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Abstract. We study the global existence and large time asymptotic behavior
of solutions to the initial-boundary value problem for the nonlinear nonlocal
Schrödinger equation on a segment (0, a)

�
ut + i|u|2u + �u = 0, t > 0, x ∈ (0, a)

u(x, 0) = u0(x), x ∈ (0, a) ,
(0.1)

where the pseudodifferential operator � has the dissipation propery and the
symbol of order α ∈ (0, 1). We prove that if the initial data u0 ∈ L∞ are small,
then there exists a unique solution u ∈ C ([0,∞) ;L∞) of the initial-boundary
value problem (0.1) Moreover there exists a function A ∈ L∞ such that the
solution has the following large time asymptotics

u(x, t) = A (x) t−
1
α Λ

�
x

t
1
α

�
+ O

�
t−

1+δ
α

�
,

where Λ(x) = 1
2πi

� i∞
−i∞ e−zα+zxdz.
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§1. Introduction

Our aim in the present paper is to study the global existence and large time
asymptotic behavior of solutions to the initial-boundary value problem for the
nonlinear Shrödinger equation on a segment [0, a]{

ut + i |u|2 u + Ku = 0, t > 0, x ∈ (0, a) ,
u(x, 0) = u0(x), x ∈ (0, a) ,

(1.1)
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where the pseudodifferential operator Ku on a segment [0, a] is given by

Ku = (1 − θ(x − a))
1

2πi

∫ i∞

−i∞
epxK(p)û(p, t)dp,(1.2)

where K(p) = pα, α ∈ (0, 1).
The nonlinear nonlocal Schrödinger equation (1.1) is a simple model ap-

pearing as the first approximation in the description of the dispersive dissipa-
tive nonlinear waves. As far as we know the global existence and large time
asymptotic behavior for solutions of the initial-boundary value problem for the
nonlinear nonlocal Schrödinger equation (1.1) on a segment was not studied
previously. In the case of the Cauchy problem global existence of solutions
was proved in papers [7], [2] and the large time asymptotics of solutions was
obtained in [10], [9], [4]. In the case of the boundary value problem on a half-
line the large time asymptotics of solutions were studied in papers [1], [3], [6],
[8].

Let us start with the following general linear initial-boundary value problem
on a segment ⎧⎪⎪⎨⎪⎪⎩

ut + Ku = f(x, t), t > 0, x ∈ (0, a) ,
u(x, 0) = u0(x), x ∈ (0, a) ,

∂j
xu(0, t) = h0j(t), j = 1, ...,m,
∂l

xu(a, t) = hal(t), l = 1, ..., n,

(1.3)

where the pseudodifferential operator Ku on a segment [0, a] is defined by the
inverse Laplace transformation as follows

Ku =
1

2πi

∫ i∞

−i∞
epxK(p)

×
⎛⎝û(p, t) −

[α]∑
j=1

∂j−1
x u(0, t) − e−pa∂j−1

x u(a, t)
pj

⎞⎠ dp

−θ(x − a)
1

2πi

∫
Γ1

epxK(p)

×
⎛⎝û(p, t) −

[α]∑
j=1

∂j−1
x u(0, t) − e−pa∂j−1

x u(a, t)
pj

⎞⎠ dp,(1.4)

where the contour Γ1 goes along the boundary of the domain of analyticity
of the symbol K (p) , we assume that K (p) is always analytic in the domain
Re p > 0. Note that in the case of holomorphic symbol K (p) (for example, a
polynomial) the last integral in the definition (1.4) is equal to zero, hence we
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get a usual differential operator. Also we can rewrite the definition (1.4) in
the form

Ku = (1 − θ(x − a))
1

2πi

∫ i∞

−i∞
epxK(p)

×
⎛⎝û(p, t) −

[α]∑
j=1

∂j−1
x u(0, t) − e−pa∂j−1

x u(a, t)
pj

⎞⎠ dp,(1.5)

if we take K(p) = Cαpα, α > 0 for simplicity. We make a cut along the
negative part of the real axis, that is we choose arg z ∈ [−π, π) for any complex
z ∈ C. Here [α] is the integer part of the number α, Cα will be chosen by
the dissipation condition ReK (p) > 0 for all Re p = 0. Note that the inverse
Laplace transform gives us a function, which is equal to 0 for all x < 0, so
that multiplication by the factor (1 − θ(x − a)) yields that the operator Ku
vanish outside of the interval (0, a) . Thus the solution u (x, t) is considered for
all x ∈ R prolonged by zero outside of the segment [0, a] . We expect that by
analogy with the case of a half-line the integers n and m are defined by the
number of regions, where ReK(p) < 0.

Taking the Laplace transform of the operator Ku we get∫ a

0
e−px

Kudx =
1

2πi

∫ i∞

−i∞
e(q−p)a − 1

q − p
K(q)̂̃u(q, t)dq

=
e−pa

2πi

∫
Γ

eqa

q − p
K(q)̂̃u(q, t)dq + K(p)̂̃u(p, t),(1.6)

where we denote the contour

Γ =
{
q ∈ C; q ∈ (∞e−iπ,−i0) ∪ (+i0, eiπ∞)}(1.7)

and

̂̃u(p, t) = û(p, t) −
[α]∑
j=1

∂j−1
x u(0, t) − e−pa∂j−1

x u(a, t)
pj

.

Applying the Laplace transformation with respect to x to problem (1.3) we
get ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ût + 1
2πi

∫ i∞
−i∞

e(q−p)a−1
q−p K(q)̂̃u(q, t)dq = f̂(p, t), t > 0,

û(p,0) = û0(p),
∂j

xu(0, t) = h0j(t), j = 1, ..., n,
∂l

xu(a, t) = hal(t), l = 1, ...,m.
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Integrating with respect to time t in view of (1.6) we obtain for the Laplace
transform û(p, t)

û(p, t) = e−K(p)tû0(p) +
∫ t

0

e−K(p)(t−τ)f̂1(p, τ )dτ ,(1.8)

where

f̂1(p, t) = f̂(p, t) + K(p)
[α]∑
j=1

∂j−1
x u(0, t) − e−pa∂j−1

x u(a, t)
pj

− 1
2πi

∫
Γ

e(q−p)a

q − p
K(q)̂̃u(q, τ)dq.

In order to get the integral formula for solutions of (1.3), we need to know
the boundary values ∂j−1

x u (0, t), ∂j−1
x u(a, t). Some of the boundary values we

put in the problem as given boundary data and the rest we will find from the
equation using the growth condition

|û(p, t)| ≤ M(1 + |p|)β (1 +
∣∣e−pa

∣∣) for all |p| ≥ 1,(1.9)

with some M, β > 0, which guarantee us that the inverse Laplace transform
u(x, t) vanish for all x < 0 and x > a. It is easy to prove that condition (1.9) is
fulfilled in domains Re K(p) > 0. In domains, where Re K(p) < 0, we rewrite
formula (1.8) as

û(p, t) = e−K(p)t

(
û0(p) +

∫ +∞

0
eK(p)τf1(p, τ )dτ

)
−
∫ +∞

t
e−K(p)(t−τ)f1(p, τ )dτ .

Clearly the last integral ∫ +∞

t

e−K(p)(t−τ)f1(p, τ)dτ

satisfies condition (1.9) for all |p| ≥ 1, such that Re K(p) < 0. However
the first summand with exponentially growing factor e−K(p)t does not satisfy
condition (1.9), therefore we have to put the following conditions

û0(p) +
∫ +∞

0
eK(p)τf1(p, τ )dτ = 0(1.10)

for all |p| > 1 in the domains, where Re K(p) < 0. We use equations (1.10)
to find some of the boundary values ∂j

xu(0, t), ∂j
xu(a, t) involved in formula
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(1.8). Making a change of the independent variable K(p) = −ξ we transform
the domains Re K(p) < 0 to the half-complex plane Re ξ > 0 by [α] different
roots φ1(ξ), φ2(ξ), ... , φ[α](ξ), which are analytic functions for all Re ξ > 0 and
transform the half-complex plane Re ξ > 0 to domains, where Re K(p) < 0.
Then condition (1.10) can be written as a system of [α] equations in the half-
complex plane Re ξ > 0

û0(φl) + ̂̂f(φl, ξ)

−ξ

∫ +∞

0
e−ξτ

⎛⎝ [α]∑
j=1

∂j−1
x u(0, t) − e−φla∂j−1

x u(a, t)

φj
l

⎞⎠ dτ

= − 1
2πi

∫
Γ

e(q−φl(ξ))a

q − φl(ξ)
K(q)

∫ +∞

0
e−ξτ (û(q, τ )(1.11)

−
[α]∑
j=1

∂j−1
x u(0, t) − e−qa∂j−1

x u(a, t)
qj

⎞⎠dτdq,

for l = 1, 2, ..., [α] , where û(p, t) is the solution of problem (1.8) and

û0(φl) =
∫ a

0
e−φlyu0(y)dy,

̂̂
f(φl, ξ) =

∫ +∞

0

∫ a

0
e−(φly+ξt)f(y, t)dydt.

We have [α] equations with 2 [α] unknowns u
(j−1)
x (0, t), u

(j−1)
x (a, t) so we need

to put [α] boundary data in the problem (1.3) and the rest [α] boundary values
can be found from system (1.11).

In the case α ∈ (0, 1), which is under the consideration in the present paper,
we do not need to solve system (1.11), because condition (1.9) is fulfilled au-
tomatically for any complex p, due to the estimate

∣∣e−K(p)t
∣∣ ≤ C (1 + |e−pa|).

In the present paper we consider problem (1.1) in the case of the initial data
belonging to space L∞. For obtaining Lp -estimates of the Green function we
use the method of our previous papers [3] and [6].

Let us denote the space L∞(0, a) = {ϕ ∈ L∞ (0, a) ; ‖ϕ‖L∞ < +∞}. Let
‖φ‖Lp(R+) = ‖φ‖Lp and ‖φ‖Lp(0,a) = ‖φ‖p, 1 ≤ p ≤ ∞.

We state the main result of this paper.

Theorem 1. Let the initial data u0 ∈ L∞(0, a) and the norm ‖u0‖∞ < ε,
where ε > 0 is sufficiently small. Then there exists a unique solution u ∈
C ([0,∞) ;L∞(0, a)) of problem (1.1). Moreover there exists a function A ∈
L∞(0, a) such that the solution has the following asymptotics

u(x, t) = (1 − θ(x − a))A(x)t−
1
α Λ
(

x

t
1
α

)
+ O

(
t−

1
α
−ω
)
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for t → +∞ uniformly with respect to x ∈ (0, a) , where

Λ(ξ) =
1

2πi

∫ i∞

−i∞
e−zα+zξdz

and

A(x) =
∫ x

0

u0(y)dy +
∫ +∞

0

dτ

∫ x

0

|u(y, τ)|2 u(y, τ )dy < +∞,

here ξ ∈ R+, δ ∈ (0, 1 − α) , ω = δ
α if δ ≤ min (α, 1) , and ω = 1 if α ≤ δ ≤ 1.

Remark 1. Note that the symbols K (p) under consideration are not analytic
in the left half-complex plane (see definition (1.5)), so the contour of integra-
tion in the inverse Laplace transform could not be shifted in order to obtain
some more rapid time decay (see formula (2.4) below). As a consequence,
the solutions of nonlocal equation (1.3) have a potential decay rate such as
t−

1
α , in comparison with the case of purely differential operator K. For exam-

ple, it is well-known that solutions of the heat equation on a segment decay
exponentially with respect to time.

Remark 2. By the method of this paper we also can consider more general
nonlinearities of the form |u|ρ u with super critical power ρ > α.

We organize our paper as follows. In Section 2 we solve the linear initial-
boundary value problem corresponding to (1.1) and prove some preliminary
estimates in Lemma 3. Section 3 is devoted to the proof of Theorem 1. Ev-
erywhere below by the same letter C we denote different positive constants.

§2. Linear problem

We consider the following linear initial-boundary value problem{
ut + Ku = f(x, t), t > 0, x ∈ (0, a) ,

u(x, 0) = u0(x), x ∈ (0, a) ,
(2.1)

where the pseudodifferential operator Ku on a segment [0, a] is defined in (1.2).
We have for the Laplace transform of operator Ku, p /∈ (−∞, 0)∫ a

0
e−px

Kudx =
1

2πi

∫ i∞

−i∞
e(q−p)a − 1

q − p
K(q)û(q, t)dq

=
e−pa

2πi

∫
Γ

eqa

q − p
K(q)û(q, t)dq + K(p)û(p, t),

where the contour Γ was defined by the formula (1.7).



SCHRÖDINGER TYPE EQUATIONS 81

To derive an integral representation for solutions of the problem (2.1) we
suppose that there exists a solution u(x, t) of problem (2.1), which we pro-
longed by zero outside the interval (0, a) , that is

u(x, t) = 0 for all x /∈ [0, a] .(2.2)

Applying the Laplace transformation with respect to x to the problem (2.1)
we get {

ût + e−pa

2πi

∫
Γ

eqa

q−pK(q)û(q, t)dq + K(p)û(p, t) = f̂(p, t), t > 0,

û(p,0) = û0(p).

Integrating with respect to time t we obtain for the Laplace transform û(p, t)

û(p, t) = e−K(p)tû0(p) +
∫ t

0
e−K(p)(t−τ)f̂1(p, τ )dτ ,(2.3)

where

f̂1(p, t) = f̂(p, t) +
1

2πi

∫
Γ

e(q−p)a

q − p
K(q)û(q, τ)dq.

Note that by virtue of (2.2) the function û(p, t) is analytic for all complex p
and the condition 0 < α < 1 implies the condition (1.9) .

Taking the inverse Laplace transform of (2.3) with respect to space variable
we get

u(x, t) =
1

2πi

∫ i∞+ε

−i∞+ε

epx−K(p)tû0(p)dp

+
1

2πi

∫ i∞+ε

−i∞+ε

dpepx

∫ t

0

e−K(p)(t−τ)f̂(p, τ )dτ

+
1

2πi

∫ i∞+ε

−i∞+ε
dpepx

∫ t

0
dτe−K(p)(t−τ)

× 1
2πi

∫ i∞

−i∞
e(q−p)a

q − p
K(q)û(q, τ )dq(2.4)

≡ I1 + I2 + I3,

where ε > 0.
Now we prove that the last integral in (2.4) is equal to zero for all x ∈ [0, a] .

Indeed, since Re K(p) > 0 for all Re p > 0 by the Cauchy Theorem we get for
Re q = 0, x ∈ [0, a] , τ ∈ (0, t)∫ i∞+ε

−i∞+ε
dpep(x−a)e−K(p)(t−τ) 1

q − p
dp = 0.
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Therefore changing the order of integration we obtain for x ∈ [0, a] (we can
change the order of integration since all integrals converge absolutely)

I3 =
1

2πi

∫ t

0
dτ

∫ i∞

−i∞
eqaK(q)û(q, τ )dq

× 1
2πi

∫ i∞+ε

−i∞+ε
dpep(x−a)e−K(p)(t−τ ) 1

q − p
dp

= 0.(2.5)

Since u(x, t) = 0 for all x > a and for x < 0 substituting the Laplace trans-
forms û0(p) and f̂(p, τ ) into (2.4) and using (2.5), we obtain the following
integral representation for solutions u(x, t) of the problem (2.1)

u(x, t) =
∫ a

0
u0(y)G(x, y, t)dy +

∫ t

0
dτ

∫ a

0
f(y, τ)G(x, y, t − τ)dτ,(2.6)

where Green function G(x, y, t) is defined by

G(x, y, t) = (1 − θ(x − a))
1

2πi

∫ i∞

−i∞
ep(x−y)−K(p)tdp.

Thus in supposition that there exist solutions of problem (2.1) we get the
integral representation (2.6) for these solutions.

Now we prove that the function u(x, t) defined by formula (2.6) gives us a
solution to problem (2.1). Indeed, takin the Laplace transformation of (2.6)
we get for Re p = 0

û(p, t) =
∫ ∞

0
dxe−px

∫ a

0
u0(y)G(x, y, t)dy(2.7)

+
∫ ∞

0

dxe−px

∫ t

0

dτ

∫ a

0

f(y, τ)G(x, y, t − τ)dy

=
∫ a

0

dxe−px

(∫ a

0

u0(y)
1

2πi

∫ i∞

−i∞
eq(x−y)−K(q)tdqdy

+
∫ t

0
dτ

∫ a

0
f(y, τ)

1
2πi

∫ i∞

−i∞
eq(x−y)−K(q)(t−τ )dqdτ

)
.

By analyticity of the symbol K(p) in the complex half-plane Re p > 0 and
α < 1 we have for all Re p = 0 and y ∈ [0, a)

1
2πi

∫ i∞

−i∞
e−K(q)t−qy e(q−p)a − 1

q − p
dq

=
1

2πi
e−pa

∫ i∞

−i∞
e−K(q)t e

q(a−y)

q − p
dq − 1

2πi

∫ i∞

−i∞
e−K(q)t−qy 1

q − p
dq

= e−K(p)t−py +
1

2πi
e−pa

∫
Γ

e−K(q)t+q(a−y) 1
q − p

dq.
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So changing the order of integration in formula (2.7) and calculating the inte-
grals with respect to x we get

û(p, t) =
1

2πi

∫ a

0
u0(y)dy

∫ i∞

−i∞
e−K(q)t−qy e(q−p)a − 1

q − p
dq

+
1

2πi

∫ t

0
dτ

∫ a

0
f(y, τ)dy

∫ i∞

−i∞
e−qy−K(q)(t−τ ) e

(q−p)a − 1
q − p

dq

= e−K(p)t

(∫ a

0

e−pyu0(y)dy +
∫ t

0

eK(p)τdτ

∫ a

0

e−pyf(y, τ)dy

)
+

1
2πi

e−pa

∫ a

0
u0(y)dy

∫
Γ

e−K(q)t+q(a−y) 1
q − p

dq

+
1

2πi
e−pa

∫ t

0
dτ

∫ a

0
f(y, τ)dy

∫
Γ

e−K(q)(t−τ )+q(a−y) 1
q − p

dq.(2.8)

Substituting (2.8) into the definition of the pseudodifferential operator Ku (see
formula (1.2)) we obtain for all x ∈ (0, a)

Ku =
∫ a

0

u0(y)dy
1

2πi

∫ i∞

−i∞
ep(x−y)e−K(p)tK(p)dp

+
∫ t

0
dτ

∫ a

0
f(y, τ)dy

1
2πi

∫ i∞

−i∞
ep(x−y)e−K(p)(t−τ)K(p)dp

+
∫ a

0

u0(y)dy
1

2πi

∫
Γ

e−K(q)t+q(a−y)dq
1

2πi

∫ +i∞

−i∞
ep(x−a) K(p)

q − p
dp

+
∫ t

0
dτ

∫ a

0
f(y, τ)dy

1
2πi

∫
Γ

e−K(q)(t−τ )+q(a−y)dq

× 1
2πi

∫ +i∞

−i∞
ep(x−a) K(p)

q − p
dp,

whence using the fact that∫ +i∞

−i∞
ep(x−a) K(p)

q − p
dp = 0

for all x ∈ (0, a) and q ∈ Γ we obtain via formula (2.6)

Ku =
(
− ∂

∂t

∫ a

0
u0(y)dy

1
2πi

∫ i∞

−i∞
ep(x−y)e−K(p)tdp

− ∂

∂t

∫ t

0
dτ

∫ a

0
f(y, τ)dy

1
2πi

∫ i∞

−i∞
ep(x−y)e−K(p)(t−τ)dp

+
∫ a

0

f(y, τ)dy
1

2πi

∫ i∞

−i∞
ep(x−y)dp

)
= −ut(x, t) + f(x, t).
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So that the function u (x, t) given by (2.6) satisfies equation ut(x, t) + Ku =
f(x, t). Also it is easy to see that the initial condition is fulfilled

u(x, 0) = (1 − θ(x − a))
∫ a

0
u0(y)G(x − y, 0)dy

= (1 − θ(x − a))
∫ +∞

0

u0(y)δ(x − y)dy = u0(x).

Thus there exists a solution to the problem (2.1), which is given by formula
(2.6). The uniqueness follows from the fact that all solutions have representa-
tion (2.6).

Note that by the Cauchy Theorem the Green function G(x, y, t) = 0 for all
x < y and t < 0, therefore formula (2.6) can be written as

u(x, t) =
∫ x

0

u0(y)G(x, y, t)dy +
∫ t

0

dτ

∫ x

0

f(y, τ)G(x, y, t − τ)dτ ,(2.9)

where

G(x, y, t) = (1 − θ (x − a))
1

2πi

∫ i∞

−i∞
ep(x−y)−K(p)tdp.(2.10)

Thus we have proved the following result.

Theorem 2. Let the initial data u0 ∈ L1(0, a) and a source f(x, t) ∈
L1

loc

(
0,∞;L1(0, a)

)
. Then there exists a unique solution u(x, t) of the initial-

boundary value problem (2.1), which has representation (2.9).

Remark 3. By the representation (2.9) we see that limx→+0 u (x, t) = 0 for
all t > 0. We emphasize however that we do not need to put the boundary
condition u (0, t) = 0 into the problem (2.1) for its well-posedness, since this
is an inherent property of solutions. For example if we put the boundary
condition u (0, t) = 1 into the problem (2.1), then there does not exist any
solution.

Remark 4. Note that the Green function G (x, y, t) is similar to that for the
cases of a half-line and the full line. It can be obtained from the full line Green
function via multiplication by the step function (1− θ (x − a)) .

In the next lemma we estimate the kernel G(x, y, t). Denote Λ(ξ) =
1

2πi

∫ i∞
−i∞ e−zα+zξdz.

Lemma 3. We have the asymptotics for large time

G(x, y, t) = (1 − θ (x − a)) t−
1
α Λ
(

x

t
1
α

)
+ yδO

(
t−

1+δ
α

)
,(2.11)

for y ∈ (0, x) .
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Proof. Changing the variable of integration pαt = qα we get

G(x, y, t) = (1 − θ (x − a))
1

2πi

∫ i∞

−i∞
ep(x−y)−K(p)tdp

= t−
1
α (1 − θ (x − a))

1
2πi

(∫ i∞

−i∞
e−qα+q�xdq + R(x̃, ỹ)

)
,

where x̃ = xt−
1
α , ỹ = yt−

1
α , and

R(x̃, ỹ) =
∫ i∞

−i∞
e−qα+q�x(e−q�y − 1)dq.

Using estimates
∣∣e−q�y − 1

∣∣ < C |qỹ|δ and Re qα > 0 for Re q = 0 we easily get

t−
1
α |R(x̃, ỹ)| ≤ Ct−

1
α

∣∣∣∣∫ i∞

−i∞
e−Reqα |qỹ|δ dq

∣∣∣∣ = yδO
(
t−

1+δ
α

)
.

Lemma 3 is proved.

Denote G (t)φ =
∫ x
0

G (x, y, t) φ (y) dy, where G (x, t) is defined in formula
(2.10).

Lemma 4. Suppose that the function φ ∈ L∞(0, a). Then the estimate

‖G (t)φ‖∞ ≤ C(1 + t)−
1
α ‖φ‖∞

is valid for all t > 0.

Proof. Denote G̃ (x) = L−1
(
e−pα)

. Note that the function G̃ (x) is a smooth
function G̃ (x) ∈ C∞ (R+) and decays at infinity so that

sup
x∈R+

〈x〉1+γ
∣∣∣G̃ (x)

∣∣∣ ≤ C,(2.12)

for all 0 < γ < 1. Indeed, since Re pα > 0 for Re p = 0 we have∣∣∣G̃ (x)
∣∣∣ =

∣∣∣∣ 1
2πi

∫ i∞

−i∞
epx−pα

dp

∣∣∣∣ ≤ C
∥∥e−pα∥∥

L1 ≤ C.

For all x ≥ 1, integrating by parts and changing the contour of integration we
get

∣∣∣G̃ (x)
∣∣∣ =

∣∣∣∣ 1
2πi

∫ i∞

−i∞
epx−pα

dp

∣∣∣∣ =

∣∣∣∣∣∣ α

2πix

∫ ∞e
iπ
2 −iε

∞e−
iπ
2 +iε

epx−pα
pα−1dp

∣∣∣∣∣∣
≤ Cx−1−γ

∣∣∣∣∣∣
∫ ∞e

iπ
2 −iε

∞e−
iπ
2 +iε

e−pα
p−1+α−γdp

∣∣∣∣∣∣ ≤ Cx−1−γ,
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where ε > 0, 0 < γ < 1. Therefore estimate (2.12) is true. By virtue of (2.12)
we find

t−
1
α

∥∥∥G̃(t− 1
α (·)

)∥∥∥
L1

=
∥∥∥G̃ (·)

∥∥∥
L1

≤ C
∥∥∥〈x〉−1−µ

∥∥∥
L1

x

≤ C,

hence by the Young inequality and using estimate ‖φ‖1 < C ‖φ‖∞ we obtain

‖G (t)φ‖∞ ≤ C
∥∥∥t− 1

α G̃
(
t−

1
α (·)

)∥∥∥
L1

‖φ‖∞ ≤ C ‖φ‖∞
and

‖G (t)φ‖∞ ≤ C
∥∥∥t− 1

α G̃
(
t−

1
α (·)

)∥∥∥
L∞

‖φ‖1

≤ Ct−
1
α ‖φ‖1 ≤ Ct−

1
α ‖φ‖∞

for all t > 0. Whence the estimate of the lemma follows. Lemma 4 is proved.

§3. Global existence

We prove Theorem 1. We consider the linearized version of problem (1.1){
ut + Ku = −i |v|2 v, t > 0, x ∈ (0, a) ,

u(x, 0) = u0(x), x ∈ (0, a) .
(3.1)

We suppose that

‖u0‖∞ < ε1

and v ∈ Xε, where ε1 > 0 is small enough, ε = 100Cε1 with the constant C
from (2.12) and

Xε = {v ∈ X, ‖v‖X < ε} ,

X =
{

v ∈ C([0,+∞) ;L∞(0, a)), ‖v‖X = sup
t>0

〈t〉 1
α ‖v (t)‖∞ < ε

}
.

We have from (2.9)

u(x, t) = G (t)u0 − i

∫ t

0

G (t − τ) |v(τ)|2 v(τ)dτ ,(3.2)

where

G (t) φ(τ) =
∫ x

0

G (x, y, t) φ (y, τ) dy
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and

G(x, y, t) = (1 − θ (x − a))
1

2πi

∫ i∞

−i∞
ep(x−y)−pαtdp.

Via estimate ∥∥∥|v|2 v(t)
∥∥∥

1
≤ ‖v(t)‖3

∞ ≤ Cε3(1 + t)−
3
α

applying L∞(0, a) norm to formula (3.2) and using results of Lemma (4) we
get

‖u(t)‖∞ ≤ C ‖G (t)u0‖∞ + C

∫ t

0

∥∥∥G (t − τ) |v(τ )|2 v(τ)
∥∥∥
∞

dτ

≤ C (1 + t)−
1
α ‖u0‖∞

+C

∫ t
2

0
dτ
∥∥∥|v|2 v(τ )

∥∥∥
1
(t − τ)−

1
α dτ + C

∫ t

t
2

dτ
∥∥∥|v|2 v(τ )

∥∥∥
∞

dτ

≤ ε1 (1 + t)−
1
α + ε3C

(∫ t
2

0

〈τ〉− 3
α (t − τ)−

1
α dτ +

∫ t

t
2

〈τ〉− 3
α dτ

)
≤ ε (1 + t)−

1
α .(3.3)

We introduce the distance in X

d(f, g) = sup
t>0

(1 + t)
1
α ‖f (t) − g (t)‖∞ .

Then in the same way as in the proof of (3.3) we have

d(u1, u2) = d(Mv1, Mv2) ≤ 1
2
d(v1, v2),(3.4)

where u1 and u2 are solutions of the problems{
∂tuj + Kuj = −i |vj |2 vj , t > 0, x ∈ (0, a) ,

uj(x, 0) = u0(x), x ∈ (0, a) .

Estimates (3.3) and (3.4) show that M is a contraction mapping from X into
itself. Therefore there exist a unique solution u(x, t) ∈ X satisfying estimate
‖u‖X < ε. This completes the proof of the first part of Theorem 1.

Now using estimate (3.3) we prove that the solution has the following
asymptotics

u(x, t) = (1 − θ(x − a))A (x) t−
1
α Λ
(

x

t
1
α

)
+ O

(
t−

1+δ
α

)
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for t −→ +∞ uniformly with respect to x, where δ ∈ (0, 1 − α)

Λ(x) =
1

2πi

∫ i∞

−i∞
e−zα+zxdz

and

A (x) =
∫ x

0
u0(y)dy − i

∫ +∞

0
dτ

∫ x

0
|u(y, τ)|2 u(y, τ )dy

is a bounded function. Indeed, in view of asymptotics (2.11) of Lemma 3 we
have

u(x, t) = (1 − θ(x − a))A (x) t−
1
α Λ
(

x

t
1
α

)
+ R(x, t),(3.5)

where

|R(x, t)| ≤ Ct−
1+δ
α

∥∥∥(·)δu0(·)
∥∥∥

1
+ Ct−

1+δ
α

∫ t

0

dτ

∫ a

0

yδ |u|3 dy

+t−
1
α

∣∣∣∣Λ( x

t
1
α

)∣∣∣∣ ∫ +∞

t

dτ

∫ a

0

|u|3 dy

+
∫ t

0

dτ

∫ a

0

|u(y, τ)|3 |G(x, y, t − τ) − G(x, y, t)| dy.

We have

|Gt(x, y, t)| ≤ C

∣∣∣∣∫ i∞

−i∞
e−Re |p|αt |p|α dp

∣∣∣∣ ≤ Ct−1− 1
α .

Therefore we obtain

|G(x, y, t − τ) − G(x, y, t)| ≤ Ct−1− 1
α τ

and ∫ t

0
dτ

∫ a

0
|u(y, τ)|3 |G(x, y, t − τ) − G(x, y, t)| dy

≤ Ct−1− 1
α

∫ t

0

τ(1 + τ)−
3
α dτ ≤ Ct−1− 1

α

for all t ≥ 1. Hence by virtue of (3.3) we have

|R(x, t)| ≤ Ct−
1+δ
α ‖u0‖∞ + Ct−

1+δ
α

∫ t

0
(1 + τ)−

3
α dτ

+t−
1
α

∣∣∣Λ(xt−
1
α

)∣∣∣ ∫ +∞

t

(1 + τ)−
3
α dτ + Ct−1− 1

α

≤ Ct−
1+δ
α + Ct−

1
α

+1− 3
α + Ct−1− 1

α

≤
{

Ct−
1+δ
α if δ ≤ min (α, 1) ,

Ct−1− 1
α if α ≤ δ ≤ 1.
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Theorem 1 is proved.
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