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Abstract. The first purpose of this paper is to give a smart proof of the Morse

index theorem for squared distance function of submanifolds in s a symmetric

space. The second purpose is to classify focal points into strong ones and weak

ones and to give a class of submanifolds in symmetric spaces all of whose focal

points (other than conjugate points) are strong ones. The third purpose is to

construct examples of submanifolds in symmetric spaces admitting weak ones.
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§1. Introduction

Let M be an n-dimensional immersed submanifold in an m-dimensional
complete Riemannian manifold N and p be a point of N . Denote by P (N,M×
p) the set of all H1-paths γ : [0, 1] → N with (γ(0), γ(1)) ∈ M × {p}. For the
energy functional E : P (N,M × p) → R (E(γ) =

∫ 1

0
||γ̇(t)||2dt), the following

facts (i) ∼ (iii) hold:

(i) A path γ (∈ P (N,M × p)) is a critical point of E if and only if γ is a
geodesic normal to M at γ(0) parametrized by an affine parameter,

(ii) If p is not a focal point of M , then E is a Morse function,
(iii) The index of a critical point γ of E is equal to the number (counting

the multiplicities) of focal points of (M,γ(0)) lying in γ((0,1)) (the Morse
index theorem).

See Page 132∼134 of [S] about the proof of the Morse index theorem (iii). In
similar to the above facts (i) and (ii), the following facts (i′) and (ii′) hold for
the squared distance function d2

p : M → R (d2
p(x) = d(p, x)2 (d : the distance

function of N)):

(i′) Let x ∈ M \Cp, where Cp is the cut locus of p. The point x is a critical
point of d2

p if and only if −→xp is normal to M , where −→xp is the initial velocity
vector of the minimal geodesic γxp with γxp(0) = x and γxp(1) = p,

(ii′) If p is not a focal point of M , then each critical point of d2
p which does

not belong to Cp is non-degenerate.
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The first purpose of this paper is to prove smartly the following fact similar
to the Morse index theorem (iii) in the case where the ambient space is a
symmetric space.

Theorem A. Let M be a submanifold in a symmetric space N and p be a
point of N . The index of a critical point x of d2

p : M → R with x �∈ Cp is
equal to the number (counting multiplicities) of focal points of (M,x) lying in
xp \ {p}, where xp := γxp([0, 1]).

Remark 1. This fact has already shown by K. Nomizu and L. Rodriguez
[NR] in the case where the ambient space is the Euclidean space.

We consider a family of normal geodesics of M whose initial velocity vectors
are parallel with respect to the normal connection of M and define a notion of a
strong focal point as a point where such a family of normal geodesics focus (at
1-jet level). Also, we call non-strong focal points (other than conjugate points)
weak focal points. In the case where the ambient manifold N is of constant
curvature, all focal points (other than conjugate points) become strong focal
points. However, this fact does not hold for a general symmetric space. The
second purpose of this paper is to show the following fact.

Theorem B. If M is a submanifold with root decomposable normal bundle
in a symmetric space N , then all focal points (other than conjugate points) of
M are strong ones.

Remark 2. The following submanifolds have root decomposable normal bun-
dle:

(i) (General) submanifolds in real space forms,
(ii) Complex submanifolds in complex space forms,
(iii) Generic submanifolds in complex space forms, where a generic subman-

ifold implies a submanifold M satisfying J(T⊥M) ⊂ TM (J : the complex
structure of the complex space form),

(iv) Submanifolds with abelian normal bundle of the sense of [TT] in an
arbitrary symmetric space, where we note that all hypersurfaces in an arbitrary
symmetric space have abelian normal bundle.

The third purpose of this paper is to construct examples of submanifolds
in symmetric spaces admitting weak focal points (see §4).

In §2, we prepare the basic notions and facts. In §3, we prove Theorems A
and B. In §4, we give examples of submanifolds admitting weak focal points.

Throughout this paper, unless otherwise mentioned, we assume that all
geometric objects are of class C∞ and that all manifolds are connected ones
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without boundary.

§2. Basic notions and facts

In this secton, we recall the basic notions and facts. Let N = G/K be a
symmetric space of compact type or non-compact type, (g, σ) be its orthogonal
symmetric Lie algebra and p be the eigenspace of σ for −1. The subspace p
is identified with the tangent space TeKN of N at eK, where e is the identity
element of G. Let h be a maximal abelian subspace of p. For each linear
function α on h, we set pα := {X ∈ p | ad(H)2X = εα(H)2X for allH ∈ h},
where ad is the adjoint representation of g and ε = −1 (resp. ε = 1) in the case
where N is of compact type (resp. of non-compact type). If pα �= {0}, then
the function α is called a (restricted) root for h and pα is called the root space
for α. Also, we call each element of pα a root vector for α. For w ∈ TgKN , we
define linear transformations Dco

w and Dsi
w of TgKN by

Dco
w = g∗ ◦ cos(

√−1ad(g−1
∗ w)) ◦ g−1

∗ ,

Dsi
w = g∗ ◦ sin(

√−1ad(g−1∗ w))√−1ad(g−1∗ w)
◦ g−1

∗ ,

respectively, where g∗ is the differential of g. Also, we define a linear trans-
formation Dct

w by Dct
w := (Dsi

w )−1 ◦Dco
w when (Dsi

w )−1 exists. A Jacobi field J
along a geodesic γ in N is described as

(2.1) J(s) = Pγ|[0,s]
(Dco

sγ̇(0)J(0) + s · Dsi
sγ̇(0)J

′(0)),

where Pγ|[0,s]
is the parallel translation along γ|[0,s]. Let M be an immersed

submanifold in N and A be its shape tensor. We omit the notation of the
immersion. Let p ∈ N and x be a critical point of d2

p with x �= Cp. By
imitating the proof of Lemma 3.1 in [K2], we can show that the Hessian
(Hess d2

p)x of the squared distance function d2
p at x is given by

(2.2) (Hess d2
p)x(X,Y ) = 2〈(Dct−→xp − A−→xp)X,Y 〉 (X,Y ∈ TxM).

If, for each ξ(�= 0) ∈ T⊥M , there exists a maximal abelian subspace h in
p containing g−1∗ ξ such that g−1∗ (T⊥

x M) = h ∩ g−1∗ (T⊥
x M) +

∑
α∈�+

(pα ∩
g−1
∗ (T⊥

x M)) (x : the base point of ξ, x = gK), then M is said to have
root decomposable normal bundle, where �+ is the positive root system with
respect to h (under some lexicographical ordering of h). Note that M has root
decomposable normal bundle if and only if, for each normal vector ξ of M ,
the operator R(·, ξ)ξ leaves TxM invariant (x : the base point of ξ), where R
is the curvature tensor of N .

At the end of this section, we define a new notion of a strong focal point.
First we recall the notion of a focal point. Let M be an immersed submanifold
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in a general Riemannian manifold N . Denote by exp⊥ the normal exponential
map of M . Let ξ ∈ U⊥M and γξ be the non-extendable geodesic in N with
γ̇ξ(0) = ξ. If Ker (exp⊥∗ )ξ �= {0}, then the point exp⊥(ξ) (resp. ||ξ||) is called
a focal point (resp. a focal radius) of (M,π(ξ)) along γξ, where π is the bundle
projection of the normal bundle T⊥M . Also, dim Ker(exp⊥∗ )ξ is called the
multiplicity of the focal point. Now we shall define the notion of a strong focal
point. Let Hξ (⊂ Tξ(T⊥M)) be the horizontal space at ξ with respect to the
normal connection. If Ker(exp⊥

∗ )ξ ∩Hξ �= {0}, then we call the point exp⊥(ξ)
(resp. ||ξ||) a strong focal point (resp. a strong focal radius) of (M,π(ξ)) along
γξ. Also, we call dim (Ker(exp⊥∗ ) ∩ Hξ) the multiplicity of the strong focal
point. If p is a non-strong focal point (other than conjugate points) along γξ,
then we call p a weak focal point along γξ. A strong focal point is catched
as a point where the normal geodesics whose initial vectors are parallel with
respect to the normal connection focus (at 1-jet level). This is a geometrical
meaning of a strong focal point. We think that the parallelism condition of
the initial vectors is a geometrically essential condition. Hence we think that
it is important to investigate the strongness of a focal point.

§3. Proofs of Theorems A and B

In this section, we prove Theorem A smartly.

Proof of Theorem A. Let x be a critical point of d2
p with x /∈ Cp and k1

be the index of the critical point x. Also, let k2 be the number (counting
the multiplicities) of focal points of (M,x) lying in xp \ {p}. We must show
k1 = k2. Set Q(s) := prTx

◦ Dct
s−→xp

− sA−→xp ◦ prTx
(0 ≤ s ≤ 1), where Dct

s−→xp
is as

in §2 and prTx
is the orthogonal projection of TxN onto TxM . According to

(2.1), a Jacobi field J along γ−→xp with J(0) = X(�= 0) (∈ TxM) is described as

J(s) = Pγ−→xp|[0,s]
(Dco

s−→xpX + sDsi
s−→xpJ

′(0))

= Pγ−→xp|[0,s]
Dsi

s−→xp(Dct
s−→xpX − As−→xpX + sJ ′(0)⊥)

= Pγ−→xp|[0,s]
Dsi

s−→xp(Q(s)X + (Dct
s−→xpX)⊥ + sJ ′(0)⊥),

where (·)⊥ is the normal component of ·. Hence J(s0) = 0 if and only if
Q(s0)X = 0 and (Dct

s0
−→xp

X)⊥ + s0J
′(0)⊥ = 0, where 0 < s0 < 1. Also, for

each X(�= 0) (∈ TxM) and each s0 ∈ (0, 1), there exists a unique Jacobi field
J along γ−→xp with J(0) = X and (Dct

s0
−→xp

X)⊥ + s0J
′(0)⊥ = 0. After all we

see that γ−→xp(s0) is a focal point with multiplicity ν along γ−→xp if and only
if dimKerQ(s0) = ν. This fact deduces k2 =

∑
0<s<1

dim KerQ(s). Next we

shall show k1 =
∑

0<s<1
dim KerQ(s). Set gs := 〈1

s
Q(s)·, ·〉 (s ∈ (0, 1]) and



ON FOCAL POINTS OF SUBMANIFOLDS IN SYMMETRIC SPACES 175

FX(s) := gs(X,X). Since FX(s) = 〈(1
s
Dct

s−→xp
− A−→xp)X,X〉 (s ∈ (0, 1]), we have

dFX

ds
= −〈 1

s2
(Dsi

s−→xp)−2X,X〉 < 0.

Thus the function FX is decreasing over (0, 1] for each X(�= 0) ∈ TxM . Since
Q(0) is the identity transformation of TxM , there exists a positive number ε
such that gs is positive definite for every s ∈ (0, ε). On the other hand, since
Hessxd2

p = 2g1 by (2.2), the index of g1 is equal to k1. From these facts, we
see that

∑
0<s<1

dim KerQ(s) = k1. After all we can obtain k1 = k2. �

Next we prove Theorem B.

Proof of Theorem B. Let M be a submanifold with root decomposable normal
bundle in N . Let p be a focal point of (M,x) other than a conjugate point.
That is, there exists a Jacobi field J along γ−→xp with J(0)(�= 0) ∈ TxM and
J(1) = 0. According to (2.1), a Jacobi field J along γ−→xp is described as

J(s) = Pγ−→xp|[0,s]
Dsi

s−→xp(Dct
s−→xpJ(0) − As−→xpJ(0) + sJ ′(0)⊥).

Since M has root decomposable normal bundle, we have Dct
s−→xp

J(0) ∈ TxM .
Hence it follows from J(1) = 0 that J ′(0)⊥ = 0. Let δ : [0, 1] × (−ε, ε) →
M be a normal geodesic variation of γ−→xp having J as the variation vector
field, where ε is a positive number. Then we have ∇J(0)

∂
∂s = ∇ ∂

∂t

∂
∂s |(0,0) =

∇ ∂
∂s

∂
∂t
|(0,0) = J ′(0), where t is the second parameter of δ and ∇ is the Levi-

Civita connection of N . It follows from J ′(0)⊥ = 0 that ∇⊥
J(0)

∂
∂s = 0. Define

a curve α : (−ε, ε) → T⊥M by α(t) = ∂
∂s
|(0,t) (t ∈ (−ε, ε)). The relation

∇⊥
J(0)

∂
∂s = 0 implies α̇(0) ∈ H−→xp, where α̇(0) is the velocity vector of α at

t = 0. Note that α̇(0) �= 0 because of π∗α̇(0) = J(0) �= 0, where π is the
bundle projection of T⊥M . Also, we have (exp⊥

∗ )−→xp(α̇(0)) = J(1) = 0. Hence
we have α̇(0) ∈ Ker (exp⊥∗ )−→xp ∩H−→xp. This implies that p is a strong focal point
of (M,x). �

§4. Examples of submanifolds admitting weak focal points

In this section, we give some examples of submanifolds in a symmetric
space admitting weak focal points. Those examples show that the assumption
that the submanifold has root decomposable normal bundle is indispensable
in Theorem B. Let S be a geodesic sphere in a symmetric space G/K of
compact type or non-compact type such that its radius is smaller than the
injective radius of G/K. Denote by p0 its center. Take x0 = g0K ∈ S such
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that α(g−1
0∗

−−→x0p0)’s (α ∈ �+ ∪ {0}) are mutually distinct, where �+ is the
positive (restricted) root system with respect to a maximal abelian subspace
h containing g−1

0∗
−−→x0p0 (under some lexicographic ordering of h). It is clear that

such a point x0 exists. Let {eα
i | i = 1, · · · ,mα} be a base of the root space pα,

where α ∈ �+ ∪ {0}. Note that p0 = h. Take a linearly independent system
{Xk := eαk

ik
+ eβk

jk
| k = 1, · · · , n} of p = TeK(G/K) satisfying

(	) Xk(k = 1, · · · , n) are orthogonal to g−1
0∗

−−→x0p0, αk �= βk(k = 1, · · · , n)

and {eαk

ik
, eβk

jk
}’s (k = 1, · · · , n) are pairwise disjoint.

Proposition 1. Let M be a submanifold in S through x0 satisfying Tx0M =
Span{g0∗X1, · · · , g0∗Xn}. Then the point p0 is a weak focal point of M along
the normal geodesic γ−−→x0p0

and there does not exist a strong focal point of M
along the normal geodesic γ−−→x0p0

.

Proof. It is clear that p0 is a focal point of M along γ−−→x0p0
. We show that there

does not exist a strong focal point of M along γ−−→x0p0
. Suppose that γ−−→x0p0

(s0) is
a strong focal point along γ−−→x0p0

. Then there exists a Jacobi field J along γ−−→x0p0

satisfying J(0) �= 0 (∈ Tx0M), J ′(0) = −A−−→x0p0
J(0) and J(s0) = 0, where A is

the shape tensor of M . For simplicity, set X := J(0). From (2.1), the Jacobi
field J is described as

J(s) = Pγ−−−→x0p0
|[0,s]

(Dco
s−−→x0p0

X − sDsi
s−−→x0p0

(A−−→x0p0
X)).

From J(s0) = 0, we have Dco
s0

−−→x0p0
X − s0D

si
s0

−−→x0p0
(A−−→x0p0

X) = 0, which is equiv-
alent to

cos(
√−εα(s0g

−1
0∗

−−→x0p0))(g−1
0∗ X)α − sin(

√−εα(s0g−1
0∗

−−→x0p0))√−εα(g−1
0∗

−−→x0p0)
(g−1

0∗ A−−→x0p0
X)α = 0

(α ∈ �+ ∪ {0}),
where ε = −1 (resp. 1) when G/K is of compact type (resp. of non-compact
type) and (·)α is the pα-component of ·. Hence we have

(4.1) g−1
0∗ A−−→x0p0

X =
∑

α∈�+∪{0}

√−εα(g−1
0∗

−−→x0p0)
tan(

√−εs0α(g−1
0∗

−−→x0p0))
(g−1

0∗ X)α.

Here we note that tan(
√−εα(s0g

−1
0∗

−−→x0p0)) �= 0 because γ−−→x0p0
(s0) is not a

conjugate point along γ−−→x0p0
. Since Tx0M = Span{g0∗X1, · · · , g0∗Xn}, we can
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express as g−1
0∗ X =

n∑
k=1

bkXk (bk ∈ R). From (4.1), we have

g−1
0∗ A−−→x0p0

X

(4.2)

=
∑

α∈�+∪{0}

n∑
k=1

√−εα(g−1
0∗

−−→x0p0)
tan(

√−εs0α(g−1
0∗

−−→x0p0))
× bk(eαk

ik
+ eβk

jk
)α

=
n∑

k=1

bk{
√−εαk(g−1

0∗
−−→x0p0)

tan(
√−εs0αk(g−1

0∗
−−→x0p0))

eαk

ik
+

√−εβk(g−1
0∗

−−→x0p0)
tan(

√−εs0βk(g−1
0∗

−−→x0p0))
eβk

jk
}.

Since αk(g−1
0∗

−−→x0p0) �= βk(g−1
0∗

−−→x0p0), we have
√−εαk(g−1

0∗
−−→x0p0)

tan(
√−εs0αk(g−1

0∗
−−→x0p0))

�=
√−εβk(g−1

0∗
−−→x0p0)

tan(
√−εs0βk(g−1

0∗
−−→x0p0))

. Hence the vector
√−εαk(g−1

0∗
−−→x0p0)

tan(
√−εs0αk(g−1

0∗
−−→x0p0))

eαk
ik

+
√−εβk(g−1

0∗
−−→x0p0)

tan(
√−εs0βk(g−1

0∗
−−→x0p0))

eβk

jk
is linearly independent of Xk. This fact implies

that the right-hand side of (4.2) does not belong to g−1
0∗ Tx0M \ {0} because

{eαk
ik

, eβk

jk
}’s (k = 1, · · · , n) are pairwise disjoint. Therefore, we have A−−→x0p0

X =
0. On the other hand, since M is a submanifold in S, we have KerA−−→x0p0

= {0}.
After all we obtain X = 0. This contradicts X �= 0. Therefore, we see that
there does not exist a strong focal point along γ−−→x0p0

. �

By using this proposition, we give some examples of submanifolds in G/K
admitting weak focal points.

Example 1. We consider the case where G/K is the simply connected rank
one symmetric space FPm(c) of compact type, where F = C, Q or Cay
and m ≥ 2 when F = C or Q and m = 2 when F = Cay. Set q :=
dimRF and denote by {φ1, · · · , φq−1} the F-structure of FPm(c). The positive
root system �+ for a maximal abelian subspace h of p = TeK(G/K) (under
the lexicographical ordering determined by a unit vector v of h) is given by
�+ = {√c〈v, ·〉,

√
c

2
〈v, ·〉} and the root spaces p√c〈v,·〉 and p√

c
2 〈v,·〉 are given

by p√c〈v,·〉 = Span{φ1v, · · · , φq−1v} and p√
c

2 〈v,·〉 = Span{v, φ1v, · · · , φq−1v}⊥.
According to these facts, for each n ≤ q−1, we can find a linearly independent
system of p consisting of n pieces of vectors satisfying the above condition
(	). According to Proposition 1, for each n ≤ q − 1, we can construct an
n-dimensional submanifold in FPm(c) admitting weak focal points. Similarly,
for each n ≤ q − 1, we can construct such an n-dimensional submanifold in
the simply connected rank one symmetric space FHm(c) of non-compact type,
where F = C, Q or Cay and m ≥ 2 when F = C or Q and m = 2 when
F = Cay.
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Example 2. We consider the case where G/K is the Grassmannian manifold
SO(m)/(SO(l)× SO(m− l)), where 2 ≤ l ≤ m

2
. The positive root system �+

for a maximal abelian subspace h of p = TeK(G/K) is given as follows:

�+ ={αi + · · · + αj | 1 ≤ i ≤ j ≤ l}
∪ {αi + · · · + αj + 2(αj+1 + · · · + αl) | 1 ≤ i ≤ j ≤ l − 1},

where {α1, α2, · · · , αl} is the fundamental root system ( ◦
α1
−−◦

α2
−−· · ·−−◦

αl−1

=⇒◦
αl

).

The Satake diagram of the orthogonal symmetric Lie algebra associated with
SO(m)/(SO(l) × SO(m − l)) is as in Diagrams 1 and 2.

◦−−◦−− · · · −−◦−−•−−•−− · · · −−•=⇒•(
the number of white circles = l

the number of black circles = [m
2

] − l

)

( m : odd )

Diagram 1.

Æ��Æ�� � � � ��Æ��������� � � ���

�

�(
the number of white circles = l

the number of black circles = m
2 − l

)

(m : even )

Diagram 2.

According to these Satake diagrams, the multiplicities of positive roots are as
in Table 1.

positive root multiplicity
αi + · · · + αj (1 ≤ i ≤ j ≤ l − 1) 1

αi + · · · + αl (1 ≤ i ≤ l) m − 2l
αi + · · · + αj + 2(αj+1 + · · · + αl) (1 ≤ i ≤ j ≤ l − 1) 1

Table 1.
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According to Table 1, for each n ≤ [ l(m−l)−1
2 ] = [12 (dim SO(m)/(SO(l) ×

SO(m−l)) −1)], we can find a linearly independent system of p consisting of n-
pieces of vectors satisfying the condition (	), where [·] is the Gauss’s symbol of
·. Hence, according to Proposition 1, for each n ≤ [ l(m−l)−1

2 ], we can construct
an n-dimensional submanifold in SO(m)/(SO(l)×SO(m− l)) admitting weak
focal points. Similarly, we can construct such an n (≤ [ l(m−l)−1

2 ])-dimensional
submanifold in the dual SO0(l,m− l)/(SO(l)×SO(m− l)) of SO(m)/(SO(l)×
SO(m − l)).

Example 3. We consider the case where G/K is the complex Grassmannian
manifold SU(m)/S(U(l)×U(m− l)), where we assume that 2 ≤ l ≤ m

2 . First
we consider the case of l < m

2 . Then the positive root system �+ for a maximal
abelian subspace h of p = TeK(G/K) is given as follows:

�+ ={αi + · · · + αj | 1 ≤ i ≤ j ≤ l}
∪ {αi + · · · + αj + 2(αj+1 + · · · + αl) | 1 ≤ i ≤ j ≤ l − 1}
∪ {2αl},

where {α1, α2, · · · , αl} is the fundamental root system ( ◦
α1
−−◦

α2
−−· · ·−−◦

αl−1

=⇒◦
αl

).

The Satake diagram of the orthogonal symmetric Lie algebra associated with
SU(m)/S(U(l) × U(m − l)) (l < m

2
) is as in Diagram 3.

Æ��Æ�� � � � ��Æ���

Æ��Æ�� � � � ��Æ���

�

�

�

�

�

(
the number of white circles = 2l

the number of black circles = m − 2l − 1

)

Diagram 3.

According to this Satake diagram, the multiplicities of positive roots are as in
Table 2.
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positive root multiplicity
αi + · · · + αj (1 ≤ i ≤ j ≤ l − 1) 2

αi + · · · + αl (1 ≤ i ≤ l) 2(m − 2l)
αi + · · · + αj + 2(αj+1 + · · · + αl) (1 ≤ i ≤ j ≤ l − 1) 2

2(αi + · · · + αl) (1 ≤ i ≤ l) 1

Table 2.

According to Table 2, for each n ≤ l(m − l) − 1 = 1
2dim SU(m)/S(U(l) ×

U(m− l))− 1, we can find a linearly independent system of p consisting of n-
pieces of vectors satisfying the condition (	). Hence, according to Proposition
1, for each n ≤ 1

2dimSU(m)/S(U(l) × U(m − l)) − 1, we can construct an n-
dimensional submanifold in SU(m)/S(U(l) ×U(m − l)) admitting weak focal
points. Next we consider the case of l = m

2 . Then the positive root system
�+ for a maximal abelian subspace h of p is given as follows:

�+ ={αi + · · · + αj | 1 ≤ i ≤ j ≤ m

2
}

∪ {αi + · · · + αj + 2(αj+1 + · · · + αm
2 −1) + αm

2
| 1 ≤ i ≤ j ≤ m

2
− 2}

∪ {2(αi + · · · + αm
2 −1) + αm

2
| 1 ≤ i ≤ m

2
− 1},

where {α1, α2, · · · , αm
2
} is the fundamental root system ( ◦

α1
−−◦

α2
−−· · ·−−◦

α m
2 −1

⇐===◦
α m

2

).

The Satake diagram of the orthogonal symmetric Lie algebra associated with
SU(m)/S(U(m

2
) × U(m

2
)) is as in Diagram 4.

Æ��Æ�� � � � ��Æ

Æ��Æ�� � � � ��Æ

Æ

( the number of white circles = m − 1 )

Diagram 4.

According to this Satake diagram, the multiplicities of positive roots are as in
Table 3.
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positive root multiplicity
αi (1 ≤ i ≤ l − 1) 2

αl 1
αi + · · · + αj (1 ≤ i < j ≤ l) 2

αi + · · · + αj + 2(αj+1 + · · · + αl−1) + αl 2
(1 ≤ i ≤ j ≤ l − 2)

2(αi + · · · + αl−1) + αl (1 ≤ i ≤ l − 1) 1

Table 3.

According to Table 3, for each n ≤ m2

4 −1 = 1
2dim SU(m)/S(U(m

2 )×U(m
2 ))−

1, we can find a linearly independent system of p consisting of n-pieces of vec-
tors satisfying the condition (	). Hence, according to Proposition 1, for each
n ≤ 1

2
dimSU(m)/S(U(m

2
) × U(m

2
)) − 1, we can construct an n-dimensional

submanifold in SU(m)/S(U(m
2

) × U(m
2

)) admitting weak focal points. Simi-
larly, we can construct such an n (≤ l(m− l) − 1)-dimensional submanifold in
the dual SU(l,m− l)/S(U(l)×U(m− l)) of SU(m)/S(U(l)×U(m− l)), where
2 ≤ l ≤ m

2 .

Similarly, we can construct examples of submanifolds admitting weak focal
points in other symmertric spaces.
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