On edge-magic disconnected graphs

Jaroslav Ivančo and Iveta Lučkaničová

(Received October 29, 2002)

Abstract

A graph G is called edge-magic if it admits a labeling of the vertices and edges by pairwise different integers of $1,2, \ldots,|V(G)|+|E(G)|$ such that the sum of the label of an edge and the labels of its endpoints is constant independent of the choice of edge. A construction of edge-magic labelings of some disconnected graphs is described. Some edge-magic forests are characterized.

AMS 1991 Mathematics Subject Classification. 05C78.
Key words and phrases. Edge-magic graphs, super edge-magic graphs, stars.

§1. Introduction

We consider finite undirected graphs without loops and multiple edges. $V(G)$ and $E(G)$ stand for the vertex set and edge set of a graph G, respectively.

Let G be a graph with p vertices and q edges. A bijection f from $V(G) \cup$ $E(G)$ to $\{1,2, \ldots, p+q\}$ is called an edge-magic total labeling of G if there exists a constant σ (called the magic number of f) such that $f(u)+f(v)+f(u v)=\sigma$ for any edge $u v$ of G. An edge-magic total labeling f is called super edge-magic if $f(V(G))=\{1,2, \ldots, p\}$ (and so $f(E(G))=\{p+1, \ldots, p+q\}$). If f is a super edge-magic total labeling of G, then there is an integer μ (clearly, $\mu+p+q=\sigma$) such that

$$
\begin{equation*}
\{f(x)+f(y): x y \in E(G)\}=\{\mu, \mu+1, \ldots, \mu+q-1\} \tag{P}
\end{equation*}
$$

On the other hand, there exists exactly one extension of a bijection $f: V(G) \rightarrow$ $\{1,2, \ldots, p\}$ satisfying (P) to a super edge-magic labeling of G (for any edge $x y$ we put $f(x y)=\mu+p+q-f(x)-f(y)$, see also [6]).

A graph G is called edge-magic (super edge-magic) if there exists an edgemagic (super edge-magic, respectively) total labeling of G. The concept of edge-magic graphs was introduced by Kotzig and Rosa [8] (under the name of graph with magic valuation). Super edge-magic graphs were introduced by Enomoto, Llado, Nakamigawa and Ringel [2]. More comprehensive information on edge-magic and super edge-magic graphs can be found in [7].

In this paper we describe some constructions of (super) edge-magic total labelings of some disconnected graphs.

§2. Unions of disjoint graphs

A mapping $c: V(G) \cup E(G) \rightarrow\{1,2,3\}$ is called an e-m-coloring of a graph G if $\{c(u), c(v), c(u v)\}=\{1,2,3\}$ for any edge $u v$ of G.

Now, we can prove the following result for a disjoint union of graphs.
Theorem 1. Let n be an odd positive integer. For $i=1,2, \ldots, n$, let G_{i}, g_{i} and c_{i} be an edge-magic graph with p_{i} vertices and q_{i} edges, an edge-magic total labeling of G_{i} with its magic number σ_{i} and an e-m-coloring of G_{i}, respectively. Suppose that the following conditions are satisfied
(1) there is an integer σ such that $\sigma_{i}=\sigma$ for all $i=1,2, \ldots, n$,
(2) if $g_{i}(x)=g_{j}(y)$, then $c_{i}(x)=c_{j}(y)$, for all $i, j=1,2, \ldots, n, x \in$ $V\left(G_{i}\right) \cup E\left(G_{i}\right)$ and $y \in V\left(G_{j}\right) \cup E\left(G_{j}\right)$,
(3) there is an integer r such that $r=p_{1}+q_{1} \geq \cdots \geq p_{n}+q_{n} \geq r-1$.

Then the disjoint union $\cup_{i=1}^{n} G_{i}$ is an edge-magic graph.
Moreover, if all g_{i} are super edge-magic labelings and $p_{1}=p_{2}=\cdots=p_{n}$, then $\cup_{i=1}^{n} G_{i}$ is a super edge-magic graph.
Proof. n is an odd integer, so there exists an integer k such that $n=2 k+1$. Consider a mapping $\alpha:\{1,2,3\} \times\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ defined by

$$
\alpha(j, i)= \begin{cases}i+k+1 & \text { for } j=1 \text { and } i=1, \ldots, k, \\ i-k & \text { for } j=1 \text { and } i=k+1, \ldots, n, \\ 1+n-2 i & \text { for } j=2 \text { and } i=1, \ldots, k, \\ 1+2 n-2 i & \text { for } j=2 \text { and } i=k+1, \ldots, n, \\ i & \text { for } j=3 \text { and } i=1, \ldots, n\end{cases}
$$

It is easy to see that $\alpha(1, i), \alpha(2, i)$ and $\alpha(3, i)$ are permutations of $\{1,2, \ldots, n\}$. Moreover, $\alpha(1, i)+\alpha(2, i)+\alpha(3, i)=3 k+3=3\left\lceil\frac{n}{2}\right\rceil$ for every $i=1,2, \ldots, n$.

Without loss of generality we can assume that $c_{1}(x)=3$ for $x \in V\left(G_{1}\right) \cup$ $E\left(G_{1}\right)$ such that $g_{1}(x)=r$ (and by $(2), c_{i}\left(g_{i}^{-1}(r)\right)=3$ if $\left.p_{i}+q_{i}=r\right)$. Now, consider a mapping f from $V\left(\cup_{i=1}^{n} G_{i}\right) \cup E\left(\cup_{i=1}^{n} G_{i}\right)$ into integers given by

$$
f(x)=\left(g_{i}(x)-1\right) n+\alpha\left(c_{i}(x), i\right) \text { whenever } x \in V\left(G_{i}\right) \cup E\left(G_{i}\right)
$$

According to (2), for every $t \in\{1,2, \ldots, r-1\}$ there exists $j \in\{1,2,3\}$ such that $c_{i}\left(g_{i}^{-1}(t)\right)=j$ for all $i=1,2, \ldots, n$. As $\alpha(j, i)$ is a permutation, it is not difficult to check that the mapping f uses each integer $1,2, \ldots, \mid V\left(\cup_{i=1}^{n} G_{i}\right) \cup$ $E\left(\cup_{i=1}^{n} G_{i}\right) \mid$ exactly once. Moreover, if $u v \in E\left(G_{i}\right)$, then $f(u)+f(v)+f(u v)=$ $\left(g_{i}(u)+g_{i}(v)+g_{i}(u v)-3\right) n+\alpha\left(c_{i}(u), i\right)+\alpha\left(c_{i}(v), i\right)+\alpha\left(c_{i}(u v), i\right)$. Since g_{i} is an edge-magic total labeling with magic number σ and c_{i} is an e-m-coloring we have $f(u)+f(v)+f(u v)=(\sigma-3) n+3\left\lceil\frac{n}{2}\right\rceil$. Therefore, the mapping f is an edge-magic total labeling of the graph $\cup_{i=1}^{n} G_{i}$.

If all g_{i} are super edge-magic, then $1 \leq f(u) \leq\left(p_{i}-1\right) n+n=\left|V\left(\cup_{i=1}^{n} G_{i}\right)\right|$ for any $u \in V\left(\cup_{i=1}^{n} G_{i}\right)$. Thus, f is a super edge-magic total labeling, too.

A caterpillar is a tree with the property that the removal of its pendant vertices leaves a path. Each caterpillar with parts V_{1} and V_{2} admits a super edge-magic total labeling such that the vertices of V_{1} are labeled by $1, \ldots,\left|V_{1}\right|$, the vertices of V_{2} by $\left|V_{1}\right|+1, \ldots,\left|V_{1}\right|+\left|V_{2}\right|$, the edges by $\left|V_{1}\right|+\left|V_{2}\right|+1, \ldots, 2\left|V_{1}\right|+2\left|V_{2}\right|-1$ and its magic number is $3\left|V_{1}\right|+2\left|V_{2}\right|+1$ (see [8] or [9]). Then by Theorem 1, we immediately have
Corollary 1. Let $n \equiv 1(\bmod 2), p_{1}$ and p_{2} be positive integers. For every $i \in\{1,2, \ldots, n\}$, let T_{i} be a caterpillar having parts with p_{1} and p_{2} vertices. Then $\cup_{i=1}^{n} T_{i}$ is a super edge-magic graph.

Evidently, an e-m-coloring of G induces a proper (vertex) coloring of G. On the other hand, let $c^{*}: V(G) \rightarrow\{1,2,3\}$ be a (proper) 3 -coloring of G. Clearly, a mapping $c: V(G) \cup E(G) \rightarrow\{1,2,3\}$ defined by $c(u)=c^{*}(u)$ for $u \in V(G)$ and $\{c(u v)\}=\{1,2,3\}-\left\{c^{*}(u), c^{*}(v)\right\}$ for $u v \in E(G)$ is an e-m-coloring of G. So, we immediately obtain: there exists an e-m-coloring of a graph G if and only if G is 3 -colorable. In [7] there is mentioned that Figueroa-Centeno, Ichishima and Muntaner-Batle [5] prove the following: if G is a bipartite or tripartite (super) edge-magic graph then $n G$ is (super) edge-magic when n is odd. By Theorem 1 we obtain an extension of this result.

Corollary 2. Let G be a 3-colorable graph. Let e be an edge of G such that there is a (super) edge-magic labeling f of G where $f(e)=|V(G)|+|E(G)|$. Then a graph $n G \cup m(G-e)$ is (super) edge-magic for any $n \geq 0, m \geq 0$, $1 \leq n+m \equiv 1(\bmod 2)$.

In [10] there is proved that $n C_{k}$ and $n P_{k}$ are edge-magic when n is an odd integer. A path P_{k} on k vertices is a caterpillar. Thus, P_{k} is super edge-magic. A cycle C_{k} on k vertices is super edge-magic for k odd (see [2]). Moreover, it admits an edge-magic labeling with its maximal value on an edge for all $k \geq 3$ (see [8]). As $C_{k}-e=P_{k}$ for any edge e of C_{k}, then by Corollary 2, we have
Corollary 3. For nonnegative integers n, m, the following statements hold:

- $n C_{k} \cup m P_{k}$ is an edge-magic graph when $1 \leq n+m \equiv 1(\bmod 2)$.
- $n C_{k} \cup m P_{k}$ is a super edge-magic graph when $1 \leq n+m \equiv 1(\bmod 2)$ and k is odd.
- $m P_{k}$ is a super edge-magic graph when $m \geq 1$ is odd.

§3. Unions of two stars

In this part we consider a graph $K_{1, m} \cup K_{1, n}$ for $m \geq 1, n \geq 1$. Denote vertices of the graph by $u_{i, j}$, where either $i=1$ and $j=0,1, \ldots, m$, or $i=2$ and $j=0,1, \ldots, n$, in such a way that its edges are $u_{i, 0} u_{i, j}$ for $i \in\{1,2\}$ and all $j \geq 1$.

In [9] the following assertion is introduced: If $|E(G)|$ is even, $|V(G)|+$ $|E(G)| \equiv 2(\bmod 4)$ and each vertex has odd degree in a graph G, then G is not edge-magic. Hence, $K_{1, m} \cup K_{1, n}$ is not edge-magic if m and n are both odd. If n is even, then there is an integer t such that $n=2 t$. In this case it is not difficult to check that a mapping f defined by

$$
\begin{gathered}
f\left(u_{i, j}\right)= \begin{cases}2+2 m+3 t & \text { if } i=1 \text { and } j=0, \\
j & \text { if } i=1 \text { and } j=1, \ldots, m, \\
1+m+t & \text { if } i=2 \text { and } j=0, \\
m+j & \text { if } i=2 \text { and } j=1, \ldots, t, \\
1+m+j & \text { if } i=2 \text { and } j=t+1, \ldots, 2 t,\end{cases} \\
f\left(u_{i, 0} u_{i, j}\right)= \begin{cases}2+2 m+2 t-j & \text { if } i=1 \text { and } j=1, \ldots, m, \\
3+2 m+4 t-j & \text { if } i=2 \text { and } j=1, \ldots, t, \\
2+2 m+4 t-j & \text { if } i=2 \text { and } j=t+1, \ldots, 2 t,\end{cases}
\end{gathered}
$$

is an edge-magic total labeling of $K_{1, m} \cup K_{1,2 t}$ with magic number $4+4 m+5 t$. Therefore, we get the following result (see also [5]).
Theorem 2. $K_{1, m} \cup K_{1, n}$ is an edge-magic graph if and only if $m n$ is even.
In [5] the authors prove the previous result and also sufficient condition of the next result. However, they only conjecture the necessary condition.
Theorem 3. $K_{1, m} \cup K_{1, n}$ is a super edge-magic graph if and only if either m is a multiple of $n+1$ or n is a multiple of $m+1$.
Proof. Let f be a super edge-magic total labeling of $K_{1, m} \cup K_{1, n}$. Assume that central vertices are labeled by l_{1} and l_{2} (i.e., $f\left(u_{1,0}\right)=l_{1}$ and $f\left(u_{2,0}\right)=l_{2}$). As f satisfies (P), we have

$$
\begin{gathered}
\frac{1}{2}(2 \mu+m+n-1)(m+n)=\mu+(\mu+1)+\cdots+(\mu+m+n-1)= \\
\sum_{x y \in E}(f(x)+f(y))=(m-1) f\left(u_{1,0}\right)+(n-1) f\left(u_{2,0}\right)+\sum_{z \in V} f(z)= \\
(m-1) l_{1}+(n-1) l_{2}+(1+2+\cdots+(m+n+2))= \\
\quad(m-1) l_{1}+(n-1) l_{2}+\frac{1}{2}(m+n+3)(m+n+2) .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\mu(m+n)=3(m+n+1)+(m-1) l_{1}+(n-1) l_{2} . \tag{*}
\end{equation*}
$$

Clearly, $l_{1}+l_{2} \notin\{\mu, \ldots, \mu+m+n-1\}$ because exactly one endpoint of any edge belongs to $\left\{u_{1,0}, u_{2,0}\right\}$. Without loss of generality we can assume that
$l_{1}+l_{2}<\mu$ (if $l_{1}+l_{2}>\mu+m+n-1$, then we take a super edge-magic labeling g given by $\left.g\left(u_{i, j}\right)=3+m+n-f\left(u_{i, j}\right)\right)$. Then $1 \in\left\{l_{1}, l_{2}\right\}$ because an edge $x y$ with endpoint labeled by 1 satisfies $\mu \leq f(x)+f(y)=1+f\left(u_{i, 0}\right)<l_{1}+l_{2}$ otherwise. Suppose $l_{2}=1$.

If $l_{1}=2$, then according to $(*)$ we get

$$
\mu(m+n)=3(m+n+1)+2(m-1)+(n-1)=4(m+n)+m
$$

This implies that m is a multiple of $m+n$, a contradiction. Therefore, $l_{1}>2$. Then, $\mu=l_{1}+2$ because the vertex labeled 2 must belong to $K_{1, m}$ and by $(*)$ we have $\left(l_{1}+2\right)(m+n)=3(m+n+1)+(m-1) l_{1}+(n-1)$. Hence, $m=\left(l_{1}-2\right)(n+1)$, which means $m>n$ and m is a multiple of $n+1$.

On the other hand, assume that $m=t(n+1)$. It is not difficult to check that a mapping f given by

$$
f\left(u_{i, j}\right)= \begin{cases}2+t & \text { if } i=1 \text { and } j=0, \\ \left\lceil\frac{j}{t}\right\rceil+j & \text { if } i=1 \text { and } j=1, \ldots, m \\ 1 & \text { if } i=2 \text { and } j=0, \\ 1+(j+1)(t+1) & \text { if } i=2 \text { and } j=1, \ldots, n\end{cases}
$$

satisfies (P) for $\mu=t+4$. Thus, $K_{1, m} \cup K_{1, n}$ is super edge-magic.

§4. Attached graphs

A super edge-magic labeling f of a graph G is said to be k-interlaced if for each edge $x y$ either $f(x) \leq k<f(y)$ or $f(y) \leq k<f(x)$. Clearly, a graph with a k-interlaced labeling is necessarily bipartite and $\left\{f^{-1}(i): i=1, \ldots, k\right\}$, $\left\{f^{-1}(i): i=k+1, \ldots,|V(G)|\right\}$ are its parts. Moreover, if f is k-interlaced, then a super edge-magic labeling g, given by $g(x)=1+|V(G)|-f(x)$ for each vertex x, is $(|V(G)|-k)$-interlaced.

Suppose that v_{1}, \ldots, v_{k} is a subset of vertex set of a graph G_{1} and u_{1}, \ldots, u_{k} is an independent set of a graph $G_{2} . G_{1}\left(v_{1}, \ldots, v_{k}\right) \odot G_{2}\left(u_{1}, \ldots, u_{k}\right)$ denotes the graph obtained by identifying each vertex v_{i} with a vertex $u_{i}, i=1, \ldots k$. Evidently, $G_{1}\left(v_{1}, \ldots, v_{k}\right) \odot G_{2}\left(u_{1}, \ldots, u_{k}\right)$ has $\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-k$ vertices and $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|$ edges.
Theorem 4. Let g be a super edge-magic labeling of a graph G with the magic number σ_{G}, f be a k-interlaced super edge-magic labeling of a graph B with the magic number σ_{B} and let $t=\sigma_{G}-\sigma_{B}+|V(B)|+|E(B)|-2|V(G)|+$ k. If $0 \leq t \leq|V(G)|-k$, then $G\left(g^{-1}(t+1), g^{-1}(t+2), \ldots, g^{-1}(t+k)\right) \odot$ $B\left(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k)\right)$ is a super edge-magic graph.

Moreover, if a super edge-magic labeling g is k^{\prime}-interlaced and $t+k \leq k^{\prime}$, then $G\left(g^{-1}(t+1), g^{-1}(t+2), \ldots, g^{-1}(t+k)\right) \odot B\left(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k)\right)$ admits a k^{\prime}-interlaced labeling.

Proof. As $0 \leq t \leq|V(G)|-k,\left\{g^{-1}(t+i): i=1, \ldots k\right\} \subseteq V(G)$. Thus a graph $H:=G\left(g^{-1}(t+1), g^{-1}(t+2), \ldots, g^{-1}(t+k)\right) \odot B\left(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k)\right)$ can be defined by

$$
\begin{aligned}
& V(H)=V(G) \cup\{x \in V(B): f(x)>k\} \text { and } \\
& E(H)=E(G) \cup\left\{x g^{-1}(t+f(y)): x y \in E(B), f(x)>k\right\}
\end{aligned}
$$

Consider a mapping h from $V(H)$ to positive integers given by

$$
h(x)= \begin{cases}g(x) & \text { for } x \in V(G) \\ f(x)+|V(G)|-k & \text { for } x \notin V(G)\end{cases}
$$

Since $\{g(x)+g(y): x y \in E(G)\}=\left\{\sigma_{G}-|V(G)|-|E(G)|, \ldots, \sigma_{G}-|V(G)|-1\right\}$ and $\{f(x)+f(y): x y \in E(B)\}=\left\{\sigma_{B}-|V(B)|-|E(B)|, \ldots, \sigma_{B}-|V(B)|-1\right\}$, we get $\{h(x)+h(y): x y \in E(H)\}=\left\{\sigma_{G}-|V(G)|-|E(G)|, \ldots, \sigma_{G}-|V(G)|-\right.$ $1\} \cup\left\{\sigma_{B}-|V(B)|-|E(B)|+|V(G)|-k+t, \ldots, \sigma_{B}-|V(B)|-1+|V(G)|-k+t\right\}$. As $\sigma_{B}-|V(B)|-|E(B)|+|V(G)|-k+t=\sigma_{G}-|V(G)|, h$ satisfies (P). Evidently, h is a bijection into $\{1, \ldots,|V(H)|\}$, and so there exists its extension to a super edge-magic labeling of H. Moreover, if g is k^{\prime}-interlaced and $k+t \leq$ k^{\prime}, then the extension of h is k^{\prime}-interlaced, too.
$K_{1, k}$ is a caterpillar having parts with 1 and k vertices. So, there exist its 1 -interlaced labeling g_{k} and k-interlaced labeling f_{k}. We can construct a square of path using induction $P_{n+1}^{2}=P_{n}^{2}\left(h^{-1}(n-1), h^{-1}(n)\right) \odot$ $K_{1,2}\left(f_{2}^{-1}(1), f_{2}^{-1}(2)\right)$ and $P_{2}^{2}=K_{1,1}$. Thus, by Theorem 4 , we get that P_{n}^{2} is a super edge-magic graph (see also [3]). Likewise, $K_{1, n}\left(g_{n}^{-1}(1), \ldots, g_{n}^{-1}(1+\right.$ $n)) \odot K_{1,1+n}\left(f_{1+n}^{-1}(1), \ldots, f_{1+n}^{-1}(1+n)\right)$ is isomorphic to a complete 3-partite graph $K_{1,1, n}$. According to Theorem 4, we immediately obtain that $K_{1,1, n}$ is a super edge-magic graph(see also [1]).

Let $\left\{u_{j, i}: j=1,2 i=1, \ldots, n\right\}$ and $\left\{u_{1, i} u_{2, i}: i=1, \ldots, n\right\}$ be the vertex set and edge set of $n P_{2}$, respectively. If n is an odd integer and $k:=\lceil n / 2\rceil$, then a mapping ψ_{n}, given by

$$
\psi_{n}\left(u_{j, i}\right)= \begin{cases}i & \text { for } j=1 \text { and } i=1, \ldots, n \\ n+k-1+i & \text { for } j=2 \text { and } i=1, \ldots, k \\ k-1+i & \text { for } j=2 \text { and } i=1+k, \ldots, n\end{cases}
$$

satisfies (P) and so there exists its extension to a super edge-magic labeling of $n P_{2}$. Evidently, this extension is n-interlaced with magic number $4 n+k+1$. Moreover, the value $\psi_{n}\left(u_{2, k}\right)$ and the sum $\psi_{n}\left(u_{1, k}\right)+\psi_{n}\left(u_{2, k}\right)$ are maximal possible. So, a mapping φ_{n} from $V\left(n P_{2}-u_{2, k}\right)$ into integers, given by $\varphi_{n}(x)=$ $\psi_{n}(x)$, satisfies (P), too. Thus, there exists an extension of φ_{n} to a super edgemagic n-interlaced labeling of $(n-1) P_{2} \cup P_{1}$ with magic number $4 n+k-1$. By Theorem 4, we get

Corollary 4. Let m_{0} and $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$ be positive integers. The union $K_{1, m_{0}} \cup 2 K_{1, m_{1}} \cup 2 K_{1, m_{2}} \cup \cdots \cup 2 K_{1, m_{r}}$ admits a $(2 r+1)$-interlaced labeling.

Proof. Put $S_{1+r \pm i}:=K_{1, m_{i}}$ for all $i=0,1, \ldots, r$. We show that there is a super edge-magic labeling of $H:=\cup_{i=1}^{2 r+1} S_{i}$ such that the label of central vertex of S_{i} is equal to i and its magic number is $4+5 r+2 m_{0}+4\left(m_{1}+\cdots+m_{r}\right)$. We employ induction on $m=\max \left\{m_{0}, m_{1}, \ldots, m_{r}\right\}$.

If $m=1$, then a graph H is isomorphic to $(2 r+1) P_{2}$ and $\psi_{2 r+1}$ is a required labeling with magic number $9 r+6$.

Now suppose that $m>1$. Let $m_{i}^{*}=m_{i}$ if $m_{i}<m, m_{i}^{*}=m_{i}-1$ if $m_{i}=m, s=\left|\left\{j: m_{j}=m, 1 \leq j \leq r\right\}\right|$ and $t=r-s$. Put $H^{*}:=\cup_{i=1}^{2 r+1} S_{i}^{*}$, where $S_{1+r \pm i}^{*}:=K_{1, m_{i}^{*}}$. By the induction hypothesis there exists a super edge-magic labeling g of H^{*} such that the label of central vertex of S_{i}^{*} is equal to i and its magic number is $4+5 r+2 m_{0}^{*}+4\left(m_{1}^{*}+\cdots+m_{r}^{*}\right)$. If $m_{0}=m$, then H is a graph isomorphic to $H^{*}\left(g^{-1}(t+1), \ldots, g^{-1}(t+2 s+1)\right) \odot$ $(2 s+1) P_{2}\left(\psi_{2 s+1}^{-1}(1), \ldots, \psi_{2 s+1}^{-1}(2 s+1)\right)$. By Theorem 4, H admits a required labeling. If $m_{0}<m$, then H is isomorphic to $H^{*}\left(g^{-1}(t+1), \ldots, g^{-1}(t+2 s+\right.$ 1)) $\odot\left(2 s P_{2} \cup P_{1}\right)\left(\varphi_{2 s+1}^{-1}(1), \ldots, \varphi_{2 s+1}^{-1}(2 s+1)\right)$ and according to Theorem 4 , it admits a required labeling.

In ([1]) [8] there is proved that $k P_{2}$ is (super) edge-magic if and only if k is odd. Figueroa-Centeno, Ichishima and Muntaner-Batle [4] show that $P_{3} \cup k P_{2}$ is super edge-magic for all k. In ([4]) [11] it is shown that $k P_{3}$ is (super) edgemagic when k is odd. Yegnanarayanan also conjectures that for all $k, k P_{3}$ has an edge-magic total labeling. We conclude this note with a characterization of (super) edge-magic graphs $n P_{3} \cup k P_{2}$.

Theorem 5. Let n and k be nonnegative integers such that $n+k \geq 1$. Then
(i) $n P_{3} \cup k P_{2}$ is edge-magic if and only if either $n \geq 1$ or $n=0$ and k is odd;
(ii) $n P_{3} \cup k P_{2}$ is super edge-magic if and only if it is edge-magic and is different from $2 P_{3}$.

Proof. If $n+k$ is odd, then by Corollary 4, $n P_{3} \cup k P_{2}\left(=n K_{1,2} \cup k K_{1,1}\right)$ is super edge-magic. So, next assume that $n+k$ is even. Consider the following cases.
A. $n=0$. Suppose that f is an edge-magic total labeling of $k P_{2}$ with magic number σ. Then

$$
k \sigma=\sum_{x y \in E}(f(x)+f(y)+f(x y))=1+\cdots+3 k=\frac{1}{2}(3 k+1) 3 k .
$$

Hence, $\sigma=3(3 k+1) / 2$. As σ is an integer, k must be odd.
B. $n=1$. Let $\left\{v_{0,0}\right\} \cup\left\{v_{j, i}: j=1,2 ; i=0,1, \ldots, k\right\}$ be the vertex set and let $\left\{v_{0,0} v_{1,0}\right\} \cup\left\{v_{1, i} v_{2, i}: i=0,1, \ldots, k\right\}$ be the edge set of $P_{3} \cup k P_{2}$. Consider a bijection ξ_{k} from the vertex set of $P_{3} \cup k P_{2}$ to $\{1,2, \ldots, 2 k+3\}$ given by

$$
\begin{aligned}
& \xi_{k}\left(v_{j, i}\right)= \begin{cases}1+k+j & \text { for } j \in\{0,1,2\} \text { and } i=0, \\
i & \text { for } j=1 \text { and } i \in\{1, \ldots, k\},\end{cases} \\
& \xi_{1}\left(v_{2,1}\right)=5
\end{aligned}
$$

and for $k=4 s \pm 1, s \geq 1$, by
$\xi_{4 s-1}\left(v_{2, i}\right)= \begin{cases}1+6 s+i & \text { for } i \in\{1, \ldots, 2 s\}-\{s, s+1\}, \\ 2+5 s & \text { for } i=s, \\ 1+7 s & \text { for } i=s+1, \\ 2+2 s+i & \text { for } i \in\{2 s+1, \ldots, 4 s-1\}-\{3 s\}, \\ 2+7 s & \text { for } i=3 s,\end{cases}$
$\xi_{4 s+1}\left(v_{2, i}\right)= \begin{cases}4+6 s+i & \text { for } i \in\{1, \ldots, 2 s+1\}-\{s+1\}, \\ 4+5 s & \text { for } i=s+1, \\ 3+2 s+i & \text { for } i \in\{2 s+2, \ldots, 4 s+1\}-\{3 s+1,3 s+2\}, \\ 5+5 s & \text { for } i=3 s+1, \\ 5+7 s & \text { for } i=3 s+2 .\end{cases}$
It is not difficult to check that ξ_{k} satisfies (P) for $\mu=2+3(k+1) / 2$. Thus there is an extension of ξ_{k} to a super edge-magic labeling of $P_{3} \cup k P_{2}$ with magic number $4+9(k+1) / 2$.
C. $n>1, k>1$. Put $r:=n+k-1, G:=P_{3} \cup r P_{2}$ and $t:=1+\lfloor k / 2\rfloor$. If n is even, then $n P_{3} \cup k P_{2}$ is isomorphic to

$$
G\left(\xi_{r}^{-1}(t+1), \ldots, \xi_{r}^{-1}(t+n-1)\right) \odot(n-1) P_{2}\left(\psi_{n-1}^{-1}(1), \ldots, \psi_{n-1}^{-1}(n-1)\right) .
$$

If n is odd, then $n P_{3} \cup k P_{2}$ is isomorphic to

$$
G\left(\xi_{r}^{-1}(t+1), \ldots, \xi_{r}^{-1}(t+n)\right) \odot\left((n-1) P_{2} \cup P_{1}\right)\left(\varphi_{n}^{-1}(1), \ldots, \varphi_{n}^{-1}(n)\right) .
$$

By Theorem $4, n P_{3} \cup k P_{2}$ is super edge-magic.
D. $n=2, k=0$. Theorem 2 and Theorem 3 imply that $2 P_{3}$ is edge-magic but it is not super edge-magic.
E. $n>2, k=0$. Denote the vertices of $n P_{3}$ by $w_{j, i}, j \in\{0,1,2\}, i \in$ $\{1, \ldots, n\}$, in such a way that its edges are $w_{0, i} w_{1, i}$ and $w_{0, i} w_{2, i}, i=1, \ldots, n$. As n is even, there exists an integer m such that $n=2 m$. If m is even, then define a mapping $\zeta_{n}: V\left(n P_{3}\right) \rightarrow\{1, \ldots, 3 n\}$ by
$\zeta_{n}\left(w_{j, i}\right)= \begin{cases}i & \text { if } j=0,1 \leq i \leq n-1, \\ 2 n & \text { if } j=0, i=n, \\ 3 n-2-2 i+j & \text { if } j>0,1 \leq i \leq m-1, i \equiv 1(\bmod 2), \\ 4 n-2 i+j & \text { if } j>0, m+1 \leq i \leq n-1, i \equiv 1(\bmod 2), \\ 2 n+1-2 i+j & \text { if } j>0,2 \leq i \leq m, i \equiv 0(\bmod 2), \\ 3 n-1-2 i+j & \text { if } j>0, m+2 \leq i \leq n, i \equiv 0(\bmod 2) .\end{cases}$

If m is odd, then define ζ_{n} by

$$
\zeta_{n}\left(w_{j, i}\right)= \begin{cases}i & \text { if } j=0,1 \leq i \leq n-1, \\ 2 n & \text { if } j=0, i=n, \\ 3 n-3+j & \text { if } j>0, i=1, \\ 3 n-2-2 i+j & \text { if } j>0,2 \leq i \leq m-1, i \equiv 0(\bmod 2), \\ 3 n-3 & \text { if } j=1, i=m+1, \\ 3 n & \text { if } j=2, i=m+1, \\ 4 n-2-2 i+j & \text { if } j>0, m+3 \leq i \leq n-2, i \equiv 0(\bmod 2), \\ 3 m-3+i+j & \text { if } j>0,3 \leq i \leq m, i \equiv 1(\bmod 2), \\ m-3+i+j & \text { if } j>0, m+2 \leq i \leq n-1, i \equiv 1(\bmod 2), \\ 3 m-2+j & \text { if } j>0, i=n .\end{cases}
$$

One can check that ζ_{n} is a bijection which satisfies (P) for $\mu=2+3 m$. Therefore, $n P_{3}$ is super edge-magic.
F. $n>2, k=1$. In this case n is odd and $m:=(n+1) / 2$ is an integer. Clearly, the value $\zeta_{n+1}\left(w_{2, m+1}\right)=3(n+1)$ and the sum $\zeta_{n+1}\left(w_{0, m+1}\right)+$ $\zeta_{n+1}\left(w_{2, m+1}\right)=3(n+1)+m+1$ are maximal. So, a mapping ζ_{n+1}^{\prime} from $V\left((n+1) P_{3}-w_{2, m+1}\right)$ into integers, given by $\zeta_{n+1}^{\prime}(x)=\zeta_{n+1}(x)$, satisfies (P). Therefore, $n P_{3} \cup P_{2}$ (isomorphic to $\left.(n+1) P_{3}-w_{2, m+1}\right)$ is super edge-magic.

References

1. Z. Chen, On super edge-magic graphs, J. Comb. Math. Comb. Comput. 38 (2001), 55-64.
2. H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
3. R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labelings, Discrete Math. 231 (2001), 153-168.
4. R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner, On super edge-magic graphs, preprint.
5. R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, preprint.
6. Y. Fukuchi, A recursive theorem for super-edge-magic labelings of trees, SUT J. Math. 36 (2000), 279-285.
7. J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics \#DS6 (2001).
8. A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
9. G. Ringel and A. S. Llado, Another tree conjecture, Bull. ICA 18 (1996), 83-85.
10. K. Wijaya and E. T. Baskoro, Edge-magic total labelling on disconnected graphs, Proceedings of the eleventh AWOCA, 2000, pp. 139-144.
11. V. Yegnanarayanan, On magic graphs, Util. Math. 59 (2001), 181-204.

Jaroslav Ivančo
Institute of Mathematics, P. J. Šafárik University
04154 Košice, Jesenná 5, Slovakia
E-mail: ivanco@duro.science.upjs.sk

