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Abstract. We study a complex equiaffine immersion of general codimension
by regarding a frame of the complex determinant bundle of a complex vector
bundle as a complex volume form. Some results on a complex affine hypersurface
with volume form, especially a complex equiaffine hypersurface, are generalized
to the case of general codimension. Especially, we obtain the fundamental
theorems for a complex equiaffine immersion to a complex affine space of general
codimension.
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§1. Introduction.

For a complex affine hypersurface, if the transversal vector field is parallel
with respect to the transversal connection, then the immersion is called a
complex equiaffine hypersurface and the transversal vector field is often called
equiaffine. For a complex affine hypersurface in a complex affine space, the
existence of an equiaffine transversal vector field is studied in [3] and [4]. Such
a hypersurface is studied in [11], where the author use a complex Ricci tensor.
On the other hand, an equiaffine immersion of general codimension is studied
in [7] and [8], where they take a certain frame of its transversal bundle to
define an induced volume form.

The main purpose of this paper is to study a complex affine immersion
with volume form of general codimension, especially a complex equiaffine im-
mersion, and generalize some of the results in [3], [4], [9] and [11]. In Section
2, to apply them to the transversal bundle of a complex affine immersion,
we prepare the notions in terms of a complex vector bundle. In detail, for
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a complex vector bundle with connection, we regard a frame of its complex
determinant bundle as a complex volume form and derive some fundamental
results for the complex determinant bundle in terms of connections, which con-
tain generalizations of those for the tangent bundle of a complex manifold in
[3], [4] and [11]. In Section 3, for a decomposition of a complex vector bundle
with connection and volume form, we study the relation between the induced
connections, the second fundamental forms determined by the decomposition
and the connections on the complex determinant bundles. In Section 4, we
apply these results in the previous sections to a complex affine immersion and
derive some results which include generalizations of those in [9] and [11]. We
also define and study a complex equiaffine immersion of general codimension,
where we obtain some results which can be considered as generalizations of
those in [4] and [11]. In Section 5, we state and prove the fundamental theo-
rems for a complex equiaffine immersion to a complex affine space of general
codimension, which are complex versions of those given in [5].

§2. Preliminaries.

Throughout this paper, all manifolds are assumed to be connected and all
objects and morphisms are assumed to be smooth. Let M be a manifold, TM
its tangent bundle and T ∗M its cotangent bundle. We use letters E, Ẽ to
denote vector bundles over M . The fibre of a vector bundle E at x ∈ M is
denoted by Ex, the space of all cross sections of E by Γ(E) and the set of
all connections on E by C(E). We denote by Ap(E) = Γ(∧pT ∗M ⊗ E) the
space of all E-valued p-forms on M . Let Hom(Ẽ, E) be the vector bundle
of which fibre Hom(Ẽ, E)x at x ∈ M is the vector space Hom�(Ẽx, Ex) of
linear maps from Ẽx to Ex. Let HOM(Ẽ, E) be the space of all vector bundle
homomorphisms from Ẽ to E and END(E) := HOM(E,E). We note that
HOM(Ẽ, E) can be identified with Γ(Hom(Ẽ, E)). For Φ ∈ HOM(Ẽ, E) and
x ∈M , put Φx := Φ|Ex . The space of all vector bundle isomorphisms from Ẽ
to E is denoted by ISO(Ẽ, E).

In order to make our paper self-contained, we begin by preparing definitions
and fundamental properties about a complex vector bundle, some of the results
are given in [1].

Let (V, JV ) be a 2r-dimensional real vector space with complex structure
JV . We can regard (V, JV ) as a complex vector space by defining scalar
multiplication by

(a+ b
√−1)ξ := aξ + bJV ξ

for a, b ∈ R and ξ ∈ V . We denote the complex vector space defined above by
(V, JV )� . We call (s1, . . . , sr, J

V s1, . . . , J
V sr) a complex basis of (V, JV ) with
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respect to JV if (s1, . . . , sr) is a basis of (V, JV )� . For simplicity, we denote
(s1, . . . , sr, J

V s1, . . . , J
V sr) by (s1, . . . , JV sr). For ξ ∈ V and a complex basis

(s, . . . , JV sr), we denote by ξ̂ := t(ξ1, . . . , ξ2r) the column vector which is a
component of ξ with respect to (s1, . . . , JV sr), that is, ξ = (s1, . . . , JV sr)ξ̂ =
ξlsl+ξl+rJV sl = (s1, . . . , JV sr) t(ξ1, . . . , ξ2r), where t( · ) denote the transpose
of ( · ). Then, we put reξ̂ := t(ξ1, . . . , ξr) and imξ̂ := t(ξr+1, . . . , ξ2r). For
(Ṽ , J �V ), let Hom�((Ṽ , J �V ), (V, JV )) := {ψ ∈ Hom�(Ṽ , V ) | ψJ �V = JV ψ},
which can be identified with Hom� ((Ṽ , J �V )� , (V, JV )� ). Especially, we denote
the standard basis of R

2r by (e1, . . . , e2r) and define the standard complex
structure J0 on R

2r by

J0ek = ek+r, J0ek+r = −ek
for k = 1, . . . , r. We will generally use the same symbol to denote an endo-
morphism of R2r and its matrix representation with respect to the standard
basis. M(2r, 2p;J0) denotes all real (2r, 2p)-matrices which commute with J0

of R
2r and J0 of R

2p. For a (2r, 2p)-matrix A, we see that A ∈ M(2r, 2p;J0)
if and only if A is the following type:

A =
(
B −C
C B

)
,

where B,C are (r, p)-matrices. Then we put reA := B and imA := C.
Let (E, JE) be a real vector bundle E of rank 2r over M with complex

structure JE ∈ END(E) such that (JE)2 = −idE and we call (E, JE) a
complex vector bundle. A complex vector bundle (E, JE) can be turned into
a complex vector bundle in the usual sense when we regard (Ex, J

E
x ) as a

complex vector space (Ex, J
E
x )� for each x ∈ M . For (E, JE), an open set

U ⊂ M and uk ∈ Γ(E|U ), if (u1(x), . . . , ur(x)) is a basis of (Ex, J
E
x )� for

each x ∈ U , we call (u1, . . . , J
Eur) a complex local frame field of (E, JE) with

respect to JE and put U := Dom(u1, . . . , J
Eur). Let LF(E, JE) be the set of

all complex local frame fields of (E, JE). Hereafter in this paper, (Ẽ, J �E) and
(E, JE) denote complex vector bundles over M . Let Hom((Ẽ, J �E), (E, JE))
be the vector bundle of which fibre at x ∈ M is Hom�((Ẽx, J

�E
x ), (Ex, J

E
x )).

Moreover, we put
HOM((Ẽ, J �E), (E, JE)) := {Φ ∈ HOM(Ẽ, E) | ΦJ �E = JEΦ},

ISO((Ẽ, J �E), (E, JE)) := ISO(Ẽ, E) ∩ HOM((Ẽ, J �E), (E, JE)).
Hereafter in this paper, we denote by (M,J) a complex manifold with

complex structure J ∈ END(TM) which is integrable.

Definition 2.1 If a complex vector bundle (E, JE)� has a holomorphic vector
bundle structure in the usual sense, we call (u1, . . . , J

Eur) a real holomorphic
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local frame field of (E, JE) for a holomorphic local frame field (u1, . . . , ur) of
(E, JE)� with respect to the structure. A holomorphic vector bundle structure
H of (E, JE) is the set of all real holomorphic local frame fields of (E, JE)
and we denote a holomorphic vector bundle (E, JE) with H by (E;H).

For an M(2r, 2p;J0)-valued function A on an open set V ⊂ M , we say A
is real holomorphic if the equation

XreA = (JX)imA

holds for any X ∈ TxM , x ∈ V . When we regard reA +
√−1imA as a

complex (r, p)-matrix-valued function, A is real holomorphic if and only if
reA+

√−1imA is holomorphic.

Definition 2.2 For a holomorphic vector bundle (E;H) and an open set V
of M , a section ξ ∈ Γ(E|V ) is said to be holomorphic with respect to H if
for any (u1 . . . , J

Eur) ∈ H such that V ∩ U �= φ and the local representation
ξ|V ∩U = (u1, . . . , J

Eur)ξ̂ on V ∩ U , ξ̂ is a real holomorphic function, that is,

X(reξ̂) = (JX)(imξ̂)

for any X ∈ TxM , x ∈ U ∩ V , where U = Dom(u1, . . . , J
Eur). The space of

all holomorphic sections of E|V with respect to H is denoted by Γh(E|V ;H).

Note that if (E, JE) = (TM,J), a holomorphic section is often called a real
holomorphic vector field.

For a complex vector bundle (E, JE), a connection ∇ on E is said to be
complex if ∇XJ

E = JE∇X for any X ∈ TxM , x ∈M . We denote by C(E, JE)
the set of all complex connections on E.

Definition 2.3 For a holomorphic vector bundle (E;H), we say that ∇ ∈
C(E, JE) is adapted to H if for any open set V ⊂ M , ξ ∈ Γh(E|V ;H) and
X ∈ TxM , x ∈ V ,

∇JXξ = JE∇Xξ.

The set of all connections on (E, JE) adapted to H is denoted by Ca(E;H).

Definition 2.4 For complex vector bundles (Ẽ, J �E) and (E, JE), a 1-form
K ∈ A1(Hom((Ẽ, J �E), (E, JE))) is said to be complex if

KJX = JEKX

for any X ∈ TxM , x ∈M . We denote by A1,0(Hom((Ẽ, J �E), (E, JE))) the set
of all complex Hom((Ẽ, J �E), (E, JE))-valued 1-forms.
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For ∇ ∈ C(E, JE), we define the curvature form R ∈ A2(End(E, JE)) of ∇
by

RX,Y = ∇X∇Y −∇Y ∇X −∇[X,Y ]

for X,Y ∈ Γ(TM).

Lemma 2.5 For ∇ ∈ Ca(E;H), we have

RX,Y + JERJX,Y + JERX,JY −RJX,JY = 0(2.1)

for any X,Y ∈ TxM , x ∈M .

The following result is given by paraphrasing the result in [6].

Lemma 2.6 For ∇ ∈ C(E, JE), if the curvature form R of ∇ satisfies (2.1),
then (E, JE) has a unique holomorphic vector bundle structure to which ∇ is
adapted.

Definition 2.7 We denote by Ca(E, JE)(⊂ C(E, JE)) the set of all complex
connections on E whose curvature form satisfies the equation (2.1) and call an
element of Ca(E, JE) an adapted connection. Especially we denote by H∇ the
holomorphic vector bundle structure of (E, JE) determined by ∇ ∈ Ca(E, JE).

We prepare three classes of connections in terms of their curvature forms.

Definition 2.8 For ∇ ∈ C(E, JE), we say ∇ is holomorphic if RJX,Y =
JERX,Y , anti-holomorphic ifRJX,Y = −JERX,Y and of type (1, 1) ifRJX,JY =
RX,Y for any X,Y ∈ TxM , x ∈M .

Note that a connection of type (1, 1) is defined in [2]. The Hermitian
connection on a Hermitian holomorphic vector bundle in [6] is of type (1, 1).
When (E, JE) = (TM,J), torsion free affine connections of type (1, 1) are
called affine Kähler connections in [9]. We see that a flat connection ∇ ∈
C(E, JE) satisfies all of the three conditions above and a connection ∇ ∈
C(E, JE) which satisfies at least two of the conditions above is flat.

For a p-dimensional vector space V , we define DetV by

DetV := {ω : V p → R | ω is skew-symmetric, R-multilinear}.

A non-zero element of DetV is called a volume form on V . For a real vector
bundle E of rank p, we can define a smooth vector bundle DetE by requiring

(DetE)x := DetEx
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for each x ∈M , which is called the determinant bundle of E. We call a global
frame field of DetE a volume form on E. For ∇ ∈ C(E), we denote the induced
connection by ∇DetE ∈ C(DetE), that is,

(∇DetE
X ω)(ξ1, . . . , ξp) = X(ω(ξ1, . . . , ξp)) −

p∑
i=1

ω(ξ1, . . . ,∇Xξi, . . . , ξp)

for any ω ∈ Γ(DetE), X ∈ TxM , x ∈M and ξi ∈ Γ(E). Then we can prove

tr�(RX,Y ) ω = −RDetE
X,Y ω(2.2)

for any X,Y ∈ TxM , x ∈ M , where RDetE is the curvature form of ∇DetE.
Note that ∇DetE is usually denoted by ∇. For a volume form ω ∈ Γ(DetE)
and ∇ ∈ C(E), if ∇DetE

X ω = 0 for any X ∈ TxM , x ∈ M , then we say that
ω is parallel with respect to ∇. For the sake of simplicity, we write tr�R = 0
when tr�RX,Y = 0 for any X,Y ∈ TxM , x ∈M . Since there is a local parallel
frame field on a neighbourhood of each point for a flat connection on a vector
bundle, (2.2) implies

Lemma 2.9 For ∇ ∈ C(E), tr�R = 0 if and only if there exists a local volume
form on E which is parallel with respect to ∇ defined on a neighbourhood of
each point.

Let (R2, J0) be a real vector space R
2 with the standard complex structure

J0. Hereafter we always identify (R2, J0) with C under the natural correspon-
dence. Let (V, JV ) be a complex vector space. For an R-linear map T : V → V ,
we define the complex trace tr� T by

tr� T :=
1
2

(
tr�T −√−1tr�JV T

)
.

We note that tr� T = 0 if and only if tr�T = 0 and tr�JV T = 0. From the
definition of the complex trace, we obtain

Lemma 2.10 If ∇ ∈ C(E, JE) is holomorphic or anti-holomorphic, then
tr�R = 0 if and only if tr�R = 0.

For a 2r-dimensional complex vector space (V, JV ), we define Det� V by

Det� V := {Ω : V r → C | Ω is skew-symmetric, R-multilinear,√−1Ω(v1, . . . , vr) = Ω(JV v1, v2, . . . , vr) for any v1, . . . , vr ∈ V }.
A non-zero element of Det� V is called a complex volume form on (V, JV ). For
(E, JE), we can define a smooth vector bundle Det�E by requiring

(Det�E)x = Det�Ex
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for each x ∈ M and call it the complex determinant bundle of E. We call a
global frame field of Γ(Det�E) a complex volume form on (E, JE). Let JDet�E

be the induced complex structure on Det�E from JE , that is,

(JDet�EΘ)(ξ1, . . . , ξr) = Θ(JEξ1, . . . , ξr) =
√−1(Θ(ξ1, . . . , ξr))

for any Θ ∈ Γ(Det�E), ξi ∈ E(x), x ∈ M , i = 1, . . . , r. Let ∇Det�E be the
connection on Det�E induced from ∇ ∈ C(E, JE), that is,

∇Det�E
X Θ(ξ1, . . . , ξr) = X(Θ(ξ1, . . . , ξr)) −

r∑
i=1

Θ(ξ1, . . . ,∇Xξi, . . . ξr)

for any Θ ∈ Γ(Det�E), X ∈ TxM , x ∈ M and ξi ∈ Γ(E). Then ∇Det�E is a
complex connection with respect to JDet�E . As an analogue of (2.2), for any
Θ ∈ Γ(Det�E) and X,Y ∈ TxM , x ∈M we get

tr� (RX,Y )Θ = −RDet�E
X,Y Θ,(2.3)

where RDet�E is the curvature form of ∇Det�E. As an analogue of Lemma 2.9,
we have the following from (2.3).

Lemma 2.11 For ∇ ∈ C(E, JE), tr�R = 0 if and only if there exists a local
complex volume form on (E, JE) which is parallel with respect to ∇ defined on
a neighbourhood of each point.

Note that Lemma 2.11 has been already shown in the case where (E, JE) =
(TM,J) in [11].

Lemma 2.12 For ∇ ∈ C(E, JE) and a complex volume form Θ ∈ Γ(Det�E),

θ :=
(√−1

)r
Θ∧Θ̄ ∈ Γ(DetE)

is a real volume form, where Θ̄ is defined by

Θ̄(ξ1, . . . , ξr) := Θ(ξ1, . . . , ξr)

for any ξi ∈ Γ(E), i = 1, . . . , r. Moreover if Θ is parallel with respect to ∇,
then θ is parallel with respect to ∇.

Proof. Since Θ is a complex volume form, we get

Θ(. . . , η, . . . , JEη, . . . ) = 0
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for any η ∈ Ex, x ∈M . Thus, for a complex basis ξ1, . . . , JEξr of Ex, x ∈M ,
we have

(Θ∧Θ̄)(ξ1, . . . , JEξr)

=
1∑

ε1,...,εr=0

(−1)ε1+···+εrΘ((JE)ε1ξ1, . . . , (JE)εrξr)

Θ((JE)1−ε1ξ1, . . . , (JE)1−εrξr)

=
1∑

ε1,...,εr=0

(−1)ε1+···+εr(
√−1)ε1+···+εr(

√−1)
r−(ε1+···+εr)

Θ(ξ1, . . . , ξr)Θ(ξ1, . . . , ξr)

=
1∑

ε1,...,εr=0

(
√−1)rΘ(ξ1, . . . , ξr)Θ(ξ1, . . . , ξr)

= (
√−1)r2rΘ(ξ1, . . . , ξr)Θ(ξ1, . . . , ξr).

Therefore, we obtain

θ(ξ1, . . . , JEξr) =
(√−1

)r
Θ ∧ Θ(ξ1, . . . , JEξr)

=
(√−1

)r
(
√−1)r2rΘ(ξ1, . . . , ξr)Θ(ξ1, . . . , ξr)

= 2rΘ(ξ1, . . . , ξr)Θ(ξ1, . . . , ξr).

Hence θ ∈ Γ(DetE). Since Θ is a volume form, so is θ. From the definition of
θ, if Θ is parallel with respect to ∇, then θ is parallel with respect to ∇. �

Lemma 2.13 If ∇ ∈ C(E, JE) is holomorphic or anti-holomorphic and a
volume form θ ∈ Γ(DetE) is parallel with respect to ∇ , then there exists a
local complex volume form on E which is parallel with respect to ∇ defined on
a neighbourhood of each point.

Proof. From Lemma 2.9, we see that tr�R = 0. Since ∇ is holomorphic
or anti-holomorphic, we get tr�R = 0 by Lemma 2.10. Hence from Lemma
2.11, we get the result. �

We mention that Lemmas 2.12 and 2.13 are given in [4] for (E, JE) =
(TM,J). By a straightforward calculation, we have

Lemma 2.14 For ∇ ∈ C(E, JE), ∇Det�E ∈ C(Det�E, JDet�E) is holomorphic
if and only if tr� (RJX,Y ) =

√−1tr� (RX,Y ) and is of type (1, 1) if and only if
tr� (RJX,JY ) = tr� (RX,Y ) for any X,Y ∈ TxM , x ∈M .
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Especially, we consider the case where (Det�E, JDet�E) is a holomorphic
vector bundle. For (E, JE) and K ∈ A2(End(E, JE)), we define K(0,2)

X,Y by

K(0,2)
X,Y :=

1
4
(KX,Y + JEKJX,Y + JEKX,JY −KJX,JY )

for X,Y ∈ TxM , x ∈ M . Note that for ∇ ∈ C(E, JE), if R(0,2)
X,Y = 0, then

there is a unique holomorphic vector bundle structure of (E, JE) to which ∇
is adapted from Lemma 2.6. From the equation (2.3) and Lemma 2.5, we get

Lemma 2.15 For ∇ ∈ C(E, JE), if ∇Det�E ∈ Ca(Det�E, JDet�E), then it
holds that tr� ((R(0,2))X,Y ) = 0 for any X,Y ∈ TxM , x ∈M .

Note that if ∇ ∈ Ca(E, JE), then it holds that ∇Det�E ∈ Ca(Det�E, JDet�E)
and there is a holomorphic vector bundle structure of (Det�E, JDet�E). More
generally, we get the following by using (2.3) and Lemma 2.6.

Lemma 2.16 For ∇ ∈ C(E, JE), if it holds that tr� ((R(0,2))X,Y ) = 0 for any
X,Y ∈ TxM , x ∈ M , then (Det�E, JDet�E) has a unique holomorphic vector
bundle structure to which ∇Det�E is adapted.

Proof. Since (2.3) holds, we get

((RDet�E)(0,2))X,Y =
1
4
tr� ((R(0,2))X,Y ) = 0

for any X,Y ∈ TxM , x ∈M . Then from Lemma 2.6, we obtain the result. �

Hereafter in this section, we consider the case where (E, JE) = (TM,J).
For a manifold M , we denote by C0(TM) the set of all torsion free affine
connections on M and we call a volume form on TM a volume form on M .

For a complex manifold (M,J), we denote by C0(TM,J) the set of all
torsion free affine connections ∇ ∈ C0(TM) such that ∇XJ = J∇X for and
anyX ∈ TxM , x ∈M . Such connections are called complex affine connections.
Denote by ∇Det�TM the connection on (Det� TM,JDet�TM ) induced from ∇ ∈
C0(TM,J). We note that ∇Det�TM ∈ Ca(Det� TM,JDet�TM ).

We define a complex Ricci tensor ric of ∇ ∈ C0(TM,J) which is C-valued
by

ricX,Y :=
1
2
(RicX,Y −√−1RicX,JY )

for X,Y ∈ TxM , x ∈ M . If ric is symmetric, then Ric is symmetric. The
converse holds if ∇ is holomorphic or anti-holomorphic. Since ricX,JY =√−1ricX,Y for any X,Y ∈ TxM , x ∈M , by using Lemma 2.14 and Bianchi’s
identity, we get
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Lemma 2.17 For ∇Det�TM ∈ Ca(Det� TM,JDet�TM ), we have the following.
(1) ∇Det�TM is holomorphic if and only if ricJX,Y = ricX,JY for any X,Y ∈
TxM , x ∈M .
(2) ∇Det�TM is of type (1, 1) if and only if ricX,Y − ricY,X = ricJX,JY −
ricJY,JX for any X,Y ∈ TxM , x ∈M .

Next we prepare the definition of a complex equiaffine structure.

Definition 2.18 For a complex volume form Θ ∈ Γ(Det� TM) on a complex
manifold (M,J) and the induced connection ∇Det�TM ∈ C(Det� TM,JDet�TM )
from ∇ ∈ C0(TM,J), the pair (∇,Θ) which satisfies ∇Det�TM

X Θ = 0 for any
X ∈ TxM , x ∈M is called a complex equiaffine structure.

From the equation (2.3), Lemma 2.11 and Bianchi’s identity, we have

Proposition 2.19 For ∇Det�TM ∈ Ca(Det� TM,JDet�TM ) and a complex vol-
ume form Θ ∈ Γ(Det� TM), we have

RDet�TM
X,Y Θ = −tr� (RX,Y )Θ = ricX,Y Θ − ricY,XΘ

for any X,Y ∈ TxM , x ∈M . Moreover, the followings are equivalent.
(1) there is a local complex equiaffine structure on (M,J) defined on a neigh-
bourhood of each point.
(2) tr�R = 0,
(3) ric is symmetric.

We remark that Proposition 2.19 is shown in [4] and [11].

§3. A decomposition of a vector bundle with connection and
volume forms.

In this section, we study a decomposition of a vector bundle with connection
and volume forms to apply results obtained here to the theory of complex
affine immersions in Sections 4 and 5. We prepare fundamental results on a
decomposition of a vector bundle with connection, some of which are already
given in [1]. Let E be a real vector bundle over M , E1 and E2 are subbundles
of E such that

E = E1 ⊕ E2.

Throughout this section, we assume that i, j = 1, 2 and i �= j. Let πi : E →
Ei and ιi : Ei → E be the projection homomorphisms and the inclusions,
respectively. Then the following equations hold:

πiιi = idEi , πjιi = 0, ι1π1 + ι2π2 = idE .(3.1)
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Definition 3.1 For ∇ ∈ C(E), we define

∇i
X := (πi∇ιi)X := πi∇Xιi, Bi

X := (πj∇ιi)X := πj∇Xιi

for X ∈ TxM , x ∈ M . We call ∇i ∈ C(Ei) the induced connection on Ei for
∇ and Bi ∈ A1(Hom(Ei, Ej)) the second fundamental form of Ei for ∇.

From the definitions, we have

∇ = ι1∇1π1 + ι2B
1π1 + ι2∇2π2 + ι1B

2π2,(3.2)
∇Xιi = ιi∇i

X + ιjB
i
X(3.3)

for and any X ∈ TxM , x ∈ M . Note that the formula (3.3) corresponds to
Gauss and Weingarten formulas in submanifold theory. From (3.1) and (3.3),
by straightforward calculations, we have

Lemma 3.2 Let R and Ri be the curvature forms of ∇ ∈ C(E) and ∇i ∈
C(Ei), respectively. Then we get

πiRX,Y ιi = Ri
X,Y +Bj

XB
i
Y −Bj

YB
i
X ,(3.4)

πjRX,Y ιi = Bi
X∇i

Y + ∇j
XB

i
Y −Bi

Y ∇i
X −∇j

YB
i
X −Bi

[X,Y ](3.5)

for any X,Y ∈ Γ(TM). Moreover, when we fix a torsion free affine connection
∇M ∈ C0(TM), the equation (3.5) is rewritten as

πjRX,Y ιi = (∇̂j
XB

i)Y − (∇̂j
YB

i)X ,

where (∇̂j
XB

i)Y is defined by

(∇̂j
XB

i)Y ξi = ∇j
X(Bi

Y ξi) −Bi
Y ∇i

Xξi −Bi
∇M

X Y
ξi

for any X,Y ∈ Γ(TM) and ξi ∈ Γ(Ei).

The equations above correspond to the structure equations in submani-
fold theory. To be more precisely, the equation (3.4) corresponds to Gauss
and Ricci equations and the equation (3.5) corresponds to Codazzi equation.
Conversely, we have the following, which we will use to prove the existence
theorem in Section 5.

Lemma 3.3 Let Ei be a vector bundle, ∇i ∈ C(Ei) and Bi ∈ A1(Hom
(Ei, Ej)), i, j = 1, 2, i �= j. Then ∇ given by

∇ = ι1∇1π1 + ι2B
1π1 + ι2∇2π2 + ι1B

2π2(3.6)
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is a connection on E1 ⊕ E2 such that the induced connection on Ei for ∇ is
∇i, Bi is the second fundamental form of Ei for ∇ and the curvature form R
of ∇ satisfies (3.4) and (3.5) in Lemma 3.2. Moreover, if ∇i and Bi satisfy

Ri
X,Y +Bj

XB
i
Y −Bj

YB
i
X = 0,

Bi
X∇i

Y + ∇j
XB

i
Y −Bi

Y ∇i
X −∇j

YB
i
X −Bi

[X,Y ] = 0

for any X,Y ∈ Γ(TM), then ∇ is flat.

For a vector bundle homomorphism, we have

Lemma 3.4 Let E (resp. Ẽ) be a vector bundle such that E = E1⊕E2 (resp.
Ẽ = Ẽ1 ⊕ Ẽ2), ∇ ∈ C(E) (resp. ∇̃ ∈ C(Ẽ)), ∇i ∈ C(Ei) (resp. ∇̃i ∈ C(Ẽi))
and Bi ∈ A1(Hom(Ei, Ej)) (resp. B̃i ∈ A1(Hom(Ẽi, Ẽj))) be a connection
on E (resp. Ẽ), the induced connection on Ei (resp. Ẽi) for ∇ (resp. ∇̃)
the second fundamental form of Ei (resp. Ẽi) for ∇ (resp. ∇̃), i = 1, 2 and
Φ ∈ HOM(Ẽ, E). Assume that it holds that Φ(Ẽi) = Ei, i = 1, 2. Then

Φ∇̃X = ∇XΦ

if and only if

∇i
XΦi = Φi∇̃i

X , Bj
XΦj = ΦiB̃

j
X

for any X ∈ TxM , x ∈M , where Φi ∈ ISO(Ẽi, Ei) is defined by Φi := π̃iΦιi.

From (3.4) in Lemma 3.2, we get

Lemma 3.5 For ∇ ∈ C(E), we have

tr�(RX,Y ) = tr�(R1
X,Y ) + tr�(R2

X,Y )(3.7)

for any X,Y ∈ TxM , x ∈M .

As a corollary , we have

Corollary 3.6 If tr�R = 0, then tr�R1 = 0 if and only if tr�R2 = 0.

For a real vector bundle E, ∇ ∈ C(E), a subbundle Ei, i = 1, 2 such that
E = E1 ⊕ E2, we denote by ∇DetEi ∈ C(DetEi) the connection induced from
∇i ∈ C(Ei), i = 1, 2. For volume forms on E, E1 and E2, we have

Lemma 3.7 For ∇ ∈ C(E) and a volume form θi on Ei, π∗1θ1 ∧ π∗2θ2 is a
volume form of E. If θi is parallel with respect to ∇i, i = 1, 2, then π∗1θ1∧π∗2θ2
is parallel with respect to ∇. If π∗1θ1 ∧ π∗2θ2 is parallel with respect to ∇, then
θ1 is parallel with respect to ∇1 if and only if θ2 is parallel with respect to ∇2.
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For a complex vector bundle (E, JE), if Ei is JE-invariant, then we call
Ji := πiJ

Eιi the induced complex structure of Ei. Hereafter in this section,
we assume that both (E1, J1) and (E2, J2) are JE-invariant subbundles of a
complex vector bundle (E, JE) such that E = E1 ⊕E2. If E = Ẽ and Φ = JE

in Lemma 3.4, we have

Corollary 3.8 For ∇ ∈ C(E), we see that ∇ ∈ C(E, JE) if and only if

∇i ∈ C(Ei, Ji), Bi ∈ A1(Hom((Ei, Ji), (Ej , Jj))).

We will use Corollary 3.8 to prove the existence theorem for a complex
equiaffine immersion in Section 5. From Lemma 3.5, we have

Lemma 3.9 For ∇ ∈ C(E, JE), we have

tr� (RX,Y ) = tr� (R1
X,Y ) + tr� (R2

X,Y )(3.8)

for any X,Y ∈ TxM , x ∈M .

By Lemma 3.9, we obtain

Corollary 3.10 For ∇ ∈ C(E, JE), if tr�R = 0, then the following conditions
are equivalent.
(1) tr�R1 = 0,
(2) tr�R2 = 0.

Lemma 2.10 and Corollary 3.10 yield

Corollary 3.11 For ∇ ∈ C(E, JE), if tr�R = 0 and both ∇i, i = 1, 2, are
holomorphic or anti-holomorphic, then the following conditions are equivalent:
(1) and (2) of Corollary 3.10,
(3) tr�R1 = 0,
(4) tr�R2 = 0.

For ∇ ∈ C(E, JE), let ∇Det�Ei be the connection induced from ∇i ∈
C(Ei, Ji), i = 1, 2. Lemmas 2.11 and 3.9 imply

Proposition 3.12 For ∇ ∈ C(E, JE), if tr�Ri = 0, i = 1, 2, then there
are local complex volume forms Θi ∈ Γ(Det�Ei, J

Det�Ei) and π∗1Θ1∧π∗2Θ2 ∈
Γ(Det�E, JDet�E) which are parallel with respect to ∇i and ∇ defined on a
neighbourhood of each point.

From Lemmas 2.12 and 3.7, we have
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Proposition 3.13 For a complex volume form Θi of Ei, i = 1, 2, θi given by

θi :=
(√−1

)ri Θi∧Θi

is a real volume form on Ei, i = 1, 2 and θ̃ given by

θ̃ :=
(√−1

)r
(π∗1(Θ1∧Θ1))∧(π∗2(Θ2∧Θ2))

is a real volume form on E, where ri is the rank of Ei. Moreover, for ∇ ∈
C(E, JE), if both Θ1 and Θ2 are parallel with respect to ∇1 and ∇2 respectively,
then θi is parallel with respect to ∇i, i = 1, 2 and θ̃ is parallel with respect to
∇.

By virtue of Lemmas 2.13 and 3.7, we obtain

Proposition 3.14 If both ∇i are holomorphic or anti-holomorphic and there
are parallel volume forms on Ei with respect to ∇i, i = 1, 2, then there are
local complex volume forms on E and Ei which are parallel with respect to ∇
and ∇i defined on a neighbourhood of each point, i = 1, 2.

For ∇ ∈ C(E, JE), it follows from Lemma 3.9 that

tr� ((R(0,2))X,Y ) = tr� (((R1)(0,2))X,Y ) + tr� (((R2)(0,2))X,Y )(3.9)

for any X,Y ∈ TxM , x ∈M . From (3.8), (3.9) and Lemma 2.14, we get

Lemma 3.15 For ∇ ∈ C(E, JE), we have the following.
(1) If ∇Det�E ∈ Ca(Det�E, JDet�E), then ∇Det�E1 ∈ Ca(Det�E1, J

Det�E1) if
and only if ∇Det�E2 ∈ Ca(Det�E2, J

Det�E2).

(2) If both ∇Det�Ei satisfies ∇Det�Ei ∈ Ca(Det�Ei, J
Det�Ei), i = 1, 2, then

∇Det�E ∈ Ca(Det�E, JDet�E).

(3) If ∇Det�E is holomorphic, then ∇Det�E1 is holomorphic if and only if
∇Det�E2 is.

(4) If both ∇Det�Ei are holomorphic, i = 1, 2, then ∇Det�E is holomorphic.

(5) If ∇Det�E is of type (1, 1), then ∇Det�E1 is of type (1, 1) if and only if
∇Det�E2 is.

(6) If both ∇Det�Ei are of type (1, 1), i = 1, 2, then ∇Det�E is of type (1, 1).

Lemma 2.16 and (3.9) yield

Proposition 3.16 For ∇ ∈ C(E, JE), if tr� (((Ri)(0,2))X,Y ) = 0 for any
X,Y ∈ TxM , x ∈ M , then there are holomorphic vector bundle structures of
(Det�E, JDet�E) and (Det�Ei, J

Det�Ei) i = 1, 2, to which ∇Det�E and ∇Det�Ei

are adapted respectively.



ON A COMPLEX EQUIAFFINE IMMERSION OF GENERAL CODIMENSION 197

For ∇ ∈ C(E, JE), if ∇ ∈ Ca(E, JE) and B1 is complex, then ∇i ∈
Ca(Ei, Ji), i = 1, 2, holds. From this fact, Lemmas 2.15 and 2.16, we get

Proposition 3.17 If ∇ ∈ Ca(E, JE) and B1 is complex, then it holds that
∇Det�E ∈ Ca(Det�E, JDet�E) and ∇Det�Ei ∈ Ca(Det�Ei, J

Det�Ei), i = 1, 2.

§4. Complex affine immersions.

In this section, we prepare notations of an affine immersion and a complex
affine immersion with transversal bundle. We apply results given in Section 3
to the decomposition determined by an affine immersion.

Let M and M̃ be manifolds, f : M → M̃ a smooth map, f#TM̃ and
f# : f#TM̃ → TM̃ the induced bundle and its bundle map. We define
if : TM → f#TM̃ by ifx := (f#x)−1f∗x for each x ∈ M . Hereafter we
consider the case where f is an immersion in this section. For a subbundle N
of f#TM̃ , if

f#TM̃ = if (TM) ⊕N,(4.1)

then we call such an immersion an immersion with transversal bundle N .
Let ιf : if (TM) → f#TM̃ and ιN : N → f#TM̃ be inclusions and πf :
f#TM̃ → if (TM) and πN : f#TM̃ → N projection homomorphisms. We
put îf := πf i

f ∈ ISO(TM, if (TM)). Let (M,∇) and (M̃ , ∇̃) be manifolds
with torsion free affine connections ∇ and ∇̃. We denote by f#∇̃ the pull-
back of ∇̃. For an immersion f : M → M̃ with transversal bundle N , if the
induced connection πf (f#∇̃)ιf on if (TM) for f#∇̃ coincides with îf∇(̂if )−1,
we call such a morphism (f,N) : (M,∇) → (M̃ , ∇̃) an affine immersion with
transversal bundle N and denote it by f : (M,∇) → (M̃ , ∇̃) for simplicity if
the transversal bundle is stated. In this case, we define the affine fundamental
form B ∈ A1(Hom(TM,N)), the shape tensor A ∈ A1(Hom(N,TM)) and the
transversal connection ∇N ∈ C(N) by

B := πN (f#∇̃)ιf îf , A := −(̂if )−1πf (f#∇̃)ιN , ∇N := πN (f#∇̃)ιN .

Since ∇̃ is torsion free, B is symmetric, that is, BXY = BYX for any X,Y ∈
TxM , x ∈ M . Note that BXY (resp. AXξ) is usually denoted by α(X,Y )
(resp. AξX) for any X,Y ∈ TxM and ξ ∈ Nx, x ∈ M . Then we can write
Gauss and Weingarten formulas as

(f#∇̃)X i
fY = if∇XY +BXY,

(f#∇̃)Xξ = −ifAXξ + ∇N
Xξ
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for X,Y ∈ Γ(TM) and ξ ∈ Γ(N). When we apply Lemma 3.2 to the decom-
position (4.1), Gauss, Codazzi and Ricci equations are given by

(̂if )−1πf R̃X,Y i
fZ = RX,Y Z −AXBY Z +AYBXZ,

πN R̃X,Y i
fZ = (∇̂XB)Y Z − (∇̂YB)XZ,

(̂if )−1πf R̃X,Y ξ = −(∇̂XA)Y ξ + (∇̂YA)Xξ,

πN R̃X,Y ξ = RN
X,Y ξ −BXAY ξ +BYAXξ,

where R̃, R, RN are the curvature forms of (f#∇̃), ∇, ∇N , respectively,
(∇̂XA) and (∇̂XB) are given by

(∇̂XB)Y Z = ∇N
X(BY Z) −B∇XY Z −BY ∇XZ,

(∇̂XA)Y ξ = ∇X(AY ξ) −A∇XY ξ −AY ∇N
Xξ

for X,Y,Z ∈ Γ(TM) and ξ ∈ Γ(N).
For complex manifolds (M,J), (M̃, J̃) and an immersion f : M → M̃ , if

f is a holomorphic map, that is, f∗J = J̃f∗, then we call f a holomorphic
immersion.

Definition 4.1 For complex manifolds (M,J), (M̃ , J̃), ∇ ∈ C0(TM,J), ∇̃ ∈
C0(TM̃, J̃) and an affine immersion f : (M,∇) → (M̃ , ∇̃) with transversal
bundle N , if f is holomorphic and N is an (f#J̃)-invariant subbundle of
f#TM̃ , that is, (f#J̃)(N) = N , then we call such an immersion a complex
affine immersion and denote it by f : (M,J,∇) → (M̃ , J̃ , ∇̃) and the induced
complex structure of N by JN := πN (f#J̃)ιN .

For a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃) with transversal
bundle N , we have

∇N ∈ Ca(N,JN ),

B ∈ A1,0(Hom((TM,J), (N,JN ))),

A ∈ A1(Hom((N,JN ), (TM,J))).

Hereafter in this paper, we denote by (M,J) and (M̃ , J̃) complex manifolds
and always assume that ∇ ∈ C0(TM,J), ∇̃ ∈ C0(TM̃, J̃). For a complex affine
immersion f : (M,J,∇) → (M̃, J̃ , ∇̃) with transversal bundle N , we denote
by ∇Det�TM and ∇Det�N the induced connections on Det� TM and Det�N
respectively. Proposition 3.17 yields

Lemma 4.2 Let f : (M,J,∇) → (M̃ , J̃ , ∇̃) be a complex affine immersion
with transversal bundle N . Then we have

∇Det�TM ∈ Ca(Det� TM,JDet�TM ),

∇Det�N ∈ Ca(Det�N,JDet�N ).
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Next we study a relation between the Ricci tensor and the transversal con-
nection of a complex affine immersion with transversal bundle. The complex
trace tr�RN of RN is defined by

tr�RN
X,Y :=

1
2

(
tr�(RN

X,Y ) −√−1tr�(JNRN
X,Y )

)
for X,Y ∈ TxM , x ∈ M . From Lemmas 2.9, 2.10, 2.11, 2.14 and Corollaries
3.10, 3.11 we have

Proposition 4.3 For a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃)
with transversal bundle N , assume that tr� R̃ = 0. Then the following are
equivalent.
(1) ric is symmetric,
(2) tr�RN = 0,
(3) tr�R = 0,
(4) there exists a local complex equiaffine structure on (M,J) defined on a
neighbourhood of each point,
(5) there exists a local complex volume form on N which is parallel with
respect to ∇N defined on a neighbourhood of each point.
Moreover, if both ∇Det�TM and ∇Det�N are holomorphic or anti-holomorphic,
the conditions (1), (2), (3), (4), (5) and the followings are equivalent.
(6) Ric is symmetric,
(7) tr�RN = 0,
(8) tr�R = 0.

We mention that if p = 1 in Proposition 4.3, then (3) is equivalent to
RN = 0. We note that Proposition 4.3 generalizes some of results in [11]
for (M̃, J̃ , ∇̃) = (R2(m+1), J̃ ,D), where we denote by (R2(m+1), J̃ ,D) a 2(m+
1)-dimensional real affine space with the standard affine connection D and
the standard complex structure J̃ which is induced from J0 on TR

2(m+1).
Proposition 4.3 yields

Proposition 4.4 For a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃)
with transversal bundle N , assume that

tr� R̃ = 0, tr�((̂if )−1πif (TM)R̃·XifY ) = 0,

tr�(A·ξ) = 0, tr�AJXBY = −tr�JAXBY

for any ξ ∈ Nx and X,Y ∈ TxM , x ∈ M . Then the following conditions are
equivalent: (1), (2), (3), (4) and (5) from Proposition 4.3 and
(9) Ric = 0.
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Proof. From the assumption that tr�(A·ξ) = 0, we see that

RicX,Y = −tr�AXBY(4.2)

for any X,Y ∈ TxM and ξ ∈ Nx, x ∈ M . First we assume (1), that is, ric is
symmetric. Then we get

RicJY,X = RicX,JY = RicY,JX(4.3)

for any X,Y ∈ TxM , x ∈M . From (4.2), it holds that

RicY,JX = −tr�AYBJX = −tr�JAYBX ,

RicJY,X = −tr�AJYBX = tr�JAYBX

for any X,Y ∈ TxM , x ∈ M . Combining these equations and (4.3), we get
Ric = 0. The converse is obvious. �

Note that under the assumption in Proposition 4.4, ∇Det�TM is of type
(1, 1). This Proposition can be considered as a generalization of the corre-
sponding result in [9] and [11] for (M̃ , J̃ , ∇̃) = (R2(m+1), J̃ ,D).

To state the next corollary, we prepare the notion of H-projectively flat-
ness. For a complex manifold (M,J), the H-projective curvature P of ∇ ∈
C0(TM,J) is defined by

PX,Y Z := RX,Y Z −NX,ZY +NY,ZX −NX,Y Z +NY,XZ

+NX,JZJY −NY,JZJX +NX,JY JZ −NY,JXJZ,

where NX,Y is defined by

NX,Y := − 1
2m+ 2

{
RicX,Y +

1
2m− 2

(RicX,Y +RicY,X

−RicJX,JY −RicJY,JX)
}

for X,Y ∈ TxM , x ∈M . An affine connection is said to be H-projectively flat
if around each point there is a H-projective change of the connection to a flat
affine connection. We recall the following result in [12].

Theorem ([12]) For a complex manifold (M,J) and ∇ ∈ C0(TM,J), we have
the following.
(1) If dimM � 6, then ∇ is H-projectively flat if and only if P = 0. Moreover,
in this case it holds that

(∇̂XN)Y,Z = (∇̂YN)X,Z ,(4.4)
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where (∇̂XN)Y,Z is defined by

(∇̂XN)Y,Z := X(NY,Z) −N∇XY,Z −NY,∇XZ

for any X,Y,Z ∈ Γ(TM).
(2) If dimM = 4, then ∇ is H-projectively flat if and only if P = 0 and the
equation (4.4) holds.

Note that the space of constant holomorphic sectional curvature is H-
projectively flat. By using this result, we have the following corollary for
Proposition 4.4.

Corollary 4.5 Let f : (M,J,∇) → (M̃, J̃ , ∇̃) be a complex affine immersion
with transversal bundle N . Assume that dimM � 4, ∇̃ is H-projectively flat,
tr� R̃ = 0, tr�(A·ξ) = 0 and tr�AJXBY = −tr�JAXBY for any X,Y ∈ TxM
and ξ ∈ Nx, x ∈ M , then (1), (2), (3), (4) and (5) from Proposition 4.3 and
(9) from Proposition 4.4 are equivalent.

Proof. Since ∇̃ is H-projectively flat, we see that

tr�((̂if )−1πif (TM)R̃·XifY ) = 0

for any X,Y ∈ TxM , x ∈M by a direct calculation. �

From Lemmas 2.17 and 3.15, we have the following propositions.

Proposition 4.6 For a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃)
with transversal bundle N , assume that ∇Det�T�M is holomorphic. Then the
following conditions are equivalent.
(1) ∇Det�TM is holomorphic,
(2) ∇Det�N is holomorphic,
(3) ricJX,Y = ricX,JY for any X,Y ∈ TxM , x ∈M ,
(4) RicJX,Y = RicX,JY for any X,Y ∈ TxM , x ∈M .

Proposition 4.7 For a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃)
with transversal bundle N , assume that ∇Det�T�M is of type (1, 1). Then the
following conditions are equivalent.
(1) ∇Det�TM is of type (1, 1),
(2) ∇Det�N is of type (1, 1),
(3) ricX,Y − ricY,X = ricJX,JY − ricJY,JX for any X,Y ∈ TxM , x ∈M ,
(4) RicX,Y −RicY,X = RicJX,JY −RicJY,JX for any X,Y ∈ TxM , x ∈M .
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We prepare the notion of an equiaffine immersion of general codimension,
which is defined in [7] and is also studied in [8]. For real manifolds M , ∇ ∈
C0(TM) and a volume form θ ∈ DetTM , if ∇DetTM

X θ = 0 for any X ∈ TxM ,
x ∈ M , then we call (∇, θ) an equiaffine structure. For a real manifold M ,
M̃ , ∇ ∈ C0(TM), ∇̃ ∈ C0(TM̃), an affine immersion f : (M,∇) → (M̃ , ∇̃)
with transversal bundle N , let θ̃ ∈ Γ(DetTM̃) be a volume form on M̃ and
θN ∈ Γ(DetN) be a volume form on N . Then a volume form θ ∈ Γ(DetTM)
on M defined by

(((̂if )−1 ◦ πif (TM))
∗θ) ∧ (π∗Nθ

N) = f#θ̃

is called the induced volume form for (N, θN ), where f#θ̃ is the pull-back of
θ̃. Under the assumption that (∇̃, θ̃) is an equiaffine structure, if the induced
volume form (∇, θ) is an equiaffine structure, we say that (N, θN ) is equiaffine.
We note that if (∇̃, θ̃) is an equiaffine structure, then (∇, θ) is an equiaffine
structure if and only if θN is parallel with respect to ∇N .

Definition 4.8 For real manifolds M , M̃ , ∇ ∈ C0(TM), ∇̃ ∈ C0(TM̃ ),
equiaffine structures (∇, θ) on M , (∇̃, θ̃) on M̃ and an immersion f : M → M̃ ,
we call f an equiaffine immersion from (M,θ,∇) to (M̃ , θ̃, ∇̃) with transversal
bundle (N, θN ) if f : (M,∇) → (M̃ , ∇̃) is an affine immersion with transversal
bundle N and θ is the induced volume form for (N, θN ). We denote such an
affine immersion by f : (M,θ,∇) → (M̃ , θ̃, ∇̃).

Next we prepare the definition of a complex equiaffine immersion of gen-
eral codimension which is an analogue of that of an equiaffine immersion of
general codimension. For complex manifolds (M,J), (M̃ , J̃), ∇ ∈ C0(TM,J),
∇̃ ∈ C0(TM̃, J̃), a complex affine immersion f : (M,J,∇) → (M̃, J̃ , ∇̃) with
transversal bundle N , let Θ̃ ∈ Γ(Det� TM̃) be a complex volume form on
(M̃ , J̃) and ΘN ∈ Γ(Det�N) a complex volume form on N . Then a complex
volume form Θ ∈ Γ(Det� TM) on (M,J) defined by

(((̂if )−1 ◦ πif (TM))
∗Θ) ∧ (π∗NΘN ) = f#Θ̃

is called the induced volume form for (N,ΘN ), where f#Θ̃ is the pull-back
of Θ̃. Under the assumption that (∇̃, Θ̃) is a complex equiaffine structure, if
the induced volume form (∇,Θ) is a complex equiaffine structure, we say that
(N,ΘN ) is complex equiaffine. We note that if (∇̃, Θ̃) is a complex equiaffine
structure, then (∇,Θ) is a complex equiaffine structure if and only if ΘN is
parallel with respect to ∇N .

Definition 4.9 For a complex equiaffine structure (∇,Θ) (resp.(∇̃, Θ̃)) on a
complex manifold (M,J) (resp. (M̃, J̃)) with ∇ ∈ C0(TM,J) (resp. ∇̃ ∈
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C0(TM̃, J̃)) and a holomorphic immersion f : (M,J) → (M̃, J̃), we call f a
complex equiaffine immersion from (M,J,Θ,∇) to (M̃ , J̃ , Θ̃, ∇̃) with transver-
sal bundle (N,ΘN ) if f : (M,J,∇) → (M̃, J̃ , ∇̃) is a complex affine immersion
with transversal bundle N and the induced volume form for (N,ΘN ) is Θ. We
denote such an affine immersion by f : (M,J,Θ,∇) → (M̃ , J̃ , Θ̃, ∇̃).

By Lemma 2.12 and Proposition 3.13, we obtain

Proposition 4.10 For a complex equiaffine immersion f : (M,J,Θ,∇) →
(M̃ , J̃ , Θ̃, ∇̃) with transversal bundle (N,ΘN ), θ and θ̃ given by

θ :=
(√−1

)m
Θ∧Θ,

θ̃ :=
(√−1

)m+p
Θ̃∧Θ̃

are volume forms on M and M̃ such that (∇, θ) and (∇̃, θ̃) are equiaffine
structures on M and M̃ and θN defined by

θN :=
(√−1

)p
ΘN∧ΘN

is a volume form on N which is parallel with respect to ∇N and the affine
immersion f is an equiaffine immersion from (M,θ,∇) to (M̃, θ̃, ∇̃) with
transversal bundle (N, θN ).

Note that a similar result as Proposition 4.10 is already given in [4] in the
case where (M̃, J̃ , Θ̃, ∇̃) = (R2(m+1), J̃ , Θ̂,D), where Θ̂ denotes the standard
complex volume form of R

2(m+1). The converse is not always true. From
Lemma 2.13 and Proposition 3.14, we have

Proposition 4.11 Let f : (M,J,∇) → (M̃, J̃ , ∇̃) be an complex affine im-
mersion with transversal bundle N and (∇, θ), (∇̃, θ̃) equiaffine structures
on M , M̃ . If both ∇ and ∇N are holomorphic or anti-holomorphic and
f : (M,θ,∇) → (M̃ , θ̃, ∇̃) is an equiaffine immersion with transversal bun-
dle (N, θN ) in the real sense, then there are local complex equiaffine structures
(∇,Θ), (∇̃, Θ̃) of M and M̃ defined on a neighbourhood of each point and
a local complex volume form ΘN ∈ Γ(Det�N) which is parallel with respect
to ∇N defined on a neighbourhood of each point such that the affine immer-
sion f : (M,J,Θ,∇) → (M̃, J̃ , Θ̃, ∇̃) is a complex equiaffine immersion with
transversal bundle (N,ΘN ) locally.

§5. The fundamental theorems for a complex equiaffine
immersion.

In this section, we state and prove the fundamental theorems for a complex
equiaffine immersion to a complex affine space of general codimension. Note
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that the fundamental theorems, that is, the existence theorem and the equiv-
alence theorem for a complex affine immersion to a complex affine space of
general codimension is given in [1]. To prove our theorems, we use a similar
method as in [1], [5] and [10], which is self-contained and rather elementary.
We note that the fundamental theorems for an equiaffine immersion of general
codimension is already given in [5].

For an n-dimensional real affine space R
n, we denote by (e1, . . . , en) the

standard basis of R
n and eα the global parallel tangent vector field obtained

from eα, α = 1, . . . , n. Let M be a manifold and f : M → R
n be a smooth

map. For the standard basis, we write f = fαeα, where fα is a smooth
function on M for α = 1, . . . , n. For any X ∈ TxM , x ∈M we have

f∗X = (dfα)(X)(eα)f(x).(5.1)

We define if : TM → f#TRn by ifx = (f#x)−1f∗x and (f#eα) ∈ Γ(f#TRn)
by (f#eα)x := (f#x)−1(eα)f(x) for each x ∈M . In this case, (f#eα) is (f#D)-
parallel and it follows that

ifx = (f#x)−1(dfαeα) = dfα(f#eα)x(5.2)

for each x ∈ M . Hereafter in this paper, we denote by (R2(m+p), J̃ ,D) a
2(m + p)-dimensional real affine space with the standard affine connection D
and the standard complex structure J̃ on TR

2(m+p) which is induced from J0.
Although the proofs of fundamental theorems are similar to those in [1], we
write the proof here to make them self-contained.

Theorem 5.1 Let (M,J) be a 2m-dimensional complex manifold with com-
plex structure J , ∇ ∈ C0(TM,J), (∇,Θ) a complex equiaffine structure on
M , (F, JF ) a complex vector bundle over M of rank 2p with complex structure
JF , ∇F ∈ C(F, JF ), ΘF a complex volume form on F which is parallel with
respect to ∇F ,

B̃ ∈ A1,0(Hom((TM,J), (F, JF )))

a symmetric section, that is, B̃XY = B̃YX for X,Y ∈ Γ(TM) and

Ã ∈ A1(Hom((F,JF ), (TM,J)))

a section such that for X,Y ∈ Γ(TM),

RX,Y − ÃXB̃Y + ÃY B̃X = 0,(5.3)

B̃X∇Y + ∇F
XB̃Y − B̃Y ∇X −∇F

Y B̃X − B̃[X,Y ] = 0,(5.4)

ÃX∇F
Y + ∇XÃY − ÃY ∇F

X −∇Y ÃX − Ã[X,Y ] = 0,(5.5)

RF
X,Y − B̃XÃY + B̃Y ÃX = 0,(5.6)
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where R, RF are curvature forms of ∇, ∇F , respectively. If M is sim-
ply connected, then there exist a complex equiaffine affine immersion f :
(M,J,Θ,∇) → (R2(m+p), J̃ , Θ̃,D) with transversal bundle (N,ΘN ) with com-
plex structure JN and Ψ ∈ ISO((F, JF ), (N,JN )) such that

BX = ΨB̃X , AXΨ = ÃX , ∇N
XΨ = Ψ∇F

X , Ψ∗ΘN = ΘF(5.7)

hold for any X ∈ TxM , x ∈M , where B, A and ∇N are the affine fundamental
form, the shape tensor and the transversal connection of f , respectively, (D, Θ̃)
is a complex equiaffine structure on (R2(m+p), J̃) and ΘN is a complex volume
form on N which is parallel with respect to ∇N .

Proof. We set Ẽ := TM ⊕ F and

∇ �E := ι̃1∇π̃1 + ι̃2B̃π̃1 − ι̃1Ãπ̃2 + ι̃2∇F π̃2,(5.8)

where ι̃1 : TM → Ẽ and ι̃2 : F → Ẽ are the inclusions, π̃1 : Ẽ → TM and
π̃2 : Ẽ → F are the projection homomorphisms. By virtue of Lemma 3.3, we
see that ∇ �E is flat. Next we put J �E by

J
�E := ι̃1Jπ̃1 + ι̃2J

F π̃2,

then J
�E is a complex structure on Ẽ and it holds that ∇ �E ∈ C(Ẽ, J �E) from

(5.8) and Corollary 3.8.
Fix a point x0 ∈M . Let (ζ1, . . . , J

�Eζm+p) be a complex frame of Ẽx0 with
respect to J �Ex0

. Since M is simply connected and ∇ �E ∈ C(Ẽ, J �E) is flat, there
are unique global parallel extensions ζ̃1, . . . , J

�E ζ̃m+p. Let (ζ̃1, . . . , ζ̃2(m+p)) be
the dual frame field of (ζ̃1, . . . , J

�E ζ̃m+p). Then ωα := ζ̃α◦ι̃1 = ζ̃α|TM are closed
form for α = 1, . . . , 2(m+ p) since ∇ is torsion free and B̃ is symmetric. Then
there are smooth functions fα onM such that dfα = ωα for α = 1, . . . , 2(m+p)
because M is simply connected. Define a map f : M → R

2(m+p) by f = fαeα.
By virtue of (5.1), we have, for any X ∈ TxM , x ∈M

f∗x(X) = (dfα)(X)(eα)f(x) = ωα(X)(eα)f(x).(5.9)

We define Φ ∈ ISO(Ẽ, f#TR
2(m+p)) by

Φx(ζ̃α)x := (f#eα)x, α = 1, . . . , 2(m+ p)

for each x ∈ M . Therefore we get f∗ = f#Φι̃1 from (5.9) and the definition
of Φ. Thus we see that f is an immersion since f# is a linear isomorphism
at each point, Φ is an isomorphism and ι̃1 is the inclusion. It follows from a
direct calculation that

ΦJ �E = (f#J̃)Φ.(5.10)
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Since Φ sends ∇ �E-parallel frame field ζ̃1, . . . , J
�E ζ̃m+p to (f#D)-parallel frame

field f#e1, . . . , f
#e2(m+p), Φ preserves the connection, that is,

Φ∇ �E
X = (f#D)XΦ(5.11)

for any X ∈ Γ(TM). If we put N := Φ(F ), we get the following decomposition

f#TR
2(m+p) = Φ(Ẽ) = if (TM) ⊕N.

We put JN := πN (f#J̃)ιN and Ψ := πNΦι̃2. Since (5.10) holds, we have

îf ∈ HOM((TM,J), (if (TM), πf (f#J̃)ιf )),(5.12)

Ψ ∈ ISO((F, JF ), (N,JN )).

From (5.12), we can prove that f is holomorphic. Since the equation (5.11)
holds, by using Lemma 3.4, we see that the induced connections

πf (f#D)ιf ∈ C(if (TM), πf (f#J̃)ιf ), ∇N ∈ C(N,JN )

for (f#D) and the second fundamental forms

B(̂if )−1 ∈ A1(Hom((if (TM), πf (f#J̃)ιf ), (N,JN ))),

−îfA ∈ A1(Hom((N,JN ), (if (TM), πf (f#J̃)ιf )))

for (f#D) satisfy

îf∇X = πf (f#D)X ιf îf , Ψ∇F
X = ∇N

XΨ,

BX (̂if )−1 îf = ΨB̃X , −îfAXΨ = −îf ÃX

(5.13)

for any X ∈ Γ(TM). From (5.13), we can conclude that f is a complex affine
immersion with transversal bundle N and (5.7) is satisfied.

Define Θ �E ∈ Γ(Det� Ẽ) by

Θ �E := (π̃∗1Θ) ∧ (π̃∗2ΘF ).

Then Θ �E is a complex volume form which is parallel with respect to ∇ �E since
both Θ and ΘF are complex volume forms that are parallel with respect to
∇ and ∇F respectively. Then, Θ̃ := ((f#)−1Φ−1)∗Θ �E is a complex equiaffine
structure on (R2(m+p), J̃). We define ΘN by Ψ∗ΘN := ΘF . Then ΘN ∈
Γ(Det�N) since ΘF is a complex volume form on F . Since ΘF is parallel with
respect to ∇F , Ψ ∈ ISO((F, JF ), (N,JN )) and (5.14), we get

Ψ∗(∇Det�N
X ΘN ) = (∇Det�F

X ΘF )



ON A COMPLEX EQUIAFFINE IMMERSION OF GENERAL CODIMENSION 207

for any X ∈ Γ(TM) and ξi ∈ Γ(F ). Hence ΘN is a complex volume form
which is parallel with respect to ∇N . Since we get

(f#Θ̃) = (Φ−1)∗Θ̃ �E

= (Φ−1)∗((π̃∗1 Θ) ∧ (π̃∗2ΘF ))
= (((̂if )−1 ◦ πif (TM))

∗Θ) ∧ (π∗NΘN ),

f is a complex equiaffine immersion. �

Next, we prove the equivalence theorem.

Theorem 5.2 Let (M,J,∇) be a 2m-dimensional complex manifold with
complex structure J with ∇ ∈ C0(TM,J) and f (resp. g) : (M,J,Θ,∇) →
(R2(m+p), J̃ , Θ̃,D) be a complex equiaffine immersion with transversal bundle
(Nf ,ΘNf

) (resp. (Ng,ΘNg
)) with the induced complex structure Jf (resp.

Jg). The affine fundamental form, the shape tensor and the transversal con-
nection of f (resp. g) are denoted by Bf , Af and ∇Nf

(resp. Bg, Ag and
∇Ng

). If M is connected and there exists Ψ ∈ ISO((N f , Jf ), (Ng, Jg)) such
that

Bg
X = ΨBf

X , A
g
XΨ = Af

X , ∇Ng

X Ψ = Ψ∇Nf

X , Ψ∗ΘNg
= ΘNf

(5.14)

for any X ∈ Γ(TM), then there exists a complex affine transformation φ :
(R2(m+p), J̃ ,D) → (R2(m+p), J̃ ,D) such that g = φf and (φ∗)∗Θ̃ = Θ̃ and the
bundle isomorphism induced by φ∗ coincides with Ψ on Nf .

Proof. We define Φ1 ∈ ISO(if (TM), ig(TM)) by

Φ1 := îg (̂if )−1.

Then we have

Φ1î
fJ (̂if )−1 = îgJ (̂ig)−1Φ1,(5.15)

Φ1î
f∇(̂if )−1 = îg∇(̂ig)−1Φ1.(5.16)

By (5.14), it holds that

Φ1 î
fAf

X = îgAg
XΨ,(5.17)

ΨBf
X (̂if )−1 = Bg

X (̂ig)−1Φ1(5.18)

for any X ∈ Γ(TM). We define Φ : f#TR
2(m+p) → g#TR

2(m+p) by

Φ := ιgΦ1πf + ιNgΨπNf .
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From (5.15) and the assumption that Ψ ∈ ISO((N f , Jf ), (Ng, Jg)), we see
that

Φ(f#J̃) = (g#J̃)Φ.(5.19)

By virtue of (5.14), (5.16), (5.17) and (5.18), Lemma 3.4 yields

(g#D)XΦ = Φ(f#D)X(5.20)

for any X ∈ Γ(TM).
Fix a point x0 ∈M , we can write

Φx0((f
#eα)x0) = aβ

α(g#eβ)x0

for α, β = 1, . . . , 2(m+ p). Since (5.20) holds and M is connected, we have

Φx((f#eα)x) = aβ
α(g#eβ)x(5.21)

for each x ∈M . We define an affine transformation φ : R
2(m+p) → R

2(m+p) by

φ(f(x0) + eα) := g(x0) + aβ
αeβ

and define a map φ̃ : M → R
2(m+p) by

φ̃(x) := φ(f(x)) − g(x) = (aβ
αf

α(x) + gβ(x0) − aβ
γf

γ(x0) − gβ(x))eβ

for x ∈M . From (5.2) and (5.21), we obtain

Φx(dfα(f#eα)x) = dfαaβ
α(g#eβ)x(5.22)

for each x ∈M . By (5.22), it holds that

d(aα
βf

β + gα(x0) − aα
γ f

γ(x0) − gα)aα
βdf

β − dgα = 0

and φ̃(x0) = 0, we obtain φ̃ = 0, that is,

g = φ ◦ f(5.23)

on M . By virtue of (5.21) and (5.23), we get

Φx = (g#x)−1φ∗x(f#x)(5.24)

for each x ∈ M . Then (5.19) and (5.24) imply φ∗J̃ = J̃φ∗, that is, φ is a
complex affine transformation. Moreover form (5.24), we see that Ψ coincides
with the bundle isomorphism induced by φ∗ on Nf .

Since both f and g are complex equiaffine immersions, we have

f#Θ̃ = ((̂if )−1 ◦ πf )∗Θ ∧ π∗Nf ΘNf
,

g#Θ̃ = ((̂ig)−1 ◦ πg)∗Θ ∧ π∗NgΘNg
.

From the definition of Φ, we get

Φ∗(g#Θ̃) = Φ∗(((̂ig)−1 ◦ πg)∗Θ ∧ π∗NgΘNg
) = f#Θ̃.

Combining this and (5.24), we see that (φ∗)∗Θ̃ = Θ̃. �
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