On the unit groups and the ideal class groups of certain cubic number fields

Eiji Yoshida

(Received August 26, 2003)

Abstract

Let $f(x)=x^{3}+3 x+a^{3}(a \in \mathbf{Z})$ be a cubic polynomial and θ be the real root of $f(x)$. We consider the unit group of $\mathbf{Q}(\theta)$. We show that $\eta=1-a^{2}-a \theta$ is a fundamental unit of $\mathbf{Q}(\theta)$ under certain conditions. And we consider the 3-class group of $\mathbf{Q}(\theta)$.

AMS 2000 Mathematics Subject Classification. 11R16, 11R27. Key words and phrases. Cubic field, fundamental units, 3-class group.

§1. Introduction

Let $x^{3}+a x^{2}+b x-1(a, b \in \mathbf{Z})$ be an irreducible cubic polynomial over the rational number field \mathbf{Q} and let K be a cubic field which is generated by a root of above polynomial. Assume that K is not totally real and let $\varepsilon \in K$ be a root of $x^{3}+a x^{2}+b x-1$. Then a problem whether ε is a fundamental unit of K or not arises. In particular, Ishida [2], Morikawa [6] and Takaku Yoshimoto [8] considered the case when $K=\mathbf{Q}(\varepsilon)$ is defined by $\varepsilon^{3}+a \varepsilon-1=0$ with $a \in \mathbf{Z}, a \geq-1, a \neq 0$. They showed that a fundamental unit ε_{0} of K is $\varepsilon_{0}=\varepsilon$ or $\varepsilon_{0}^{t}=\varepsilon$ with $t=2,4$, for $a \neq 67$. In case $a=67, \varepsilon_{0}^{11}=\varepsilon$. Kaneko [3] treated $K=\mathbf{Q}(\theta)$ defined by $\theta^{3}-3 \theta+a^{3}=0$ with $a \in \mathbf{Z}, a>1$. He showed that a fundamental unit of K is $a^{2}+1+a \theta$ when the order $\mathbf{Z}[\theta]$ is the ring of integers of K.
We shall consider the cubic polynomial of the following type;

$$
\begin{equation*}
x^{3}+3 x+a^{3}, \tag{1}
\end{equation*}
$$

where a is a positive integer. Then the discriminant of the polynomial (1) is negative and the polynomial (1) has a unique real root. Let θ be the real root
of (1) and let $\mathbf{Q}(\theta)$ be the cubic field formed by adjoining θ to \mathbf{Q}.
The minimal polynomial of $1-a^{2}-a \theta$ is

$$
\begin{equation*}
x^{3}+3\left(a^{2}-1\right) x^{2}+3\left(a^{4}-a^{2}+1\right) x-1 . \tag{2}
\end{equation*}
$$

Let E be the group of units of $\mathbf{Q}(\theta)$ and let $\left\langle 1-a^{2}-a \theta,-1\right\rangle$ be the group generated by $1-a^{2}-a \theta$ and ± 1. Throughout this paper, we put $1-a^{2}-a \theta=\eta$ and $\left\langle 1-a^{2}-a \theta,-1\right\rangle=E_{\eta}$. In this paper we shall consider whether the index $\left|E: E_{\eta}\right|$ is equal to 1 . And as its application, we shall consider the 3 -class group of $\mathbf{Q}(\theta)$. Denote $a^{6}+4=r^{2} d$ where r, d are rational integers and d is square-free. Then the following holds.

Theorem 1. Let $-27\left(a^{6}+4\right)=-27 r^{2} d$ ($d:$ square-free) be the discriminant of $x^{3}+3 x+a^{3}$. We assume that

$$
\left\{\begin{array}{l}
a \geq r \text { if } a \equiv \pm 1(\bmod .3), \tag{*}\\
a \geq 3 r \text { if } a \equiv 0(\bmod .3),
\end{array}\right.
$$

then $\eta=1-a^{2}-a \theta$ is a fundamental unit of $\mathbf{Q}(\theta)$.
Remark 1. There are only nine numbers $a(1 \leq a \leq 23000)$, which do not satisfy $(*)$. They are $4,10,104,108,2781088,1808,2468,5170$. If $a=4$, then $\eta=\varepsilon^{2}$ where ε is the real root of $x^{3}-3 x^{2}+27 x-1$. And for other cases, η is a fundamental unit of $\mathbf{Q}(\theta)$. The auther has not found any examples that η is not a fundamental unit of $\mathbf{Q}(\theta)$ except for $a=4$ yet.

§2. Proof of Theorem 1

Lemma 1. The discriminant of $\mathbf{Q}(\theta)$ is

$$
\left\{\begin{array}{l}
\frac{-27\left(a^{6}+4\right)}{r^{2}} \text { if } a \equiv \pm 1(\bmod .3), \\
\frac{-3\left(a^{6}+4\right)}{r^{2}} \text { if } a \equiv 0(\bmod .3)
\end{array}\right.
$$

Proof. Let O be the ring of integers of $\mathbf{Q}(\theta)$ and D be the discriminant of $\mathbf{Q}(\theta)$. First we have

$$
\left\{\begin{array}{l}
27 \| D \text { if } a \equiv \pm 1(\bmod .3) \\
3 \| D \text { if } a \equiv 0(\bmod 3)
\end{array}\right.
$$

Indeed the minimal polynomial of $\theta+a$ is $x^{3}-3 a x^{2}+3\left(a^{2}+1\right) x-3 a$ and if $a \equiv \pm 1(\bmod .3)$, then this polynomial is an Eisenstein type. Therefore 3 is totally ramified at O and $27 \| D$ holds.

The minimal polynomial of $\frac{\theta^{2}}{3}$ is $x^{3}+2 x^{2}+x-a^{6} / 27$. If $a \equiv 0(\bmod .3)$, then this polynomial has integer coefficients. Hence $\frac{\theta^{2}}{3} \in O$ and $3 \| D$ for $a \equiv 0(\bmod .3)$.
Next we have $\frac{4-a^{3} \theta+2 \theta^{2}}{r} \in O$ and we have $\frac{\theta^{2}-\theta}{2} \in O$ when a is even. Because the minimal polynomials of $\frac{4-a^{3} \theta+2 \theta^{2}}{r}$ and $\frac{\theta^{2}-\theta}{2}$ are $x^{3}-3\left(a^{6}+\right.$ 4) $/ r^{2} x-\left(a^{6}+4\right)^{2} / r^{3}$ and $x^{3}+3 x^{2}+3\left(1-a^{3} / 4\right) x-a^{3}\left(a^{3}+4\right) / 8$ respectively. The first polynomial has integer coefficients and the second has integer coefficients if $a \equiv 0(\bmod .2)$. Hence we see $\left.\frac{a^{6}+4}{r^{2}} \right\rvert\, D$ and Lemma 1 follows.

We shall consider the existence of the unit ε of $\mathbf{Q}(\theta)$ which satisfies $\varepsilon^{2}=\eta$.
Lemma 2. Except for $a=4$, there are no unit $\varepsilon \in \mathbf{Q}(\theta)$ which satisfies $\varepsilon^{2}=\eta$.

To prove Lemma 2, we need two lemmas.
Lemma 3. ([7]) The diophantine equation

$$
p z^{2}=x^{4}-y^{4}
$$

where p is a prime number and $p \equiv 3(\bmod .8)$ has no positive integer solution (x, y, z) with $\operatorname{gcd}(x, y, z)=1$ except for $z=0, x=y$.

Lemma 4. ([4], [5]) The diophantine equation

$$
a x^{4}-b y^{4}=c,
$$

where a, b are positive integers has at most one solution in positive integers x, y if $c=1,2,4,8$.

Proof of Lemma 2. We assume that there is a unit $\varepsilon \in \mathbf{Q}(\theta)$ with $\varepsilon^{2}=\eta$. Here we can take ε with norm 1. We denote the minimal polynomial of ε by $x^{3}-A x^{2}+B x-1(A, B \in \mathbf{Z})$. Since the minimal polynomial of ε^{2} is $x^{3}-\left(A^{2}-2 B\right) x^{2}+\left(B^{2}-2 A\right) x-1$ and by (2), we have

$$
\left\{\begin{array}{l}
3 a^{4}=(B+1)^{2}-(A+1)^{2} \\
3 a^{2}=2(B+1+A+1)-(A+1)^{2}
\end{array}\right.
$$

Therefore in order to prove Lemma 2, we shall show that

$$
\left\{\begin{array}{l}
3 a^{4}=c^{2}-b^{2} \tag{3}\\
3 a^{2}=2(b+c)-b^{2}
\end{array}\right.
$$

has the only integer solution $(a, b, c)=(4,4,28)$ with $a>0$.
First we see that a^{2} is divisible by b. Indeed, by (3),

$$
\begin{equation*}
b^{4}-4 b^{3}+6 a^{2} b^{2}-12 a^{2} b-3 a^{4}=0, \tag{4}
\end{equation*}
$$

and $b \neq 0$. By dividing (4) by $3 b^{2}$, we have

$$
\frac{a^{4}}{b^{2}}+(4-2 b) \frac{a^{2}}{b}+\frac{4 b-b^{2}}{3}=0 .
$$

Since $\frac{4 b-b^{2}}{3}, 4-2 b$ are rational integers, we see $b \mid a^{2}$.
Put $\frac{a^{2}}{b}=f$. Then we have

$$
\begin{equation*}
b^{2}+6 b f-3 f^{2}-4 b-12 f=0 \tag{5}
\end{equation*}
$$

Now we show that b, f are divisible by 4 . Suppose that f is an odd integer. Then b is also odd. Since $4 \mid b+3 f$ and by (5),

$$
12 f^{2}=(b+3 f-2)^{2}-4 \equiv 0(\bmod .8) .
$$

This contradicts $12 f^{2} \equiv 12(\bmod .8)$. If $f \equiv 2(\bmod .4)$, then $b \equiv 2(\bmod .4)$ and $(b+3 f-2)^{2}-4 \equiv 0\left(\bmod .2^{5}\right)$. Therefore we see that $4 \mid b, f$. Put $b=4 g, f=4 h$. By dividing $12 f^{2}=(b+3 f-2)^{2}-4$ by 4 ,

$$
\begin{equation*}
48 h^{2}=(2 g+6 h-2)(2 g+6 h) \tag{6}
\end{equation*}
$$

By (6), the common divisors of $2 g+6 h$ and $2 g+6 h-2$ divide 2. Hence we have the following four cases. Namely

$$
\begin{gather*}
2 g+6 h= \pm 2 i^{2}, \quad 2 g+6 h-2= \pm 2^{2 r+3} \cdot 3 j^{2} \tag{7}\\
2 g+6 h= \pm 6 i^{2}, \quad 2 g+6 h-2= \pm 2^{2 r+3} j^{2} \tag{8}\\
2 g+6 h= \pm 2^{2 r+3} \cdot 3 i^{2}, \quad 2 g+6 h-2= \pm 2 j^{2} \tag{9}\\
2 g+6 h= \pm 2^{2 r+3} i^{2}, \quad 2 g+6 h-2= \pm 6 j^{2} \tag{10}
\end{gather*}
$$

where $h= \pm 2^{r} i j$ and i, j are positive odd integers with $\operatorname{gcd}(i, j)=1$.
According to $(7) \sim(10)$, we see that

$$
\begin{gather*}
i^{2}-2^{2 r+2} \cdot 3 j^{2}= \pm 1 \tag{7.1}\\
3 i^{2}-2^{2 r+2} j^{2}= \pm 1 \tag{8.1}\\
2^{2 r+2} \cdot 3 i^{2}-j^{2}= \pm 1 \tag{9.1}\\
2^{2 r+2} i^{2}-3 j^{2}= \pm 1 \tag{10.1}
\end{gather*}
$$

(7.1), (8.1), (9.1) and (10.1) are corresponding to (7), (8), (9), (10) respectively. - signs of (7.1), (10.1) and + signs of (8.1), (9.1) can be rejected.

Here we show that (10) has the only solution $i=j=1$ and (7), (8) and (9) have no solution with $i \neq 0$ or $j \neq 0$.
The case (7): Since

$$
g h=h\left(i^{2}-3 h\right)=2^{r} i j\left(i^{2}-3 \cdot 2^{r} i j\right)=2^{r} i^{2} j\left(i-3 \cdot 2^{r} j\right)
$$

and $g h=(a / 4)^{2}$, we have $r=2 s, j=k^{2}, i-3 \cdot 2^{r} j=l^{2}$ where s, k, l are rational integers. Hence by (7.1),

$$
\begin{equation*}
i^{2}-2^{2 r+2} \cdot 3 j^{2}=i^{2}-12\left(2^{s} k\right)^{4}=1 \tag{7.2}
\end{equation*}
$$

Moreover $i \equiv l^{2}(\bmod .12)$ and (7.2) give

$$
i-1=3 \cdot 2^{4 s+1} m^{4}, i+1=2 n^{4}
$$

where $k=m n, m n$ is odd and $\operatorname{gcd}(m, n)=1$. Therefore we obtain

$$
\begin{equation*}
n^{4}-3 \cdot\left(2^{s} m\right)^{4}=1 \tag{7.3}
\end{equation*}
$$

However by Lemma 3, (7.3) has no integer solution except for $m=0, n=1$. Since $m=0$ implies $a=0$, this contradicts $a \neq 0$.
The case (8): Since $g h=2^{r} i^{2} j\left(3 i-3 \cdot 2^{r} j\right)$, we have $j=k^{2}$ and by (8.1), $r=0$ and $i=2^{r} j+3 l^{2}=k^{2}+3 l^{2}$ where k, l are rational integers.
Further by (8.1),

$$
\begin{equation*}
3\left(k^{2}+3 l^{2}\right)^{2}-4 k^{4}=-\left(k^{2}-9 l^{2}\right)^{2}+4 \cdot 27 l^{4}=-1 . \tag{8.2}
\end{equation*}
$$

(8.2) gives

$$
k^{2}-9 l^{2}-1= \pm 2 \cdot 27 m^{4}, k^{2}-9 l^{2}+1= \pm 2 n^{4}
$$

where $l=m n, m$ is even, n is odd and $\operatorname{gcd}(m, n)=1$.
Therefore

$$
n^{4}-27 m^{4}=1 \text { or } n^{4}-27 m^{4}=-1
$$

The first case has no solution except for $m=0$, and the second gives $27 m^{4} \equiv$ $1+n^{4} \equiv 2(\bmod .3)$. Therefore both of them imply a contradiction.
The case (9): The same as (7), we can take $j=k^{2}$ and hence $3 \cdot\left(2^{r+1} i\right)^{2}=$ $k^{4}-1$. This implies $a=0$.
The case (10): We have $j=k^{2}, r=0$ and $4 i-3 j=l^{2}$ where k, l are rational integers. By (10.1),

$$
2 i-1=m^{4}, 2 i+1=3 n^{4}
$$

where $k=m n$ with $\operatorname{gcd}(m, n)=1$. Hence

$$
\begin{equation*}
2=3 n^{4}-m^{4} \tag{10.2}
\end{equation*}
$$

By Lemma 4, (10.2) has at most one solution in positive integers m, n and $(m, n)=(1,1)$ is a solution of (10.2). Therefore (10.2) has the only positive integer solution $(m, n)=(1,1)$. If $m=n=1$, then $g=h=1$ and hence $a=b=4, c=28$. Consequently (3) has the only solution $(a, b, c)=(4,4,28)$ and the proof of Lemma 2 is completed.
Next, we shall consider the existence of the unit ε of $\mathbf{Q}(\theta)$ with $\varepsilon^{3}=\eta$.
Lemma 5. If a satisfies either $a \equiv \pm 1$ (mod. 3) or $\sqrt{2} a^{2} \geq 3 r$, then there is no unit $\varepsilon \in \mathbf{Q}(\theta)$ with $\varepsilon^{3}=\eta$.

Proof. We assume that there is $\varepsilon \in \mathbf{Q}(\theta)$ with $\varepsilon^{3}=\eta$. We denote the minimal polynomial of ε by $x^{3}-A x^{2}+B x-1$. Since the minimal polynomial of ε^{3} is $x^{3}-\left(A\left(A^{2}-3 B\right)+3\right) x^{2}+\left(B\left(B^{2}-3 A\right)+3\right) x-1$, we see

$$
\begin{gather*}
3 a^{4}=B^{3}-A^{3}, \tag{11}\\
3 a^{2}=3 A B-A^{3} . \tag{12}
\end{gather*}
$$

Obviously, we see $3 \mid A, B, a$ and $A \neq 0$. Put $A=3 C, B=3 D$ and $a=3 b$. By dividing (11) and (12) by 27 , we have

$$
\begin{align*}
& 9 b^{4}=D^{3}-C^{3}, \tag{13}\\
& b^{2}=C D-C^{3} . \tag{14}
\end{align*}
$$

By $D=\frac{b^{2}+C^{3}}{C}$ and (13),

$$
\frac{b^{6}}{C^{6}}-6 b \frac{b^{3}}{C^{3}}+3 C^{2} \frac{b^{2}}{C^{2}}+C^{3}-1=0
$$

and hence $C \mid b$ and put $b=C e$. Then $D=C e^{2}+C^{2}=C\left(e^{2}+C\right)$. Hence $x^{3}-A x^{2}+B x-1=x^{3}-3 C x^{2}+3 C\left(e^{2}+C\right) x-1$. Since $e^{6}-6 C e^{4}+3 C^{2} e^{2}+$ $C^{3}-1=0$, the minimal polynomial of $\varepsilon-C$ is

$$
\begin{gather*}
(x+C)^{3}-3 C(x+C)^{2}+3 C\left(e^{2}+C\right)(x+C)-1 \\
=x^{3}+3 C e^{2} x+6 C e^{4}-e^{6} \tag{15}
\end{gather*}
$$

Dividing (15) by e^{3}, we see that $\frac{\varepsilon-C}{e}$ is an algebraic integer. By $e^{6}-6 C e^{4}+$ $3 C^{2} e^{2}+C^{3}-1=0$, the discriminant of $x^{3}+3 C x+6 C e-e^{3}$ is

$$
\begin{gathered}
-27\left(4 C^{3}+\left(6 C e-e^{3}\right)^{2}\right) \\
=-27\left(-3 e^{6}+12 C e^{4}+24 C^{2} e^{2}+4\right) .
\end{gathered}
$$

Since $\mathbf{Q}\left(\frac{\varepsilon-C}{e}\right)=\mathbf{Q}(\theta),-3 e^{6}+12 C e^{4}+24 C^{2} e^{2}+4>0$ and $-3 e^{6}+12 C e^{4}+$ $24 C^{2} e^{2}+4$ is divisible by $\frac{a^{6}+4}{r^{2}}=\frac{(3 C e)^{6}+4}{r^{2}}$. On the other hand, by the assumption $\sqrt{2} a^{2} \geq 3 r$,

$$
\begin{gathered}
\frac{a^{6}+4}{r^{2}}-\left(-3 e^{6}+12 C e^{4}+24 C^{2} e^{2}+4\right) \\
> \\
\frac{(3 C e)^{6}+4}{18 C^{4} e^{4}}-\left(-3 e^{6}+12 C e^{4}+24 C^{2} e^{2}+4\right) \\
> \\
\frac{3^{4} C^{2} e^{2}}{2}-\left(-3\left(e^{3}-2 C e\right)^{2}+36 C^{2} e^{2}+4\right) \\
=\frac{9 C^{2} e^{2}}{2}-4+3\left(e^{3}-2 C e\right)^{2}>0 .
\end{gathered}
$$

This is a contradiction. Therefore Lemma 5 is proved.
By an immediate calculation, the following lemma holds.
Lemma 6. For all $a \geq 2$,

$$
\frac{1}{3 a^{4}}<\eta<\frac{1}{3 a^{4}}+\frac{1}{3 a^{6}} .
$$

We use the following lemma which concerns the lower bound of the regulator of a non-totally real cubic field.

Lemma 7. ([1]) Let K be a non-totally real cubic field, and let D, R be the discriminant and the regulator of K respectively. Then

$$
R \geq \frac{1}{3} \log \left(\frac{|D|}{27}\right) .
$$

Proof of Theorem 1. Let R be the regulator of $\mathbf{Q}(\theta)$.
Note that

$$
d=\left\{\begin{array}{l}
\frac{a^{6}+4}{r^{2}}, \text { if } a \equiv \pm 1(\bmod .3), \\
\frac{a^{6}+4}{9 r^{2}}, \text { otherwise }
\end{array}\right.
$$

Thus by Lemma 7 and Lemma $1, R \geq \frac{1}{3} \log d$.
Let E and E_{η} be as defined in $\S 1$. We have

$$
\left|E: E_{\eta}\right|=\frac{1}{R} \cdot\left(-\log \left(1-a^{2}-a \theta\right)\right) \leq \frac{-3 \cdot \log \left(1-a^{2}-a \theta\right)}{\log d} .
$$

By Lemma 6 and the assumption of Theorem 1 for $a \geq 2$,

$$
\frac{-3 \cdot \log \left(1-a^{2}-a \theta\right)}{\log d}<\frac{3 \cdot \log 3 a^{4}}{\log \left(\frac{a^{6}+4}{a^{2}}\right)}<\frac{3 \cdot \log 3 a^{4}}{\log a^{4}}=3+\frac{3 \cdot \log 3}{4 \cdot \log a}<5 .
$$

For $a=1$, we have $\left|E: E_{\eta}\right|<\frac{3 \cdot \log 4}{\log 5}<3$. Therefore $\left|E: E_{\eta}\right|$ is equal to 1 , 2, 3, 4. By Lemma 2 and Lemma 5, we see that $\left|E: E_{\eta}\right|=1$. Thus we obtain Theorem 1.

§3. The 3 -class group of $\mathbf{Q}(\theta)$

From now on, we shall consider whether the class number of $\mathbf{Q}(\theta)$ is divisible by 3 . The decomposition of 3 at $\mathbf{Q}(\theta)$ is

$$
\left\{\begin{array}{l}
3=\mathfrak{p}^{3} \text { if } a \equiv \pm 1(\bmod .3) \\
3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2} \text { if } a \equiv 0(\bmod .3),
\end{array}\right.
$$

where $\mathfrak{p}, \mathfrak{p}_{1}, \mathfrak{p}_{2}$ are prime ideals lying above 3 and $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct prime ideals. For the case $a \equiv \pm 1$ (mod. 3), we have the following.

Theorem 2. Assume that $a \equiv \pm 1(\bmod$. 3) and $a>\sqrt{7} r$. Then above \mathfrak{p} is a non-principal prime ideal. Namely the class number of $\mathbf{Q}(\theta)$ is divisible by 3.

Proof. Suppose that \mathfrak{p} is a principal ideal. Since 3 is totally ramified in $\mathbf{Q}(\theta)$ and by Lemma 5, we see that

$$
3\left(1-a^{2}-a \theta\right)=\gamma^{3} \text { or } 3\left(1-a^{2}-a \theta\right)^{2}=\gamma^{3}
$$

for some $\gamma \in \mathbf{Q}(\theta)$. Let $x^{3}-A x^{2}+B x-3$ be the minimal polynomial of γ. For the first case, we see

$$
\begin{gathered}
A\left(A^{2}-3 B\right)+9=-9\left(a^{2}-1\right) \\
B\left(B^{2}-9 A\right)+27=27\left(a^{4}-a^{2}+1\right) .
\end{gathered}
$$

Further we see $3 \mid A, B$ and $27 \mid A\left(A^{2}-3 B\right)=-9 a^{2}$. This is impossible. For the second case, we see

$$
\begin{gathered}
A\left(A^{2}-3 B\right)+9=9\left(1-4 a^{2}+a^{4}\right) \\
B\left(B^{2}-9 A\right)+27=27\left(3 a^{8}-6 a^{6}+9 a^{4}-4 a^{2}+1\right)
\end{gathered}
$$

and $3 \mid A, B$. Hence we put $A=3 C, B=3 D$. Now we have

$$
\left\{\begin{array}{l}
3 C^{3}-3 C D=a^{4}-4 a^{2}, \tag{16}\\
D^{3}-3 C D=3 a^{8}-6 a^{6}+9 a^{4}-4 a^{2} .
\end{array}\right.
$$

By equations (16), we have

$$
\begin{equation*}
C^{9}-\left(a^{4}-4 a^{2}+3\right) C^{6}+a^{4}\left(\frac{-8 a^{4}+10 a^{2}-8}{3}\right) C^{3}-\frac{a^{6}\left(a^{2}-4\right)^{3}}{27}=0 . \tag{17}
\end{equation*}
$$

Some computations give the following inequalities for $a \geq 4$:

$$
\begin{equation*}
2 a^{4} \leq C^{3}<\frac{20}{9} a^{4},-\frac{5}{4} a^{4}<C^{3}<-\frac{19}{16} a^{4},-\frac{1}{71} a^{4}<C^{3}<-\frac{1}{160} a^{4} \tag{18}
\end{equation*}
$$

The minimal polynomial of $\gamma-C$ is $x^{3}-3\left(C^{2}-D\right) x-2 C^{3}+3 C D-3$ and the discriminant of this polynomial is

$$
\begin{equation*}
27\left(3 C^{6}-\left(2 a^{2}\left(a^{2}-4\right)+6\right) C^{3}+a^{2}\left(-\frac{35}{3} a^{6}+\frac{64}{3} a^{4}-\frac{98}{3} a^{2}+24\right)-9\right) \tag{19}
\end{equation*}
$$

Since $\mathbf{Q}(\gamma-C)=\mathbf{Q}(\theta)$, we have

$$
\frac{a^{6}+4}{r^{2}} \left\lvert\, 3 C^{6}-\left(2 a^{2}\left(a^{2}-4\right)+6\right) C^{3}+a^{2}\left(-\frac{35}{3} a^{6}+\frac{64}{3} a^{4}-\frac{98}{3} a^{2}+24\right)-9 .\right.
$$

By dividing (17) by (19), we see that

$$
\begin{aligned}
& \left(3 a^{8}-6 a^{6}+10 a^{4}-8 a^{2}+3\right)\left(3 C^{3}\right)-12 a^{12} \\
& +72 a^{10}-169 a^{8}+240 a^{6}-203 a^{4}+108 a^{2}-27 \\
\equiv & \left(10 a^{4}-20 a^{2}+27\right)\left(3 C^{3}\right)-491 a^{4}+784 a^{2}-1179 \equiv 0\left(\bmod \cdot \frac{a^{6}+4}{r^{2}}\right) .
\end{aligned}
$$

And we have

$$
\begin{aligned}
& \left(130 a^{4}+140 a^{2}-71\right)\left(10 a^{4}-20 a^{2}+27\right)\left(3 C^{3}\right) \\
& \left.+\left(130 a^{4}+140 a^{2}-71\right)\left(-491 a^{4}+784 a^{2}-1179\right)\right) \\
\equiv & 3(31)^{2}\left(3 C^{3}-3 a^{4}+12 a^{2}-17\right) \equiv 0\left(\bmod \cdot \frac{a^{6}+4}{r^{2}}\right) .
\end{aligned}
$$

Since $\operatorname{gcd}\left(31, \frac{a^{6}+4}{r^{2}}\right)=1$, we see

$$
3 C^{3}-3 a^{4}+12 a^{2}-17 \equiv 0\left(\bmod . \frac{a^{6}+4}{r^{2}}\right) .
$$

By inequalities (18), we have

$$
\left|3 C^{3}-3 a^{4}+12 a^{2}-17\right|<\frac{27}{4} a^{4}-12 a^{2}+17 .
$$

If $a>\sqrt{7} r$, we see $\frac{a^{6}+4}{r^{2}}>\frac{7\left(a^{6}+4\right)}{a^{2}}>7 a^{4}$. Hence

$$
\frac{7\left(a^{6}+4\right)}{a^{2}}-\left(\frac{27}{4} a^{4}-12 a^{2}+17\right)>\frac{a^{4}}{4}+12\left(a^{2}-2\right)+5>0 .
$$

This is a contradiction.

Remark 2. When $a \equiv \pm 1$ (mod. 3), there exist only thirteen numbers a ($1 \leq a \leq 23000$) which do not satisfy the condition $a>\sqrt{7} r$. They are 1, $2,4,10,104,278,1088,1808,2146,2468,3859,5170,11671$. If $a=1,2,4,10$, then the class number of $\mathbf{Q}(\theta)$ is not divisible by 3 . In this case, equations (16) of Theorem 2 have integer solutions C, D and these solutions are given by $(a, C, D)=(1,1,2),(2,0,8),(4,8,56),(10,-5,665)$. Note that, in case $a=4$, η is not a fundamental unit of $\mathbf{Q}(\theta)$. For any other cases, the class number of $\mathbf{Q}(\theta)$ is divisible by 3 . The fundamental unit and the class number of $\mathbf{Q}(\theta)$ in the range ($1 \leq a \leq 23000$) is calculated by KASH 2.1. And the number $a^{6}+4$ in the range ($1 \leq a \leq 23000$) is calculated by Maple V .

§4. Further remark

Let k be a quadratic field such that the discriminant of k is divisible by 3 . Assume that the class number of k is divisible by 3 . Then there exists an unramified cyclic cubic extension L / k. Moreover it is known that L / \mathbf{Q} is a normal extension and the Galois group $\operatorname{Gal}(L / \mathbf{Q})$ is isomorphic to a dihedral group of order 6 . Therefore there exist three intermediate cubic fields K, K^{\prime}, $K^{\prime \prime}$ of L such that $K, K^{\prime}, K^{\prime \prime}$ are conjugate over \mathbf{Q}. Since the discriminant of k is divisible by 3 , the decomposition of 3 at K is $3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$ where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct prime ideals lying above 3 .
In Yoshida [9], the following lemma is shown.

Lemma 8. Let k, K be as above. If there exists a unit ε in K such that

1. ε is not a cube of any unit of K and
2. $\varepsilon^{2} \equiv 1\left(\bmod \cdot \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right)$,
then the length of the 3 -class field tower of $k(\sqrt{-3})$ is greater than 1 .
Let $x^{3}+A x^{2}+B x-1$ be the minimal polynomial of a unit ε in K with norm 1. Then it is shown in [9] that

$$
\varepsilon \equiv 1\left(\bmod \cdot \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right) \Longleftrightarrow 27\left|A+3,3^{5}\right| A+B
$$

The case when $k=\mathbf{Q}\left(\sqrt{-3\left(a^{6}+4\right)}\right)$, we see that the discriminant of k is divisible by 3 . Assume that a is divisible by 3 . Then since the discriminant of $\mathbf{Q}(\theta)$ is $\frac{-3\left(a^{6}+4\right)}{r^{2}}$ by Lemma 1, we have $k(\theta) / k$ is an unramified cyclic cubic extension.
Further by Yoshida [9] and Lemma 5 , if a satisfies $a \not \equiv 0(\bmod .7)$ or $\sqrt{2} a^{2}>$ $3 r$, then there exist no unit ε with $\varepsilon^{3}=\eta$. Here we see that

$$
\begin{gathered}
27 \mid 3 a^{2}=3\left(a^{2}-1\right)+3 \text { and } \\
3^{5} \mid 3 a^{4}=3\left(a^{2}-1\right)+3\left(a^{4}-a^{2}+1\right) .
\end{gathered}
$$

Thus by (2), we see that η can be taken as the ε which is described in Lemma 8.

Theorem 3. Assume that $a \equiv 0($ mod. 3$)$. If $a \not \equiv 0(\bmod .7)$ or $\sqrt{2} a^{2}>3 r$, then the length of the 3-class field tower of $\mathbf{Q}\left(\sqrt{a^{6}+4}, \sqrt{-3}\right)$ is greater than 1.

Acknowledgments

I am grateful to the referee for many helpful comments.

References

[1] T.W. Cusick, Lower bounds for regulators, In Lecture Notes in Math. 1068, pages 63-73, Berlin-NewYork, 1984, Springer.
[2] M. Ishida, Fundamental Units of certain Algebraic Number Fields, Abh. Math. Sem. Univ. Hamburg 39 (1973), 245-250.
[3] K. Kaneko, On the Cubic Fields $\mathbf{Q}(\theta)$ defined by $\theta^{3}-3 \theta+b^{3}=0$, SUT J. of Math. 32, No. 2 (1996), 141-147.
[4] W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und rein biquadratischer Zahlkörper, Oslo Videnskaps-Akademi Skrifter, 1 (1936), No. 12, 1-73.
[5] L.J. Mordell, Diophantine Equations, Academic Press, London and New York (1969).
[6] R. Morikawa, On Units of certain Cubic Nunber Fields, Abh. Math. Sem. Univ. Hamburg 42 (1974), 72-77.
[7] T. Nagell, Résultats nouveaux de l'analyse indéterminée 1, Norsk Math. Forenings Skrifter., Ser. 1 (1922), Nr. 8, 1-19.
[8] A. Takaku and S.-I. Yoshimoto, Integral Bases and Fundamental Units of the Cubic Fields $\mathbf{Q}(\omega)$ Defined by $\omega^{3}+a \omega-1=0$, Abh. Math. Sem. Univ. Hamburg 64 (1994), 235-247.
[9] E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith., 107, No. 4 (2003), 327-336.

Eiji Yoshida
Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: m98111i@math.nagoya-u.ac.jp

