
(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
2b7/2

= 0,(2.23)

so that x1 is the solution of

x3
1erfc

(
−x1

2

)
+
(
2x2

1 − 4
)
e−x2

1/4

√
π

= 0,(2.24)

or x1 = 0.90344659785, while

C
(0)
3 = − σx3

1

√
π

24b7/2e−x2
1/4

(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
.(2.25)

At the next order, we get another pair of equations,

C
(0)
4

[(
12 + 12x2

1 + x4
1

)
4

erfc
(
−x1

2

)
+
(
10x1 + x3

1

)
e−x2

1/4

2
√

π

]

+ 3C
(0)
3 x2

[
2 + x2

1

4
erfc

(
−x1

2

)
+

x1e
−x2

1/4

2
√

π

]

+
σx2

2b1/2

[
E

2b
− 1

2
− a

b2
+

σ2

b3
− σx0

2b3/2

]
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+
σ2x2

1

4b2

[
E

2b
− 1 − a

b2
+

σ2

b3
− σx0

2b3/2

]
+

σx0

4b1/2

[
1
4
− E

4b
− a

2b2
+

σ2

b3

]

− 2σ2 + aE

4b2
+

2a2 + 3Eσ2

8b3
− 3aσ2

4b4
+

σ4

2b5
= 0,(2.26)

and

2C
(0)
4

[(
6x1 + x3

1

)
erfc

(
−x1

2

)
+

2
(
4 + x2

1

)
e−x2

1/4

√
π

]

+ 3C
(0)
3 x2

[
x1erfc

(
−x1

2

)
+

2e−x2
1/4

√
π

]

+
σ2x1

b2

[
E

2b
− 1 − a

b2
+

σ2

b3
− σx0

2b3/2

]
= 0,(2.27)

which have a solution

x2 =
σx2

1

[
2σ2 − b

(
E2 + 6a

)
+ 3Eb2 − 2b3 − σx0b

3/2
]

b5/2
(
2 + x2

1

)
[(E − b)2 + 4a]

− x0

2 + x2
1

(2.28)

and

C
(0)
4 =

C
(0)
3

4σb3/2
(
2 + x2

1

) (
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
×

[
2σ2x2

1

(
2σ2 − 2ab + Eb2 − 2b3 − x0σb3/2

)
+x0σb3/2

(
b3 + 2ab − Eb2 − 4σ2

)
+8σ4 − 12abσ2 + b2

(
4a2 + 6Eσ2

)
− 8σ2b3 − 4Eab3

]
.(2.29)

Hence for the caplet with a > bE, the free boundary close to expiry is of the
form

xf (τ) ∼
∞∑

n=0

xnτn/2,(2.30)

with x0, x1 and x2 as given above.

2.2. Caplet with a < bE

For this case, the free boundary starts from

x0 =
2b1/2E

σ
− 2a

σb1/2
+

2σ

b3/2
,(2.31)



INTEREST RATE OPTIONS 23

and the initial condition is v(x, 0) = −(σ(x− x0))/(2
√

b) for x < x0. Initially,
we will try an expansion of the form

v(x, τ) ∼
∞∑

n=1

τn/2V (0)
n (ξ),

xf (τ) ∼
∞∑

n=0

xnτn/2.(2.32)

If we substitute the expansion for v(x, τ) into the PDE (2.8), at the first few
orders, we find

L1V
(0)
1 = 0,

L2V
(0)
2 =

Eb − a

2b
,

L3V
(0)
3 =

(
b2 + 2bE − a

)
σξ

2b5/2
,

L4V
(0)
4 =

(
4b2 + 3bE − a

)
σ2ξ2

4b4

+
3E

4
+

2E2 − 3a

4b
+

σ2 − 2aE

4b2
+

3σ2E

8b3
− aσ2

8b4
.(2.33)

It is straightforward to find solutions to (2.33) that satisfy the condition at
τ = 0,

V
(0)
1 = C

(0)
1

[
ξerfc (−ξ) +

e−ξ2

√
π

]
− σξ

b1/2
,

V
(0)
2 = C

(0)
2

[(
2ξ2 + 1

)
erfc (−ξ) +

2ξe−ξ2

√
π

]
+

a − bE

2b
,

V
(0)
3 = C

(0)
3

[(
2ξ3 + 3ξ

)
erfc (−ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
+
(
a − b2 − 2bE

)
σξ

2b5/2
,

V
(0)
4 = C

(0)
4

[(
4ξ2 + 12ξ2 + 3

)
erfc (−ξ) +

2
(
2ξ3 + 5ξ

)
e−ξ2

√
π

]

+
(
a − 4b2 − 3bE

)
σ2ξ2

4b4

− 3E

8
+

3a − 2E2

8b
+

2aE − 3σ2

8b2
− 3σ2E

8b3
+

aσ2

8b4
.(2.34)

If we attempt to apply the conditions on the free boundary by substituting
the assumed form (2.32) for xf (τ) into the solution (2.34), at leading order we
get the pair of equations,

x1

2

[
C

(0)
1 erfc

(
−x1

2

)
− σ

b1/2

]
+

C
(0)
1 e−x2

1/4

√
π

= 0,
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C
(0)
1 erfc

(
−x1

2

)
− σ

b1/2
= 0,(2.35)

so C
(0)
1 = σ/(2b1/2) and e−x2

1/4 = 0 and erfc(−x1/2) = 0 or x1 = ∞. The fact
that we require x1 = ∞ is a problem, and in a moment, we will see that in our
analysis, where we have grouped terms in powers of τ , the statement “e−x2

1/4 =
erfc(x1/2) = 0” actually means that the terms e−x2

1/4 and erfc(−x1/2) are
O
(
τ1/2

)
, so they vanish at this order but re-appear at a later order in the

analysis. This same situation occurs for the American equity put with a
dividend yield less than the risk-free rate, which we have previously studied
using the same techniques [18].

Returning to the boundary conditions, at the next power of τ , we find

C
(0)
2

(
x2

1 + 2
)

+
a/b − E

2
= 0,

4C
(0)
2 x1 = 0.(2.36)

The second of these has a solution C
(0)
2 = 0, but the first then becomes

a/b − E = 0 which has no solution, except for the special case a = bE which
we will consider separately later. It is to deal with this inconsistency that
we require e−x2

1/4 and erfc(x1/2) to be O
(
τ1/2

)
, so that they enter into this

equation and remove the inconsistency. To accomplish this, the expansion for
xf (τ) must be of the form

xf (τ) ∼
∞∑

n=1

τn/2fn(− ln τ),(2.37)

where

fn(− ln τ) ∼ (− ln τ)an

∞∑
m=0

x(m)
n (− ln τ)−m.(2.38)

The presence of logs in the series (2.37,2.38) for xf (τ) and the functions fn

necessitate the presence of logs in the series (2.32) for v(x, τ), which will be of
the form

v(x, τ) = τ1/2V
(0)
1 (ξ) +

∞∑
n=2

∞∑
m=0

τn/2 (− ln τ)−m V (m)
n (ξ).(2.39)

With this expression for xf , on the free boundary we have

e−ξ2
= exp

[
−x2

f

4τ

]

∼ e−f2
1 /4
[
1 − 1

2
f1f2τ

1/2 +
(

1
8
f2
1f2

2 − 1
2
f1f3 − 1

4
f2
2

)
τ + · · ·

]
.(2.40)
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At leading order in this expression, we require that e−f2
1 /4 ∼ O

(
τ1/2

)
, so that

exp
[
−x

(0)2
1
4 (− ln τ)2a1

]
∼ τ1/2 or −x

(0)2
1
4 (− ln τ)2a1 ∼ 1

2 ln τ , which means that

a1 = 1/2 and x
(0)
1 =

√
2, and hence

e−f2
1 /4 ∼ τ1/2e−x

(2)
1 /

√
2

[
1 −

(
x

(2)
1√
2

+
x

(1)2
1

4

)
(− ln τ)−1 + · · ·

]
.(2.41)

Similarly, we can show that

erfc(ξ) = erfc
[

xf

2
√

τ

]

∼ erfc
[
f1

2

]
− e−f2

1 /4

√
π

[
f2τ

1/2 +
(

f3 − 1
4
f1f

2
2

)
τ · · ·

]
,(2.42)

and we can use the result that as ζ → ∞ [1],

erfc(ζ) ∼ e−ζ2

ζ
√

π

[
1 +

∞∑
m=1

1 × 3 × · · · × (2m − 1)
(−2ζ2)m

]
(2.43)

to give

erfc
[
f1

2

]
∼ τ1/2 (− ln τ)−1/2 π−1/2e−x

(2)
1 /

√
2

×
[√

2 −
(

x
(1)
1 + x

(2)
1 +

√
2 +

x
(2)2
1

2
√

2

)
(− ln τ)−1 + · · ·

]
.(2.44)

Before we can compute the coefficients in the series (2.37,2.38) for the
location of the free boundary, it is necessary to solve for some of the terms
involving logs in the series (2.39) for v(x, τ). We note first that the terms in
this series not involving logs are as given above in (2.34), together with the
coefficients found above, so that

V
(0)
1 =

σξ

b1/2

[
−ξerfc (ξ) +

e−ξ2

√
π

]
,

V
(0)
2 =

a − bE

2b
.(2.45)

Considering the terms at O
(
τn/2 (− ln τ)−1

)
, at successive orders we find

L2V
(1)
2 = 0,

L3V
(1)
3 = 0.(2.46)



26 G. ALOBAIDI AND R. MALLIER

The solutions at the first few orders are given by

V
(1)
2 = C

(1)
2

[(
2ξ2 + 1

)
erfc (−ξ) +

2ξe−ξ2

√
π

]
,

V
(1)
3 = C

(1)
3

[(
2ξ3 + 3ξ

)
erfc (−ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
.(2.47)

The conditions on the free boundary yield at leading order in τ ,

2C
(1)
2 +

a/b − E

2
= O

(
[− ln τ ]−1

)
,⎡

⎣25/2C
(1)
2 − σe−x

(1)
1 /

√
2

√
2bπ

⎤
⎦ [− ln τ ]−1/2 = O

(
[− ln τ ]−3/2

)
,(2.48)

which have a solution

C
(1)
2 =

E − a/b

4
,

x
(1)
1 = −√

2 ln

[
2b1/2

√
π (a/b − E)

σ

]
.(2.49)

At the next power of τ , we get the pair of equations,
√

2C
(0)
3 [− ln τ ]3/2

+

[
σ
(
a − 2bE − b2

)
23/2b5/2

+ 3C
(0)
3

(√
2 + x

(1)
1

)
+

√
2C

(1)
3

]
[− ln τ ]1/2

= O
(
[− ln τ ]−1/2

)
,

6C
(0)
3 [− ln τ ]1

+
σ
(
a − 2bE − b2

)
2b5/2

+ 6C
(0)
3

(
1 +

√
2x

(1)
1

)
+ 6C

(1)
3 + x

(0)
2

(
E − a

b

)

= O
(
[− ln τ ]−1

)
,(2.50)

so that C
(0)
3 = 0 and

C
(1)
3 =

σ
(
b2 + 2bE − a

)
4b5/2

,

x
(0)
2 =

σ
(
b2 + 2bE − a

)
b3/2 (a − bE)

.(2.51)

Hence for the caplet with a < bE, the free boundary close to expiry is of the
form

xf (τ) ∼ x0 +
√−τ ln τ

[√
2 + x

(1)
1 (− ln τ)−1 + · · ·

]
+ τ

[
x

(0)
2 + · · ·

]
+ · · · ,(2.52)
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with x
(1)
1 and x

(0)
2 as given above.

2.3. Caplet with a = bE

For this case, the free boundary starts from x0 = 2σ/b3/2. This case was
touched on briefly earlier, when we mentioned that (2.36) had a solution for
this case but not for a < bE. Once again, the initial condition is v(x, 0) =
−(σ(x − x0))/(2

√
b) for x < x0. As with the case a < bE, we will try an

expansion of the form (2.32). If we substitute the expansion for v(x, τ) into
the PDE (2.8), at the first few orders, we recover the equations (2.33) with
solutions (2.34), but with a replaced by bE. If we attempt to apply the
conditions on the free boundary by substituting the assumed form (2.32) for
xf (τ) into the solution (2.34), at leading order we get the pair of equations,

x1

2

[
C

(0)
1 erfc

(
−x1

2

)
− σ

b1/2

]
+

C
(0)
1 e−x2

1/4

√
π

= 0,

C
(0)
1 erfc

(
−x1

2

)
− σ

b1/2
= 0,(2.53)

so that C
(0)
1 = σ/(2b1/2) and e−x2

1/4 = 0 and erfc (−x1/2) = 2 or x1 = ∞,
which is a similar problem to that encountered when a < bE. At the next
order, we find

C
(0)
2

(
x2

1 + 2
)

= 0,

4C
(0)
2 x1 = 0,(2.54)

so that C
(0)
2 = 0. At the next order, we find the pair of equations,

x1

[
3C

(0)
3 − σ (E + b)

4b3/2

]
+

1
2
C

(0)
3 x3

1 = 0,

2
[
3C

(0)
3 − σ (E + b)

4b3/2

]
+ 3C

(0)
3 x2

1 = 0,(2.55)

which has no solution. The erfc(−ξ) and e−ξ2
terms from V

(0)
1 must be added

to (2.55) to rectify this. To do this, if we suppose that xf (τ) is of the form
(2.37), then we require e−f2

1 /4 ∼ τf1, as opposed to the relation e−f2
1 /4 ∼ τ1/2

for the case a < bE, so that

f1(τ) ∼
[
2WL

(
1

2τ2

)]1/2

(2.56)
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where WL is a special function, the Lambert W function, which is defined to
be the solution to the equation WL(x)eWL(x) = x. It follows that

f1(τ) ∼
[
2WL

(
τ−2

2

)]1/2 ∞∑
m=0

x
(m)
1

[
2WL

(
τ−2

2

)]−m

fn(τ) ∼
[
2WL

(
τ−2

2

)]an ∞∑
m=0

x(m)
n

[
2WL

(
τ−2

2

)]−m

,(2.57)

with x
(0)
1 = 1. This means that our series for v(x, τ) must be of the form

v(x, τ) = τ1/2V
(0)
1 (ξ) + τV

(0)
2 (ξ)

+
∞∑

n=3

∞∑
m=0

τn/2

[
2WL

(
τ−2

2

)]−m

V (m)
n (ξ),(2.58)

with

V
(0)
1 =

σξ

b1/2

[
−ξerfc (ξ) +

e−ξ2

√
π

]
,

V
(0)
2 = 0,(2.59)

and V
(0)
3 is given in (2.34) with a set equal to bE. For the τn/2

[
2WL

(
τ−2

2

)]−1

terms we have

L3V
(1)
3 = 0,(2.60)

with a solution

V
(1)
3 = C

(1)
3

[(
2ξ3 + 3ξ

)
erfc (−ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
.(2.61)

The conditions on the free boundary yield at leading order in τ ,

C
(0)
3

2

[
2WL

(
τ−2

2

)]−3/2

+

[
3C

(0)
3

(
1 +

x
(1)
1

2

)
+

C
(1)
3

2
− σ (b + E)

4b3/2

] [
2WL

(
τ−2

2

)]−1/2

= O
⎛
⎝[2WL

(
τ−2

2

)]1/2
⎞
⎠(2.62)
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and

3C
(0)
3

[
2WL

(
τ−2

2

)]−1

+ 6C
(0)
3

(
1 + x

(1)
1

)
+ 3C

(1)
3 − σ

2b3/2

⎡
⎣E + b +

2be−x
(1)
1 /2

√
π

⎤
⎦

= O
⎛
⎝[2WL

(
τ−2

2

)]1⎞⎠ ,(2.63)

which have a solution C
(0)
3 = 0 and

C
(1)
3 =

σ (E + b)
2b3/2

,

x
(1)
1 = −2 ln

[√
π (E + b)

b

]
.(2.64)

Hence for the caplet with a = bE, the free boundary close to expiry is of
the form

xf ∼ x0 +

√
2τWL

(
τ−2

2

)⎡⎣1 + x
(1)
1

[
2WL

(
τ−2

2

)]−1
⎤
⎦+ · · · ,(2.65)

with x
(1)
1 as given above.

2.4. Floorlet with a < bE

This case is very similar to the caplet with a > bE. The free boundary starts
from

x0 =
2σ

b3/2
− 2a

σb1/2
+

b1/2

σ

[
E − b +

√
(E − b)2 + 4a

]
(2.66)

at expiry. We will use an expansion of the same form as for the caplet with
a > bE, that is (2.19). If we substitute the expansion for v(x, τ) into the PDE
(2.8), at the first few orders we find,

L3V
(0)
3 = −

[
1

2b1/2
+

x0σ

2b2
− a

b5/2
+

E

2b3/2
+

σ2

b7/2

]
σξ,

L4V
(0)
4 = −σ2 + aE

2b2
+

Eσ2 + a2

2b3
− aσ2

b4
+

σ4

2b5
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− x0σ

4b1/2

(
E

2b
− a

b2
+

σ2

b3
− 1

2

)
−
[
1 − E

2b
+

a

b2
− σ2

b3
+

x0σ

2b3/2

]
σ2ξ2

b2
,

L5V
(0)
5 = −

[
x0σ

2b5
+

1
b7/2

(
3
2
− E

2b
+

a

b2
− σ2

b3

)]
σ3ξ3

2

−
[
x0σ

b3/2

(
3 +

E

b
− a

b2
+

3σ2

2b3

)
+ 3 − 3E

b
+

7a

b2
+

6Ea − 5σ2

2b3

−4a2 − 7Eσ2

2b4
+

5aσ2

b5
− 3σ4

b6

]
σξ

4b1/2
.(2.67)

It is straightforward to find solutions to (2.67) that satisfy the condition at
τ = 0,

V
(0)
3 = C

(0)
3

[
−
(
3ξ + 2ξ3

)
erfc (ξ) +

2
(
1 + ξ2

)
e−ξ2

√
π

]

−
[

E

2b
+

σ2

b3
− 1

2
− x0σ

2b3/2
− a

b2

]
σξ

b1/2
,

V
(0)
4 = C

(0)
4

[
−
(
3 + 12ξ2 + 4ξ4

)
erfc (ξ) +

2
(
5 + 2ξ2

)
e−ξ2

√
π

]

−
[
−1 +

E

2b
− a

b2
+

σ2

b3
− x0σ

2b3/2

]
σ2ξ2

b2
− x0σ

4b1/2

[
1
4
− E

4b
+

a

2b2
− σ2

b3

]

+
2σ2 + aE

4b2
− 3Eσ2 + 2a2

8b3
+

3aσ2

4b4
− σ4

2b5
,

V
(0)
5 = C

(0)
5

[
−
(
15ξ + 20ξ3 + 4ξ5

)
erfc (ξ) +

2
(
4 + 9ξ2 + 2ξ4

)
e−ξ2

√
π

]

−
[

E

2b
− a

b2
− σx0

2b3/2
+

σ2

b3
− 3

2

]
σ3ξ3

2b7/2
−
[

a

b2
− E

b
− 3 − 3σ2

b3

]
x0σ

2ξ

8b2

−
[
3E

2b
− 3

2
− 7a

2b2
− 2σ2 + 3Ea

2b3
+

2a2 + 5Eσ2

2b4
− 4aσ2

b5
+

3σ4

b6

]
σξ

4b1/2
.(2.68)

If we apply the conditions on the free boundary by substituting the assumed
form (2.19) for xf (τ) into the solution (2.68), at leading order we get the pair
of equations,

C
(0)
3

[(
4 + ξ2

)
e−x2

1/4

2
√

π
− 6x1 + x3

1

4
erfc

(
x1

2

)]

−
σx1

(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
4b7/2

= 0,
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3C
(0)
3

[
x1e

−x2
1/4

√
π

−
(

1 +
x2

1

2

)
erfc

(
x1

2

)]

−
σ
(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
2b7/2

= 0,(2.69)

so that x1 is the solution of

x3
1erfc

(
x1

2

)
−
(
2x2

1 − 4
)
e−x2

1/4

√
π

= 0,(2.70)

or x1 = −0.90344659785, while

C
(0)
3 =

σx3
1

√
π

24b7/2e−x2
1/4

(
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
.(2.71)

At the next order, we get another pair of equations,

C
(0)
4

[
−
(
12 + 12x2

1 + x4
1

)
4

erfc
(

x1

2

)
+
(
10x1 + x3

1

)
e−x2

1/4

2
√

π

]

+ 3C
(0)
3 x2

[
−2 + x2

1

4
erfc

(
x1

2

)
+

x1e
−x2

1/4

2
√

π

]

+
σx2

2b1/2

[
−E

2b
+

1
2

+
a

b2
− σ2

b3
+

σx0

2b3/2

]

+
σ2x2

1

4b2

[
−E

2b
+ 1 +

a

b2
− σ2

b3
+

σx0

2b3/2

]

+
σx0

4b1/2

[
−1

4
+

E

4b
− a

2b2
+

σ2

b3

]

+
2σ2 + aE

4b2
− 2a2 + 3Eσ2

8b3
+

3aσ2

4b4
− σ4

2b5
= 0,(2.72)

and

2C
(0)
4

[
−
(
6x1 + x3

1

)
erfc

(
x1

2

)
+

2
(
4 + x2

1

)
e−x2

1/4

√
π

]

+ 3C
(0)
3 x2

[
−x1erfc

(
x1

2

)
+

2e−x2
1/4

√
π

]

+
σ2x1

b2

[
−E

2b
+ 1 +

a

b2
− σ2

b3
+

σx0

2b3/2

]
= 0,(2.73)

which have a solution,

x2 =
σx2

1

[
2σ2 − b

(
E2 + 6a

)
+ 3Eb2 − 2b3 − σx0b

3/2
]

b5/2
(
2 + x2

1

)
[(E − b)2 + 4a]

− x0

2 + x2
1

(2.74)
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and

C
(0)
4 =

C
(0)
3

4σb3/2
(
2 + x2

1

) (
2σ2 − 2ab + Eb2 − b3 − x0σb3/2

)
×

[
2σ2x2

1

(
2σ2 − 2ab + Eb2 − 2b3 − x0σb3/2

)
+x0σb3/2

(
b3 + 2ab − Eb2 − 4σ2

)
+8σ4 − 12abσ2 + b2

(
4a2 + 6Eσ2

)
− 8σ2b3 − 4Eab3

]
.(2.75)

Hence for the floorlet with a < bE, the free boundary close to expiry is of the
form

xf (τ) ∼
∞∑

n=0

xnτn/2,(2.76)

with x0, x1 and x2 as given above.

2.5. Floorlet with a > bE

This case is very similar to the caplet with a < bE. The free boundary starts
from

x0 =
2b1/2E

σ
− 2a

σb1/2
+

2σ

b3/2
,(2.77)

and the initial condition is v(x, 0) = (σ(x−x0))/(2
√

b) for x > x0. Initially, we
will try the same form of expansion as (2.32). If we substitute the expansion
for v(x, τ) into the PDE (2.8), at the first few orders, we find

L1V
(0)
1 = 0,

L2V
(0)
2 = −Eb − a

2b
,

L3V
(0)
3 = −

(
b2 + 2bE − a

)
σξ

2b5/2
,

L4V
(0)
4 = −

(
4b2 + 3bE − a

)
σ2ξ2

4b4

− 3E

4
− 2E2 − 3a

4b
− σ2 − 2aE

4b2
− 3σ2E

8b3
+

aσ2

8b4
.(2.78)

It is straightforward to find solutions to (2.78) that satisfy the condition at
τ = 0,

V
(0)
1 = C

(0)
1

[
−ξerfc (ξ) +

e−ξ2

√
π

]
+

σξ

b1/2
,
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V
(0)
2 = C

(0)
2

[
−
(
2ξ2 + 1

)
erfc (ξ) +

2ξe−ξ2

√
π

]
− a − bE

2b
,

V
(0)
3 = C

(0)
3

[
−
(
2ξ3 + 3ξ

)
erfc (ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
−
(
a− b2 − 2bE

)
σξ

2b5/2
,

V
(0)
4 = C

(0)
4

[
−
(
4ξ2 + 12ξ2 + 3

)
erfc (ξ) +

2
(
2ξ3 + 5ξ

)
e−ξ2

√
π

]

−
(
a − 4b2 − 3bE

)
σ2ξ2

4b4

+
3E

8
− 3a − 2E2

8b
− 2aE − 3σ2

8b2
+

3σ2E

8b3
− aσ2

8b4
.(2.79)

If we attempt to apply the conditions on the free boundary by substituting
the assumed form (2.32) for xf (τ) into the solution (2.79), at leading order we
get the pair of equations,

x1

2

[
σ

b1/2
− C

(0)
1 erfc

(
x1

2

)]
+

C
(0)
1 e−x2

1/4

√
π

= 0,

σ

b1/2
− C

(0)
1 erfc

(
x1

2

)
= 0,(2.80)

so C
(0)
1 = σ/(2b1/2) and e−x2

1/4 = 0 and erfc (x1/2) = 2 or x1 = −∞. The fact
that we require x1 = −∞ is a problem, and we must take a similar approach
to that used for the caplet with a < bE, and once again introduce logs.

Returning to the boundary conditions, at the next power of τ , we find

−C
(0)
2

(
x2

1 + 2
)

+
E − a/b

2
= 0,

−4C
(0)
2 x1 = 0.(2.81)

The second of these has a solution C
(0)
2 = 0, but the first then becomes

E − a/b = 0 which has no solution, except for the special case a = bE which
we will consider separately. To deal with this inconsistency, we require e−x2

1/4

and erfc (−x1/2) to be O
(
τ1/2

)
, so that they enter into this equation and

remove the inconsistency. To accomplish this, the expansion for xf (τ) must
be of the same form as (2.37,2.38) for the caplet with a < bE. The scaling
arguments used here are very similar to those for the caplet with a < bE,
except we now require erfc (−x1/2) rather than erfc (x1/2) to be O

(
τ1/2

)
, so

that once again a1 = 1/2 but now x
(0)
1 =

√
2. The presence of logs in the series

(2.37,2.38) for xf (τ) and the functions fn once again necessitate the presence
of logs in the series (2.32) for v(x, τ), which will be of the form (2.39). Before
we can compute the coefficients in the series (2.37,2.38) for the location of the



34 G. ALOBAIDI AND R. MALLIER

free boundary, it is necessary to solve for some of the terms involving logs in
the series (2.39) for v(x, τ). Once again, the terms in the series not involving
logs are as given above in (2.79), together with the coefficients found above,
so that

V
(0)
1 =

σξ

b1/2

[
ξerfc (−ξ) +

e−ξ2

√
π

]
,

V
(0)
2 =

bE − a

2b
.(2.82)

Considering the terms at O
(
τn/2 (− ln τ)−1

)
, at successive orders we find

L2V
(1)
2 = 0,

L3V
(1)
3 = 0.(2.83)

The solutions at the first few orders are given by solution

V
(1)
2 = C

(1)
2

[
−
(
2ξ2 + 1

)
erfc (ξ) +

2ξe−ξ2

√
π

]
,

V
(1)
3 = C

(1)
3

[
−
(
2ξ3 + 3ξ

)
erfc (ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
.(2.84)

The conditions on the free boundary yield at leading order in τ , leading order

−2C
(1)
2 +

E − a/b

2
= O

(
[− ln τ ]−1

)
,⎡

⎣25/2C
(1)
2 +

σex
(1)
1 /

√
2

b1/2
√

2π

⎤
⎦ [− ln τ ]−1/2 = O

(
[− ln τ ]−3/2

)
,(2.85)

which have a solution

C
(1)
2 =

E − a/b

4
,

x
(1)
1 =

√
2 ln

[
2b1/2

√
π (a/b − E)

σ

]
.(2.86)

At the next power of τ , we get the pair of equations,
√

2C
(0)
3 [− ln τ ]3/2

+

[
σ
(
b2 + 2bE − a

)
23/2b5/2

+ 3C
(0)
3

(√
2 − x

(1)
1

)
+

√
2C

(1)
3

]
[− ln τ ]1/2

= O
(
[− ln τ ]−1/2

)
,
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−6C
(0)
3 [− ln τ ]1

+
σ
(
b2 + 2bE − a

)
2b5/2

− 6C
(0)
3

(
1 −

√
2x

(1)
1

)
− 6C

(1)
3 + x

(0)
2

(
a

b
− E

)

= O
(
[− ln τ ]−1

)
,(2.87)

so that C
(0)
3 = 0 and

C
(1)
3 =

σ
(
b2 + 2bE − a

)
4b5/2

x
(0)
2 =

σ
(
b2 + 2bE − a

)
b3/2 (a − bE)

.(2.88)

Hence for the floorlet with a > bE, the free boundary close to expiry is of the
form

xf (τ) ∼ x0 +
√−τ ln τ

[
−
√

2 + x
(1)
1 (− ln τ)−1 + · · ·

]
+ τ

[
x

(0)
2 + · · ·

]
+ · · · ,(2.89)

with x
(1)
1 and x

(0)
2 as given above.

2.6. Floorlet with a = bE

This case is similar to the caplet with a = bE, and was touched on briefly
when we considered the floorlet with a > bE, when we mentioned that (2.81)
had a solution for this case but not for a > bE. The free boundary starts
from x0 = 2σ/(b3/2), and the initial condition is v(x, 0) = (σ(x − x0))/(2

√
b)

for x > x0. As for the case a < bE, we will try an expansion of the form
(2.32). If we substitute the expansion for v(x, τ) into the PDE (2.8), at the
first few orders, we recover the equations (2.78) with solutions (2.79), but with
a replaced by bE. If we attempt to apply the conditions on the free boundary
by substituting the assumed form (2.32) for xf (τ) into the solution (2.79), at
leading order we get the pair of equations,

x1

2

[
−C

(0)
1 erfc

(
x1

2

)
+

σ

b1/2

]
+

C
(0)
1 e−x2

1/4

√
π

= 0,

−C
(0)
1 erfc

(
x1

2

)
+

σ

b1/2
= 0,(2.90)

so that C
(0)
1 = σ/(2b1/2) and e−x2

1/4 = 0 and erfc (x1/2) = 2 or x1 = −∞,
which is a similar problem to that encountered when a > bE. At the next
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order, we find

−C
(0)
2

(
x2

1 + 2
)

= 0,

−4C
(0)
2 x1 = 0,(2.91)

so that C
(0)
2 = 0. At the next order, we get the pair of equations,

x1

[
−3C

(0)
3 +

σ (E + b)
4b3/2

]
− 1

2
C

(0)
3 x3

1 = 0,

2
[
−3C

(0)
3 +

σ (E + b)
4b3/2

]
− 3C

(0)
3 x2

1 = 0,(2.92)

which has no solution. The erfc(ξ) and e−ξ2
terms from V

(0)
1 must be added

to (2.92) to rectify this. To do this, we must proceed as for the caplet with
a = bE. If we suppose that xf (τ) is of the form (2.37), then we require once
again that e−f2

1 /4 ∼ τf1, so that

f1(τ) ∼
[
2WL

(
1

2τ2

)]1/2

(2.93)

where WL is the Lambert W function. It follows that f1(τ) and the general
term fn(τ) are as given by (2.57), with x

(0)
1 = −1. As for the caplet with

a = bE, the series for v(x, τ) must be of the form (2.58) with

V
(0)
1 =

σξ

b1/2

[
ξerfc (−ξ) +

e−ξ2

√
π

]
,

V
(0)
2 = 0,(2.94)

and V
(0)
3 given in (2.79) with a set equal to bE. For the τn/2

[
2WL

(
τ−2

2

)]−1

terms, we have

L3V
(1)
3 = 0,(2.95)

with a solution

V
(1)
3 = C

(1)
3

[
−
(
2ξ3 + 3ξ

)
erfc (ξ) +

2
(
ξ2 + 1

)
e−ξ2

√
π

]
.(2.96)

The conditions on the boundary yield at leading order in τ ,

C
(0)
3

2

[
2WL

(
τ−2

2

)]−3/2

+

[
3C

(0)
3

(
1 − x

(1)
1

2

)
+

C
(1)
3

2
+

σ (b + E)
4b3/2

] [
2WL

(
τ−2

2

)]−1/2

= O
⎛
⎝[2WL

(
τ−2

2

)]1/2
⎞
⎠(2.97)
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and

−3C
(0)
3

[
2WL

(
τ−2

2

)]−1

− 6C
(0)
3

(
1 − x

(1)
1

)
− 3C

(1)
3 +

σ

2b3/2

⎛
⎝E + b − 2bex

(1)
1 /2

√
π

⎞
⎠

= O
⎛
⎝[2WL

(
τ−2

2

)]1⎞⎠ ,(2.98)

which have a solution C
(0)
3 = 0 and

C
(1)
3 = −σ (E + b)

2b3/2

x
(1)
1 = 2 ln

[√
π (E + b)

b

]
.(2.99)

Hence for the caplet with a = bE, the free boundary close to expiry is of the
form

xf (τ) ∼ x0

+

√
2τWL

(
τ−2

2

)⎡⎣−1 + x
(1)
1

[
2WL

(
τ−2

2

)]−1
⎤
⎦+ · · · ,(2.100)

with x
(1)
1 as given above.

§3. Discussion

In the previous section, we considered the behavior of American caplets and
floorlets close to expiry; these are the interest rate options whose equity coun-
terparts are American put and call options. In our analysis, we assumed that
the spot interest rate r obeyed a mean-reverting random walk described by
the Vasicek model [5]. In our analysis, we used a change of variables [5] to
transform the governing PDE into the nonhomogeneous diffusion equation,
which enabled us to use Tao’s method [26]-[34] to find series solutions. We
found that there were three possible behaviors for the free boundary close to
expiry. Writing this free boundary as xf (τ), where τ is the transformed time
remaining until expiry, these three behaviors were

xf ∼ x0
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+

⎧⎪⎪⎨
⎪⎪⎩

x1τ
1/2 + x2τ + x3τ

3/2 + · · ·√−τ ln τ
[
±√

2 + x
(1)
1 (− ln τ)−1 + · · ·

]
+ τ

[
x

(0)
2 + · · ·

]
+ · · ·√

2τWL

(
τ−2

2

) [
±1 + x

(1)
1

[
2WL

(
τ−2

2

)]−1
]

+ τ
[
x

(0)
2 + · · ·

]
+ · · ·

.(3.1)

These same three behaviors occur for American equity put and call options
[2, 3, 8, 11, 12, 14, 15, 18, 25]. In one sense, this is surprising because interest
rates obey a rather different random walk to equity prices. In another sense,
this is not surprising as, in this and other problems [11, 18, 4, 6, 7], it appears
that the first of three behaviors given in (3.1), namely the τ1/2 behavior,
prevails when both V and (∂V/∂r) (or V and (∂V/∂S) for equity options) are
continuous at the free boundary at expiry, while the second form, the

√
τ ln τ

behavior, prevails when (∂V/∂r) or (∂V/∂S) are discontinuous there, and the
third form, the

√
τWL (τ−2/2) behavior, occurs on the boundary between the

other two cases. Although the behaviors in (3.1) were found both here for
interest rate caplets and floorlets and in equity options with American-style
features [11, 18, 4, 7, 6], it should be recalled that to use Tao’s method, it
was necessary to use a change of variables to transform the governing PDE
into the nonhomogeneous diffusion equation. For the Vasicek model, this was
accomplished using (2.5-2.7), but of course a slightly different transformation
was used for equity options [11, 2, 3, 18], and in the original variables, the free
boundary for interest rate caplets and floorlets will of course look somewhat
different to that for American call and put equity options.

In closing, we note that in the previous section, the results for the floor-
let and caplet were very similar. It would seem probable that some sort of
symmetry exists between floorlets and caplets, perhaps along the same as that
between American put and call options [10, 20], and it would be interesting
to know the exact form of that symmetry.
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