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Abstract. In this paper, we consider the shifted barrier KKT conditions for
nonlinear optimization. We propose a primal-dual interior point method based
on these conditions. By choosing suitable parameters used in our method, we
prove local and q-quadratic convergence of the Newton interior point method,
and local and q-superlinear convergence of the quasi-Newton interior point
method.
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§1. Introduction

In this paper, we consider the following constrained optimization problem:

minimize f(x), x ∈ Rn

subject to g(x) = 0, h(x) ≥ 0,
(1.1)

where we assume that the functions f : Rn → R, g : Rn → Rm and h :
Rn → Rl are twice continuously differentiable. By introducing slack variables
si ≥ 0, i = 1, . . . , l, problem (1.1) is written as:

minimize f(x), x ∈ Rn

subject to g(x) = 0, h(x) − s = 0, s ≥ 0.
(1.2)

Define the Lagrangian function of the above problem by

L(x, y, u, s, z) = f(x) − yT g(x) − uT (h(x) − s) − zT s,
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where y ∈ Rm, u ∈ Rl are Lagrange multiplier vectors corresponding to the
equality constraints, and z ∈ Rl is a Lagrange multiplier vector corresponding
to the inequality constraint. Then Karush-Kuhn-Tucker (KKT) conditions for
optimality of the above problem are given by




∇f (x) −A(x)T y −B(x)Tu
g(x)

h(x) − s
u− z
SZe


 =




0
0
0
0
0


 , s ≥ 0, z ≥ 0,

where

A(x) = (∇g1(x), . . . ,∇gm(x))T ,
B(x) = (∇h1(x), . . . ,∇hl(x))T ,

S = diag (s1, . . . , sl) ,
Z = diag (z1, . . . , zl) ,
e = (1, . . . , 1)T ∈ Rl.

Since the fourth equation of the above conditions implies u = z, the Lagrangian
function can be rewritten as

L(w) = f(x) − yT g(x) − zTh(x)

and the KKT conditions reduce to

r0(w) ≡




∇xL(w)
g(x)

h(x) − s
SZe


 =




0
0
0
0


 , s ≥ 0, z ≥ 0,

where
w = (x, y, z, s)T

and
∇xL(w) = ∇f (x)−A(x)T y −B(x)T z.

We note that the Jacobian matrix of r0(w) is represented by

r′0(w) =




∇2
xL(w) −A(x)T −B(x)T 0
A(x) 0 0 0
B(x) 0 0 −I

0 0 S Z


 .(1.3)
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To solve problem (1.2) by a primal-dual interior point method, some re-
searchers have considered the barrier function minimization problem:

minimize f(x) − µ
∑l

i=1 log si, (x, s) ∈ Rn × Rl
+

subject to g(x) = 0, h(x) − s = 0,

where µ > 0 is a barrier parameter and

Rl
+ = {v ∈ Rl | vi > 0, i = 1, . . . , l}.

The first order necessary conditions for optimality of this minimization prob-
lem are given by the following equations:


∇f (x) −A(x)T y −B(x)T z

g(x)
h(x) − s
z − µS−1e


 =




0
0
0
0


 , s ∈ Rl

+.

By noting z = µS−1e (> 0), these equations are written as

r1(w;µ) ≡




∇xL(w)
g(x)

h(x) − s
SZe− µe


 =




0
0
0
0


 , (s, z) ∈ Rl

+ × Rl
+.(1.4)

We call these conditions as the barrier KKT conditions. When we apply
the Newton method to the nonlinear equations, the Newton step ∆w =
(∆x,∆y,∆z,∆s)T is defined by a solution to the Newton equation

r′1(w;µ)∆w = −r1(w;µ),

where r′1(w;µ) coincides with r′0(w) in (1.3).
To globalize Newton-like methods, Yamashita [13] introduced the following

barrier penalty function as a merit function:

F1(x, s;µ, σ, ρ) = f(x) − µ
l∑

i=1

log si + σ
m∑

i=1

|gi(x)| + ρ
l∑

i=1

|hi(x) − si| ,(1.5)

where µ > 0 is a barrier parameter, and σ > 0 and ρ > 0 are penalty param-
eters. The above function is called the l1-type barrier penalty function. We
should note that this function is nondifferentiable. Yamashita showed that if
σ and ρ are sufficiently large, the necessary conditions for optimality of the
l1-type barrier penalty function minimization problem for a given µ > 0 can
be represented by the barrier KKT conditions (1.4). Convergence properties
of primal-dual interior point methods based on (1.4) have been studied by
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many authors. Byrd, Liu and Nocedal [4], El-Bakry, Tapia, Tsuchiya and
Zhang [7], Martinez, Parada and Tapia [11], Yabe and Yamashita [12], and
Yamashita and Yabe [14] analyzed rate of convergence of these methods, for
example. Global convergence properties were also studied by Byrd, Gilbert
and Nocedal [2], Byrd, Hribar and Nocedal [3], El-Bakry, Tapia, Tsuchiya and
Zhang [7], Yamashita [13], and Yamashita, Yabe and Tanabe [16], for example.
See also Forsgren, Gill and Wright [10] as a comprehensive review of recent
studies of interior point methods for nonlinear optimization.

In this paper, we consider the following differentiable barrier penalty func-
tion instead of (1.5):

F2(x, s;µ, σ, ρ) = f(x)−µ
l∑

i=1

logsi+
1
2σ

m∑
i=1

(gi(x))2+
1
2ρ

l∑
i=1

(hi(x)−si)2(1.6)

which is extensively described in the book by Fiacco and McCormick [8].
We call this function the quadratic barrier penalty function. The necessary
conditions for optimality of the minimization problem

minimize F2(x, s;µ, σ, ρ), (x, s) ∈ Rn × Rl
+

are given by the following:

∇F2 =




∇f (x) +
1
σ

m∑
i=1

gi(x)∇gi(x) +
1
ρ

l∑
i=1

(hi(x) − si)∇hi(x)

−µS−1e+
1
ρ
(s− h(x))


 =

(
0
0

)

and s ∈ Rl
+. As in [8, 9, 15], we introduce the variables y and z by

y = − 1
σ
g(x) and z = −1

ρ
(h(x) − s).

Since ∇sF2 = 0 implies z = µS−1e, the above conditions are written as

r2(w;µ, σ, ρ) ≡




∇xL(w)
g(x) + σy

h(x) − s+ ρz
SZe− µe


 =




0
0
0
0


 , (s, z) ∈ Rl

+ × Rl
+.(1.7)

We call these conditions the shifted barrier KKT conditions. It should be
noted that we treat x, y, z and s as independent variables. These conditions
are also considered by Forsgren and Gill [9], and Yamashita and Yabe [15].
Based on these conditions, they proposed a differentiable primal-dual merit
function in order to obtain global convergence properties.



PRIMAL-DUAL INTERIOR POINT METHODS 89

We are interested in condition (1.7), because the parameters σ and ρ sta-
bilize the Jacobian matrix r′2(w;µ, σ, ρ) defined below. In fact, the regularity
condition is necessary for the Jacobian matrix r′1(w;µ) to be nonsingular at
the solution, while the Jacobian matrix r′2(w;µ, σ, ρ) becomes nonsingular at
the solution by means of the existence of the fixed positive parameters σ and
ρ even if the rank of A(x) or B(x) is deficient. This property is important in
the global convergence analysis for fixed positive parameters µ, σ and ρ.

In this paper, we will analyze local behavior of primal-dual interior point
methods based on (1.7) instead of (1.4). Yamashita and Yabe [15] showed q-
superlinear convergence property of the method in the case where the iterates
move along the central path near a solution. On the other hand, this paper
shows the fast rate of convergence in the case where the iterates are in the
neighborhood of a solution without considering central paths. Convergence
results of this paper are closely related with those given by Yamashita and
Yabe [14] for the barrier KKT conditions (1.4).

This paper is organized as follows. Section 2 will describe an algorithm
of our method. In Section 3, we will present some useful lemmas in prov-
ing convergence properties. In Section 4, we will show local and q-quadratic
convergence of the primal-dual interior point method based on the Newton
method. In Sections 5, we will show local and q-superlinear convergence of
the primal-dual interior point method based on the quasi-Newton method.
Finally, Section 6 will give concluding remarks.

Throughout this paper, we call w satisfying s > 0 and z > 0 an interior
point. The algorithm in this paper will generate such interior points. In
what follows, the subscript k denotes an iteration count. Let (wk)i be the ith
element of the kth iterate wk.

§2. Algorithm of primal-dual interior point methods

We consider the shifted barrier KKT conditions (1.7). Then the Jacobian
matrix of r2 is represented by

r′2(w;µ, σ, ρ) =




∇2
xL(w) −A(x)T −B(x)T 0
A(x) σI 0 0
B(x) 0 ρI −I

0 0 S Z


 .

We note that

r2(w;µ, σ, ρ) = r0(w) +




0
σy
ρz
−µe


 = r0(w) − µê+ σŷ + ρẑ,
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where

ê =




0
0
0
e


 , ŷ =




0
y
0
0


 , ẑ =




0
0
z
0


 .

Now we give an algorithm of our method as follows.

Algorithm IP
Given an initial point w0 = (x0, y0, z0, s0) with s0 > 0 and z0 > 0 and an
initial matrix G0, for k = 0, 1, 2, . . . , do
(1) Choose the parameter µk > 0, σk > 0, ρk > 0 and γk ∈ (0, 1).
(2) Solve the following system for ∆wk = (∆xk,∆yk,∆zk,∆sk)T :

Jk∆wk = −r2(wk;µk, σk, ρk),(2.1)

where

Jk =




Gk −A(xk)T −B(xk)T 0
A(xk) σkI 0 0
B(xk) 0 ρkI −I

0 0 Sk Zk


(2.2)

and Gk is the Hessian matrix ∇2
xL(wk) of the Lagrangian function or its ap-

proximation.
(3) Compute the step size

αk ≡ min
{

1, γk min
i

{
− (sk)i

(∆sk)i

∣∣∣∣ (∆sk)i < 0
}
,(2.3)

γk min
i

{
− (zk)i

(∆zk)i

∣∣∣∣ (∆zk)i < 0
}}

.

(4) Update:

wk+1 = wk + αk∆wk.

If the matrixGk is the true Hessian matrix ∇2
xL(wk) of the Lagrangian func-

tion, then Algorithm IP becomes the primal-dual interior point method based
on the Newton method, which is called the Newton interior point method.
If the matrix Gk is an approximation to the Hessian matrix ∇2

xL(wk), then
Algorithm IP becomes the primal-dual interior point method based on quasi-
Newton methods, which is called the quasi-Newton interior point method.
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§3. Basic properties

In this section, we analyze the behavior of iteration vectors and step sizes given
in Algorithm IP near a solution. Let w∗ = (x∗, y∗, z∗, s∗)T be a KKT point,
i.e., r0(w∗) = 0, and let I(x∗) = {i | hi(x∗) = 0}. We assume the following
conditions:

(A1) The second derivatives of the functions f, g and h are Lipschitz contin-
uous at x∗.
(A2) The point x∗ satisfies the regularity condition, i.e., the vectors ∇gi(x∗),
i = 1, . . . ,m and ∇hi(x∗), i ∈ I(x∗) are linearly independent.
(A3) The strict complementarity of w∗ is satisfied, i.e., (z∗)i > 0 for i ∈ { i |
(s∗)i = 0}.
(A4) The second order sufficiency condition for optimality is satisfied at the
point w∗, i.e., for all v �= 0 satisfying ∇gi(x∗)T v = 0, i = 1, . . . ,m and
∇hi(x∗)T v = 0, i ∈ I(x∗), vT∇2

xL(w∗)v > 0 holds.

Let ‖ · ‖ denote the l2 norm for vectors and matrices, and let ‖ · ‖M and
‖ · ‖F be a matrix norm and the Frobenius norm for matrices, respectively.
Then, by the norm equivalence, there is a positive constant η such that, for
any matrix C,

1
η
‖C‖F ≤ ‖C‖ ≤ η‖C‖F and ‖C‖F ≤ η‖C‖M .

Under assumption (A1), there exist a positive constant ξ and open convex sets
D1(⊂ Rn) and D(⊂ Rn × Rm × Rl × Rl) such that x∗ ∈ D1 and w∗ ∈ D,

‖A(x) −A(x∗)‖ ≤ ξ‖x− x∗‖ and ‖B(x) −B(x∗)‖ ≤ ξ‖x− x∗‖

for ∀x ∈ D1,

‖r0(w) − r0(w∗)‖ ≤ ξ‖w − w∗‖ and ‖∇r0(w) −∇r0(w∗)‖ ≤ ξ‖w −w∗‖

and

‖r0(w) − r0(w̃) − r′0(w
∗)(w − w̃)‖ ≤ 1

2
ξ(‖w − w∗‖ + ‖w̃ − w∗‖)‖w − w̃‖

for ∀w, w̃ ∈ D. The last inequality is given by [6], for example.
In the subsequent sections, we will prove local convergence properties of

primal-dual interior point methods that use Newton and quasi-Newton meth-
ods. For this purpose, we present some lemmas. The following lemma cor-
responds to Proposition 4.1 in [7] and guarantees the nonsingularity of the
matrix r′0(w∗). This is an essential result for showing the fast rate of conver-
gence of Newton-like methods.
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Lemma 1. Under assumptions (A1)–(A4), the matrix r′0(w∗) is nonsingular.

Proof. Though another proof was shown by El-Bakry et al. [7], we give a
direct proof.

Let v = (v1, v2, v3, v4)T ∈ Rn×Rm×Rl×Rl. We will show that r′0(w∗)v = 0
implies v = 0. Assume that r′0(w∗)v = 0. The equations are represented by




∇2
xL(w∗)v1 −A(x∗)T v2 −B(x∗)T v3 = 0

A(x∗)v1 = 0
B(x∗)v1 − v4 = 0
S∗v3 + Z∗v4 = 0.

(3.1)

With respect to active sets and inactive sets, we define I∗ = {i | (s∗)i = 0}
and J∗ = {j | (s∗)j > 0}, and we denote s =

(
sI∗

sJ∗

)
, B(x∗) =

(
BI∗

BJ∗

)

without loss of generality. The fourth equation of (3.1) yields

(s∗)i(v3)i + (z∗)i(v4)i = 0, i = 1, . . . , l.

By using the strict complementarity condition, we have

(v4)i = 0, i ∈ I∗ and (v3)j = 0, j ∈ J∗,

and we have BI∗v1 = 0 by the third equation of (3.1). Thus we have

∇2
xL(w∗)v1 −A(x∗)T v2 − (BT

I∗ |BT
J∗)

(
(v3)I∗

0

)
= 0

and then

vT
1 ∇2

xL(w∗)v1 − (A(x∗)v1)T v2 − (BI∗v1)T (v3)I∗ = 0,

which implies vT
1 ∇2

xL(w∗)v1 = 0, because A(x∗)v1 = 0 and BI∗v1 = 0. Since
assumption (A4) yields v1 = 0, it follows from the first and third equations of
(3.1) that v4 = 0 and

A(x∗)T v2 +B(x∗)T v3 =
m∑

i=1

(v2)i∇gi(x∗) +
∑
i∈I∗

(v3)i∇hi(x∗) = 0.

Furthermore, the regularity condition implies

v2 = 0 and (v3)I∗ = 0.

Therefore we obtain v = 0. �



PRIMAL-DUAL INTERIOR POINT METHODS 93

We note that the Newton iteration for the modified complementarity con-
dition yields

S−1
k ∆sk + Z−1

k ∆zk = µk(SkZk)−1e− e.(3.2)

The following lemma is very helpful for the convergence analysis and is essen-
tially the same lemma as Lemma 3 in [14].

Lemma 2. Let assumption (A3) hold. Define

κ ≡ 2max
{

max
i

{
1

(s∗)i

∣∣∣∣ (s∗)i > 0
}
,max

i

{
1

(z∗)i

∣∣∣∣ (z∗)i > 0
}}

.

There exists a positive number ε0 such that, if

‖wk − w∗‖ ≤ ε0,

and if ∆wk satisfies (3.2), then for each i such that (s∗)i = 0,

(∆sk)i
(sk)i

= −1 +
µk

(sk)i(zk)i
+ (pk)i, |(pk)i| ≤ κ ‖∆wk‖ ,

∣∣∣∣(∆zk)i(zk)i

∣∣∣∣ ≤ κ ‖∆wk‖ ,

and for each i such that (s∗)i > 0,

∣∣∣∣(∆sk)i
(sk)i

∣∣∣∣ ≤ κ ‖∆wk‖ ,

(∆zk)i
(zk)i

= −1 +
µk

(sk)i(zk)i
+ (qk)i, |(qk)i| ≤ κ ‖∆wk‖ .

The next lemma corresponds to Lemma 4 in [14].

Lemma 3. Let the assumptions of Lemma 2 hold. If

κ ‖∆wk‖ ≤ γk,

then
1 ≥ αk ≥ γk − κ ‖∆wk‖ .(3.3)

The following lemma estimates the matrix Jk in (2.2) and the step size αk

in (2.3) near the point w∗.
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Lemma 4. Suppose that assumptions (A1)–(A4) hold and that the sequence
{wk} is generated by Algorithm IP. Then there exist ε > 0, δ > 0, σ̄ > 0 and
ρ̄ > 0 such that, if ‖wk − w∗‖ ≤ ε,

∥∥Gk −∇2
xL(w∗)

∥∥
M ≤ δ, 0 < σk ≤ σ̄ and

0 < ρk ≤ ρ̄, then

∥∥Jk − r′0(w
∗)
∥∥ ≤ η2

√
δ2 + ξ2ε2 + σ2

k + ρ2
k ≤ η2

√
δ2 + ξ2ε2 + σ̄2 + ρ̄2,(3.4)

and
∥∥∥J−1

k

∥∥∥ ≤ ζ for some positive constant ζ.
Furthermore, there exists µ̄ > 0 such that if, in addition, 0 < µk ≤ µ̄, then

the following holds:

0 ≤ 1 − αk ≤ (1 − γk) +O(‖r0(wk)‖) +O(µk) +O(σk) +O(ρk),(3.5)

provided that 0 < γ̄ ≤ γk < 1 where γ̄ is a constant.

Proof. Since

Jk − r′0(w
∗)

=



Gk −∇2

xL(w∗) A(x∗)T −A(xk)T B(x∗)T −B(xk)T 0
A(xk) −A(x∗) σkI 0 0
B(xk) −B(x∗) 0 ρkI 0

0 0 Sk − S∗ Zk − Z∗


 ,

we have

‖Jk − r′0(w
∗)‖2

F

≤ ‖Gk −∇2
xL(w∗)‖2

F + σ2
k‖I‖2

F + ρ2
k‖I‖2

F + ‖r′0(wk) − r′0(w
∗)‖2

F

≤ η2‖Gk −∇2
xL(w∗)‖2

M + σ2
k‖I‖2

F + ρ2
k‖I‖2

F + η2‖r′0(wk) − r′0(w
∗)‖2

≤ η2δ2 + η2σ2
k + η2ρ2

k + η2ξ2‖wk − w∗‖2

≤ η2(δ2 + ξ2ε2 + σ̄2 + ρ̄2).

Thus

‖Jk − r′0(w
∗)‖ ≤ η‖Jk − r′0(w

∗)‖F ≤ η2
√
δ2 + ξ2ε2 + σ̄2 + ρ̄2.

This proves inequality (3.4).
By choosing ε, δ, σ̄ and ρ̄ such that

‖r′0(w∗)−1(Jk − r′0(w
∗))‖ ≤ η2

√
δ2 + ξ2ε2 + σ̄2 + ρ̄2 ‖r′0(w∗)−1‖ ≤ 1

2
,

it follows from the Banach perturbation lemma that Jk is nonsingular and

∥∥∥J−1
k

∥∥∥ ≤
∥∥r′0(w∗)−1

∥∥
1 − η2

√
δ2 + ξ2ε2 + σ̄2 + ρ̄2 ‖r′0(w∗)−1‖ ≤ ζ ≡ 2

∥∥∥r′0(w∗)−1
∥∥∥ .
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Thus we have

‖∆wk‖ =
∥∥∥J−1

k r2(wk;µk, σk, ρk)
∥∥∥(3.6)

≤
∥∥∥J−1

k

∥∥∥ (‖r0(wk)‖ + µk ‖e‖ + σk‖yk‖ + ρk‖zk‖))
≤ ζ (‖r0(wk)‖ + µk‖e‖ + σk‖wk‖ + ρk‖wk‖)) .

To prove (3.5), we note that if ε, δ, µ̄, σ̄ and ρ̄ are sufficiently small, then
from the conditions for the parameters and (3.6), the assumption of Lemma 3
is satisfied. It follows from (3.3) that

0 ≤ 1 − αk

≤ (1 − γk) + κ‖∆wk‖
≤ (1 − γk) + κζ(‖r0(wk)‖ + µk‖e‖ + σk‖wk‖ + ρk‖wk‖).

Therefore, from the boundedness of {wk}, we obtain (3.5). �

§4. Local and quadratic convergence of the Newton interior point
method

In this section, we pay our attention to the local and quadratic convergence
property of the Newton interior point method. Letting Gk = ∇2

xL(wk) in (2.2)
of Algorithm IP in Section 2, we have Jk = r′2(wk;µk, σk, ρk).

Theorem 1. Suppose that assumptions (A1)–(A4) hold. Let Gk = ∇2
xL(wk).

Let {wk} be generated by Algorithm IP. Choose the parameters such that

0 < µk = O(‖r0(wk)‖2), 0 < σk = O(‖r0(wk)‖2),
0 < ρk = O(‖r0(wk)‖2) and 0 < 1 − γk = O(‖r0(wk)‖).

Then there exists a positive constant ε such that for

‖w0 − w∗‖ < ε, w0 ∈ D,

then the sequence {wk} is well defined and converges q-quadratically to w∗.

Proof. Assume that
‖wk − w∗‖ < ε

for ε sufficiently small. Since, by Lemma 4, r′2(wk;µk, σk, ρk) is nonsingular
and

‖r′2(wk;µk, σk, ρk)−1‖ ≤ ζ,
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we have

wk+1 − w∗ = (wk − w∗) + αk∆wk

= (1 − αk)(wk − w∗) − αkr
′
2(wk;µk, σk, ρk)−1{r0(wk) − r0(w∗)

−r′0(wk)(wk − w∗) −




0 0
σkI

ρkI
0 0


 (wk − w∗)

−µkê+ σkŷk + ρkẑk},

and hence it follows from Lemma 4 that, for ε sufficiently small,

‖wk+1 − w∗‖
≤ (1 − αk)‖wk − w∗‖

+αk‖r′2(wk;µk, σk, ρk)−1‖(‖r0(wk) − r0(w∗) − r′0(w
∗)(wk − w∗)‖

+‖(r′0(wk) − r′0(w
∗))(wk − w∗)‖ + (σk + ρk)‖wk − w∗‖

+µk‖e‖ + σk‖yk‖ + ρk‖zk‖)
≤ {(1 − γk) +O(‖r0(wk)‖) +O(µk) +O(σk) +O(ρk)}‖wk − w∗‖

+O(‖wk − w∗‖2) +O(µk) +O(σk) +O(ρk).

In the last inequality, the boundedness of {yk} and {zk} are used. Thus there
exists a positive constant ν such that

‖wk+1 −w∗‖ ≤ ν‖wk − w∗‖2 ≤ νε2 < ε.

Thus, by using mathematical induction, it is easy to show that the sequence
{wk} converges to w∗ and the rate of convergence is quadratic. Therefore the
proof is complete. �

§5. Local and superlinear convergence of the quasi-Newton
interior point method

By letting the matrix Gk be an approximation to the Hessian matrix ∇2
xL(wk),

Algorithm IP given in Section 2 can be regarded as the quasi-Newton method.
In this section, we show the local and superlinear convergence property of the
quasi-Newton interior point method. The next theorem gives local and linear
convergence of the quasi-Newton method. This theorem corresponds to the
bounded deterioration theorem for unconstrained optimization by Broyden,
Dennis, and Moré [1].
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Theorem 2. Let {wk} be generated by Algorithm IP. Suppose that assump-
tions (A1)–(A4) hold. Choose the parameters such that

0 < µk = O(‖r0(wk)‖1+τ ), 0 < σk = O(‖r0(wk)‖1+τ )
0 < ρk = O(‖r0(wk)‖1+τ ) and 0 < γ̂ ≤ γk < 1

for constants τ > 0 and γ̂ ∈ (0, 1). Assume that the sequence of matrices {Gk}
satisfies the bounded deterioration property

‖Gk+1 −∇2
xL(w∗)‖M ≤ (1 + β1ψk)‖Gk −∇2

xL(w∗)‖M + β2ψk,

where β1 and β2 are positive constants, and

ψk = max(‖wk+1 − w∗‖, ‖wk − w∗‖).
Then for each ν ∈ (1 − γ̂, 1), there exist positive constants ε = ε(ν) and
δ = δ(ν) such that if

‖w0 −w∗‖ < ε, w0 ∈ D
and

‖G0 −∇2
xL(w∗)‖M <

δ

2
,

then the sequence {wk} is well defined and converges to w∗. Furthermore,

‖wk+1 −w∗‖ ≤ ν‖wk − w∗‖
for each k ≥ 0.

Proof. By induction on k, we will prove that

‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖ < ε and ‖Gk+1 −∇2
xL(w∗)‖M < δ

for all k ≥ 0. For this purpose, we show that if, for i = 0, 1, . . . , k,

‖wi − w∗‖ ≤ ν‖wi−1 − w∗‖ < ε and ‖Gi −∇2
xL(w∗)‖M < δ,

then

‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖ < ε and ‖Gk+1 −∇2
xL(w∗)‖M < δ.

If ε and δ are sufficiently small, it follows from Lemma 4 that Jk is nonsingular
and ‖J−1

k ‖ ≤ ζ. ¿From the linear system (2.1), we have

wk+1 − w∗ = (wk −w∗) + αk∆wk

= (1 − αk)(wk − w∗) − αkJ
−1
k {r0(wk) − r0(w∗)

−r′0(w∗)(wk − w∗) − (Jk − r′0(w
∗))(wk − w∗)

−µkê+ σkŷk + ρkẑk}
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and hence, for some ζ ′,

‖wk+1 − w∗‖ ≤ (1 − αk)‖wk − w∗‖
+αk‖J−1

k ‖{‖r0(wk) − r0(w∗) − r′0(w
∗)(wk − w∗)‖

+‖Jk − r′0(w
∗)‖‖wk − w∗‖ + µk‖e‖ + σk‖yk‖ + ρk‖zk‖}

≤ {(1 − γk) +O(‖r0(wk)‖)}‖wk − w∗‖
+ζ{O(‖wk − w∗‖2) +O(µk) +O(σk)

+O(ρk) + η2
√
δ2 + ξ2ε2 + σ2

k + ρ2
k ‖wk − w∗‖}

≤ {(1 − γk) +O(‖wk −w∗‖) +O(‖wk − w∗‖τ )

+ζη2
√
δ2 + ξ2ε2 +O(‖wk − w∗‖2(1+τ))}‖wk − w∗‖

≤ {(1 − γ̂) + ζ
′
(εmin(1,τ) +

√
δ2 + ε2 )}‖wk − w∗‖.

Choosing ε and δ such that

(1 − γ̂) + ζ ′(εmin(1,τ) +
√
δ2 + ε2 ) < ν,

we obtain
‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖ < ε.

Moreover, by using the same technique as in Broyden, Dennis and Moré [1],
we can show that

‖Gk+1 −∇2
xL(w∗)‖M < δ.

We can prove the case of k = 0 in the same way as above. Therefore the proof
is complete. �

Now we give necessary and sufficient conditions for superlinear convergence
of our method.

Theorem 3. Suppose that assumptions (A1)–(A4) hold and that the sequence
{wk} generated by Algorithm IP converges linearly to w∗. Choose the param-
eters such that

0 < µk = o(‖r0(wk)‖), 0 < σk = o(‖r0(wk)‖),

0 < ρk = o(‖r0(wk)‖) and 0 < 1 − γk = o(1).

Then the following four conditions are equivalent.
(a) The sequence {Gk} satisfies

lim
k→∞

‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖
‖wk+1 − wk‖ = 0.(5.1)
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(b) The sequence {Jk} satisfies

lim
k→∞

‖(Jk − r′0(w∗))(wk+1 − wk)‖
‖wk+1 − wk‖ = 0.(5.2)

(c) The sequence {r0(wk)} satisfies

lim
k→∞

‖r0(wk+1)‖
‖wk+1 − wk‖ = 0.(5.3)

(d) The sequence {wk} converges superlinearly to w∗, i.e.,

lim
k→∞

‖wk+1 − w∗‖
‖wk − w∗‖ = 0.

Proof. First we note that linear convergence implies, for some ν ∈ (0, 1),

‖wk −w∗‖ ≤ ‖wk+1 − w∗‖ + ‖wk+1 − wk‖
≤ ν‖wk − w∗‖ + ‖wk+1 − wk‖,

so we have ‖wk − w∗‖
‖wk+1 −wk‖ ≤ 1

1 − ν
.(5.4)

(a) =⇒ (b): Since

(Jk − r′0(w
∗))(wk+1 −wk)

=



Gk −∇2

xL(w∗) A(x∗)T −A(xk)T B(x∗)T −B(xk)T 0
A(xk) −A(x∗) σkI 0 0
B(xk) −B(x∗) 0 ρkI 0

0 0 Sk − S∗ Zk − Z∗


 •

(wk+1 −wk)

=




(Gk −∇2
xL(w∗))(xk+1 − xk)

0
0
0
0




+




(A(x∗) −A(xk))T (yk+1 − yk)
(A(xk) −A(x∗))(xk+1 − xk)
(B(xk) −B(x∗))(xk+1 − xk)

(Zk − Z∗)(sk+1 − sk)


+




(B(x∗) −B(xk))T (zk+1 − zk)
σk(yk+1 − yk)
ρk(zk+1 − zk)

(Sk − S∗)(zk+1 − zk)


 ,

we have

‖(Jk − r′0(w
∗))(wk+1 − wk)‖
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≤ ‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖

+

∥∥∥∥∥∥∥∥∥




(A(x∗) −A(xk))T (yk+1 − yk)
(A(xk) −A(x∗))(xk+1 − xk)
(B(xk) −B(x∗))(xk+1 − xk)

(Zk − Z∗)(sk+1 − sk)



∥∥∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥∥∥




(B(x∗) −B(xk))T (zk+1 − zk)
σk(yk+1 − yk)
ρk(zk+1 − zk)

(Sk − S∗)(zk+1 − zk)



∥∥∥∥∥∥∥∥∥

≤ ‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖ +O(‖wk − w∗‖‖wk+1 − wk‖).

Thus the following holds

lim
k→∞

‖(Jk − r′0(w∗))(wk+1 − wk)‖
‖wk+1 − wk‖

≤ lim
k→∞

‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖
‖wk+1 − wk‖ = 0,

which implies (b).
(b) =⇒ (a): Since

‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖

≤ ‖(Gk −∇2
xL(w∗))(xk+1 − xk) + (−A(xk) +A(x∗))T (yk+1 − yk)

+(−B(xk) +B(x∗))T (zk+1 − zk)‖
+‖(−A(xk) +A(x∗))T (yk+1 − yk) + (−B(xk) +B(x∗))T (zk+1 − zk)‖

≤ ‖(Jk − r′0(w
∗))(wk+1 − wk)‖ + ‖A(xk) −A(x∗)‖‖yk+1 − yk‖

+‖B(xk) −B(x∗)‖‖zk+1 − zk‖,
we have

‖(Gk −∇2
xL(w∗))(xk+1 − xk)‖
‖wk+1 − wk‖

≤ ‖(Jk − r′0(w∗))(wk+1 − wk)‖
‖wk+1 − wk‖ + ‖A(xk) −A(x∗)‖ ‖yk+1 − yk‖

‖wk+1 − wk‖
+‖B(xk) −B(x∗)‖ ‖zk+1 − zk‖

‖wk+1 − wk‖ .

Thus (b) implies (a).
(b) =⇒ (c): Since

r0(wk+1) = r0(wk+1) − Jk(wk+1 − wk) − αk(r0(wk) − µkê+ σkŷk + ρkẑk)
= r0(wk+1) − r0(wk) − r′0(w

∗)(wk+1 −wk)
−(Jk − r′0(w

∗))(wk+1 − wk) + (1 − αk)(r0(wk) − r0(w∗))(5.5)
−αk(−µkê+ σkŷk + ρkẑk),
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we have

‖r0(wk+1)‖ ≤ ‖r0(wk+1) − r0(wk) − r′0(w
∗)(wk+1 − wk)‖

+‖(Jk − r′0(w
∗))(wk+1 − wk)‖ + (1 − αk)‖r0(wk) − r0(w∗)‖

+αk(µk‖e‖ + σk‖yk‖ + ρk‖zk‖)
= O(‖wk −w∗‖)‖wk+1 − wk‖ + ‖(Jk − r′0(w

∗))(wk+1 − wk)‖
+{(1 − γk) +O(‖r0(wk)‖)}O(‖wk − w∗‖)
+O(µk) +O(σk) +O(ρk)

= O(‖wk −w∗‖)‖wk+1 − wk‖ + ‖(Jk − r′0(w
∗))(wk+1 − wk)‖

+o(1)O(‖wk −w∗‖) + o(‖wk − w∗‖).

Therefore the above and expression (5.4) yield (c).
(c) =⇒ (b): Since it follows directly from (5.5) that

(Jk − r′0(w
∗))(wk+1 − wk)

= r0(wk+1) − r0(wk) − r′0(w
∗)(wk+1 − wk) + (1 − αk)(r0(wk) − r0(w∗))

−αk(−µkê+ σkŷk + ρkẑk) − r0(wk+1),

we can obtain (b) in the same way as above.
(c) ⇐⇒ (d): The result follows directly from the same argument as in Dennis
and Moré [5].

Therefore the theorem is proved. �

Note that (5.1) or (5.2) corresponds to the Dennis-Moré condition [5] in
the case of unconstrained optimization. We also note that condition (5.3) is
observable. Thus by observing the sequence {‖r0(wk+1)‖/‖wk+1 − wk‖}, we
can investigate whether the sequence {wk} converges q-superlinearly to a KKT
point.

§6. Concluding remarks

In this paper, we have considered the shifted barrier KKT conditions (1.7)
that arise from minimizing (1.6), and we have proposed primal-dual interior
point methods based on the Newton method and the quasi-Newton method.
The shifted barrier KKT conditions are interesting, because the parameters
σ and ρ stabilize the Jacobian matrix r′2(w;µ, σ, ρ) even if the rank of A(x)
or B(x) is deficient. Under standard assumptions, we have proved local and
quadratic convergence of the Newton interior point method, and local and
q-superlinear convergence of the quasi-Newton interior point method. These
are closely related with convergence results by Yamashita and Yabe [14] for
the barrier KKT conditions.
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In [14], they dealt with three kinds of step size rules that include the fol-
lowing two rules in addition to (2.3):
Step size rule A

αsk = min
{

1, γk min
i

{
− (sk)i

(∆sk)i

∣∣∣∣ (∆sk)i < 0
}}

,

and

αzk = min
{

1, γk min
i

{
− (zk)i

(∆zk)i

∣∣∣∣ (∆zk)i < 0
}}

,

where γk ∈ (0, 1). Step sizes for the other variables are chosen as 1, or αsk, or αzk.

Step size rule B

αsk = min
{

1, γk min
i

{
− (sk)i

(∆sk)i

∣∣∣∣ (∆sk)i < 0
}}

,

where γk ∈ (0, 1). The step size αzk is the largest step that satisfies

αzk ≤ 1,

min
{

µk

MLk((sk)i + αsk(∆sk)i)
, (zk)i

}
≤ (zk)i + αzk(∆zk)i

≤ max

{
MUkµk

(sk)i + αsk(∆s′k)i
, (zk)i

}

for i = 1, . . . , n, where µk > 0, and where MLk and MUk are positive numbers
that satisfy

MLk > max


1,

2µk

(1 − γk)min
i

{(sk)i(zk)i}




and

MUk > max


3,

3max
i

{(sk)i(zk)i}
µk


 .

Step sizes of the other variables are chosen as 1, or αsk, or αzk.

For Algorithm IP with step size rule A or B, similar convergence results to
Theorems 1, 2 and 3 of the present paper can be obtained.
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