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Abstract. We introduce and study here the notion of f -pluriharmonicity,
as the extension of pluriharmonicity from the context of the almost Hermitian
manifolds, to the manifolds endowed with f -structures, which are defined by K.
Yano in [12]. Then we relate f -pluriharmonicity with ±f -holomorphicity and
f -(1,1)–geodesicity. We generalize a result obtained by S. Udagawa in [11], we
give some applications by using the complex sectional curvature defined by T.
Siu in [9] and we construct some examples.
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Introduction

A basic result (of Lichnerowicz type), relating the holomorphicity with the
harmonicity, states that if M and N are almost Hermitian manifolds such
that M is cosymplectic and N is (1,2)-symplectic, then any ± holomorphic
map Φ : M → N is harmonic, [4]. If M and N are Riemann surfaces, then any
± holomorphic map Φ : M → N is harmonic with respect to any Hermitian
metrics. The notion of pluriharmonic map is a natural extension of harmonic
map from a Riemann surface. As it is pointed out in [5], a Hermitian manifold
is cosymplectic (resp. Kähler) iff any pluriharmonic map from M is harmonic
(resp. (1,1)–geodesic).

It is well known that if Φ : M → N is a ± holomorphic (resp. pluri-
harmonic) map between Kähler manifolds, then Φ is pluriharmonic (resp.
harmonic), [11]. An interesting problem is the converse: find sufficient con-
ditions under which any pluriharmonic map between Kähler manifolds is ±
holomorphic. Some results on this problem due to Dajczer-Gromoll, Dajczer-
Rodriguez, Dajczer-Thorbergsson, are extended by S. Udagawa (see [11] and
the references therein).
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In the present paper we deal with the same problem in the framework of
the f -structures, which generalize the almost Hermitian structure [12]. We
recall about this notion in section 1, where we provide some basic facts. In
section 2, as an extension from the almost Hermitian context, we introduce
the f -pluriharmonicity and f -(1,1)–geodesicity between manifolds endowed
with f -strutures. Concerning the above problem, we give here some necessary
and sufficient conditions under which an f -pluriharmonic map of rank ≥ 3
from a manifold endowed with an f -struture into a complex space form N (c)
(c �= 0) is ±f -holomorphic. This theorem generalizes Udagawa’s result [11,
Theorem 1], which is proved by a different method. We also give an example
and a consequence. In section 3 we deal with the complex sectional curvature
which was defined by T. Siu in [9]. At the end, we obtain some results on
pluriharmonic maps, corresponding to Sampson’s theorem on harmonic maps.

§1. f -structures

The notion of f -structure was introduced in [12] as a natural extension of the
almost Hermitian stucture to the manifolds of not necessarily even dimension.
A rich literature is devoted to the subject, from which we point out only some
authors: K. Yano and M. Kon, J. K. Rawnsley, D. Blair, A. Bejancu, S. Ianus,
F. E. Burstall, etc.

A manifold M carries an f -structure F if:

F ∈ C∞(End(TM)), rank f = constant, F 3 + F = 0.(1.1)

There exists always a Riemannian structure g with respect to which F is
skew-symmetric:

g(FX,Y ) + g(X,FY ) = 0, ∀X,Y ∈ C∞(TM).(1.2)

A couple (g, F ) is called a Riemannian f -structure. In particular, it can be
almost Hermitian, almost contact [2], etc.

Remark. The complexified tangent bundle T �M = TM⊗C splits into a direct
sum, corresponding to the eigenvalues i,−i, 0 of the complexification of F :

T �M = T+M ⊕ T−M ⊥ T 0M,(1.3)

where ⊕ and ⊥ denote the direct and the orthogonal sum respectively. Then,
T+M = T−M and T 0M = KerF ⊗ C.

Three basic notions concerning f -structures will be taken into account:

I. An f -stucture F is integrable if T+M is closed under the Lie bracket.
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Example 1.1. A CR-manifold is a (2n + 1)-dimensional manifold M
carrying a rank n complex subbundle V of T �M such that:

V ∩ V = 0 and [C∞(V ),C∞(V )] ⊂ C
∞(V ).

The Levi distribution of M is the rank 2n real subbundle of T �M given
by H = Re(V ⊕ V ), which carries the complex structure:

J : H −→ H , J (Z + Z) = i(Z − Z) , Z ∈ V.

There always exists a 1-dimensional distribution K such that TM =
H ⊕K. Then

F : TM −→ TM defined byF (X + ξ) = JX, ∀X ∈ C
∞(H), ξ ∈ C

∞(K),

is an integrable f -structure.

Example 1.2. A CR-submanifold M of an almost Hermitian manifold
(N, g,J ) is defined as carrying an invariant distribution D ( i.e. J (D) =
D) whose orthogonal complement D⊥(i.e. TM = D ⊥ D⊥) is anti-
invariant (J (D⊥) ⊂ TM⊥), [1]. If we define:

F : TM −→ TM, F (X + ξ) = JX , ∀X ∈ C
∞(D), ξ ∈ C

∞(D⊥),
(1.4)

then (g, F ) is a Riemannian f -structure which is integrable when (N, g,J )
is Hermitian. In particular, the integrable f -structure on the sphere
S2n−1 ⊂ C

n was noticed in [3].

II. We say that a Riemannian f -stucture (g, F ) on a manifold M satisfies
the condition Ã if:

{ ∇ZW ∈ C
∞(T−M) , ∀Z,W ∈ C

∞(T+M) and
∇ξξ ∈ C

∞Ker(F ) , ∀ξ ∈ C
∞Ker(F ),

(Ã)

where ∇ is the Levi-Civita connection of g.

Remark. In the literature, the first condition of Ã is called condition A,
[3]. When the distribution KerF is parallel with respect to ∇, then A
and Ã coincide.

Example 1.3. Let (N, g,J ) be an almost Hermitian (1, 2)-symplectic
manifold and let (K,G) be a Riemannian manifold. Then, the Rieman-
nian product manifold (N×K, g⊕G) carries the Riemannian f -structure
F = J ⊕ 0, which satisfies condition Ã.
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Proposition 1.4. Any totally geodesic CR-submanifold of a Kähler man-
ifold carries a Riemannian f -structure which satisfies condition Ã and
has parallel kernel.

Proof. Let M be a totally geodesic CR-submanifold of a Kähler manifold
(N, g,J ) and let F be the f -structure on M defined by (1.4). Then,
KerF = D⊥ is parallel. That is any ξ ∈ C

∞(KerF ) , X ∈ C
∞(TM)

satisfy M∇Xξ ∈ C
∞(KerF ) or, equivalently, J (M∇Xξ) is orthogonal to

TM , since from Gauss formula, we have:

g(J M∇Xξ, Y ) = g(J N∇Xξ, Y ) = g(N∇XJ ξ, Y ) = −g(J ξ,N ∇XY ) =

−g(J ξ,M ∇XY ) = 0 , ∀Y ∈ C
∞(TM),

where M∇ and N∇ denote the Levi-Civita connections on M and N
respectively. The condition A is satisfied since N is Kähler and M
totally geodesic. From the above remark, A and Ã coincide.

In particular, it follows:

Corollary 1.5. Any totally geodesic hypersurface of a Kähler manifold
carries a Riemannian f -structure which satisfies condition Ã and has
parallel kernel.

The condition of totally geodesicity can not be removed from Proposition
1.4 and Corollary 1.5 since the f -structure on the sphere S2n−1 ⊂ C

n

noticed in [3] does not even satisfy condition A.

III. Any map Φ : (M,gM , FM ) → (N, gN , FN ) between manifolds with Rie-
mannian f -structures is f -holomorphic if:

dΦ ◦ FM = FN ◦ dΦ(1.5)

Equivalently, we have:

dΦ(T+M) ⊂ T+N , dΦ(T−M) ⊂ T−N , dΦ(T 0M) ⊂ T 0N.

A similar definition can be given for f -antiholomorphic. We say that Φ is
±f -holomorphic if it is f -holomorphic or f -antiholomorphic.
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§2. f -pluriharmonic maps

Let Φ : (M,g,F ) −→ (N,G) be a map from a manifold with a Riemannian
f -structure to a Riemannian manifold and let h = ∇dΦ denote its second
fundamental form.
The notions of (1, 1)–geodesic map [4] and pluriharmonic map [10], [11] can
be extended from the almost Hermitian case to the case of f -structures, as
follows:

Definition 2.1. (i) Φ is f -(1, 1)–geodesic if:

h(X,Y ) + h(FX,FY ) = 0 , ∀X,Y ∈ C
∞(TM)(2.1)

(ii) Φ is f -pluriharmonic if:

h(X, ξ) = 0 , ∀X ∈ C
∞(TM) , ∀ξ ∈ C

∞(KerF )(2.2)

and

∇1,0∂Φ = Φ∇Zd”Φ(W ) − d”Φ(−∇ZW ) = 0 , ∀Z,W ∈ C
∞(T+M)

(2.3)

where −∇ZW is the projection of M∇ZW on T−M and d”Φ = dΦ|T−M .

Remark. Any f -(1,1)–geodesic map is harmonic.

By a straightforward computation, we obtain:

Lemma 2.2. The map Φ is f -(1, 1)–geodesic if and only if it satisfies (2.2)
and its restriction to any complex curve is harmonic.

We remark that Φ restricted to any complex curve is harmonic if and only
if:

h(Z,W ) = 0 , ∀Z,W ∈ C
∞(T+M).(2.4)

Proposition 2.3. Any two of the following conditions imply the other one:

(i) Φ is f -(1, 1)–geodesic ;

(ii) Φ is f -pluriharmonic;

(iii) Φ satisfies (2.2) and

⊕∇ZW ∈ Ker(dΦ) , ∀Z,W ∈ C
∞(T+M),(2.5)

where ⊕∇ZW denotes the projection of M∇ZW on T+M ⊥ T 0M .
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Proof. For any Z,W ∈ C
∞(T+M), we have:

∇1,0∂Φ(Z,W ) = Φ∇Zd”Φ(W ) − d”Φ(−∇ZW )

= Φ∇ZdΦ(W ) − dΦ(M∇ZW ) + dΦ(⊕∇ZW )

= h(Z,W ) + dΦ(⊕∇ZW ).

And the statement follows from Lemma 2.2.

Remarks. We have:

1. F satisfies condition A if and only if ⊕∇ZW = 0 , ∀Z,W ∈ C
∞(T+M).

2. If F satisfies condition A, then the notion of f -(1,1)–geodesic coincides
with f -pluriharmonic.

3. If (M,g,F ) is almost Hermitian (1, 2)-symplectic (in particular Kähler),
then (2.1) coincides with the pluriharmonicity considered in [11].

4. If (M,g,F ) is almost Hermitian, we obtain the following:

(i) Any pluriharmonic map is harmonic if and only if M is cosymplec-
tic. This statement was obtained in the Hermitian case in [5].

(ii) Any pluriharmonic map is (1, 1)–geodesic if and only if M is (1, 2)-
symplectic. In the Hermitian case, Ohnita-Vali proved in [5] that
any pluriharmonic map is (1, 1)–geodesic if and only if M is Kähler.

Theorem 2.4. Let (M,g,F ) be a manifold with Riemannian integrable f -
structure satisfying condition Ã. Then any f -pluriharmonic map Φ : M −→
N(c) of rank (dΦ◦F ) ≥ 3 into a complex space form (c �= 0) is ±f -holomorphic
if and only if:

RM (Z,W )W ∈ Ker(dΦ) , ∀Z,W ∈ C
∞(T+M) orW ∈ C

∞(KerF ).(2.6)

Remark. In particular, if M is Kähler, then (2.6) is automatically satisfied
and the theorem was obtained in [11] by a slightly different method.

Lemma 2.5. If (M,g,F ) is a manifold with Riemannian integrable f -structure
satisfying condition Ã and Φ : M −→ N is an f -pluriharmonic map into a
Riemannian manifold, then (2.6) is equivalent to:

RN (S,Q)Q = 0 ,(2.7)

where S = dΦ(Z) , Q = dΦ(W ) , ∀Z,W ∈ C
∞(T+M) orW ∈ C

∞(KerF ).
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Proof. From the assumptions, we have

RN (S,Q)Q = RN(dΦ(Z), dΦ(W ))dΦ(W )

= ∇dΦ(Z)∇dΦ(W )dΦ(W ) −∇dΦ(W )∇dΦ(Z)dΦ(W )

−∇dΦ[Z,W ]dΦ(W )

(from f -pluriharmonicity)

= ∇dΦ(Z)dΦ(∇WW ) −∇dΦ(W )dΦ(∇ZW ) −∇dΦ[Z,W ]dΦ(W )

= dΦ(RM (Z,W )W ) ,

where we used the integrability of F (when W ∈ C
∞(KerF )), the condition

Ã and again pluriharmonicity.

Proof of Theorem 2.4. If Φ is ±f -holomorphic, then (2.6) follows as being
equivalent with (2.7), which is satisfied since N is Kähler. Conversely, let
assume (2.6) or equivalently (2.7). For any P ∈ C

∞(T �N), let P ′ and P ′′

denote its holomorphic and antiholomorphic part, respectively. Then,

P ′′ = P
′ and P ′ = P

′′(2.8)

Step 1. We prove that Φ satisfies either (2.9) or (2.10), where :

dΦ(T+M) ⊂ T 1,0N , dΦ(T−M) ⊂ T 0,1N ;(2.9)

dΦ(T+M) ⊂ T 0,1N , dΦ(T−M) ⊂ T 1,0N.(2.10)

Suppose that both (2.9) and (2.10) don’t hold. Then there exists S = dΦ(Z),
Z ∈ C

∞(T+M), such that S′, S′′ �= 0 (hence R-linearely independent). Since
dim� dΦ(T+M) = rank(dΦ ◦ F ) ≥ 3, there exists Y ∈ C

∞(T+M) such that
either S′, S′′, [dΦ(Y )]′′ or S′, S′′, [dΦ(Y )]′ are R-linearely independent. We may
assume the first case without loss of generality. We can take Q = dΦ(W ) , W ∈
C
∞(T+M) satisfying Q′′ �= 0 and G (Q′′, S′) = 0. In fact, such a vector is

W := αZ−Y , with α = [G(V,U)− iG(V, JU)]/‖U‖2 , where (G,J) denote the
Kähler sructure on N and U = Re(S′) , V = Re([dΦ(Y )]′′) ∈ C

∞(TN). From
(2.7), we obtain:

0 = RN (S,Q,Q, S′) = RN(S,Q,Q′
, S′)

= RN(S′, Q′′, Q′′, S′) −RN (Q′, S′′, Q′′, S′)

= k{‖S′‖2‖Q′′‖2 −G(Q′, S′′)G(S′′, Q′)},
where k = − c

2 . By interchanging Z and W ∈ C
∞(T+M), we obtain:

0 = RN (S,Q, S,Q′) = k{G(S′, Q′)G(Q′′, S ′) − |G(S′′, Q′)|2 − ‖Q′‖2‖S ′‖2}.



168 C. L. BEJAN AND M. BENYOUNES

The last two relations imply:

0 = RN (S,Q,Q, S′) −RN(S,Q, S,Q′)

= k{‖S′‖2‖Q′′‖2 + |G(S′′, Q′)|2 + ‖Q′‖2‖S ′‖2},
from which we draw the false conclusion that either S′ or Q′′ = 0.

Step 2. We prove dΦ(T 0M) = 0 or equivalently, dΦ(KerF ) = 0. We may
assume (2.9) without loss of generality. Since we have rank(dΦ◦F ) ≥ 3, there
exists S �= 0, S = dΦ(Z) ∈ C

∞(T 1,0N) , Z ∈ C
∞(T+M). If ξ ∈ C

∞(KerF ),
we put Q = dΦ(ξ) ∈ T �N and then Q = Q. From (2.7) and (2.8), we obtain:
0 = RN (S,Q,Q, S) = RN(S,Q′′, Q′, S) = k‖S‖2‖Q′‖2. Then Q′ = 0 and
hence Q = 0, which complete the proof.

Example 2.6. Let M be a totally geodesic hypersurface of CP
n+1 endowed

with the f -structure given by Corollary 1.5. Then, the natural projection
π : M −→ CP

n provides an example for Theorem 2.4.

Corollary 2.7. Let (M,g,F ) be a manifold with Riemannian integrable f -
structure satisfying condition Ã. Then, for any f -pluriharmonic map Φ :
M −→ N(c) into a real space form (c �= 0), the conditions (2.6) and rank(dΦ◦
F ) ≥ 3 can not occur simultaneously.

Proof. In the same way as in [11], we let ψ : N(c) −→ Ñ(4c) be a totally real
totally geodesic immersion into a complex space form. Then, ψ ◦ Φ is a non
±f -holomorphic map and the statement follows from Theorem 2.4.

§3. Complex sectional curvature

In Theorem 2.4 (resp. Corollary 2.7) the notion of holomorphic sectional
curvature (resp. sectional curvature) was involved. This section deals with
the notion of complex sectional curvature which was introduced by T. Siu for
the proof of his strong rigidity theorem [9].

Let (N,G) be a Riemannian manifold and let y ∈ N . A plan π =
span� {S,Q} ⊂ T �

y N is nondegenerate (resp. degenerate) if dim� π = 2 (resp.
≤ 1).
The complex sectional curvature associated to a nondegenerate plan π is de-
fined by:

K� (π) =
RN (S,Q, S,Q)

‖S‖2‖Q‖2 − |G(S,Q)|2(3.1)

We will say that N is of strictly negative complex sectional curvature if K� (π)
< 0 for any non degenerate plan π ⊂ T �

y N and any y ∈ N . This notion
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corresponds to what Sampson calls in [8] strongly negative Hermitian curva-
ture. An example of this notion is any manifold of constant negative sectional
curvature, [7].

Theorem 3.1. (Sampson’s theorem) For any harmonic map Φ : M −→ N ,
where M is compact Kähler and N is a compact manifold with strictly negative
complex sectional curvature at every point, the rank dpΦ at any point p ∈ M
is at most 2.

Our aim is to obtain the conclusion, by replacing the compactness condi-
tions on M and N .

Proposition 3.2. Let (M,g,F ) be a manifold with Riemannian integrable f -
structure satisfying condition Ã and let N be a Riemannian manifold with
strictly negative (resp. strictly positive) complex sectional curvature at every
point. If Φ : M −→ N is an f -pluriharmonic map satisfying (2.6), then
rank(dΦ ◦ F ) ≤ 2.

Proof. If we suppose the contrary, then dim�dΦ(T+M) = rank(dΦ ◦ F ) ≥ 3
at a certain point p ∈ M . Therefore, there exist Z,W ∈ (T+M)p such that
the plan π = span� {Z,W} ⊂ T �

Φ(p)N is nondegenerate. From Lemma 2.5 and
(2.6), it follows K� (π) = 0, which contradicts the above hypothesis.

Corollary 3.3. If Φ : M −→ N is a pluriharmonic map from a Kähler mani-
fold into a Riemannian manifold with strictly negative (resp. strictly positive)
complex sectional curvature at every point, then rank(dΦ) ≤ 2.
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Michèle Benyounes
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