On edge-magic disconnected graphs

Jaroslav Ivančo and Iveta Lučkaničová

(Received October 29, 2002)

Abstract. A graph G is called edge-magic if it admits a labeling of the vertices and edges by pairwise different integers of $1, 2, \ldots, |V(G)| + |E(G)|$ such that the sum of the label of an edge and the labels of its endpoints is constant independent of the choice of edge. A construction of edge-magic labelings of some disconnected graphs is described. Some edge-magic forests are characterized.

AMS 1991 Mathematics Subject Classification. 05C78.

Key words and phrases. Edge-magic graphs, super edge-magic graphs, stars.

§1. Introduction

We consider finite undirected graphs without loops and multiple edges. V(G) and E(G) stand for the vertex set and edge set of a graph G, respectively.

Let G be a graph with p vertices and q edges. A bijection f from $V(G) \cup E(G)$ to $\{1, 2, \ldots, p+q\}$ is called an *edge-magic total labeling* of G if there exists a constant σ (called the *magic number* of f) such that $f(u) + f(v) + f(uv) = \sigma$ for any edge uv of G. An edge-magic total labeling f is called *super edge-magic* if $f(V(G)) = \{1, 2, \ldots, p\}$ (and so $f(E(G)) = \{p+1, \ldots, p+q\}$). If f is a super edge-magic total labeling of G, then there is an integer μ (clearly, $\mu + p + q = \sigma$) such that

(P)
$$\{f(x) + f(y) : xy \in E(G)\} = \{\mu, \mu + 1, \dots, \mu + q - 1\}.$$

On the other hand, there exists exactly one extension of a bijection $f: V(G) \rightarrow \{1, 2, ..., p\}$ satisfying (P) to a super edge-magic labeling of G (for any edge xy we put $f(xy) = \mu + p + q - f(x) - f(y)$, see also [6]).

A graph G is called *edge-magic* (*super edge-magic*) if there exists an edgemagic (super edge-magic, respectively) total labeling of G. The concept of edge-magic graphs was introduced by Kotzig and Rosa [8] (under the name of graph with magic valuation). Super edge-magic graphs were introduced by Enomoto, Llado, Nakamigawa and Ringel [2]. More comprehensive information on edge-magic and super edge-magic graphs can be found in [7].

In this paper we describe some constructions of (super) edge-magic total labelings of some disconnected graphs.

\S **2.** Unions of disjoint graphs

A mapping $c: V(G) \cup E(G) \to \{1, 2, 3\}$ is called an *e-m-coloring* of a graph G if $\{c(u), c(v), c(uv)\} = \{1, 2, 3\}$ for any edge uv of G.

Now, we can prove the following result for a disjoint union of graphs.

Theorem 1. Let n be an odd positive integer. For i = 1, 2, ..., n, let G_i, g_i and c_i be an edge-magic graph with p_i vertices and q_i edges, an edge-magic total labeling of G_i with its magic number σ_i and an e-m-coloring of G_i , respectively. Suppose that the following conditions are satisfied

- (1) there is an integer σ such that $\sigma_i = \sigma$ for all i = 1, 2, ..., n,
- (2) if $g_i(x) = g_j(y)$, then $c_i(x) = c_j(y)$, for all $i, j = 1, 2, ..., n, x \in V(G_i) \cup E(G_i)$ and $y \in V(G_j) \cup E(G_j)$,
- (3) there is an integer r such that $r = p_1 + q_1 \ge \cdots \ge p_n + q_n \ge r 1$.

Then the disjoint union $\cup_{i=1}^{n} G_i$ is an edge-magic graph.

Moreover, if all g_i are super edge-magic labelings and $p_1 = p_2 = \cdots = p_n$, then $\bigcup_{i=1}^n G_i$ is a super edge-magic graph.

Proof. n is an odd integer, so there exists an integer k such that n = 2k + 1. Consider a mapping $\alpha : \{1, 2, 3\} \times \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ defined by

$$\alpha(j,i) = \begin{cases} i+k+1 & \text{for } j=1 \text{ and } i=1,\dots,k, \\ i-k & \text{for } j=1 \text{ and } i=k+1,\dots,n, \\ 1+n-2i & \text{for } j=2 \text{ and } i=1,\dots,k, \\ 1+2n-2i & \text{for } j=2 \text{ and } i=k+1,\dots,n, \\ i & \text{for } j=3 \text{ and } i=1,\dots,n. \end{cases}$$

It is easy to see that $\alpha(1, i)$, $\alpha(2, i)$ and $\alpha(3, i)$ are permutations of $\{1, 2, \dots, n\}$. Moreover, $\alpha(1, i) + \alpha(2, i) + \alpha(3, i) = 3k + 3 = 3 \left\lceil \frac{n}{2} \right\rceil$ for every $i = 1, 2, \dots, n$.

Without loss of generality we can assume that $c_1(x) = 3$ for $x \in V(G_1) \cup E(G_1)$ such that $g_1(x) = r$ (and by (2), $c_i(g_i^{-1}(r)) = 3$ if $p_i + q_i = r$). Now, consider a mapping f from $V(\bigcup_{i=1}^n G_i) \cup E(\bigcup_{i=1}^n G_i)$ into integers given by

$$f(x) = (g_i(x) - 1)n + \alpha(c_i(x), i) \text{ whenever } x \in V(G_i) \cup E(G_i).$$

According to (2), for every $t \in \{1, 2, ..., r-1\}$ there exists $j \in \{1, 2, 3\}$ such that $c_i(g_i^{-1}(t)) = j$ for all i = 1, 2, ..., n. As $\alpha(j, i)$ is a permutation, it is not difficult to check that the mapping f uses each integer $1, 2, ..., |V(\bigcup_{i=1}^{n} G_i) \cup E(\bigcup_{i=1}^{n} G_i)|$ exactly once. Moreover, if $uv \in E(G_i)$, then $f(u) + f(v) + f(uv) = (g_i(u) + g_i(v) + g_i(uv) - 3)n + \alpha(c_i(u), i) + \alpha(c_i(v), i) + \alpha(c_i(uv), i)$. Since g_i is an edge-magic total labeling with magic number σ and c_i is an e-m-coloring we have $f(u) + f(v) + f(uv) = (\sigma - 3)n + 3 \lfloor \frac{n}{2} \rfloor$. Therefore, the mapping f is an edge-magic total labeling of the graph $\bigcup_{i=1}^{n} G_i$.

If all g_i are super edge-magic, then $1 \leq f(u) \leq (p_i - 1)n + n = |V(\bigcup_{i=1}^n G_i)|$ for any $u \in V(\bigcup_{i=1}^n G_i)$. Thus, f is a super edge-magic total labeling, too. \Box

A caterpillar is a tree with the property that the removal of its pendant vertices leaves a path. Each caterpillar with parts V_1 and V_2 admits a super edge-magic total labeling such that the vertices of V_1 are labeled by $1, \ldots, |V_1|$, the vertices of V_2 by $|V_1| + 1, \ldots, |V_1| + |V_2|$, the edges by $|V_1| + |V_2| + 1, \ldots, 2|V_1| + 2|V_2| - 1$ and its magic number is $3|V_1| + 2|V_2| + 1$ (see [8] or [9]). Then by Theorem 1, we immediately have

Corollary 1. Let $n \equiv 1 \pmod{2}$, p_1 and p_2 be positive integers. For every $i \in \{1, 2, ..., n\}$, let T_i be a caterpillar having parts with p_1 and p_2 vertices. Then $\bigcup_{i=1}^{n} T_i$ is a super edge-magic graph.

Evidently, an e-m-coloring of G induces a proper (vertex) coloring of G. On the other hand, let $c^* : V(G) \to \{1, 2, 3\}$ be a (proper) 3-coloring of G. Clearly, a mapping $c : V(G) \cup E(G) \to \{1, 2, 3\}$ defined by $c(u) = c^*(u)$ for $u \in V(G)$ and $\{c(uv)\} = \{1, 2, 3\} - \{c^*(u), c^*(v)\}$ for $uv \in E(G)$ is an e-m-coloring of G. So, we immediately obtain: there exists an e-m-coloring of a graph G if and only if G is 3-colorable. In [7] there is mentioned that Figueroa-Centeno, Ichishima and Muntaner-Batle [5] prove the following: if G is a bipartite or tripartite (super) edge-magic graph then nG is (super) edge-magic when n is odd. By Theorem 1 we obtain an extension of this result.

Corollary 2. Let G be a 3-colorable graph. Let e be an edge of G such that there is a (super) edge-magic labeling f of G where f(e) = |V(G)| + |E(G)|. Then a graph $nG \cup m(G - e)$ is (super) edge-magic for any $n \ge 0$, $m \ge 0$, $1 \le n + m \equiv 1 \pmod{2}$.

In [10] there is proved that nC_k and nP_k are edge-magic when n is an odd integer. A path P_k on k vertices is a caterpillar. Thus, P_k is super edge-magic. A cycle C_k on k vertices is super edge-magic for k odd (see [2]). Moreover, it admits an edge-magic labeling with its maximal value on an edge for all $k \ge 3$ (see [8]). As $C_k - e = P_k$ for any edge e of C_k , then by Corollary 2, we have

Corollary 3. For nonnegative integers n, m, the following statements hold:

- $nC_k \cup mP_k$ is an edge-magic graph when $1 \le n + m \equiv 1 \pmod{2}$.
- $nC_k \cup mP_k$ is a super edge-magic graph when $1 \le n + m \equiv 1 \pmod{2}$ and k is odd.
- mP_k is a super edge-magic graph when $m \ge 1$ is odd.

\S **3.** Unions of two stars

In this part we consider a graph $K_{1,m} \cup K_{1,n}$ for $m \ge 1$, $n \ge 1$. Denote vertices of the graph by $u_{i,j}$, where either i = 1 and $j = 0, 1, \ldots, m$, or i = 2 and $j = 0, 1, \ldots, n$, in such a way that its edges are $u_{i,0}u_{i,j}$ for $i \in \{1,2\}$ and all $j \ge 1$.

In [9] the following assertion is introduced: If |E(G)| is even, $|V(G)| + |E(G)| \equiv 2 \pmod{4}$ and each vertex has odd degree in a graph G, then G is not edge-magic. Hence, $K_{1,m} \cup K_{1,n}$ is not edge-magic if m and n are both odd. If n is even, then there is an integer t such that n = 2t. In this case it is not difficult to check that a mapping f defined by

$$f(u_{i,j}) = \begin{cases} 2+2m+3t & \text{if } i=1 \text{ and } j=0, \\ j & \text{if } i=1 \text{ and } j=1,\ldots,m, \\ 1+m+t & \text{if } i=2 \text{ and } j=0, \\ m+j & \text{if } i=2 \text{ and } j=1,\ldots,t, \\ 1+m+j & \text{if } i=2 \text{ and } j=t+1,\ldots,2t, \\ 2+2m+2t-j & \text{if } i=1 \text{ and } j=1,\ldots,m, \\ 3+2m+4t-j & \text{if } i=2 \text{ and } j=1,\ldots,t, \\ 2+2m+4t-j & \text{if } i=2 \text{ and } j=t+1,\ldots,2t, \end{cases}$$

is an edge-magic total labeling of $K_{1,m} \cup K_{1,2t}$ with magic number 4+4m+5t. Therefore, we get the following result (see also [5]).

Theorem 2. $K_{1,m} \cup K_{1,n}$ is an edge-magic graph if and only if mn is even.

In [5] the authors prove the previous result and also sufficient condition of the next result. However, they only conjecture the necessary condition.

Theorem 3. $K_{1,m} \cup K_{1,n}$ is a super edge-magic graph if and only if either m is a multiple of n + 1 or n is a multiple of m + 1.

Proof. Let f be a super edge-magic total labeling of $K_{1,m} \cup K_{1,n}$. Assume that central vertices are labeled by l_1 and l_2 (i.e., $f(u_{1,0}) = l_1$ and $f(u_{2,0}) = l_2$). As f satisfies (P), we have

$$\frac{1}{2}(2\mu + m + n - 1)(m + n) = \mu + (\mu + 1) + \dots + (\mu + m + n - 1) = \sum_{xy \in E} (f(x) + f(y)) = (m - 1)f(u_{1,0}) + (n - 1)f(u_{2,0}) + \sum_{z \in V} f(z) = (m - 1)l_1 + (n - 1)l_2 + (1 + 2 + \dots + (m + n + 2)) = (m - 1)l_1 + (n - 1)l_2 + \frac{1}{2}(m + n + 3)(m + n + 2).$$

Hence

(*)
$$\mu(m+n) = 3(m+n+1) + (m-1)l_1 + (n-1)l_2$$

Clearly, $l_1 + l_2 \notin \{\mu, \ldots, \mu + m + n - 1\}$ because exactly one endpoint of any edge belongs to $\{u_{1,0}, u_{2,0}\}$. Without loss of generality we can assume that

 $l_1 + l_2 < \mu$ (if $l_1 + l_2 > \mu + m + n - 1$, then we take a super edge-magic labeling g given by $g(u_{i,j}) = 3 + m + n - f(u_{i,j})$). Then $1 \in \{l_1, l_2\}$ because an edge xy with endpoint labeled by 1 satisfies $\mu \le f(x) + f(y) = 1 + f(u_{i,0}) < l_1 + l_2$ otherwise. Suppose $l_2 = 1$.

If $l_1 = 2$, then according to (*) we get

$$\mu(m+n) = 3(m+n+1) + 2(m-1) + (n-1) = 4(m+n) + m.$$

This implies that m is a multiple of m + n, a contradiction. Therefore, $l_1 > 2$. Then, $\mu = l_1 + 2$ because the vertex labeled 2 must belong to $K_{1,m}$ and by (*) we have $(l_1 + 2)(m + n) = 3(m + n + 1) + (m - 1)l_1 + (n - 1)$. Hence, $m = (l_1 - 2)(n + 1)$, which means m > n and m is a multiple of n + 1.

On the other hand, assume that m = t(n+1). It is not difficult to check that a mapping f given by

$$f(u_{i,j}) = \begin{cases} 2+t & \text{if } i=1 \text{ and } j=0, \\ \left\lceil \frac{j}{t} \right\rceil + j & \text{if } i=1 \text{ and } j=1,\dots,m, \\ 1 & \text{if } i=2 \text{ and } j=0, \\ 1+(j+1)(t+1) & \text{if } i=2 \text{ and } j=1,\dots,n, \end{cases}$$

satisfies (P) for $\mu = t + 4$. Thus, $K_{1,m} \cup K_{1,n}$ is super edge-magic. \Box

$\S4.$ Attached graphs

A super edge-magic labeling f of a graph G is said to be k-interlaced if for each edge xy either $f(x) \leq k < f(y)$ or $f(y) \leq k < f(x)$. Clearly, a graph with a k-interlaced labeling is necessarily bipartite and $\{f^{-1}(i): i = 1, \ldots, k\},$ $\{f^{-1}(i): i = k + 1, \ldots, |V(G)|\}$ are its parts. Moreover, if f is k-interlaced, then a super edge-magic labeling g, given by g(x) = 1 + |V(G)| - f(x) for each vertex x, is (|V(G)| - k)-interlaced.

Suppose that v_1, \ldots, v_k is a subset of vertex set of a graph G_1 and u_1, \ldots, u_k is an independent set of a graph G_2 . $G_1(v_1, \ldots, v_k) \odot G_2(u_1, \ldots, u_k)$ denotes the graph obtained by identifying each vertex v_i with a vertex u_i , $i = 1, \ldots, k$. Evidently, $G_1(v_1, \ldots, v_k) \odot G_2(u_1, \ldots, u_k)$ has $|V(G_1)| + |V(G_2)| - k$ vertices and $|E(G_1)| + |E(G_2)|$ edges.

Theorem 4. Let g be a super edge-magic labeling of a graph G with the magic number σ_G , f be a k-interlaced super edge-magic labeling of a graph B with the magic number σ_B and let $t = \sigma_G - \sigma_B + |V(B)| + |E(B)| - 2|V(G)| + k$. If $0 \le t \le |V(G)| - k$, then $G(g^{-1}(t+1), g^{-1}(t+2), \ldots, g^{-1}(t+k)) \odot B(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k))$ is a super edge-magic graph.

Moreover, if a super edge-magic labeling g is k'-interlaced and $t + k \leq k'$, then $G(g^{-1}(t+1), g^{-1}(t+2), \ldots, g^{-1}(t+k)) \odot B(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k))$ admits a k'-interlaced labeling. *Proof.* As $0 \le t \le |V(G)| - k$, $\{g^{-1}(t+i): i = 1, ..., k\} \subseteq V(G)$. Thus a graph $H := G(g^{-1}(t+1), g^{-1}(t+2), ..., g^{-1}(t+k)) \odot B(f^{-1}(1), f^{-1}(2), ..., f^{-1}(k))$ can be defined by

$$V(H) = V(G) \cup \{x \in V(B) \colon f(x) > k\} \text{ and}$$

$$E(H) = E(G) \cup \{xg^{-1}(t+f(y)) \colon xy \in E(B), f(x) > k\}.$$

Consider a mapping h from V(H) to positive integers given by

$$h(x) = \begin{cases} g(x) & \text{for } x \in V(G), \\ f(x) + |V(G)| - k & \text{for } x \notin V(G). \end{cases}$$

Since $\{g(x)+g(y): xy \in E(G)\} = \{\sigma_G - |V(G)| - |E(G)|, \ldots, \sigma_G - |V(G)| - 1\}$ and $\{f(x)+f(y): xy \in E(B)\} = \{\sigma_B - |V(B)| - |E(B)|, \ldots, \sigma_B - |V(B)| - 1\}$, we get $\{h(x)+h(y): xy \in E(H)\} = \{\sigma_G - |V(G)| - |E(G)|, \ldots, \sigma_G - |V(G)| - 1\} \cup \{\sigma_B - |V(B)| - |E(B)| + |V(G)| - k + t, \ldots, \sigma_B - |V(B)| - 1 + |V(G)| - k + t\}$. As $\sigma_B - |V(B)| - |E(B)| + |V(G)| - k + t = \sigma_G - |V(G)|$, h satisfies (P). Evidently, h is a bijection into $\{1, \ldots, |V(H)|\}$, and so there exists its extension to a super edge-magic labeling of H. Moreover, if g is k'-interlaced and $k+t \leq k'$, then the extension of h is k'-interlaced, too. \Box

 $K_{1,k}$ is a caterpillar having parts with 1 and k vertices. So, there exist its 1-interlaced labeling g_k and k-interlaced labeling f_k . We can construct a square of path using induction $P_{n+1}^2 = P_n^2(h^{-1}(n-1),h^{-1}(n)) \odot K_{1,2}(f_2^{-1}(1),f_2^{-1}(2))$ and $P_2^2 = K_{1,1}$. Thus, by Theorem 4, we get that P_n^2 is a super edge-magic graph (see also [3]). Likewise, $K_{1,n}(g_n^{-1}(1),\ldots,g_n^{-1}(1+n)) \odot K_{1,1+n}(f_{1+n}^{-1}(1),\ldots,f_{1+n}^{-1}(1+n))$ is isomorphic to a complete 3-partite graph $K_{1,1,n}$. According to Theorem 4, we immediately obtain that $K_{1,1,n}$ is a super edge-magic graph(see also [1]).

Let $\{u_{j,i}: j = 1, 2 \ i = 1, ..., n\}$ and $\{u_{1,i}u_{2,i}: i = 1, ..., n\}$ be the vertex set and edge set of nP_2 , respectively. If n is an odd integer and $k := \lceil n/2 \rceil$, then a mapping ψ_n , given by

$$\psi_n(u_{j,i}) = \begin{cases} i & \text{for } j = 1 \text{ and } i = 1, \dots, n, \\ n+k-1+i & \text{for } j = 2 \text{ and } i = 1, \dots, k, \\ k-1+i & \text{for } j = 2 \text{ and } i = 1+k, \dots, n, \end{cases}$$

satisfies (P) and so there exists its extension to a super edge-magic labeling of nP_2 . Evidently, this extension is *n*-interlaced with magic number 4n + k + 1. Moreover, the value $\psi_n(u_{2,k})$ and the sum $\psi_n(u_{1,k}) + \psi_n(u_{2,k})$ are maximal possible. So, a mapping φ_n from $V(nP_2 - u_{2,k})$ into integers, given by $\varphi_n(x) = \psi_n(x)$, satisfies (P), too. Thus, there exists an extension of φ_n to a super edge-magic *n*-interlaced labeling of $(n-1)P_2 \cup P_1$ with magic number 4n + k - 1. By Theorem 4, we get **Corollary 4.** Let m_0 and $m_1 \ge m_2 \ge \cdots \ge m_r$ be positive integers. The union $K_{1,m_0} \cup 2K_{1,m_1} \cup 2K_{1,m_2} \cup \cdots \cup 2K_{1,m_r}$ admits a (2r+1)-interlaced labeling.

Proof. Put $S_{1+r\pm i} := K_{1,m_i}$ for all $i = 0, 1, \ldots, r$. We show that there is a super edge-magic labeling of $H := \bigcup_{i=1}^{2r+1} S_i$ such that the label of central vertex of S_i is equal to i and its magic number is $4 + 5r + 2m_0 + 4(m_1 + \cdots + m_r)$. We employ induction on $m = \max\{m_0, m_1, \ldots, m_r\}$.

If m = 1, then a graph H is isomorphic to $(2r+1)P_2$ and ψ_{2r+1} is a required labeling with magic number 9r + 6.

Now suppose that m > 1. Let $m_i^* = m_i$ if $m_i < m, m_i^* = m_i - 1$ if $m_i = m, s = |\{j: m_j = m, 1 \le j \le r\}|$ and t = r - s. Put $H^* := \bigcup_{i=1}^{2r+1} S_i^*$, where $S_{1+r\pm i}^* := K_{1,m_i^*}$. By the induction hypothesis there exists a super edge-magic labeling g of H^* such that the label of central vertex of S_i^* is equal to i and its magic number is $4 + 5r + 2m_0^* + 4(m_1^* + \cdots + m_r^*)$. If $m_0 = m$, then H is a graph isomorphic to $H^*(g^{-1}(t+1), \ldots, g^{-1}(t+2s+1)) \odot (2s+1)P_2(\psi_{2s+1}^{-1}(1), \ldots, \psi_{2s+1}^{-1}(2s+1))$. By Theorem 4, H admits a required labeling. If $m_0 < m$, then H is isomorphic to $H^*(g^{-1}(t+1), \ldots, g^{-1}(t+2s+1)) \odot (2sP_2 \cup P_1)(\varphi_{2s+1}^{-1}(1), \ldots, \varphi_{2s+1}^{-1}(2s+1))$ and according to Theorem 4, it admits a required labeling. \Box

In ([1]) [8] there is proved that kP_2 is (super) edge-magic if and only if k is odd. Figueroa-Centeno, Ichishima and Muntaner-Batle [4] show that $P_3 \cup kP_2$ is super edge-magic for all k. In ([4]) [11] it is shown that kP_3 is (super) edgemagic when k is odd. Yegnanarayanan also conjectures that for all k, kP_3 has an edge-magic total labeling. We conclude this note with a characterization of (super) edge-magic graphs $nP_3 \cup kP_2$.

Theorem 5. Let n and k be nonnegative integers such that $n + k \ge 1$. Then

- (i) $nP_3 \cup kP_2$ is edge-magic if and only if either $n \ge 1$ or n = 0 and k is odd;
- (ii) nP₃ ∪ kP₂ is super edge-magic if and only if it is edge-magic and is different from 2P₃.

Proof. If n + k is odd, then by Corollary 4, $nP_3 \cup kP_2$ (= $nK_{1,2} \cup kK_{1,1}$) is super edge-magic. So, next assume that n + k is even. Consider the following cases.

A. n = 0. Suppose that f is an edge-magic total labeling of kP_2 with magic number σ . Then

$$k\sigma = \sum_{xy \in E} (f(x) + f(y) + f(xy)) = 1 + \dots + 3k = \frac{1}{2}(3k+1)3k.$$

Hence, $\sigma = 3(3k+1)/2$. As σ is an integer, k must be odd.

B. n = 1. Let $\{v_{0,0}\} \cup \{v_{j,i}: j = 1, 2; i = 0, 1, ..., k\}$ be the vertex set and let $\{v_{0,0}v_{1,0}\} \cup \{v_{1,i}v_{2,i}: i = 0, 1, ..., k\}$ be the edge set of $P_3 \cup kP_2$. Consider a bijection ξ_k from the vertex set of $P_3 \cup kP_2$ to $\{1, 2, ..., 2k + 3\}$ given by

$$\xi_k(v_{j,i}) = \begin{cases} 1+k+j & \text{for } j \in \{0,1,2\} \text{ and } i = 0, \\ i & \text{for } j = 1 \text{ and } i \in \{1,\dots,k\}, \\ \xi_1(v_{2,1}) = 5, \end{cases}$$

and for $k = 4s \pm 1, s \ge 1$, by

$$\xi_{4s-1}(v_{2,i}) = \begin{cases} 1+6s+i & \text{for } i \in \{1,\ldots,2s\} - \{s,s+1\}, \\ 2+5s & \text{for } i = s, \\ 1+7s & \text{for } i = s+1, \\ 2+2s+i & \text{for } i \in \{2s+1,\ldots,4s-1\} - \{3s\}, \\ 2+7s & \text{for } i = 3s, \\ 2+7s & \text{for } i = 3s, \\ 4+6s+i & \text{for } i \in \{1,\ldots,2s+1\} - \{s+1\}, \\ 4+5s & \text{for } i = s+1, \\ 3+2s+i & \text{for } i \in \{2s+2,\ldots,4s+1\} - \{3s+1,3s+2\}, \\ 5+5s & \text{for } i = 3s+1, \\ 5+7s & \text{for } i = 3s+2. \end{cases}$$

It is not difficult to check that ξ_k satisfies (P) for $\mu = 2 + 3(k+1)/2$. Thus there is an extension of ξ_k to a super edge-magic labeling of $P_3 \cup kP_2$ with magic number 4 + 9(k+1)/2.

C. n > 1, k > 1. Put r := n + k - 1, $G := P_3 \cup rP_2$ and $t := 1 + \lfloor k/2 \rfloor$. If n is even, then $nP_3 \cup kP_2$ is isomorphic to

 $G(\xi_r^{-1}(t+1),\ldots,\xi_r^{-1}(t+n-1)) \odot (n-1)P_2(\psi_{n-1}^{-1}(1),\ldots,\psi_{n-1}^{-1}(n-1)).$ If *n* is odd, then $nP_3 \cup kP_2$ is isomorphic to

 $G(\xi_r^{-1}(t+1),\ldots,\xi_r^{-1}(t+n)) \odot ((n-1)P_2 \cup P_1)(\varphi_n^{-1}(1),\ldots,\varphi_n^{-1}(n)).$ By Theorem 4, $nP_3 \cup kP_2$ is super edge-magic.

D. n = 2, k = 0. Theorem 2 and Theorem 3 imply that $2P_3$ is edge-magic but it is not super edge-magic.

E. n > 2, k = 0. Denote the vertices of nP_3 by $w_{j,i}, j \in \{0, 1, 2\}, i \in \{1, \ldots, n\}$, in such a way that its edges are $w_{0,i}w_{1,i}$ and $w_{0,i}w_{2,i}, i = 1, \ldots, n$. As n is even, there exists an integer m such that n = 2m. If m is even, then define a mapping $\zeta_n \colon V(nP_3) \to \{1, \ldots, 3n\}$ by

$$\zeta_n(w_{j,i}) = \begin{cases} i & \text{if } j = 0, \ 1 \le i \le n-1, \\ 2n & \text{if } j = 0, \ i = n, \\ 3n-2-2i+j & \text{if } j > 0, \ 1 \le i \le m-1, \ i \equiv 1 \pmod{2}, \\ 4n-2i+j & \text{if } j > 0, \ m+1 \le i \le n-1, \ i \equiv 1 \pmod{2}, \\ 2n+1-2i+j & \text{if } j > 0, \ 2 \le i \le m, \ i \equiv 0 \pmod{2}, \\ 3n-1-2i+j & \text{if } j > 0, \ m+2 \le i \le n, \ i \equiv 0 \pmod{2}. \end{cases}$$

If m is odd, then define ζ_n by

$$\zeta_n(w_{j,i}) = \begin{cases} i & \text{if } j = 0, \, 1 \leq i \leq n-1, \\ 2n & \text{if } j = 0, \, i = n, \\ 3n-3+j & \text{if } j > 0, \, i = 1, \\ 3n-2-2i+j & \text{if } j > 0, \, 2 \leq i \leq m-1, \, i \equiv 0 \pmod{2}, \\ 3n-3 & \text{if } j = 1, \, i = m+1, \\ 3n & \text{if } j = 2, \, i = m+1, \\ 4n-2-2i+j & \text{if } j > 0, \, m+3 \leq i \leq n-2, \, i \equiv 0 \pmod{2}, \\ 3m-3+i+j & \text{if } j > 0, \, 3 \leq i \leq m, \, i \equiv 1 \pmod{2}, \\ m-3+i+j & \text{if } j > 0, \, m+2 \leq i \leq n-1, \, i \equiv 1 \pmod{2}, \\ 3m-2+j & \text{if } j > 0, \, i = n. \end{cases}$$

One can check that ζ_n is a bijection which satisfies (P) for $\mu = 2 + 3m$. Therefore, nP_3 is super edge-magic.

F. n > 2, k = 1. In this case n is odd and m := (n+1)/2 is an integer. Clearly, the value $\zeta_{n+1}(w_{2,m+1}) = 3(n+1)$ and the sum $\zeta_{n+1}(w_{0,m+1}) + \zeta_{n+1}(w_{2,m+1}) = 3(n+1) + m + 1$ are maximal. So, a mapping ζ'_{n+1} from $V((n+1)P_3 - w_{2,m+1})$ into integers, given by $\zeta'_{n+1}(x) = \zeta_{n+1}(x)$, satisfies (P). Therefore, $nP_3 \cup P_2$ (isomorphic to $(n+1)P_3 - w_{2,m+1}$) is super edge-magic. \Box

References

- Z. Chen, On super edge-magic graphs, J. Comb. Math. Comb. Comput. 38 (2001), 55–64.
- H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105–109.
- R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labelings, Discrete Math. 231 (2001), 153–168.
- 4. R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner, *On super edge-magic graphs*, preprint.
- 5. R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, preprint.
- Y. Fukuchi, A recursive theorem for super-edge-magic labelings of trees, SUT J. Math. 36 (2000), 279–285.
- J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics #DS6 (2001).
- A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461.
- 9. G. Ringel and A. S. Llado, Another tree conjecture, Bull. ICA 18 (1996), 83–85.
- K. Wijaya and E. T. Baskoro, Edge-magic total labelling on disconnected graphs, Proceedings of the eleventh AWOCA, 2000, pp. 139–144.
- 11. V. Yegnanarayanan, On magic graphs, Util. Math. 59 (2001), 181-204.

J. IVANČO AND I. LUČKANIČOVÁ

Jaroslav Ivančo Institute of Mathematics, P. J. Šafárik University 041 54 Košice, Jesenná 5, Slovakia *E-mail*: ivanco@duro.science.upjs.sk

184