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Abstract. A group G is said to be (l, m, n)-generated if it is a quotient
group of the triangle group T (l, m, n) = 〈x, y, z|xl = ym = zn = xyz = 1〉.
In 1993 J. Moori posed the question of finding all triples (l, m, n) such that a
given non-abelian finite simple group is (l, m, n)-generated. In this paper we
partially answer this question for the Thompson group Th. In fact we study
(p, q, r)-generation, where p, q and r are distinct primes, and nX-complementary
generations of the Thompson group Th.
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§1. Introduction

Let G be a group and nX a conjugacy class of elements of order n in G.
Following Woldar [26], the group G is said to be nX-complementary generated
if, for any arbitrary non-identity element x ∈ G, there exists a y ∈ nX such
that G =< x, y >. The element y = y(x) for which G =< x, y > is called
complementary. Furthermore, a group G is said to be (lX,mY, nZ)-generated
(or (l,m, n)-generated for short) if there exist x ∈ lX, y ∈ mY and z ∈ nZ such
that xy = z and G =< x, y >. If G is (l,m, n)-generated, then we can see that
for any permutation π of S3, the group G is also ((l)π, (m)π, (n)π)-generated.
Therefore we may assume that l ≤ m ≤ n. By [3], if the non-abelian simple
group G is (l,m, n)-generated, then either G ∼= A5 or 1

l + 1
m + 1

n < 1. Hence for
a non-abelian finite simple group G and divisors l,m, n of the order of G such
that 1

l + 1
m + 1

n < 1, it is natural to ask if G is a (l,m, n)-generated group. The
motivation for this question came from the calculation of the genus of finite
simple groups [27]. It can be shown that the problem of finding the genus of
a finite simple group can be reduced to one of generations.
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Moori in [20], posed the problem of finding all triples (l,m, n) such that a
given non-abelian finite simple group G is (l,m, n)-generated. In a series of
papers [13-17] and [20,21], Moori and Ganief established all possible (p, q, r)-
generations and nX-complementary generations of the sporadic groups J1, J2,
J3, J4, HS, McL, Co2, Co3, and F22, for distinct primes p, q, r and element
orders n of |G|. Also, the author in [2] and [6-12](joint work) did the same
work for the sporadic groups Co1, ON , Ru and Ly. The motivation for this
study is outlined in these papers and the reader is encouraged to consult these
papers for background material as well as basic computational techniques.

Throughout this paper we use the same notation as in the mentioned pa-
pers. In particular, ∆(G) = ∆(lX,mY, nZ) denotes the structure constant of
G for the conjugacy classes lX,mY, nZ, whose value is the cardinality of the
set Λ = {(x, y)|xy = z}, where x ∈ lX, y ∈ mY and z is a fixed element of the
conjugacy class nZ. In Table IV, we list the values ∆(pX, qY, rZ), where p, q
and r are distinct prime divisors of |Th|, using the character table Th. Also,
∆�(G) = ∆�

G(lX,mY, nZ) and Σ(H1 ∪ H2 ∪ · · · ∪ Hr) denote the number of
pairs (x, y) ∈ Λ such that G = 〈x, y〉 and 〈x, y〉 ⊆ Hi (for some 1 ≤ i ≤ r),
respectively. The number of pairs (x, y) ∈ Λ generating a subgroup H of G
will be given by Σ�(H) and the centralizer of a representative of lX will be
denoted by CG(lX). A general conjugacy class of a subgroup H of G with
elements of order n will be denoted by nx. Clearly, if ∆�(G) > 0, then G is
(lX,mY, nZ)-generated and (lX,mY, nZ) is called a generating triple for G.
The number of conjugates of a given subgroup H of G containing a fix element
z is given by χNG(H)(z), where χNG(H) is the permutation character of G with
action on the conjugates of H(cf. [25]). In most cases we will calculate this
value from the fusion map from NG(H) into G stored in GAP, [22].

Now we discuss techniques that are useful in resolving generation type
questions for finite groups. We begin with a theorem that, in certain situations,
is very effective at establishing non-generations.

Theorem 1.1. ([4]) Let G be a finite centerless group and suppose lX,mY and
nZ are G-conjugacy classes for which ∆�(G) = ∆�

G(lX,mY, nZ) < |CG(z)|, z
∈ nZ. Then ∆�(G) = 0 and therefore G is not (lX,mY, nZ)-generated.

A further useful result that we shall often use is a result from Conder,
Wilson and Woldar [4], as follows:

Lemma 1.2. If G is nX-complementary generated and (sY )k = nX, for
some integer k, then G is sY -complementary generated.

Further useful results that we shall use are:

Lemma 1.3.([15]). If G is (2X,sY, tZ)-generated simple group then G is
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(sY, sY, (tZ)2)-generated.

Lemma 1.4. Let G be a finite simple group and H a maximal subgroup of G
containing a fixed element x. Then the number h of conjugates of H containing
x is χH(x), where χH is the permutation character of G with action on the
conjugates of H. In particular,

h =
m∑

i=1

|CG(x)|
|CH(xi)|

where x1, x2, · · · , xm are representatives of the H-conjugacy classes that fuse
to the G-conjugacy class of x.

In the present paper we investigate the (p, q, r)-generation and nX-comple-
mentary generation for the Thompson group Th, where p, q and r are distinct
primes and n is an element order. We prove the following results:

Theorem A. The Thompson group Th is (p, q, r)-generated if and only if
(p, q, r) �= (2, 3, 5).

Theorem B. The Thompson group Th is nX-complementary generated if and
only if nX �∈ {1A,2A}.

§2. (p, q, r)-Generations of Th

In this section we obtain all the (pX, qY, rZ)-generations of the Thompson
group Th, which is a sporadic group of order 215 · 310 · 53 · 72 · 13 · 19 · 31.
Since 31A−1 = 31B, hence, the group Th is (pX, qY, 31A)-generated if and
only if it is (pX, qY, 31B)-generated. Therefore, it is enough to investigate the
(pX, qY, 31A)-generation of Th.

We will use the maximal subgroups of Th listed in the ATLAS extensively,
especially those with order divisible by 13 (for details see [18] and [19]). We
listed in Table I, all the maximal subgroups of Th and in Table V, the partial
fusion maps of these maximal subgroups into Th (obtained from GAP) that
will enable us to evaluate ∆�

Th(pX, qY, rZ), for prime classes pX, qY and rZ.
In this table h denotes the number of conjugates of the maximal subgroup
H containing a fixed element z (see Lemma 1.4). For basic properties of the
Thompson group Th and information on its maximal subgroups the reader is
referred to [5]. It is a well known fact that Th has exactly 16 conjugacy classes
of maximal subgroups, as listed in Table I.

If the group Th is (2, 3, p)-generated, then by the Conder’s result [3], 1
2 +

1
3 + 1

p < 1. Thus we only need to consider the cases p = 7, 13, 19, 31.
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Table I
The Maximal Subgroups of Th

Group Order Group Order
3D4(2).3 212.35.72.13 25.PSL(5, 2) 215.32.5.7.31

21+8.A9 215.34.5.7 U3(8).6 210.35.7.19

(3 × G2(3)) : 2 27.37.7.13 ThN3B 24.310

ThM7 24.310 35 : 2S6 25.37.5

51+2.4S4 25.3.53 52 : 4S5 25.3.53

72 : (3 × 2S4) 24.32.72 L2(19).2 23.32.5.19

L3(3) 24.33.13 A6.23 24.32.5

31 : 15 3.5.31 A5.2 23.3.5

Woldar, in [27] determined which sporadic groups other than F22, F23, F ′
24,

Th, J4, B and M are Hurwitz groups, i.e. generated by elements x and y with
order o(x) = 2, o(y) = 3 and o(xy) = 7. In fact, G is a Hurwitz group if and
only if G is (2, 3, 7)-generated. Next, Linton [18], proved that the Thompson
group Th is Hurwitz.

For the sake of completeness, in the following lemma, we prove that Th is
a Hurwitz group. Therefore, Th is (2, 3, 7)-generated.

Lemma 2.1. The Thompson group Th is not (2A, 3A, 7A)- and (2A, 3B, 7A)-
generated, but it is (2A, 3C, 7A)-generated.

Proof. From the structure constants, Table iV, we can see that ∆Th(2A, 3A,
7A) < |CTh(7A)|. So, by Theorem 1.1, ∆�(G) = 0 and therefore Th is not
(2A, 3A, 7A)-generated. We now consider two cases.

Case (2A, 3B, 7A). The maximal subgroups of Th that may contain
(2A, 3B, 7A)-generated proper subgroups are isomorphic to 3D4(2).3, 21+8.A9,
U3(8).6 and (3×G2(3)) : 2. We calculate that ∆(Th) = 1372 and Σ(3D4(2).3)
= 343. Our calculations give:

∆�(Th) ≤ ∆(Th) − 343 = 1029 < 1176 = |CTh(7A)|.
Thus, by Theorem 1.1, ∆�(Th) = 0, which shows the non-generation of this
triple.

Case (2A, 3C, 7A). From the list of maximal subgroups of Th, Table I, we
observe that, up to isomorphisms, 3D4(2).3, 25.PSL(5, 2), 21+8.A9, U3(8).6,
(3 × G2(3)) : 2 and 72 : (3 × 2S4) are the only maximal subgroups of Th
that admit (2A, 3C, 7A)-generated subgroups. From the structure constants,
Table IV, we calculate ∆(Th) = 4704, Σ(3D4(2).3) = Σ(25.PSL(5, 2)) =
Σ(21+8.A9) = Σ(U3(8).6) = Σ(72 : (3× 2S4)) = 0 and Σ((3×G2(3)) : 2) = 42.
Thus, ∆�(Th) ≥ 4704 − 28.42 > 0. This shows that the Thompson group Th
is (2A, 3C, 7A)-generated, proving the lemma. �
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By the previous lemma, Th is a Hurwits group. In the following results
we not only prove for certain triples (p, q, r) that Th is (p, q, r)-generated, but
we also find all generating triples (pX, qY, rZ). We will use some of these
generating triples later to find conjugacy classes nX for which Th is nX-
complementary generated.

Lemma 2.2. The Thompson group Th is (2A, 3X,pY )-generated if and only
p ≥ 7 and (3X,pY ) �∈ {(3A,7A), (3B, 7A), (3A, 13A)}.
Proof. As we mentioned above, Th is not (2, 3, 5)-generated. Also, by Lemma
2.1, Th is not (2A, 3A, 7A)- and (2A, 3B, 7A)-generated. We now prove the
non-generation of the triple (2A, 3A, 13A). Amongst the maximal subgroups
of Th with order divisible by 2×3×13, the only maximal subgroups with non-
empty intersection with any conjugacy class in this triple are isomorphic to
3D4(2).3 and (3×G2(3)) : 2. We can see that ∆(Th) = 156, Σ(3D4(2).3) = 39
and Σ((3 × G2(3)) : 2) = 39. Furthermore, a fixed element of order 13 is
contained in three conjugate subgroups of 3D4(2).3) = 39 and one conjugate
copy of (3 × G2(3)) : 2 (see Table V).

Table II
Partial Fusion Maps of 3D4(2) into 3D4(2).3 and 3D4(2).3 into Th

3D4(2)-classes 2a′ 2b′ 3a′ 3b′ 7a′ 7b′ 7c′ 7d′ 13a′ 13b′ 13c′

→ 3D4(2).3 2a 2b 3a 3b 7a 7a 7a 7b 13a 13a 13a

→ Th 2A 2A 3A 3B 7A 7A 7A 7A 13A 13A 13A

Consider the subgroup H =3D4(2) of Th. In Table I, we obtain the partial
fusion map of this subgroup into 3D4(2).3 and 3D4(2).3 into Th. From the
character table of Th [5], we can see that H is a maximal subgroup of 3D4(2).3
and 3D4(2).3 is a maximal subgroup of Th. Consider the triple (2b, 3a, 13a).
Then H is a maximal subgroup of 3D4(2).3 with order divisible by 13 and
non-empty intersection with the classes 2b, 3a and 13a. We calculate that
∆(Th) = 156, Σ(H) = 117. Since H does not have a maximal subgroup with
order divisible by 2 × 3 × 13, ∆�(3D4(2).3)(2b,3a, 13a) = 117. On the other
hand, Σ((3×G2(3)) : 2) = 39 and Σ((3×G2(3)) : 2) does not have a subgroup
isomorphic to H. Therefore, there exists at least one pair (x, y) such that
x ∈ 2A, y ∈ 3A, xy ∈ 13A and < x, y > is a subgroup of (3 × G2(3)) : 2, but
it is not a subgroup of 3D4(2).3. This shows that

∆�(Th) ≤ 156 − 117 − 1 = 38 < 39 = |CTh(13A)|
and non-generation of Th by this triple follows from Theorem 1.1. We now
prove the (2A, 3X,pY )− generations of other triples. We will treat each triple
separately.



46 A.R. ASHRAFI

Case (2A, 3A, 13A). From the list of maximal subgroups of Th, we observe
that, up to isomorphisms, U3(8).6 is the only maximal subgroup of Th that
admit (2A, 3A, 13A)-generated subgroups. From the structure constants, we
calculate ∆(Th) = 19 and Σ(U3(8).6) = 0. Thus, ∆�(Th) = ∆(Th) = 19 > 0.
This shows that the Thompson group Th is (2A, 3A, 13A)-generated.

Case (2A, 3B, 13A). The maximal subgroups of Th that have non-empty
intersection with the classes 2A, 3B and 13A are, up to isomorphism, 3D4(2).3,
(3×G2(3)) : 2 and L3(3). We calculate that ∆(Th) = 1261, Σ(3D4(2).3) = 91,
Σ((3 × G2(3)) : 2) = 13 and Σ(L3(3)) = 52. From Table V it follows that

∆�(Th) ≥ 1261 − 3(91) − 13 − 12(52) = 351,

and hence Th is (2A, 3B, 13A)-generated.
Using similar argument as in above, we can prove the generation of other

triples. �

Lemma 2.3. Let 5 ≤ p < q are prime divisors of |Th|. Then the Thompson
group Th is (2A,pX, qY )-generated.

Proof. Set K = {(5A,13A), (13A,19A), (13A, 31A), (19A, 31A)}. From Table
V, we can see that for every pairs (pX, qY ) in the set K, there is no maximal
subgroups that contains (2A,pX, qY )-generated proper subgroups. Therefore,
∆�(Th) = ∆(Th) > 0, and so Th is (2A,pX, qY )-generated. On the other
hand, we can see that 25.PSL(5, 2) is, up to isomorphism, the only maximal
subgroup of Th which intersects the conjugacy classes 2A, 7A and 31A. Since
Σ(25.PSL(5, 2)) = 0, Th is (2A, 7A, 31A)-generated. We investigate another
triples case by case.

Case (2A, 5A, 7A). The only maximal subgroups that may contain (2A,
5A, 7A)- generated subgroups are isomorphic to 25.PSL(5, 2) and 21+8.A9.
We calculate that

14Σ(25.PSL(5, 2)) + 21Σ(21+8.A9) = 14(672) + 21(224) = 14112

Since ∆(Th) = 362208, we have ∆�(Th) > 0. This proves generation by this
triple.

Case (2A, 5A, 19A). From the list of maximal subgroups of Th we ob-
serve that, up to isomorphisms, L2(19).2 is the only maximal subgroup of
Th that admit (2A, 5A, 19A)-generated subgroups. From the structure con-
stants, Table IV, we calculate ∆(Th) = 342304 and Σ(L2(19).2) = 38. Thus,
∆�(Th) ≥ ∆(Th) − 38 > 0. This shows that the Thompson group Th is
(2A, 5A, 19A)-generated.

Case (2A, 5A, 31A). In this case, ∆(Th) = 320447 and the only maximal
subgroup with non-empty intersection with any conjugacy class in this triple
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is isomorphic to 25.PSL(5, 2). We calculate, Σ(25.PSL(5, 2)) = 744. Our cal-
culations give, ∆�(Th) ≥ ∆(th)− 3(744) > 0. Therefore, Th is (2A, 5A, 31A)-
generated.

Case (2A, 7A, 13A). Amongst the maximal subgroups of Th with order
divisible by 2×7×13, the only maximal subgroups with non-empty intersection
with any conjugacy class in this triple are isomorphic to 3D4(2).3 and (3 ×
G2(3)) : 2. Using Table I, we can see that ∆(Th) = 819754, Σ(3D4(2).3) =
1430 and Σ((3 × G2(3)) : 2) = 1066. Our calculations give,

∆�(Th) ≥ ∆(Th) − 3(1430) − 1066 > 0,

proving the generation of Th by this triple.
Case (2A, 7A, 19A). We have ∆(Th) = 753730. The (2A, 7A, 19A)-

generated proper subgroups of Th are contained in the maximal subgroups
isomorphic to U3(8).6. We calculate further that Σ(U3(8).6) = 513. From
Table V we conclude that ∆�(Th) ≥ 753730 − 513 > 0 and the generation of
Th by this triple follows. This completes the proof. �

In the following lemma we determine all the generating triples (pX, qY,
rZ) for the group Th, where p, q, r are distinct odd primes.

Lemma 2.4. If p, q and r are odd primes, then the Thompson group Th is
(pX, qY, rZ)-generated.

Proof. The proof is similar to Lemma 2.2 and 2.3 and it omitted. �

We are now ready to state one of main results of this paper.

Theorem A. The Thompson group Th is (p, q, r)-generated if and only if
(p, q, r) �= (2, 3, 5).

Proof. The proof follows from the Lemmas 2.1, 2.2, 2.3 and 2.4. �

§3. nX-Complementary Generations of Th

In this section we investigate the nX-complementary generations of the Thomp-
son group Th. Let G be a group and nX be a conjugacy class of elements
of order n in G. In [25], Woldar proved that every sporadic simple group is
pX-complementary generated, for the greatest prime divisor p of the order of
the group. Therefore, Th is 31X-complementary generated.

As a consequence of a result in [26], a group G is nX-complementary gen-
erated if and only if G is (pY, nX, tpZ)-generated, for all conjugacy classes pY
with representatives of prime order and some conjugacy class tpZ (depending
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on pY ). Using this result, we obtain all of the conjugacy class nX such that
Th is nX-complementary generated.

First of all, we show that Th is not 2X-complementary generated. To see
this, we notice that for any positive integer n, T (2, 2, n) ∼= D2n, the dihedral
group of order 2n. Thus if G is a finite group which is not isomorphic to some
dihedral group, then G is not (2X, 2X,nY )-generated, for all classes of invo-
lutions and any G-class nY . Thus, Th is not 2X-complementary generated.

In [26], Woldar proved that every sporadic simple group is pX- comple-
mentary generated, for the greatest prime divisor p of the order of the group.
So, Th is 31A- and 31B-complementary generated.

Lemma 3.1. The Thompson group Th is 3X-complementary generated.

Proof. By Lemmas 1.3, 2.1, 2.2 and 2.3, it is enough to show that there
are the conjugacy classes t1Z, t2Z and t3Z such that Th is (3A, 3B, t1Z)−,
(3A, 3C, t2Z)−, and (3B, 3C, t3Z)-generated. Suppose t1Z = 31A, t2A =
t3Z = 19A. From Table V, we can see that there is no maximal subgroups
contains the triple (3A, 3B, t1Z). Since ∆Th(3A, 3B, t1Z) = 14880, ∆�(Th) =
∆(Th) > 0. This proves the generation by this triple. For other triples,
∆Th(3A, 3C, 19A) = 39990, ∆Th(3B, 3C, 19A) = 1072848 and the only max-
imal subgroups that may contain (3A, 3C, 19A)− or (3B, 3C, 19A)-generated
subgroups is isomorphic to U3(8).6. Next we calculate

∆�
Th(3A, 3C, 19A) ≥ ∆Th(3A, 3C, 19A) − Σ(U3(8).6)

= 39990 − 380 > 0
∆�

Th(3B, 3C, 19A) ≥ ∆Th(3B, 3C, 19A) − Σ(U3(8).6)
= 1072848 − 0 > 0

proving the generation of Th by these triples. �

Lemma 3.2. The Thompson group Th is pX-complementary generated, for
every prime class pX with p ≥ 5.

Proof. By a result of Woldar, mentioned above, Th is 31X-complementary
generated. Suppose pX, 5 ≤ p ≤ 19, is a conjugacy class with prime order
representatives and qY is another conjugacy class with prime order represen-
tatives and q �= p. We consider a conjugacy class in the form tpZ, where tp is
a prime divisor of |Th| different from p and q. Then by Lemmas [2.1-2.4], Th
is (qY, pX, tpZ)-generated. Therefore, it remains to investigate the case q = p.
Apply Lemma 1.3, we can see that Th is (pX, pX, tpZ)-generated, for some
prime class tpZ. Therefore, Th is pX-complementary generated, proving the
lemma. �

Lemma 3.3. The Thompson group Th is 4X-complementary generated.
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Proof. First of all, we assume that X = A. For every conjugacy class pY
with prime order representatives, we define tpY = 19A. From the list of
maximal subgroups of Th we observe that, up to isomorphisms, U3(8).6 is the
only maximal subgroup of Th that admit (pY, 4A, 19A)-generated subgroups.
Then we have,

∆�(Th) = ∆(Th) − Σ(U3(8).6) > 0.

Therefore, Th is 4A-complementary generated. We next suppose that X = B.
In this case, for any prime class pY , we define tpY = 31A. The (pY, 4B, 31A)-
generated proper subgroups of Th are contained in the maximal subgroups
isomorphic to 25.PSL(5, 2). Now with the tedious calculations we can see
that

∆�(Th) = ∆(Th) − Σ(25.PSL(5, 2)) > 0.

This proves generation by these triples. �

Lemma 3.4. The Thompson group Th is nX-complementary generated, for
every element order n ≥ 5.

Proof. In Table III, we compute the power maps of Th. The lemma now
follows from Lemmas 3.1-3.3 and Lemma 1.2.

We are now ready to state the second main results of this paper.

Theorem B. The Thompson group Th is nX-complementary generated if and
only if nX �∈ {1A,2A}.
Proof. The result follows from Lemmas 3.1-3.4. �
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Table III
The Power Maps of Th

(6A)2 = 3C (6B)2 = 3A (6C)2 = 3B (8A)2 = 4A (8B)2 = 4B

(9A)3 = 3B (9B)3 = 3B (9C)3 = 3C (10A)2 = 5A (12A)2 = 6B

(12B)2 = 6B (12C)2 = 6C (12D)2 = 6A (14A)2 = 7A (15A)3 = 5A

(15B)3 = 5A (18A)3 = 6C (18B)3 = 6C (20A)2 = 10A (21A)3 = 7A

(24A)2 = 12A (24B)2 = 12B (24C)2 = 12C (24D)2 = 12C (27A)3 = 9B

(27B)3 = 9B (27C)3 = 9B (28A)2 = 14A (30A)2 = 15A (30B)2 = 15B

(36A)2 = 18A (36B)2 = 18A (36C)2 = 18A (39A)3 = 13A (39B)3 = 13A
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Table IV
The Structure Constants of Th

pY ∆(2A, 3A, pY ) ∆(2A, 3B, pY ) ∆(2A, 3C, pY ) ∆(2A, 5A, pY )

7A 252 1372 4704 362208

13A 156 1261 6240 339417

19A 19 2166 6194 342304

31A 62 1519 5084 320447

pY ∆(2A, 7A, pY ) ∆(2A, 13A, pY ) ∆(2A, 19A, pY ) (3A, 5A, pY )

7A - - - 1411200

13A 819754 - - 1964898

19A 753730 24015278 - 2103528

31A 795770 25269867 50957738 2375406

pY ∆(3A, 7A, pY ) ∆(3A, 13A, pY ) ∆(3A, 19A, pY ) ∆(3B, 5A, pY )

7A - - - 58788240

13A 8386794 - - 61977591

19A 7067620 193359390 - 61643904

31A 5965578 182304180 375714234 64174185

pY ∆(3B, 7A, pY ) ∆(3B, 13A, pY ) ∆(3B, 19A, pY ) ∆(3C, 5A, pY )

7A - - - 192734640

13A 168499786 - - 178301682

19A 173570434 5014848258 - 177905664

31A 162605974 4935510837 10083933766 172500678

pY ∆(3C, 7A, pY ) ∆(3C, 13A, pY ) ∆(3C, 19A, pY ) ∆(5A, 7A, pY )

13A 421466526 - - 24924811392

19A 419563890 13084126902 - 25096768640

31A 440991306 13299654348 27316460898 25723011856

pY ∆(5A, 13A, pY ) ∆(5A, 19A, pY ) ∆(7A, 13A, pY ) ∆(7A, 19A, pY )

19A 769350038016 - 2002364205478 -

31A 775606154625 1591873859584 1978741938906 4061042386610

pY ∆(13A, 19A, pY ) - - -

19A 122473293000346 - - -
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Table V
Partial Fusion Maps of Maximal Subgroups into Th

3D4(2).3-classes 2a 2b 3a 3b 3c 3d 3e 3f 4a 4b 4c

→ Th 2A 2A 3A 3B 3A 3A 3C 3C 4A 4A 4B
3D4(2).3-classes 7a 7b 13a

→ Th 7A 7A 13A

h 9 9 3

25.PSL(5, 2)-classes 2a 2b 3a 3b 4a 4b 4c 5a 7a 7b 31a

→ Th 2A 2A 3C 3A 4A 4B 4B 5A 7A 7A 31A

h 14 14 3

25.PSL(5, 2)-classes 31b 31c 31d 31e 31f

→ Th 31B 31A 31A 31B 31B

h 3 3 3 3 3

21+8.A9-classes 2a 2b 2c 3a 3b 3c 5a 7a

→ Th 2A 2A 2A 3C 3B 3A 5A 7A

h 21

U3(8).6-classes 2a 2b 3a 3b 3c 3d 3e 3f 4a 4b 7a

→ Th 2A 2A 3A 3B 3A 3A 3C 3C 4A 4B 7A

h 28

U3(8).6-classes 19a

→ Th 19A

h 1

(3 × G3(2)) : 2-classes 2a 2b 3a 3b 3c 3d 3e 3f 3g 3h 3i

→ Th 2A 2A 3A 3B 3A 3A 3B 3A 3C 3B 3A

(3 × G3(2)) : 2-classes 3j 7a 13a

→ Th 3C 7A 13A

h 28 1

ThN3B-classes 2a 2b 3a 3b 3c 3d 3e 3f 3g 3h 3i

→ Th 2A 2A 3B 3B 3A 3A 3B 3C 3A 3B 3C

ThN3B-classes 3j 3k 3l 3m 3n 3o 3p 3q

→ Th 3A 3C 3B 3B 3C 3C 3B 3C
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Table V (Continued)

ThM7-classes 2a 2b 3a 3b 3c 3d 3e 3f 3g 3h 3i

→ Th 2A 2A 3B 3C 3B 3A 3A 3B 3C 3B 3C

ThM7-classes 3j 3k

→ Th 3B 3C

L2(19).2-classes 2a 2b 3a 5a 5b 19a

→ Th 2A 2A 3B 5A 5A 19A

h 1

35.2S6-classes 2a 2b 3a 3b 3c 3d 3e 3f 3g 3h 3i

→ Th 2A 2A 3C 3B 3C 3A 3B 3B 3B 3C 3C

35.2S6-classes 3j 3k 3l 3m 3n 3o 3p 3q 3r 3s 3t

→ Th 3C 3B 3C 3C 3A 3C 3C 3C 3B 3B 3C

35.2S6-classes 5a

→ Th 5A

51+2.4S4-classes 2a 2b 3a 5a 5b

→ Th 2A 2A 3C 5A 5A

52.4S5-classes 2a 2b 3a 5a 5b 5c

→ Th 2A 2A 3C 5A 5A 5A

72 : (3 × 2S4)-classes 2a 3a 3b 3c 3d 3e 7a

→ Th 2A 3C 3C 3A 3A 3C 7A

h 8

L3(3)-classes 2a 3a 3b 13a 13b 13c 13d

→ Th 2A 3B 3B 13A 13A 13A 13A

h 12 12 12 12

A6.23-classes 2a 3a 5a

→ Th 2A 3B 5A

31 : 15-classes 3a 3b 5a 5b 5c 5d 31a 31b

→ Th 3C 3C 5A 5A 5A 5A 31A 31B

h 1 1

A5.2-classes 2a 2b 3a 5a

→ Th 2A 2A 3B 5A
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