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On edge—magic disconnected graphs
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Abstract. A graph G is called edge-magic if it admits a labeling of the vertices
and edges by pairwise different integers of 1,2,...,|V(G)| + |E(G)| such that
the sum of the label of an edge and the labels of its endpoints is constant inde-
pendent of the choice of edge. A construction of edge-magic labelings of some
disconnected graphs is described. Some edge-magic forests are characterized.
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§1. Introduction

We consider finite undirected graphs without loops and multiple edges.
V(G) and E(G) stand for the vertex set and edge set of a graph G, respectively.

Let G be a graph with p vertices and ¢ edges. A bijection f from V(G) U
E(G)to{1,2,...,p+q} is called an edge-magic total labeling of G if there exists
a constant o (called the magic number of f) such that f(u)+ f(v)+ f(uww) =0
for any edge uv of G. An edge-magic total labeling f is called super edge-magic
if f(V(@) ={1,2,...,p} (and so f(E(G)) = {p+1,...,p+q}). If f is a super
edge-magic total labeling of G, then there is an integer p (clearly, u+p+q = o)
such that

(P) {fl@)+ fy):aye E(G)}={p,p+1,...,nu+q—1}

On the other hand, there exists exactly one extension of a bijection f: V(G) —
{1,2,...,p} satisfying (P) to a super edge-magic labeling of G (for any edge
xy we put f(zy) = p+p+q— f(x) — f(y), see also [6]).

A graph G is called edge-magic (super edge-magic) if there exists an edge-
magic (super edge-magic, respectively) total labeling of G. The concept of
edge-magic graphs was introduced by Kotzig and Rosa [8] (under the name
of graph with magic valuation). Super edge-magic graphs were introduced by
Enomoto, Llado, Nakamigawa and Ringel [2]. More comprehensive informa-
tion on edge-magic and super edge-magic graphs can be found in [7].

In this paper we describe some constructions of (super) edge-magic total
labelings of some disconnected graphs.
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§2. Unions of disjoint graphs

A mapping c: V(G)UE(G) — {1,2,3} is called an e-m-coloring of a graph
G if {c(u),c(v),c(uv)} ={1,2,3} for any edge uv of G.
Now, we can prove the following result for a disjoint union of graphs.

Theorem 1. Let n be an odd positive integer. Fori=1,2,... n, let G;, g;
and c¢; be an edge-magic graph with p; vertices and q; edges, an edge-magic
total labeling of (G; with its magic number o; and an e-m-coloring of Gj,
respectively. Suppose that the following conditions are satisfied

(1) there is an integer o such that o; = o for alli=1,2,...,n,
(2) if gi(x) = g;(y), then c;(x) = ¢j(y), for all i,j = 1,2,...,n, x €
V(Gz) U E(Gz) and Yy € V(GJ) U E(G]),
(3) there is an integer r such that r =py +q > -+ > pp +¢qn > 1 — 1.
Then the disjoint union U}, G; is an edge-magic graph.
Moreover, if all g; are super edge-magic labelings and p1 = ps = -+ = Py,
then U |G, is a super edge-magic graph.

Proof. n is an odd integer, so there exists an integer k such that n = 2k + 1.
Consider a mapping «: {1,2,3} x {1,2,...,n} — {1,2,...,n} defined by

i+k+1 for =1 and i=1,...,k,
1—k for =1 and i=k+1,...,n,

a(j,i) =< 1+n—2i for j=2 and i=1,...,k,
1+4+2n—2i for j=2 and i=k+1,...,n,
i for =3 and i=1,...,n.

It is easy to see that a(1,17), «(2,7) and «(3, ¢) are permutations of {1,2,...,n}.
Moreover, a(1,) + a(2,i) + «(3,i) = 3k + 3 =3 [%] for every i = 1,2,...,n.
Without loss of generality we can assume that ¢;(z) = 3 for z € V(Gy) U
E(G) such that g;(z) = r (and by (2), ¢;(g; ' (r)) = 3 if p; + ¢; = r). Now,
consider a mapping f from V(U ,G;) U E(U!_,G;) into integers given by

f(z) = (gi(x) — D)n+ a(ci(z),i) whenever z € V(G;) U E(G;).

According to (2), for every t € {1,2,...,r — 1} there exists j € {1,2,3} such
that c;(g; *(t)) = j for all i = 1,2,...,n. As a(j,i) is a permutation, it is not
difficult to check that the mapping f uses each integer 1,2,..., |V (U ;G;) U
E(U,G,;)| exactly once. Moreover, if uv € E(G;), then f(u)+ f(v)+ f(uv) =
(9i(u) + gi(v) + gi(uwv) — 3)n + a(ci(u),1) + alci(v), i) + alci(uv),i). Since g;
is an edge-magic total labeling with magic number ¢ and ¢; is an e-m-coloring
we have f(u)+ f(v) 4+ f(uv) = (6 —3)n+ 3 [2]. Therefore, the mapping f is
an edge-magic total labeling of the graph U}, G;.



ON EDGE-MAGIC DISCONNECTED GRAPHS 177

If all g; are super edge-magic, then 1 < f(u) < (p; —1)n+n = |V(U,G;)|
for any u € V(U G;). Thus, f is a super edge-magic total labeling, too. [

A caterpillar is a tree with the property that the removal of its pen-
dant vertices leaves a path. Each caterpillar with parts V; and V5, admits
a super edge-magic total labeling such that the vertices of Vi are labeled
by 1,...,|Vi], the vertices of V5 by [Vi| + 1,...,|Vi| + |Vz], the edges by
Vil + [Va| +1,...,2[V1| + 2|V2| — 1 and its magic number is 3|V | 4 2|Va| + 1
(see [8] or [9]). Then by Theorem 1, we immediately have

Corollary 1. Let n =1 (mod 2), p; and py be positive integers. For every
i €{1,2,...,n}, let T; be a caterpillar having parts with p; and py vertices.
Then U}_,T; is a super edge-magic graph.

Evidently, an e-m-coloring of G induces a proper (vertex) coloring of G. On
the other hand, let ¢*: V(G) — {1,2,3} be a (proper) 3-coloring of G. Clearly,
a mapping ¢: V(G) U E(G) — {1,2,3} defined by c(u) = ¢*(u) for u € V(G)
and {c(uv)} = {1,2,3} — {c*(u),c*(v)} for wv € E(G) is an e-m-coloring of
G. So, we immediately obtain: there ezists an e-m-coloring of a graph G if
and only if G is 3-colorable. In [7] there is mentioned that Figueroa-Centeno,
Ichishima and Muntaner-Batle [5] prove the following: if G is a bipartite or
tripartite (super) edge-magic graph then nG is (super) edge-magic when n is
odd. By Theorem 1 we obtain an extension of this result.

Corollary 2. Let G be a 3-colorable graph. Let e be an edge of G such that
there is a (super) edge-magic labeling f of G where f(e) = |V(G)| + |E(G)|.
Then a graph nG U m(G — e) is (super) edge-magic for any n > 0, m > 0,
1<n+m=1 (mod 2).

In [10] there is proved that nCj, and nPj are edge-magic when n is an odd
integer. A path Py on k vertices is a caterpillar. Thus, Py is super edge-magic.
A cycle C on k vertices is super edge-magic for k odd (see [2]). Moreover, it
admits an edge-magic labeling with its maximal value on an edge for all k > 3
(see [8]). As C), — e = Py, for any edge e of Cy, then by Corollary 2, we have

Corollary 3. For nonnegative integers n, m, the following statements hold:
e nCy UmPy is an edge-magic graph when 1 <n+m =1 (mod 2).
e nCy UmPy is a super edge-magic graph when 1 <n+m =1 (mod 2)
and k is odd.
e mPy is a super edge-magic graph when m > 1 is odd.

§3. Unions of two stars

In this part we consider a graph K, U K;, for m > 1, n > 1. Denote
vertices of the graph by w; ;, where either ¢ = 1 and j = 0,1,...,m, or i = 2
and j = 0,1,...,n, in such a way that its edges are u; gu; ; for i € {1,2} and
all j > 1.
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In [9] the following assertion is introduced: If |E(G)| is even, |V(G)| +
|E(G)| = 2 (mod 4) and each vertex has odd degree in a graph G, then G is
not edge-magic. Hence, Ki ,, U K, is not edge-magic if m and n are both
odd. If n is even, then there is an integer ¢ such that n = 2¢. In this case it is
not difficult to check that a mapping f defined by

242m + 3t if i=1 and j =0,
J if i=1 and j=1,...,m,
fluij)=q 1+m+t if i=2 and j=0,
m+j if i=2 and j=1,...,¢,
1+m+yj if i=2 and j=t+1,...,2¢,
242m+2t—3 if i=1 and j=1,...,m,
fluiou; ;) =< 3+2m+4t —j if i=2 and j=1,...,t,

242m 44t —j if i=2 and j=t+1,...,2t,
is an edge-magic total labeling of K ,, U K o with magic number 4+ 4m + 5t.
Therefore, we get the following result (see also [5]).
Theorem 2. K, ,, UK, is an edge-magic graph if and only if mn is even.

In [5] the authors prove the previous result and also sufficient condition of
the next result. However, they only conjecture the necessary condition.

Theorem 3. K, ,, UK, , is a super edge-magic graph if and only if either m
is a multiple of n 4+ 1 or n is a multiple of m + 1.

Proof. Let f be a super edge-magic total labeling of K ,,, UK ;. Assume that
central vertices are labeled by [; and Iy (i.e., f(uio) = l1 and f(ug0) = l2).
As f satisfies (P), we have

1

S@ut+m4n—1(m+n)=p+p+1)+ -+ E+m+n—1)=

2
D (@) + f() = (m—=1)f(ur0) + (n = 1) f(ug0) + ) f(2) =

TyerE z€V
m-1Dh+m—-1D+1+2+--+(m+n+2))=

(m =1l + (n—1)lx + %(m+n+3)(m+n+2).
Hence
(+) pm +n) = 3(m + n+ 1)+ (m— Dl + (n - 1)la.

Clearly, Iy +1 ¢ {u, ..., n+m~+n—1} because exactly one endpoint of any
edge belongs to {u1,0,u20}. Without loss of generality we can assume that
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li+1y < p (if Iy +12 > p+m+n—1, then we take a super edge-magic labeling
g given by g(u; ;) =3+ m+n— f(u;;)). Then 1 € {l;,l5} because an edge
xy with endpoint labeled by 1 satisfies p < f(z)+ f(y) = 1+ f(uio) < 11 + 12
otherwise. Suppose I, = 1.

If [; = 2, then according to (x) we get

um+n)=3(m+n+1)+2m—-1)+(n—1) =4(m+n) + m.

This implies that m is a multiple of m + n, a contradiction. Therefore, {; > 2.
Then, p = I + 2 because the vertex labeled 2 must belong to K ,, and by
(x) we have (I1 +2)(m+n) =3(m+n+1)+ (m —1)l; + (n — 1). Hence,
m = (I1 — 2)(n + 1), which means m > n and m is a multiple of n + 1.

On the other hand, assume that m = t(n + 1). It is not difficult to check
that a mapping f given by

24 ¢ if i=1 and j =0,
i+ if i=1 and j=1,...,m,
1 if t=2 and 5 =0,

1+ (G+1)(t+1) if i=2 and j=1,...,n,
satisfies (P) for p =t + 4. Thus, K ,,, U K4, is super edge-magic. 0O

84. Attached graphs

A super edge-magic labeling f of a graph G is said to be k-interlaced if for
each edge xy either f(z) < k < f(y) or f(y) < k < f(x). Clearly, a graph
with a k-interlaced labeling is necessarily bipartite and {f~!(i): i = 1,...,k},
{f7Y@): i =k+1,...,|V(G)|} are its parts. Moreover, if f is k-interlaced,
then a super edge-magic labeling g, given by g(z) = 1+ |V (G)|— f(z) for each
vertex z, is (|V(G)| — k)-interlaced.

Suppose that vy, ..., vg is a subset of vertex set of a graph G and uq, .. ., ug
is an independent set of a graph Gy. G1(vy,...,v;) @ Ga(uq,...,u;) denotes
the graph obtained by identifying each vertex v; with a vertex u;, 1 =1,...k.
Evidently, G1(v1,...,vx) © Ga(u1,...,u) has |V(G1)| + |V(G2)| — k vertices
and |E(G1)| + |E(G2)| edges.

Theorem 4. Let g be a super edge-magic labeling of a graph G with the
magic number o, f be a k-interlaced super edge-magic labeling of a graph B
with the magic number op and let t = o —op+ |V (B)|+|E(B)|—2|V(G)|+
k. If0 < t < |V(G)| — k, then G(g*(t + 1), g7 (t +2),...,g (t + k) ®
B(f~Y(1),f~1(2),..., f~1(k)) is a super edge-magic graph.

Moreover, if a super edge-magic labeling g is k'-interlaced and t + k < k/,
then G(g7 ' (t+1),g7 ' (t+2),...,g7 (t+ k) ©B(f (1), f742),..., f (k)
admits a k’-interlaced labeling.
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Proof. As0<t<|V(G)|—k,{g7 (t+i):i=1,...k} C V(G). Thus a graph
H:=G(g (t+1),97 (t+2),...,g ' (t+ k) O B(F 1), f7H(2),- -, fH(R))
can be defined by

V(H)=V(G)U{z € V(B): f(z) >k} and
E(H) = E(G) U {ag™(t+ (1): a0y € E(B), f(z) > k).

Consider a mapping h from V' (H) to positive integers given by

[ g() for x € V(QG),
Mz) = { F@)+ V@) -k for = V(Q).

Since {g(z)+9(y): zy € E(G)} = {oc—|V(G)|-|E(G)],... 06 —|V(G)|-1}
and {f(2) + f(y): 7y € E(B)} = {05 |V(B)|~ |E(B), .. ,o5 — [V(B)| 1},
we gt {h()+h(y): 2y € BE(H)} = {og — V()| ~|E@G)], .. ,oa—V(G)| -
1}U{op—|V(B)|—|E(B)|+|V(G)|—k+t,...,oc5—|V(B)|-1+|V(G)|—k+t}.
As op — |V(B)| — |E(B)| + |[V(G)| — k +t = 0 — |[V(G)|, h satisfies (P).
Evidently, h is a bijection into {1, ..., |V (H)|}, and so there exists its extension
to a super edge-magic labeling of H. Moreover, if g is k’-interlaced and k+t <
k', then the extension of h is k'-interlaced, too. [

K i, is a caterpillar having parts with 1 and k vertices. So, there ex-
ist its l-interlaced labeling g; and k-interlaced labeling fr. We can con-
struct a square of path using induction P2, = P2(h~'(n — 1),h"'(n)) ®
Kio(f5 H(1), f31(2)) and P = K, ;. Thus, by Theorem 4, we get that P? is
a super edge-magic graph (see also [3]). Likewise, Ki (g, %(1),...,9, (1 +
n))©® K1,1+n(ff+1n(1), . ,fljrln(l + n)) is isomorphic to a complete 3-partite
graph K 1 ,. According to Theorem 4, we immediately obtain that K; ; , is
a super edge-magic graph(see also [1]).

Let {u;;: 5 =1,24=1,...,n} and {ujuz;: ¢ =1,...,n} be the vertex
set and edge set of nP,, respectively. If n is an odd integer and k := [n/2],
then a mapping v,,, given by

i for j=1 and i=1,...,n,
Yp(uj) =<9 n+k—14+1 for =2 and i=1,...,k,
k—1+41 for =2 and i=1+4k,...,n,

satisfies (P) and so there exists its extension to a super edge-magic labeling of
nP,. Evidently, this extension is n-interlaced with magic number 4n + k + 1.
Moreover, the value v, (u2,) and the sum v, (u1) + ¥ (ug,;) are maximal
possible. So, a mapping ¢,, from V(nPs—us ) into integers, given by ¢, (x) =
U, (2), satisfies (P), too. Thus, there exists an extension of ¢,, to a super edge-
magic n-interlaced labeling of (n — 1) P, U P; with magic number 4n + k — 1.
By Theorem 4, we get
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Corollary 4. Let mg and my > mg > --- > m, be positive integers. The
union Ki p, U 2K pyy U 2Ky, U -+ U 2K, admits a (2r + 1)-interlaced
labeling.

Proof. Put S14r+i := Kim, for all i = 0,1,...,7. We show that there is a
super edge-magic labeling of H := Uf;HSi such that the label of central vertex
of S; is equal to i and its magic number is 4 + 5r + 2mg + 4(my + - - - + m,.).
We employ induction on m = max{mg,my,...,m;}.

If m = 1, then a graph H is isomorphic to (2r+1) P, and 15,41 is a required
labeling with magic number 9r + 6.

Now suppose that m > 1. Let m; = m; if m; < m, m; = m; — 1 if
m;=m,s=[{j:m; =m,1 <j<r}andt=r—s Put H* := U?;Tle,
where ST, ., := Kj;,:. By the induction hypothesis there exists a super
edge-magic labeling g of H* such that the label of central vertex of S} is
equal to ¢ and its magic number is 4 + 5 + 2m§ + 4(m] + --- + my). If
mo = m, then H is a graph isomorphic to H* (g~ (t+1),...,97 (t+2s5+1))®
(25 + 1) Py (3. 1 (1), ..., 95,4 1 (25 + 1)). By Theorem 4, H admits a required
labeling. If mo < m, then H is isomorphic to H* (g7 (¢t +1),...,g7 (t +2s +
1)) ® (2sPy U Py) (05541 (1), ..., 05011 (25 + 1)) and according to Theorem 4, it
admits a required labeling. [

In ([1]) [8] there is proved that kPs is (super) edge-magic if and only if & is
odd. Figueroa-Centeno, Ichishima and Muntaner-Batle [4] show that PsUkP,
is super edge-magic for all k. In ([4]) [11] it is shown that kPs is (super) edge-
magic when k is odd. Yegnanarayanan also conjectures that for all k£, kP3 has
an edge-magic total labeling. We conclude this note with a characterization
of (super) edge-magic graphs nPs U kP;.

Theorem 5. Let n and k be nonnegative integers such that n+k > 1. Then

(i) nP3UkPy is edge-magic if and only if either n > 1 or n = 0 and k is
odd;

(ii) nPs3 U kP, is super edge-magic if and only if it is edge-magic and is
different from 2P3.

Proof. If n+ k is odd, then by Corollary 4, nPs UkP, (= nKy2 UkK; ;) is
super edge-magic. So, next assume that n + k is even. Consider the following
cases.

A. n = 0. Suppose that f is an edge-magic total labeling of kP with
magic number o. Then

ko = ZE(f(w) +fy) + flay) =1+ +3k= %(3k:—|— 1)3k.

Hence, 0 = 3(3k 4+ 1)/2. As o is an integer, k must be odd.
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B. n=1. Let {vo,0} U{v;i:j=1,2;9=0,1,...,k} be the vertex set and
let {vo0v1,0} U{vyv2,:7=0,1,...,k} be the edge set of P3UkP,. Consider
a bijection & from the vertex set of P3 UkP, to {1,2,...,2k + 3} given by

1+k+j for j€{0,1,2} and i=0,
Ee(vji) =9 : .
i for =1 and i€ {1,...,k},
§1(v2,1) = 5,
and for k=4s+1, s > 1, by

1+6s+1 for ie{1,...,2s} —{s,s+ 1},
24 5s for i =s,
Eas—1(v2;) =q 1+ 7s for i=s+1,
2+2s+i  for ie{2s+1,...,4s — 1} — {3s},
\ 2+ 7s for ¢ = 3s,
(4+6s+1¢  for ie{l,...,2s+1} —{s+ 1},
4+ 5s for i =s+1,
Casr1(v2i) =X 3+2s+i  for i €{2s+2,...,45+1} — {35+ 1,35+ 2},
5+ 5s for ¢ =3s+1,
o+ 7s for ¢ =3s+2.

It is not difficult to check that & satisfies (P) for u = 2+ 3(k + 1)/2. Thus
there is an extension of & to a super edge-magic labeling of P3 U kP, with
magic number 4 4+ 9(k 4+ 1)/2.

C.n>1Lk>1Putr:=n+k—1,G:=PsUrPyandt:=1+ |k/2]. If
n is even, then nP3 U kP, is isomorphic to

G(& (E+ D), & (41— 1)) © (n— D6, (U, (0 — 1),
If n is odd, then nPs U kP; is isomorphic to

GETH(E+1),. & (E4+1)) © (0 — )Py U P (95 (1), ., 05 ().
By Theorem 4, nPs; U kP, is super edge-magic.

D. n=2, k=0. Theorem 2 and Theorem 3 imply that 2Ps is edge-magic
but it is not super edge-magic.

E. n > 2, k = 0. Denote the vertices of nPs; by w;,, j € {0,1,2}, i €
{1,...,n}, in such a way that its edges are wg ;w; ; and wp w2, 1 =1,...,n.
As n is even, there exists an integer m such that n = 2m. If m is even, then
define a mapping (,: V(nP;) — {1,...,3n} by

1 if j=0,1<t1<n—-1,
M it j=0,i=n,
) 3n-2-2i+j i j>01<i<m-1,i=1 (mod?2),
Gnlwji) = An —2i+j if j>0,m+1<i<n-—1,i=1 (mod?2),
2n+1—2i+j if 7>0,2<i<m,i=0 (mod 2),
( 3n—1—-2i+j if 7>0,m+2<i<n,i=0 (mod 2).
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m is odd, then define (,, by
(i if j=0,1<i<n-—1,
2n if j=0,i=n,
3n—3+j if 7>0,i=1,
3n—2—-2i+j if 7>0,2<i<m-—1,i=0 (mod 2),
3n—3 if j=1,i=m+1,
(wj,i) = e s o i
3n if j=2,i=m+1,

dn —2 —2i+j if 7>0,m+3<i<n—2,9=0 (mod 2),

3m—3+i+j if 7>0,3<i<m,i=1 (mod 2),

m—3+i+7 if j>0,m+2<i<n-—1,i=1 (mod 2),
L 3m —2+7 if j>0,i=n.

One can check that (, is a bijection which satisfies (P) for p = 2 + 3m.
Therefore, nPj3 is super edge-magic.

Cl
Cn

F. n > 2, k= 1. In this case n is odd and m := (n + 1)/2 is an integer.
early, the value (p41(w2mt1) = 3(n + 1) and the sum (,q1(wom+1) +
+1(w2my1) = 3(n+ 1) + m + 1 are maximal. So, a mapping (;,,; from

V((n+1)P3s —wg 1) into integers, given by (), ;(x) = (nt1(x), satisfies (P).
Therefore, nP3UP, (isomorphic to (n+1) Ps—ws 1) is super edge-magic. O

9.
10.
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