
SUT Journal of Mathematics
Vol. 39, No. 2 (2003), 137–160

Application of Local Linking to Asymptotically
Linear Elliptic Equations

Mieko Tanaka

(Received September 17, 2003; Revised December 4, 2003)

Abstract. Existence of a nontrivial solution to a semilinear elliptic equation is
established by a variational method. We consider the weak solution to −�u =
h(x, u), where h(x, u) is asymptotically linear in u both as u → 0 and u → ∞.
The proof is based on local linking theory, (PS)∗ condition and approximation
by finite dimensional subspaces for the existence of a nontrivial critical point of
a C1-class functional.
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§1. Introduction

In this paper we consider the existence of a nontrivial solution to the following
semilinear elliptic equation (P):

(P)
{−�u = h(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. We treat the
case where the non-linear term h is asymptotically linear at both 0 and ∞ in
the following sense: There exist constants b0 and b for which

g0(x, ξ) := h(x, ξ) − b0ξ = o(|ξ|) as ξ → 0 uniformly in x ∈ Ω,
g(x, ξ) := h(x, ξ) − bξ = o(|ξ|) as |ξ| → ∞ uniformly in x ∈ Ω.

Many authors treated this problem by variational methods under some con-
dition on b0 and b. For example, there are papers studying nonresonant case
(b �∈ σ(−�)) ([1], [7]), resonant case (b0 �= b ∈ σ(−�)) ([3], [4], [6], [8], [10],
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[13], [15]) and strong resonant case (b0 = b ∈ σ(−�)) ([5], [12]) (Note that
some authors use the term “strong resonant case” in a slightly different sense).
As for the resonant case with b0 �= b, Masiello and Pisani [8] and Mizoguchi
[10] dealt with the case where g is bounded, while Bartsch and Li [3] considered
the case where there exist some α > 0, C > 0 such that

G(x, ξ) − 1
2g(x, ξ)ξ ≥ C(|ξ|α+1 − 1)

or
1
2g(x, ξ)ξ − G(x, ξ) ≥ C(|ξ|α+1 − 1)

(1.1)

holds for G(x, ξ) :=
∫ ξ
0 g(x, s) ds. On the other hand, Silva [13] considered g

satisfying lim inf |ξ|→∞ gξ(x, ξ) > b0 − b or lim sup|ξ|→∞ gξ(x, ξ) < b0 − b where
gξ(x, ξ) := ∂ξg(x, ξ). Zou and Liu [15] dealt with the following condition

|g(x, ξ)| ≤ c(1 + |ξ|β) and lim inf
|ξ|→∞

±G(x, ξ)
|ξ|β+1

=: a±(x) > 0 uniformly in x ∈ Ω,

(1.2)

where 0 < β < 1.
In this paper, we introduce a new condition which guarantees the existence

of a nontrivial solution to (P) even in the resonant case (see the condition
(C2) in Section 3). For example, the following g(x, ξ) satisfies our assumption
(C2):

g(x, ξ) = a(x, ξ)|ξ|β sgn ξ + b(x, ξ)|ξ|α sgn ξ,

where a(x, ξ) and b(x, ξ) are some suitable bounded functions and α, β are
constants satisfying 0 < α ≤ β < 1 and 2β < α + 1 (see the condition (C2) in
Section 3). In general this case does not satisfy any of the conditions treated
by the above-mentioned authors. (see Example 18 in Section 3)

The proof of this paper depends on the existence theory of a non-trivial
critical point for a C1-class functional proved in [11]. The proof of [11] is
based on local linking, minimax theorem and (WPS)∗ condition which is a
generalization of the (PS)∗ condition (see Definition 8 in [11]). Therefore in
the following Section 2, we prepare some propositions and then sketch a proof
of abstract theory in [11] by restricting to C1-class functionals satisfying (PS)∗

condition. In Section 3, we prove the existence of a non-trivial weak solution
to (P).

§2. Abstract theory

Throughout this section, we let E be a Hilbert space with inner 〈·, ·〉 and norm
‖ · ‖, and Φ: E → R a C1-class functional. We suppose {En}n is a sequence
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of finite dimensional subspace of E satisfying the following condition:

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ E, E =
∞⋃

n=1

En. (2.1)

We define Pn as the orthogonal projection from E onto En.

Definition 1 (i) A sequence {uj}j in E is called a (PS)∗c sequence (w.r.t.
Φ and {En}n) provided uj ∈ Enj , nj → ∞, Φ(uj) → c and Pnj (∇Φ(uj))
→ 0 (as j → ∞);

(ii) Φ is said to satisfy the (PS )∗c condition for c ∈ R if every (PS)∗c sequence
has a norm convergent subsequence.

(iii) If there exists an orthogonal decomposition E = V0 ⊕ W0 and an r > 0
satisfying the following condition, then Φ is said to have a local linking
at 0 with respect to (V0,W0):{

Φ(u) ≥ 0 (∀u ∈ BrV0 ),
Φ(u) ≤ 0 (∀u ∈ BrW0 ),

(2.2)

where BrV0 := {u ∈ V0 : ‖u‖ ≤ r}, BrW0 := {u ∈ W0 : ‖u‖ ≤ r}.
Definition 2 A subset Ẽ is defined by Ẽ := {u ∈ E : ∇Φ(u) �= 0 }. A map
V : Ẽ → E is called a pseudo-gradient vector field for Φ if V satisfies the
following conditions on Ẽ:{ ‖V (u)‖ ≤ 3

2 ‖∇Φ(u)‖,
〈∇Φ(u) , V (u) 〉 ≥ 1

2 ‖∇Φ(u)‖2.

It is well known that there exists a locally Lipschitz continuous pseudo-gradient
vector field V for every C1 class functional Φ ([9, Lemma 6.1]).

For such a pseudo-gradient vector field V for Φ, the ordinary differential
equation

du(t)
dt

= −V (u(t)), u(0) = u0 (u0 ∈ Ẽ)

has a unique solution which is maximally defined in the positive direction of
t. This maximal solution will be called the pseudo-gradient flow defined by V
and (starting from) u0.

We say that the sequence {En}n satisfying (2.1) is compatible with the
orthogonal decomposition V0 ⊕ W0 [resp. V∞ ⊕ W∞] if

E = V0 ⊕ W0, En = (En ∩ V0) ⊕ (En ∩ W0) for every n

[resp. E = V∞ ⊕ W∞, En = (En ∩ V∞) ⊕ (En ∩ W∞) for every n].

Now we prepare the conditions relevant to our abstract theory.
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(Φ1) With respect to a sequence {En}n of finite dimensional subspaces satis-
fying (2.1), Φ satisfies (PS)∗c condition for every c ∈ R.

(Φ2) Φ is bounded on every bounded set.

(Φ3) Φ has a local linking at 0 w.r.t. some orthogonal decomposition E =
V0 ⊕ W0.

(Φ4) There exists an orthogonal decomposition E = V∞ ⊕ W∞ that satisfies
the following (i) to (iii) for some number λ ≥ 0, δ > 0, R1 > 0: where
u = w∞ + v∞ (w∞ ∈ W∞ , v∞ ∈ V∞ )

(i)
〈
∇Φ(u) , v∞ − λδ2 w∞

‖w∞‖2−2λ

〉
> 0, (if ‖v∞‖ = δ‖w∞‖λ , ‖v∞‖ ≥

R1),

(ii) 〈∇Φ(u) , v∞〉 > 0, (if ‖v∞‖ ≥ δ‖w∞‖λ , ‖v∞‖ = R1),

(iii) for every c < 0 there exists an R > 0 such that Φ(u) < c provided
‖v∞‖ ≤ δ‖w∞‖λ and ‖w∞‖ ≥ R.

Remark. The conditions (i) and (ii) in (Φ4) mean that the gradient vector
∇Φ points outward to the shaded region on its boundary, as sketched in Figure
1.

V∞

W∞

‖v∞‖ = δ‖w∞‖λ

‖v∞‖ = R1

∇Φ

∇Φ ∇Φ

∇Φ

Figure 1: meaning of (Φ4)
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When we assume (Φ1), (Φ3) and that {En}n is compatible w.r.t V0 ⊕ W0

and V∞ ⊕ W∞, we set the following notation

Φn := Φ|En ,
Φc

n :=
{
u ∈ En : Φ(u) ≤ c

}
, (Φn)c :=

{
u ∈ En : Φ(u) ≥ c

}
,

E1
n := En ∩ V0, E2

n := En ∩ W0,

Bj
n := BrE ∩ Ej

n (j = 1, 2), Sj
n := ∂Bj

n (j = 1, 2).

We need the following lemma, proposition and its corollary for our abstract
theory.

Lemma 3 ([11, Lemma 11]) If Φ satisfies (Φ4) with {En}n being compat-
ible w.r.t. (V∞,W∞) , then Φ|En satisfies (Φ4) with (V∞,W∞) replaced by
(V∞ ∩ En,W∞ ∩ En) for every n ∈ N.

Proposition 4 ([11, Proposition 4]) Suppose that there exists an orthogo-
nal decomposition E = V∞⊕W∞, and Φ satisfies the following condition (R).
Then there exists a locally Lipschitz continuous pseudo-gradient vector field V
for Φ on Ẽ, for which the region

U := { (v∞, w∞) | ‖v∞‖ < max{R1, δ‖w∞‖λ} } (2.3)

encloses pseudo-gradient flows starting from its elements.

(R) The following (i), (ii) hold for some λ ≥ 0, δ > 0, and R1 > 0, where

u = w∞ + v∞ (w∞ ∈ W∞ , v∞ ∈ V∞ ).

(i)
〈
∇Φ(u) , v∞ − λδ2 w∞

‖w∞‖2−2λ

〉
> 0 (if ‖v∞‖ = δ‖w∞‖λ , ‖v∞‖ ≥

R1),

(ii) 〈∇Φ(u) , v∞〉 > 0 (if ‖v∞‖ ≥ δ‖w∞‖λ , ‖v∞‖ = R1).

Corollary 5 ([11, Corollary 6]) Suppose that Φ satisfies the condition (R)
in Proposition 4 and let U be as in (2.3). In addition, assume that the following
conditions hold:

(a) Φ is bounded on every bounded sets.

(b) For every ε, M > 0 with ε < M < ∞,

inf { ‖∇Φ(u)‖ | u ∈ Φ−1([−M,−ε]) } > 0.
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(c) Under the notation that Q∞ is the orthogonal projection onto W∞,

lim
R→∞

sup {Φ(u) | u ∈ U, ‖Q∞u‖ ≥ R } = −∞.

Then every continuous map ϕ : Sn → U ∩ {u ∈ Ẽ | Φ(u) < 0 } with n <
dim W∞−1 (Sn :n-dimensional usual sphere) is homotopic to a constant map
in U ∩ {u ∈ E | Φ(u) < 0 }.

The next lemma is stated as Lemma 6.5 in [9] and it can be proved by the
standard deformation argument (cf. [14, Lemma 2.3]).

Lemma 6 (Deformation Lemma) Suppose (Φ1) and (Φ3) hold and there
exists no non-trivial critical point of Φ. Then there exist some ε > 0 and
n0 ∈ N such that for every n ≥ n0 there exist continuous deformations ξn, ηn ∈
C( [0, 1] × En , En) satisfying the following conditions, where r > 0 satisfies
(2.2) in (Φ3).

(1) ξn(0, ·) = ηn(0, ·) = id,

(2) ξn(t, ·), ηn(t, ·) are homeomorphisms from En to En for every t ∈ [0, 1],

(3) ‖ξn(t, u) − u‖ ≤ r
2 , ‖ηn(t, u) − u‖ ≤ r

2 for every (t, u) ∈ [0, 1] × En,

(4) sup Φ ◦ ξn([0, 1] × B2
n) = inf Φ ◦ ηn([0, 1] × B1

n) = 0,

(5) Φ ◦ ξn(t, ·) |S2
n
< 0 , Φ ◦ ηn(t, ·) |S1

n
> 0 for every t ∈ (0, 1],

(6) ξn(1, u) ⊂ Φ−ε
n for every u ∈ (

B2rE ∩ Φε
n

)\B r
3
E,

(7) ηn(1, u) ⊂ (Φn)ε for every u ∈ (
B2rE ∩ (Φn)−ε

)\B r
3
E.

Now we can prove our abstract result. We state a short proof of the follow-
ing theorem for reader’s convenience because it was proved under the general
(WPS)∗c condition in [11, Theorem 12].

Theorem 7 ([11, Theorem 12]) Suppose that Φ satisfies the conditions (Φ1)
to (Φ4), and {En}n in (Φ1) is compatible with the decomposition V0 ⊕ W0 in
(Φ3) and V∞ ⊕ W∞ in (Φ4). Moreover, suppose that

lim sup
n→∞

{dim(W∞ ∩ En) − dim(W0 ∩ En) } > 0 (2.4)

holds. Then Φ has at least one non-trivial (i.e., non-zero) critical point.

Remark 8 We denote that if dim W∞ < ∞ and dimW0 < ∞ hold, then the
condition (2.4) is satisfied if only if dim W∞ > dim W0 holds. And also if
codimW∞ < ∞ and codimW0 < ∞ hold, then the condition (2.4) is satisfied
if only if codimW∞ < codimW0 holds.
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Proof. We prove this theorem by contradiction. So suppose that there exists
no critical points other than the origin.

Let U be the set defined by (2.3) and r > 0 satisfy (2.2) in (Φ3). We
may assume B2rE ⊂ U by taking r > 0 small enough. We let n0, ε > 0,
ξn, ηn ∈ C( [0, 1] × En, En ) satisfy the conditions (1) to (7) in Lemma 6, and
set An := ξn(1, S2

n).
Since Φ satisfies the condition (Φ1) and Φ has no non-trivial critical points,

for every M > 0 there exist n1 ∈ N and b > 0 such that

‖∇Φn(u)‖ ≥ b for every u ∈ Φ−1
n ( (−M,−ε] ) ∪ Φ−1

n ( [ε,M) ) (2.5)

holds for every n ≥ n1.
Suppose dimW0 > 0. Then dimEn ∩ W0 > 0 holds for large n because

of the compatibility of {En}n with the orthogonal decomposition V0 ⊕ W0.
By the assumption (2.4), there exists an increasing sequence {nj}j of natural
numbers satisfying dim Enj ∩ W∞ − dimEnj ∩ W0 > 0. We may also assume
that dim Enj ∩ W0 > 0.

We can identify the usual sphere Sm with S2
nj

where m := dim E2
nj

and
note that Anj is homeomorphic to S2

nj
by the condition (2) in Lemma 6.

Since we can apply Corollary 5 with E replaced by Enj and Φ by Φnj for
sufficiently large j (see [11, Lemma 11] for detail), we obtain a continuous
map τj ∈ C([0, 1] × Anj , Enj ) satisfying the following conditions:

τj(0, u) = u for u ∈ Anj ,
τj(1, u) = aj for u ∈ Anj ,

τj(t, u) ∈ U ∩ {u ∈ Enj |Φnj (u) < 0} for u ∈ Anj , t ∈ [0, 1],

where aj ∈ U ∩ {u ∈ Enj |Φnj (u) < 0}. Moreover, because of the assumption
(Φ4) and the construction of τj (see [11] for details), we may suppose that
there exists a constant C > 0 independent of j such that ‖τj(t, u)‖ ≤ C for
every u ∈ Anj , t ∈ [0, 1]. Therefore, M := sup{Φ(u)|‖u‖ ≤ C} < ∞ by the
condition (Φ2).

Next we define γj ∈ C(∂([0, 1] × Bnj ), Enj ) by

γj(t, u) :=




u (u ∈ B2
nj

, t = 0),
ξnj (2t, u) (u ∈ S2

nj
, t ∈ (0, 1/2]),

τj(2t − 1, ξnj (1, u)) (u ∈ S2
nj

, t ∈ (1/2,1)),
aj (u ∈ B2

nj
, t = 1).

Set Γj := { ρ | ρ ∈ C([0, 1] × B2
nj

, Enj ), ρ|∂([0,1]×B2
nj

) = γj }. Note that by the
well known Dugundij extension theorem, there exists a ρ ∈ Γj with values in
the ball {u ∈ Enj | ‖u‖ ≤ C }. Therefore,

c := inf
ρ∈Γj

sup {Φ(u) | u ∈ ρ([0, 1] × B2
nj

) } ≤ M
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holds by the definition of M . By a standard argument using degree theory
(cf. [2, Lemma 3.2]), it can be proved that ρ([0, 1] × B2

nj
) ∩ ηnj (1, S1

nj
) �= ∅

for any ρ ∈ Γj . Hence c ≥ ε. On the other hand, c0 := sup {Φ(u) | u ∈
γj(∂([0, 1] × B2

nj
)) } ≤ 0 holds because of construction of γj. Therefore, by

Ekeland’s mini-max theorem ([9, Theorem 4.3]), there exists a point uj ∈ Enj

such that
ε ≤ Φnj(uj) < M + 1 and ‖∇Φnj (uj)‖ < 1/j.

However we get a contradiction to (2.5) for j large enough.
In the case where W0 = {0}, then Φ(0) = 0 and Φ(ηnj (1, u)) ≥ ε for u ∈

S1
nj

. We note that W∞ �= {0} by (2.4). By (iii) of (Φ4), there exists enj ∈ Enj

such that Φ(enj ) < 0 and ‖enj‖ > 2r. Set Γj := {ρ ∈ C([0, 1], Enj ) | ρ(0) =
0, ρ(1) = enj}. Then we similarly obtain ρ([0, 1]) ∩ ηnj (1, S1

nj
) �= ∅ for any

ρ ∈ Γj by degree theory because of E = V0. Therefore, applying Mountain
pass lemma (cf. [9, Theorem 4.10]), we obtain a point uj ∈ Enj such that
ε ≤ Φnj(uj), supj Φnj(uj) < ∞ and ‖∇Φnj (uj)‖ < 1/j. Hence the same
contradiction as for the previous case occurs.

§3. Application

We consider the following semilinear elliptic problem:

(P)
{−�u = h(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω (C2 class
will suffice). The nonlinear term h ∈ C

(
Ω × R, R

)
is assumed to satisfy the

following conditions (h1) and (h2):

(h1) h(x, 0) = 0 for every x ∈ Ω,

(h2) there exist constants b0, b ∈ R that satisfy the following conditions:
g0(x, ξ) := h(x, ξ) − b0ξ = o(|ξ|) as ξ → 0 uniformly in x ∈ Ω,
g(x, ξ) := h(x, ξ) − bξ = o(|ξ|) as |ξ| → ∞ uniformly in x ∈ Ω.

We set

b+
0 := min{λ |λ ∈ σ(−�), b0 < λ },

b−0 := max{λ |λ ∈ σ(−�) ∪ {−∞}, b0 > λ },

where � := ∂2/∂x2
1 + · · ·+∂2/∂x2

N denotes the usual Laplacian in L2(Ω) with
domain H2(Ω) ∩ H1

0 (Ω).
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Now we state the conditions (C1) to (C4) concerning the existence of a
non-trivial weak solution to (P). A function u is said to be a weak solution to
(P) if u ∈ H1

0 (Ω) and∫
Ω
(−�u)v dx =

∫
Ω

h(x, u)v dx for every v ∈ H1
0 (Ω).

To state the assumptions, we set G0(x, ξ) :=
∫ ξ
0 g0(x, s) ds and G(x, ξ) :=∫ ξ

0 g(x, s) ds.

(C1) g is bounded and G(x, ξ) → +∞ as |ξ| → ∞ uniformly in x ∈ Ω.

(C2) The following condition (a1) or (a2) holds for some constants 0 < α ≤
β < 1, 2β < α + 1, c1, c2 > 0 and d1, d2 ≥ 0: for every (x, ξ) ∈ Ω × R

(a1) |g(x, ξ)| ≤ c1|ξ|β + d1, G(x, ξ) ≥ c2|ξ|α+1 − d2|ξ|,
(a2) |g(x, ξ)| ≤ c1|ξ|β + d1, G(x, ξ) ≤ −c2|ξ|α+1 + d2|ξ|.

(C3) There exists a δ > 0 such that G0(x, ξ) ≥ 0 if |ξ| ≤ δ.

(C4) There exists a δ > 0 such that G0(x, ξ) ≤ 0 if |ξ| ≤ δ.

With these notations, our main theorem reads as follows, of which the cases
referring to the condition (C2) are new (see the remark below the statement
of the theorem).

Theorem 9 Assume that the nonlinear term h satisfies (h1) and (h2). More-
over let b0, g0, b and g be as in (h2). Then the elliptic equation (P) has a
non-trivial weak solution in each of the following cases:

(A1) (non-resonant case) b0 /∈ σ(−�), b /∈ σ(−�) and b /∈ [b−0 , b+
0 ).

(A2) (case of resonance only at 0) b0 ∈ σ(−�), b �∈ σ(−�) and one of the
following conditions holds:

(1) b �∈ [b0, b
+
0 ) and (C3),

(2) b �∈ [b−0 , b0) and (C4).

(A3) (case of resonance only at ∞) b0 /∈ σ(−�), b ∈ σ(−�) and one of the
following conditions holds:

(1) b0 < b and (C1) or (a1) of (C2),

(2) b0 > b and (a2) of (C2).

(A4) (case of resonance at 0 and ∞) b0 ∈ σ(−�), b ∈ σ(−�) and one of the
following conditions holds:
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(1) (C3), b0 < b and (C1) or (a1) of (C2),
(2) (C3), b0 ≥ b and (a2) of (C2),
(3) (C4), b0 ≤ b and (C1) or (a1) of (C2),
(4) (C4), b0 > b and (a2) of (C2).

Remark 10 There exist many papers almost covering the cases (A1), (A2),
(A3) with (C1) and (A4) with (C1) of Theorem 9 (cf. [1], [3], [6], [7], [8],
[10]). However, the author considers that it is worthwhile to show that we can
systematically prove the known results together with new ones.

To prove theorem 9, we define a Hilbert space E and a C1-class functional
Φ on H. Namely, set E := H1

0 (Ω) with norm ‖u‖E := ‖∇u‖2, where ‖u‖p is
the usual Lp norm. Throughout this section, we will write ‖u‖E = ‖u‖,
〈·, ·〉E = 〈·, ·〉. The functional of our concern is defined as

Φ(u) :=
1
2
‖u‖2 −

∫
Ω

H(x, u) dx (3.1)

=
1
2
‖u‖2 − b

2
‖u‖2

2 −
∫

Ω
G(x, u) dx (3.2)

=
1
2
‖u‖2 − b0

2
‖u‖2

2 −
∫

Ω
G0(x, u) dx (3.3)

where H(x, ξ) :=
∫ ξ
0 h(x, s) ds. It is well known that Φ is a C1-class functional

on E and a critical point of Φ is a weak solution to (P). Moreover it is also
well known that

〈∇Φ(u), v〉 = 〈u, v〉 −
∫

Ω
h(x, u(x)) v(x) dx (3.4)

= 〈u, v〉 − b

∫
Ω

u(x)v(x) dx −
∫

Ω
g(x, u(x)) v(x) dx (3.5)

= 〈u, v〉 − b0

∫
Ω

u(x)v(x) dx −
∫

Ω
g0(x, u(x)) v(x) dx (3.6)

for every u, v ∈ E. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · be the sequence of all
eigenvalues of −� with Dirichlet boundary condition repeated as many times
as their multiplicity, and let en be an eigenfunction of −� corresponding to
λn. Note that each en belongs to C(Ω̄) by the regularity theorem and Sobolev
embedding theorem. We define X+ := lin.sp.{ en : en corresponding to λn >
b }, X− := lin.sp.{ en : en corresponding to λn < b }, X+

0 := lin.sp.{ en :
en corresponding to λn > b0 }, X−

0 := lin.sp.{ en : en corresponding to λn <
b0 }, X0 := ker(−� − b), and X0

0 := ker(−� − b0). X±, X0 are mutually
orthogonal in E and also in L2, and X±

0 , X0
0 are orthogonal in E and in L2.

We can easily see that the following lemma holds by the definition of X± and
X±

0 .
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Lemma 11 


a+
0 := inf

u∈X+
0 ,‖u‖=1

∫
Ω
|∇u|2 − b0 |u|2 dx > 0

a+ := inf
u∈X+,‖u‖=1

∫
Ω
|∇u|2 − b |u|2 dx > 0

−a−0 := sup
u∈X−

0 ,‖u‖=1

∫
Ω
|∇u|2 − b0 |u|2 dx < 0

−a− := sup
u∈X−,‖u‖=1

∫
Ω
|∇u|2 − b |u|2 dx < 0.

(3.7)

We also obtain the following result by dim(X0 ⊕ X−) < ∞.

Lemma 12 (cf.[11, Lemma 22]) If (C1) holds, then∫
Ω

G(x, u) dx → ∞ as ‖u‖ → ∞ in X0 ⊕ X−.

Lemma 13 If h satisfies (h1) and (h2), then every bounded (PS)∗c sequence
has a convergent subsequence for every c ∈ R.

Proof. Let {uj} be a bounded (PS)∗c sequence for Φ. Then, by taking a
subsequence if necessary, we may assume that there exists some u ∈ E such
that

uj ⇀ u in E, uj → u in L2, (3.8)
h(x, uj) → h(x, u) in L2, (3.9)

since {uj} is bounded and h satisfies |h(x, u)| ≤ C |u| for some constant C > 0.
On the other hand, we have

‖uj − u‖2 = 〈Pnj∇Φ(uj) −∇Φ(u), uj − u〉
+

∫
Ω

(h(x, uj) − h(x, u)) (uj − u) dx +
∫

Ω
h(x, uj)(Pnj u − u) dx

Therefore we obtain uj → u in E by using (3.8) and (3.9).

Lemma 14 Assume that h satisfies (h1) and (h2). In addition, suppose that
one of b �∈ σ(−�), (C1) or (C2) holds. Then Φ satisfies (PS)∗c condition for
every c ∈ R.
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Proof. Let {uj} ⊂ E be a (PS)∗c sequence w.r.t. Φ and {nj} be a sequence
such that uj ∈ Enj and nj → ∞ as j → ∞. By Lemma 13, it remains to
show that {uj} is bounded. Throughout this proof, we let C and Ci (i ∈ N)
be positive constants independent of j, and we write uj = u+

j +u0
j +u−

j where
u±

j ∈ X± and u0
j ∈ X0. Because of the definition of X±, Pnju

±
j = u±

j and
(3.5), we have

〈Pnj∇Φ(uj), u±
j 〉 =

∫
Ω
|∇u±

j |2 − b|u±
j |2 dx −

∫
Ω

g(x, uj)u±
j dx. (3.10)

(i) The case of b �∈ σ(−�).
In this case, X0 = {0} holds. By the condition (h2), for every ε > 0 there
exists a Cε > 0 such that |g(x, ξ)| ≤ ε|ξ| + Cε for every ξ ∈ R and x ∈ Ω.
Therefore by Hölder’s inequality and Sobolev’s embedding, we have∣∣∣∣

∫
Ω

g(x, uj)u±
j dx

∣∣∣∣ ≤ εC‖u±
j ‖‖uj‖ + C ′

ε‖u±
j ‖

where C ′
ε is a positive constant depending only on ε > 0 and Ω. Hence by

recalling the definitions of a+ and a− in (3.7) and using (3.10), we obtain for
j large enough

‖u+
j ‖ ≥ a+‖u+

j ‖2 − εC‖u+
j ‖‖uj‖ − C ′

ε‖u+
j ‖,

‖u−
j ‖ ≥ a−‖u−

j ‖2 − εC‖u−
j ‖‖uj‖ − C ′

ε‖u−
j ‖.

Here, fixing an ε > 0 such that 0 < ε < min{a+, a−}/2C, we get

2(1 + C ′
ε) ≥ (min{a+, a−} − 2εC)

(
‖u+

j ‖ + ‖u−
j ‖

)
and so {uj} is bounded.

(ii) The case of (C1).
Let M := supx∈Ω,ξ∈� |g(x, ξ)|. Then by (3.10), we obtain for j large enough

‖u+
j ‖ ≥ a+‖u+

j ‖2 − M‖u+
j ‖1 ≥ a+‖u+

j ‖2 − MC‖u+
j ‖,

and so MC + 1 ≥ a+‖u+
j ‖ holds, hence ‖u+

j ‖ is bounded. Similarly we obtain
MC + 1 ≥ a−‖u−

j ‖, and so ‖u−
j ‖ is bounded. Next if ‖u0

j‖ is not bounded,
we may assume ‖u0

j‖ → ∞ (as j → ∞), going if necessary to a subsequence.
Since G satisfies the following equation∫

Ω
G(x, uj) dx =

∫ 1

0

d

ds
G(x, u0

j + s(u+
j + u−

j )) ds

=
∫

Ω
G(x, u0

j ) dx

+
∫

Ω

∫ 1

0
g(x, u0

j + s(u+
j + u−

j ))(u+
j + u−

j ) ds dx,
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the boundedness of ‖u±
j ‖ and g yield

Φ(uj) =
1
2

∫
Ω
|∇uj|2 − b|uj |2 dx −

∫
Ω

G(x, u0
j ) dx

−
∫

Ω

∫ 1

0
g(x, u0

j + s(u+
j + u−

j ))(u+
j + u−

j ) ds dx

≤ C −
∫

Ω
G(x, u0

j ) dx.

Now by Lemma 12,
∫
Ω G(x, u0

j ) dx → ∞ (j → ∞) holds and so we obtain
Φ(uj) → −∞ (j → ∞). This contradicts the assumption that {uj} is a (PS)∗c
sequence.

(iii) The case of (C2).
We treat the case where (a1) of the condition (C2) holds because the case
(a2) can be handled similarly. We let p, q be positive constants such that
max{2, 1/β} ≤ p ≤ 2/β, 1/p + 1/q = 1, then the inclusions E ↪→ Lpβ and
E ↪→ Lq are continuous since 1 ≤ pβ ≤ 2 and 1 ≤ q ≤ 2. Therefore by the
assumption (a1), H lder’s inequality and Sobolev embedding theorem, we have∣∣∣∣

∫
Ω

g(x, uj)u±
j dx

∣∣∣∣ ≤ c1‖uj‖β
pβ‖u±

j ‖q + d1‖u±
j ‖1

≤ C1‖uj‖β‖u±
j ‖ + C2‖u±

j ‖.
Then because of (3.10), we obtain if j is sufficiently large

‖u+
j ‖ ≥ a+‖u+

j ‖2 − C1‖uj‖β‖u+
j ‖ − C2‖u+

j ‖,
‖u−

j ‖ ≥ a−‖u−
j ‖2 − C1‖uj‖β‖u−

j ‖ − C2‖u−
j ‖,

and so these yield

2(1 + C2) ≥ min{a+, a−}(‖u+
j ‖ + ‖u−

j ‖) − 2C1‖uj‖β

≥ min{a+, a−}(‖u+
j ‖ + ‖u−

j ‖) − C3(‖u+
j ‖ + ‖u−

j ‖)β − C3‖u0
j‖β.

Hence we have

C3‖u0
j‖β ≥ min{a+, a−}(‖u+

j ‖ + ‖u−
j ‖) − C3(‖u+

j ‖ + ‖u−
j ‖)β − 2(1 + C2).

Let yj := ‖u+
j ‖+ ‖u−

j ‖, if {yj} is not bounded, then we may assume, going
if necessary to a subsequence, yj → ∞ (as j → ∞). Since

C3‖u0
j‖β ≥ min{a+, a−}yj − C3y

β
j − 2(1 + C2)

holds for j large enough, there exists some C4 > 0 such that

‖u0
j‖β ≥ C4 yj (3.11)
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for sufficiently large j. On the other hand, because of the assumption (a1)
and dim X0 < ∞, we have∫

Ω
G(x, u0) dx ≥ c2‖u0‖α+1

α+1 − d2‖u0‖1

≥ C5‖u0‖α+1 − C6‖u0‖.

Similarly, we can also show that

∣∣∣∣
∫

Ω

∫ 1

0
g(x, u0

j + s(u+
j + u−

j ))(u+
j + u−

j ) ds dx

∣∣∣∣
≤ C

∫
Ω
|u0

j |β|u+
j + u−

j | dx + C‖u+
j + u−

j ‖β+1 + C‖u+
j + u−

j ‖

≤ C‖u0
j‖β‖u+

j + u−
j ‖ + C‖u+

j + u−
j ‖β+1 + C‖u+

j + u−
j ‖.

So by using (3.11), we see for sufficiently large j that

Φ(uj) =
1
2

∫
Ω
|∇uj |2 − b|uj |2 dx −

∫
Ω

G(x, u0
j ) dx

−
∫

Ω

∫ 1

0
g(x, u0

j + s(u+
j + u−

j ))(u+
j + u−

j ) ds dx

≤ Cy2
j − C5‖u0

j‖α+1 + C6‖u0
j‖ + C‖u0

j‖βyj + Cyβ+1
j + Cyj (3.12)

≤ C‖u0
j‖2β − C5‖u0

j‖α+1 + C6‖u0
j‖ + C‖u0

j‖β(β+1) + C‖u0
j‖β.

Hence we obtain Φ(uj) → −∞ (as j → ∞) since β(β + 1) < 2β < α + 1 and
‖u0

j‖ → ∞ by (3.11). This is a contradiction. Thus {yj} is bounded. Next
if ‖u0

j‖ is not bounded, we may similarly assume that, going if necessary to a
subsequence, ‖u0

j‖ → ∞ (as j → ∞). Then by using (3.12), we have

Φ(uj) ≤ C − C5‖u0
j‖α+1 + C6‖u0

j‖ + C‖u0
j‖β ,

and we similarly obtain Φ(uj) → −∞ (as j → ∞), which is a contradiction.
Thus ‖u0

j‖ is bounded, and so {uj} is bounded.

Lemma 15 Suppose that h satisfies (h1) and (h2), and that b �∈ σ(−�) holds.
Then Φ satisfies (Φ4) with λ = 1, V∞ = X+ and W∞ = X−. Moreover −Φ
satisfies (Φ4) with λ = 1, V∞ = X− and W∞ = X+.

Proof. We treat only the case of Φ because we can similarly prove the case
of −Φ. In correspondence with the decomposition E = X+ ⊕ X−, we write
u = u+ + u− where u± ∈ X±. Note that X0 = {0} since b �∈ σ(−�). Set
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C0 := supu∈X+,‖u‖=1

∫
Ω |∇u|2 − b|u|2 dx. We fix a δ > 0 such that δ2 <

min{a+, a−}/C0 ≤ 1 and let λ = 1. Then by the condition (h2), for every
ε > 0 there exists a Cε > 0 such that |g(x, ξ)| ≤ ε|ξ| + Cε. Hence we have∣∣∣∣

∫
Ω

g(x, u)u± dx

∣∣∣∣ ≤ εC1‖u‖‖u±‖ + CεC2‖u±‖,

where C1, C2 are positive constants independent of ε > 0 and

±〈∇Φ(u), u±〉 ≥ a±‖u±‖2 ∓
∫

Ω
g(x, u)u± dx

Here we fix an ε1 > 0 with 0 < ε1 < δ min{a+, a−}/2C1, then it holds that for
u with ‖u+‖ = δ‖u−‖
〈∇Φ(u), u+ − δ2u−〉 ≥ a+‖u+‖2 + a−δ2‖u−‖2

− (
ε1C1‖u‖ + C ′

ε1

)
(‖u+‖ + δ2‖u−‖)

≥ 2
(
min{a+, a−} − ε1C1(1 + 1/δ)

) ‖u+‖2 − 2C ′
ε1
‖u+‖.

Therefore there exists an R1 > 0 such that 〈∇Φ(u), u+ − δ2u−〉 > 0 provided
‖u+‖ = δ‖u−‖, ‖u+‖ ≥ R1.

Similarly for u with ‖u+‖ ≥ δ‖u−‖ we have

〈∇Φ(u), u+〉 ≥ a+‖u+‖2 − ε1C1‖u‖‖u+‖ − C ′
ε1
‖u+‖

≥ (
a+ − ε1C1(1 + 1/δ)

) ‖u+‖2 − C ′
ε1
‖u+‖.

Hence 〈∇Φ(u), u+〉 > 0 holds for u with ‖u+‖ ≥ δ‖u−‖ and ‖u+‖ ≥ R1, and
so the conditions (i) and (ii) of (Φ4) are satisfied.

Next note that for every ε2 with 0 < ε2 < (a− − C0δ
2)/4C1 there exists

some constant Cε2 > 0 such that∣∣∣∣
∫

Ω
G(x, u) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

∫ 1

0
g(x, su)u ds dx

∣∣∣∣ ≤ ε2C1‖u‖2 + Cε2C2‖u‖

for all u ∈ E, because of the assumptions (h2) and g(x, 0) = 0.
Thus for u with ‖u+‖ ≤ δ‖u−‖ we have

Φ(u) ≤ 1
2
C0‖u+‖2 − a−

2
‖u−‖2 + ε2C1‖u‖2 + Cε2C2‖u‖

≤ 1
2
C0δ

2‖u−‖2 − a−

2
‖u−‖2 + ε2C1(1 + δ2)‖u−‖2 + Cε2C2(1 + δ)‖u−‖

≤ −1
2

(
a− − C0δ

2 − 4ε2C1

) ‖u−‖2 + 2C2Cε2‖u−‖.

Hence for every c < 0 there exists an R > 0 such that Φ(u) < c provided
‖u+‖ ≤ δ‖u−‖, ‖u−‖ ≥ R.
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Lemma 16 Suppose that h satisfies (h1) and (h2), and assume that (C1)
holds. Then Φ satisfies (Φ4) with λ = 0, V∞ = X+ and W∞ = X− ⊕ X0.

Proof. Let M := supx∈Ω,ξ∈� |g(x, ξ)|, and we write u = u+ + u0 + u− where
u± ∈ X±, u0 ∈ X0. Then we have

〈∇Φ(u), u+〉 =
∫

Ω
|∇u+|2 − b|u+|2 dx −

∫
Ω

g(x, u)u+ dx

≥ a+‖u+‖2 − M‖u+‖1

≥ a+‖u+‖2 − MC‖u+‖.

Hence there exists an R1 > 0 such that 〈∇Φ(u), u+〉 > 0 provided ‖u+‖ ≥ R1.
Next since G satisfies the equality∫

Ω
G(x, u) dx =

∫
Ω

G(x, u0 + u−) dx +
∫

Ω

∫ 1

0
g(x, u0 + u− + su+)u+ ds dx,

we obtain for u with ‖u+‖ ≤ R1

Φ(u) ≤ C0‖u+‖2 − a−

2
‖u−‖2 −

∫
Ω

G(x, u0 + u−) dx + MC‖u+‖

≤ C0R
2
1 + MCR1 − a−

2
‖u−‖2 −

∫
Ω

G(x, u0 + u−) dx

where C0 := supu∈X+,‖u‖=1

∫
Ω |∇u|2 − b|u|2 dx. Therefore, by Lemma 12, Φ

satisfies that Φ(u) → −∞ as ‖u0 + u−‖ → ∞. And so (iii) of (Φ4) holds.

Lemma 17 If h satisfies (h1) and (h2), then the following assertions (1) and
(2) hold.

(1) if (a1) of (C2) holds, then Φ satisfies (Φ4) with V∞ = X+ and W∞ =
X− ⊕ X0;

(2) if (a2) of (C2) holds, then −Φ satisfies (Φ4) with V∞ = X− and W∞ =
X+ ⊕ X0.

Proof. We treat only the case of (1), since we can similarly show that −Φ
satisfies (Φ4) in the case of (2) using the finite dimension condition of X0.
So we assume that the condition (a1) of (C2) holds and shall show that Φ
satisfies (Φ4) with δ = 1, V∞ = X+ and W∞ = X− ⊕X0. By the assumption
on α and β, we can choose λ, p and q satisfying max{1/2, β} < λ < (α+1)/2,
max{2, 1/β} < p < 2λ/β and 1/p + 1/q = 1.
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We write u = u+ + u0 + u− where u± ∈ X±, u0 ∈ X0 and let C, Ci (i ∈ N)
be suitable positive constants independent of u ∈ E and x ∈ Ω.

With the aid of Hölder’s inequality, Young’s inequality and the Sobolev’s
embedding theorem, we have∫

Ω
|u|β |v| dx ≤ C1‖u‖pβ + C2‖v‖q for any u, v ∈ E. (3.13)

Combining (3.13) with the equality
∫

Ω
G(x, u) dx =

∫
Ω

G(x, u0 + u−) dx +
∫

Ω

∫ 1

0
g(x, u0 + u− + su+)u+ ds dx,

Sobolev inequality and (a1) of (C2), we obtain∣∣∣∣
∫

Ω

∫ 1

0
g(x, u0 + u− + su+)u+ ds dx

∣∣∣∣
≤ C‖u+‖β+1 + C‖u+‖ + C

∫
Ω
|u0 + u−|β|u+| dx

≤ C‖u+‖β+1 + C‖u+‖ + C ′
1‖u0 + u−‖pβ + C ′

2‖u+‖q.

Since all norms on X0 ⊕X− are mutually equivalent, the condition (a1) of
(C2) yields∫

Ω
G(x, u0 + u−) dx ≥ C3‖u0 + u−‖α+1 − C4‖u0 + u−‖.

Therefor for u with ‖u+‖ ≤ ‖u0 + u−‖λ we have

Φ(u) ≤ C0

2
‖u+‖2 − a−

2
‖u−‖2 −

∫
Ω

G(x, u0 + u−) dx + C‖u+‖β+1 + C‖u+‖

+C ′
1‖u0 + u−‖pβ + C ′

2‖u+‖q

≤ C0

2
‖u+‖2 − a−

2
‖u−‖2 − C3‖u0 + u−‖α+1 + C4‖u0 + u−‖

+C‖u+‖β+1 + C‖u+‖ + C ′
1‖u0 + u−‖pβ + C ′

2‖u+‖q

≤ C0

2
‖u0 + u−‖2λ − a−

2
‖u−‖2 − C3‖u0 + u−‖α+1 + C4‖u0 + u−‖

+C‖u0 + u−‖λ(β+1) + C‖u0 + u−‖λ + C ′
1‖u0 + u−‖pβ

+C ′
2‖u0 + u−‖λq

where C0 := supu∈X+,‖u‖=1

∫
Ω |∇u|2 − b|u|2 dx. Now because of λ(β + 1) <

2λ, pβ < 2λ < λq < 2λ and 2λ < α + 1, it implies that Φ(u) → −∞ as
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‖u0 +u−‖ → ∞ with ‖u+‖ ≤ ‖u0 +u−‖λ. Therefore the condition (iii) of (Φ4)
holds.

Next by the inequality (3.13), we have
∣∣∣∣
∫

Ω
g(x, u)u+ dx

∣∣∣∣ ≤ C‖u+‖β+1 + C‖u+‖ + C

∫
Ω
|u0 + u−|β|u+| dx

≤ C‖u+‖β+1 + C‖u+‖ + C ′
1‖u0 + u−‖pβ

+ C ′
2‖u+‖q. (3.14)

Therefore we obtain for u with ‖u0 + u−‖λ ≤ ‖u+‖

〈∇Φ(u), u+〉
≥ a+‖u+‖2 − C‖u+‖β+1 − C ′

1‖u0 + u−‖pβ − C‖u+‖ − C ′
2‖u+‖q (3.15)

≥ a+‖u+‖2 − C‖u+‖β+1 − C‖u+‖ − C ′
1‖u+‖pβ/λ − C ′

2‖u+‖q.

Because of pβ < 2λ, there exists an R2 > 0 such that 〈∇Φ(u), u+〉 > 0
provided ‖u+‖ ≥ R2, ‖u0 + u−‖λ ≤ ‖u+‖.

Similarly using (3.13) we have
∣∣∣∣
∫

Ω
g(x, u)(u0 + u−) dx

∣∣∣∣
≤ C‖u0 + u−‖β+1 + C‖u0 + u−‖ + C

∫
Ω
|u+|β|u0 + u−| dx

≤ C‖u0 + u−‖β+1 + C‖u0 + u−‖ + C ′
1‖u+‖pβ + C ′

2‖u0 + u−‖q,

and combining with (3.14) and (3.15), we obtain for u with ‖u0+u−‖λ = ‖u+‖
〈
∇Φ(u) , u+ − λ

u0 + u−

‖u0 + u−‖2−2λ

〉
E

≥ a+‖u+‖2 −
∣∣∣∣
∫

Ω
g(x, u)u+ dx

∣∣∣∣ − λ

‖u0 + u−‖2−2λ

∣∣∣∣
∫

Ω
g(x, u)(u0 + u−) dx

∣∣∣∣
≥ a+‖u+‖2 − C‖u+‖β+1 − C‖u+‖ − C ′

1‖u0 + u−‖pβ − C ′
2‖u+‖q

− λ

‖u0 + u−‖2−2λ

{
C‖u0 + u−‖β+1 + C‖u0 + u−‖ + C ′

1‖u+‖pβ

+C ′
2‖u0 + u−‖q

}
≥ a+‖u0 + u−‖2λ − C‖u0 + u−‖λ(β+1) + C‖u0 + u−‖λ − C ′

1‖u0 + u−‖pβ

−C ′
2‖u0 + u−‖λq − λ

{
C‖u0 + u−‖β+2λ−1 + C‖u0 + u−‖2λ−1

}
−λ

{
C ′

1‖u0 + u−‖pβ−(2−2λ) + C ′
2‖u0 + u−‖q−(2−2λ)

}
.
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Therefore there exists an R3 > 0 such that〈
∇Φ(u) , u+ − λ

u0 + u−

‖u0 + u−‖2−2λ

〉
> 0

provided ‖u0 +u−‖λ = ‖u+‖, ‖u+‖ ≥ R3 since 2λ > max{λ(β +1), pβ, λq, β +
2λ − 1, pβ − (2 − 2λ), q − (2 − 2λ)}. Therefore, if we set R1 := max{R2, R3},
then the conditions (i) and (ii) of (Φ4) are satisfied.

Lemma 18 Let h satisfy (h1) and (h2) and suppose that one of the following
conditions holds:

(1) b0 ∈ σ(−�) and (C3) holds;

(2) b0 ∈ σ(−�) and (C4) holds;

(3) b0 �∈ σ(−�).

Then Φ has a local linking at 0 w.r.t. the following decomposition E = V0⊕W0

in each of the cases:


V0 = X+
0 , W0 = X0

0 ⊕ X−
0 in the case of (1),

V0 = X0
0 ⊕ X+

0 , W0 = X−
0 in the case of (2),

V0 = X+
0 , W0 = X−

0 in the case of (3).
(3.16)

Proof. We fix 2 < p ≤ 2N/(N − 2). By the assumption (h2), for every ε > 0
there exists a Cε > 0 such that

|G0(x, ξ)| ≤ ε |ξ|2 + Cε|ξ|p, (3.17)

Note that E is continuously embedding in Lp(Ω). This readily yields the proof
in cases of (1) and (3). Indeed, we can obtain for u± ∈ X±

0

±Φ(u±) ≥ a±0
2
‖u±‖2 ∓

∫
Ω

G0(x, u±) dx

≥ a±0
2
‖u±‖2 − εC‖u±‖2 − CεC‖u±‖p (3.18)

for some constant C > 0 independent of u±. Therefore ±Φ(u±) ≥ 0 for ‖u±‖
small enough. Furthermore in the case of (1), by dim(X0

0 ⊕ X−
0 ) < ∞, there

exists some constant M > 0 such that ‖u0 + u−‖∞ ≤ M‖u0 + u−‖. Hence if
‖u0 + u−‖ ≤ δ/M where δ is a constant satisfying the condition (C3), then
‖u0 + u−‖∞ ≤ δ and

∫
Ω G0(x, u0 + u−) dx ≥ 0. Therefore it remains to prove

the case of (2).



156 M. TANAKA

Using the inequality (3.18), if we choose sufficiently small ε > 0, there
exists an r > 0 such that

Φ(u) ≤ 0 if u ∈ W0, ‖u‖ ≤ r.

Next for every u ∈ V0, we write u = u+ + u0 where u+ ∈ X+
0 and u0 ∈ X0

0 .
Since X0

0 is a finite-dimensional space, there exists some constant M > 0 such
that ‖u0‖∞ ≤ M‖u0‖. Let u ∈ V0 be such that ‖u‖ ≤ δ/2M where δ is a
constant satisfying (C4) and set Ω1 := {x ∈ Ω ; |u+(x)| ≤ δ/2}, Ω2 := Ω \ Ω1.
On Ω1, we have |u(x)| ≤ |u+|+|u0| ≤ δ since ‖u0‖∞ ≤ M‖u0‖ ≤ M‖u‖ < 2/δ.
Hence the assumption (C4) yields∫

Ω1

G0(x, u) dx ≤ 0.

On the other hand, on Ω2, we have |u(x)| ≤ 2|u+(x)| and∫
Ω2

G0(x, u) dx ≤ 4ε‖u+‖2
2 + 2pCε‖u+‖p

p

by the inequality (3.17). Therefore for every u with u ∈ V0, ‖u‖ ≤ δ/2M we
have

Φ(u) ≥ a+
0

2
‖u+‖2 − 4ε‖u+‖2

2 − 2pCε‖u+‖p
p −

∫
Ω1

G0(x, u) dx

≥ a+
0

2
‖u+‖2 − εC3‖u+‖2 − C ′

ε‖u+‖p.

Therefore, if we fix ε > 0 sufficiently small, then there exists some 0 < r′ ≤
δ/2M such that

Φ(u) ≥ 0 if u ∈ V0, ‖u‖ ≤ r′.

Proof of Theorem 9. We show that we can apply Theorem 7 to either Φ
defined by (3.1) or −Φ and obtain a non-trivial critical point of Φ, which yields
a non-trivial weak solution to (P). Therefore we shall show that Φ or −Φ satisfy
the assumptions of Theorem 7 in each of the cases stated Theorem 9. We
define En := lin.sp.{e1, · · · , en}, and we note that En satisfies compatibility
condition w.r.t. V0 ⊕ W0 and V∞ ⊕ W∞ which are stated below.

(i) Condition (Φ1) ((PS)∗c condition):
If one of the conditions (A1) to (A4) holds, then the one of the assumptions
b �∈ σ(−�), (C1) and (C2) is satisfied. Therefore by Lemma 14, Φ satisfies
(PS)∗c condition for every c ∈ R. This yields that −Φ also satisfies (PS)∗c for
every c ∈ R.



ASYMPTOTICALLY LINEAR ELLIPTIC EQUATIONS 157

(ii) Condition (Φ2):
The nonlinear term h satisfies |h(x, ξ)| ≤ C|ξ| for every ξ ∈ R. This yields
that | ∫Ω H(x, u) dx| ≤ C‖u‖2 for all u ∈ E. Hence Φ and −Φ satisfy the
condition (Φ2).

(iii) Condition (Φ3):
If one of the conditions (A1) to (A4) holds, then one of the assumptions (i)
to (iii) in Lemma 18 is satisfied, hence Φ satisfies (Φ3) w.r.t. (V0,W0) as in
(3.16). −Φ satisfies w.r.t. (V0,W0) replaced V0 by W0 in (3.16).

(iv) Condition (Φ4):
We note that if one of the conditions (A1) to (A4) holds, then one of the
assumptions b �∈ σ(−�), (C1), (a1), (a2) of (C2) is satisfied. If b �∈ σ(−�)
holds, then Φ satisfies (Φ4) with V∞ = X+ and W∞ = X−, and −Φ satisfies
(Φ4) with V∞ = X− and W∞ = X+ by Lemma 15. If (C1) holds, then (Φ4)
is satisfied with V∞ = X+ and W∞ = X− ⊕ X0 by Lemma 16. If (a1) of
(C2) holds, then Φ satisfies (Φ4) with V∞ = X+ and W∞ = X− ⊕ X0 by
Lemma 17. If (a2) of (C2) holds, then −Φ satisfies (Φ4) with V∞ = X− and
W∞ = X+ ⊕ X0 by Lemma 17.

(v) dimension condition (2.4):
The following Claim is checked easily, where E(λ) := ker(−� − λ) for λ ∈
σ(−�).

Claim The following inclusions hold.

(1) if b0 /∈ σ(−�) and b /∈ [b−0 , b+
0 ), then

X− ⊕ X0 ⊃ X−
0 ⊕ E(b+

0 ) (if b ≥ b+
0 ),

X− ⊕ X0 ⊕ E(b−0 ) ⊂ X−
0 (if b < b−0 ).

(2) if b0 ∈ σ(−�) and b /∈ [b−0 , b0), then

X− ⊕ X0 ⊃ X−
0 ⊕ E(b0) (if b ≥ b0),

X− ⊕ X0 ⊕ E(b−0 ) ⊂ X−
0 (if b < b−0 ).

(3) if b0 ∈ σ(−�) and b /∈ [b0, b
+
0 ), then

X− ⊕ X0 ⊃ X−
0 ⊕ X0

0 ⊕ E(b+
0 ) (if b ≥ b+

0 ),
X− ⊕ X0 ⊕ E(b0) ⊂ X−

0 ⊕ X0
0 (if b < b0).

(4) We note that if b = b0 ∈ σ(−�), then we have

X− ⊕ E(b0) = X−
0 ⊕ X0

0 ,

and if b = b−0 , then we have

X− ⊕ E(b−0 ) = X−
0 .
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Using this Claim, we shall deal with only the case (1) and (2) of (A4) since
the other cases would be similarly handled. First we treat the case (1) of (A4).
Then Φ has a local linking at 0 w.r.t. (V0,W0) = (X+

0 ,X0
0 ⊕X−

0 ) and satisfies
(Φ4) w.r.t. (V∞,W∞) = (X+,X0⊕X−). Since we are assuming b, b0 ∈ σ(−�)
and b0 < b, we have b0 < b+

0 ≤ b. Therefore by the case (3) in the Claim, we
obtain for large n

En ∩ (
X0

0 ⊕ X−
0

)
� En ∩ (

X0
0 ⊕ X−

0 ⊕ E(b+
0 )

) ⊂ En ∩ (
X0 ⊕ X−)

.

Hence

lim inf
n

{dim(W∞ ∩ En) − dim(W0 ∩ En)} ≥ dim E(b+
0 ) > 0.

Finally we show the case (2) of (A4) with −Φ. Then −Φ has a local linking
at 0 w.r.t. (V0,W0) = (X0

0 ⊕ X−
0 ,X+

0 ) and satisfies (Φ4) w.r.t. (V∞,W∞) =
(X−,X0 ⊕ X+). Using the Claim, we similarly obtain for large n

En ∩ X− � En ∩ (
X− ⊕ E(b0)

) ⊂ En ∩ (
X0

0 ⊕ X−
0

)
.

Hence

lim inf
n

{dim(V0 ∩ En) − dim(V∞ ∩ En)} ≥ dim E(b0) > 0.

Therefore
lim sup

n
{dim(W∞ ∩ En) − dim(W0 ∩ En)} > 0.

Example 19 The following g(x, ξ) satisfies our assumption (C2):

g(x, ξ) = a(x, ξ)|ξ|β sgn ξ + b(x, ξ)|ξ|α sgn ξ,

where a(x, ξ) and b(x, ξ) are some suitable bounded functions and α, β are
constants satisfying 0 < α ≤ β < 1 and 2β < α + 1.

(i) If a(x, ξ) = c + sin ξ with 1 < c < (1 + β)/(1 − β) and b(x, ξ) = 0,
then g does not satisfy either of the condition (1.1) or Silva’s because of
lim inf |ξ|→∞±{G(x, ξ)− g(x, ξ)ξ/2} = −∞ and lim inf |ξ|→∞±gξ(x, ξ) =
−∞, but our assumption (a1) of (C2) is satisfied. Indeed, we obtain the
following inequality for ξ > 0

G(x, ξ) − 1
2
g(x, ξ)ξ ≤ ξβ+1

{
c

β + 1
− c

2
− 1

2
sin ξ − 1

ξ
cos ξ +

1
ξ

}
.

Therefore if we put ξn := 2nπ + π/2, then we have limn→∞ G(x, ξn) −
g(x, ξn)ξn/2 = −∞. Similarly we can check the other assumptions .
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(ii) If a(x, ξ) = sin ξ and b(x, ξ) is a constant, then the condition (1.2) of
Zou and Liu cannot be satisfied since lim inf |ξ|→∞±G(x, ξ)/|ξ|β+1 ≤ 0,
but our assumption (C2) is satisfied.
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