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Abstract. A graph G is called edge-magic if it admits a labeling of the vertices

and edges by pairwise different integers of 1, 2, . . . , |V (G)| + |E(G)| such that

the sum of the label of an edge and the labels of its endpoints is constant inde-

pendent of the choice of edge. A construction of edge-magic labelings of some

disconnected graphs is described. Some edge-magic forests are characterized.
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§1. Introduction

We consider finite undirected graphs without loops and multiple edges.
V (G) and E(G) stand for the vertex set and edge set of a graphG, respectively.

Let G be a graph with p vertices and q edges. A bijection f from V (G) ∪
E(G) to {1, 2, . . . , p+q} is called an edge-magic total labeling ofG if there exists
a constant σ (called the magic number of f) such that f(u)+f(v)+f(uv) = σ
for any edge uv of G. An edge-magic total labeling f is called super edge-magic
if f(V (G)) = {1, 2, . . . , p} (and so f(E(G)) = {p+1, . . . , p+q}). If f is a super
edge-magic total labeling of G, then there is an integer µ (clearly, µ+p+q = σ)
such that

(P) {f(x) + f(y) : xy ∈ E(G)} = {µ, µ+ 1, . . . , µ+ q − 1}.

On the other hand, there exists exactly one extension of a bijection f : V (G) →
{1, 2, . . . , p} satisfying (P) to a super edge-magic labeling of G (for any edge
xy we put f(xy) = µ+ p+ q − f(x) − f(y), see also [6]).

A graph G is called edge-magic (super edge-magic) if there exists an edge-
magic (super edge-magic, respectively) total labeling of G. The concept of
edge-magic graphs was introduced by Kotzig and Rosa [8] (under the name
of graph with magic valuation). Super edge-magic graphs were introduced by
Enomoto, Llado, Nakamigawa and Ringel [2]. More comprehensive informa-
tion on edge-magic and super edge-magic graphs can be found in [7].

In this paper we describe some constructions of (super) edge-magic total
labelings of some disconnected graphs.
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§2. Unions of disjoint graphs

A mapping c : V (G)∪E(G) → {1, 2, 3} is called an e-m-coloring of a graph
G if {c(u), c(v), c(uv)} = {1, 2, 3} for any edge uv of G.

Now, we can prove the following result for a disjoint union of graphs.

Theorem 1. Let n be an odd positive integer. For i = 1, 2, . . . , n, let Gi, gi

and ci be an edge-magic graph with pi vertices and qi edges, an edge-magic
total labeling of Gi with its magic number σi and an e-m-coloring of Gi,
respectively. Suppose that the following conditions are satisfied

(1) there is an integer σ such that σi = σ for all i = 1, 2, . . . , n,
(2) if gi(x) = gj(y), then ci(x) = cj(y), for all i, j = 1, 2, . . . , n, x ∈

V (Gi) ∪ E(Gi) and y ∈ V (Gj) ∪E(Gj),
(3) there is an integer r such that r = p1 + q1 ≥ · · · ≥ pn + qn ≥ r − 1.

Then the disjoint union ∪n
i=1Gi is an edge-magic graph.

Moreover, if all gi are super edge-magic labelings and p1 = p2 = · · · = pn,
then ∪n

i=1Gi is a super edge-magic graph.

Proof. n is an odd integer, so there exists an integer k such that n = 2k + 1.
Consider a mapping α : {1, 2, 3} × {1, 2, . . . , n} → {1, 2, . . . , n} defined by

α(j, i) =




i+ k + 1 for j = 1 and i = 1, . . . , k,
i− k for j = 1 and i = k + 1, . . . , n,
1 + n− 2i for j = 2 and i = 1, . . . , k,
1 + 2n− 2i for j = 2 and i = k + 1, . . . , n,
i for j = 3 and i = 1, . . . , n.

It is easy to see that α(1, i), α(2, i) and α(3, i) are permutations of {1, 2, . . . , n}.
Moreover, α(1, i) + α(2, i) + α(3, i) = 3k + 3 = 3

⌈
n
2

⌉
for every i = 1, 2, . . . , n.

Without loss of generality we can assume that c1(x) = 3 for x ∈ V (G1) ∪
E(G1) such that g1(x) = r (and by (2), ci(g−1

i (r)) = 3 if pi + qi = r). Now,
consider a mapping f from V (∪n

i=1Gi) ∪ E(∪n
i=1Gi) into integers given by

f(x) = (gi(x) − 1)n+ α(ci(x), i) whenever x ∈ V (Gi) ∪ E(Gi).

According to (2), for every t ∈ {1, 2, . . . , r − 1} there exists j ∈ {1, 2, 3} such
that ci(g−1

i (t)) = j for all i = 1, 2, . . . , n. As α(j, i) is a permutation, it is not
difficult to check that the mapping f uses each integer 1, 2, . . . , |V (∪n

i=1Gi) ∪
E(∪n

i=1Gi)| exactly once. Moreover, if uv ∈ E(Gi), then f(u)+f(v)+f(uv) =
(gi(u) + gi(v) + gi(uv) − 3)n+ α(ci(u), i) + α(ci(v), i) + α(ci(uv), i). Since gi

is an edge-magic total labeling with magic number σ and ci is an e-m-coloring
we have f(u) + f(v) + f(uv) = (σ− 3)n+ 3

⌈
n
2

⌉
. Therefore, the mapping f is

an edge-magic total labeling of the graph ∪n
i=1Gi.
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If all gi are super edge-magic, then 1 ≤ f(u) ≤ (pi − 1)n+n = |V (∪n
i=1Gi)|

for any u ∈ V (∪n
i=1Gi). Thus, f is a super edge-magic total labeling, too. �

A caterpillar is a tree with the property that the removal of its pen-
dant vertices leaves a path. Each caterpillar with parts V1 and V2 admits
a super edge-magic total labeling such that the vertices of V1 are labeled
by 1, . . . , |V1|, the vertices of V2 by |V1| + 1, . . . , |V1| + |V2|, the edges by
|V1| + |V2| + 1, . . . , 2|V1| + 2|V2| − 1 and its magic number is 3|V1| + 2|V2| + 1
(see [8] or [9]). Then by Theorem 1, we immediately have

Corollary 1. Let n ≡ 1 (mod 2), p1 and p2 be positive integers. For every
i ∈ {1, 2, . . . , n}, let Ti be a caterpillar having parts with p1 and p2 vertices.
Then ∪n

i=1Ti is a super edge-magic graph.

Evidently, an e-m-coloring of G induces a proper (vertex) coloring of G. On
the other hand, let c∗ : V (G) → {1, 2, 3} be a (proper) 3-coloring of G. Clearly,
a mapping c : V (G) ∪ E(G) → {1, 2, 3} defined by c(u) = c∗(u) for u ∈ V (G)
and {c(uv)} = {1, 2, 3} − {c∗(u), c∗(v)} for uv ∈ E(G) is an e-m-coloring of
G. So, we immediately obtain: there exists an e-m-coloring of a graph G if
and only if G is 3-colorable. In [7] there is mentioned that Figueroa-Centeno,
Ichishima and Muntaner-Batle [5] prove the following: if G is a bipartite or
tripartite (super) edge-magic graph then nG is (super) edge-magic when n is
odd. By Theorem 1 we obtain an extension of this result.

Corollary 2. Let G be a 3-colorable graph. Let e be an edge of G such that
there is a (super) edge-magic labeling f of G where f(e) = |V (G)| + |E(G)|.
Then a graph nG ∪ m(G − e) is (super) edge-magic for any n ≥ 0, m ≥ 0,
1 ≤ n+m ≡ 1 (mod 2).

In [10] there is proved that nCk and nPk are edge-magic when n is an odd
integer. A path Pk on k vertices is a caterpillar. Thus, Pk is super edge-magic.
A cycle Ck on k vertices is super edge-magic for k odd (see [2]). Moreover, it
admits an edge-magic labeling with its maximal value on an edge for all k ≥ 3
(see [8]). As Ck − e = Pk for any edge e of Ck, then by Corollary 2, we have

Corollary 3. For nonnegative integers n, m, the following statements hold:

• nCk ∪mPk is an edge-magic graph when 1 ≤ n+m ≡ 1 (mod 2).
• nCk ∪mPk is a super edge-magic graph when 1 ≤ n+m ≡ 1 (mod 2)

and k is odd.
• mPk is a super edge-magic graph when m ≥ 1 is odd.

§3. Unions of two stars

In this part we consider a graph K1,m ∪ K1,n for m ≥ 1, n ≥ 1. Denote
vertices of the graph by ui,j , where either i = 1 and j = 0, 1, . . . ,m, or i = 2
and j = 0, 1, . . . , n, in such a way that its edges are ui,0ui,j for i ∈ {1, 2} and
all j ≥ 1.
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In [9] the following assertion is introduced: If |E(G)| is even, |V (G)| +
|E(G)| ≡ 2 (mod 4) and each vertex has odd degree in a graph G, then G is
not edge-magic. Hence, K1,m ∪ K1,n is not edge-magic if m and n are both
odd. If n is even, then there is an integer t such that n = 2t. In this case it is
not difficult to check that a mapping f defined by

f(ui,j) =




2 + 2m+ 3t if i = 1 and j = 0,
j if i = 1 and j = 1, . . . ,m,
1 +m+ t if i = 2 and j = 0,
m+ j if i = 2 and j = 1, . . . , t,
1 +m+ j if i = 2 and j = t+ 1, . . . , 2t,

f(ui,0ui,j) =




2 + 2m+ 2t− j if i = 1 and j = 1, . . . ,m,
3 + 2m+ 4t− j if i = 2 and j = 1, . . . , t,
2 + 2m+ 4t− j if i = 2 and j = t+ 1, . . . , 2t,

is an edge-magic total labeling of K1,m∪K1,2t with magic number 4+4m+5t.
Therefore, we get the following result (see also [5]).

Theorem 2. K1,m ∪K1,n is an edge-magic graph if and only if mn is even.

In [5] the authors prove the previous result and also sufficient condition of
the next result. However, they only conjecture the necessary condition.

Theorem 3. K1,m ∪K1,n is a super edge-magic graph if and only if either m
is a multiple of n+ 1 or n is a multiple of m+ 1.

Proof. Let f be a super edge-magic total labeling of K1,m∪K1,n. Assume that
central vertices are labeled by l1 and l2 (i.e., f(u1,0) = l1 and f(u2,0) = l2).
As f satisfies (P), we have

1
2
(2µ+m+ n− 1)(m+ n) = µ+ (µ+ 1) + · · · + (µ+m+ n− 1) =∑

xy∈E

(f(x) + f(y)) = (m− 1)f(u1,0) + (n− 1)f(u2,0) +
∑
z∈V

f(z) =

(m− 1)l1 + (n− 1)l2 + (1 + 2 + · · · + (m+ n+ 2)) =

(m− 1)l1 + (n− 1)l2 +
1
2
(m+ n+ 3)(m+ n+ 2).

Hence

(∗) µ(m+ n) = 3(m+ n+ 1) + (m− 1)l1 + (n− 1)l2.

Clearly, l1 + l2 /∈ {µ, . . . , µ+m+n−1} because exactly one endpoint of any
edge belongs to {u1,0, u2,0}. Without loss of generality we can assume that
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l1 + l2 < µ (if l1 + l2 > µ+m+n−1, then we take a super edge-magic labeling
g given by g(ui,j) = 3 +m+ n − f(ui,j)). Then 1 ∈ {l1, l2} because an edge
xy with endpoint labeled by 1 satisfies µ ≤ f(x) + f(y) = 1 + f(ui,0) < l1 + l2
otherwise. Suppose l2 = 1.

If l1 = 2, then according to (∗) we get

µ(m+ n) = 3(m+ n+ 1) + 2(m− 1) + (n− 1) = 4(m+ n) +m.

This implies that m is a multiple of m+n, a contradiction. Therefore, l1 > 2.
Then, µ = l1 + 2 because the vertex labeled 2 must belong to K1,m and by
(∗) we have (l1 + 2)(m + n) = 3(m + n + 1) + (m − 1)l1 + (n − 1). Hence,
m = (l1 − 2)(n+ 1), which means m > n and m is a multiple of n+ 1.

On the other hand, assume that m = t(n + 1). It is not difficult to check
that a mapping f given by

f(ui,j) =




2 + t if i = 1 and j = 0,⌈
j
t

⌉
+ j if i = 1 and j = 1, . . . ,m,

1 if i = 2 and j = 0,
1 + (j + 1)(t+ 1) if i = 2 and j = 1, . . . , n,

satisfies (P) for µ = t+ 4. Thus, K1,m ∪K1,n is super edge-magic. �

§4. Attached graphs

A super edge-magic labeling f of a graph G is said to be k-interlaced if for
each edge xy either f(x) ≤ k < f(y) or f(y) ≤ k < f(x). Clearly, a graph
with a k-interlaced labeling is necessarily bipartite and {f−1(i): i = 1, . . . , k},
{f−1(i): i = k + 1, . . . , |V (G)|} are its parts. Moreover, if f is k-interlaced,
then a super edge-magic labeling g, given by g(x) = 1+ |V (G)|−f(x) for each
vertex x, is (|V (G)| − k)-interlaced.

Suppose that v1, . . . , vk is a subset of vertex set of a graph G1 and u1, . . . , uk

is an independent set of a graph G2. G1(v1, . . . , vk) �G2(u1, . . . , uk) denotes
the graph obtained by identifying each vertex vi with a vertex ui, i = 1, . . . k.
Evidently, G1(v1, . . . , vk)�G2(u1, . . . , uk) has |V (G1)| + |V (G2)| − k vertices
and |E(G1)| + |E(G2)| edges.

Theorem 4. Let g be a super edge-magic labeling of a graph G with the
magic number σG, f be a k-interlaced super edge-magic labeling of a graph B
with the magic number σB and let t = σG −σB + |V (B)|+ |E(B)|−2|V (G)|+
k. If 0 ≤ t ≤ |V (G)| − k, then G(g−1(t + 1), g−1(t + 2), . . . , g−1(t + k)) �
B(f−1(1), f−1(2), . . . , f−1(k)) is a super edge-magic graph.

Moreover, if a super edge-magic labeling g is k′-interlaced and t + k ≤ k′,
then G(g−1(t+ 1), g−1(t+ 2), . . . , g−1(t+ k))�B(f−1(1), f−1(2), . . . , f−1(k))
admits a k′-interlaced labeling.
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Proof. As 0 ≤ t ≤ |V (G)|−k, {g−1(t+ i) : i = 1, . . . k} ⊆ V (G). Thus a graph
H := G(g−1(t+1), g−1(t+2), . . . , g−1(t+k))�B(f−1(1), f−1(2), . . . , f−1(k))
can be defined by

V (H) = V (G) ∪ {x ∈ V (B) : f(x) > k} and

E(H) = E(G) ∪ {xg−1(t+ f(y)) : xy ∈ E(B), f(x) > k}.

Consider a mapping h from V (H) to positive integers given by

h(x) =
{
g(x) for x ∈ V (G),
f(x) + |V (G)| − k for x /∈ V (G).

Since {g(x)+g(y) : xy ∈ E(G)} = {σG−|V (G)|−|E(G)|, . . . , σG−|V (G)|−1}
and {f(x)+f(y) : xy ∈ E(B)} = {σB −|V (B)|−|E(B)|, . . . , σB −|V (B)|−1},
we get {h(x)+h(y) : xy ∈ E(H)} = {σG−|V (G)|− |E(G)|, . . . , σG−|V (G)|−
1}∪{σB−|V (B)|−|E(B)|+|V (G)|−k+t, . . . , σB−|V (B)|−1+|V (G)|−k+t}.
As σB − |V (B)| − |E(B)| + |V (G)| − k + t = σG − |V (G)|, h satisfies (P).
Evidently, h is a bijection into {1, . . . , |V (H)|}, and so there exists its extension
to a super edge-magic labeling of H. Moreover, if g is k′-interlaced and k+t ≤
k′, then the extension of h is k′-interlaced, too. �
K1,k is a caterpillar having parts with 1 and k vertices. So, there ex-

ist its 1-interlaced labeling gk and k-interlaced labeling fk. We can con-
struct a square of path using induction P 2

n+1 = P 2
n(h−1(n − 1), h−1(n)) �

K1,2(f−1
2 (1), f−1

2 (2)) and P 2
2 = K1,1. Thus, by Theorem 4, we get that P 2

n is
a super edge-magic graph (see also [3]). Likewise, K1,n(g−1

n (1), . . . , g−1
n (1 +

n)) �K1,1+n(f−1
1+n(1), . . . , f−1

1+n(1 + n)) is isomorphic to a complete 3-partite
graph K1,1,n. According to Theorem 4, we immediately obtain that K1,1,n is
a super edge-magic graph(see also [1]).

Let {uj,i : j = 1, 2 i = 1, . . . , n} and {u1,iu2,i : i = 1, . . . , n} be the vertex
set and edge set of nP2, respectively. If n is an odd integer and k := 
n/2�,
then a mapping ψn, given by

ψn(uj,i) =



i for j = 1 and i = 1, . . . , n,
n+ k − 1 + i for j = 2 and i = 1, . . . , k,
k − 1 + i for j = 2 and i = 1 + k, . . . , n,

satisfies (P) and so there exists its extension to a super edge-magic labeling of
nP2. Evidently, this extension is n-interlaced with magic number 4n+ k + 1.
Moreover, the value ψn(u2,k) and the sum ψn(u1,k) + ψn(u2,k) are maximal
possible. So, a mapping ϕn from V (nP2−u2,k) into integers, given by ϕn(x) =
ψn(x), satisfies (P), too. Thus, there exists an extension of ϕn to a super edge-
magic n-interlaced labeling of (n− 1)P2 ∪ P1 with magic number 4n+ k − 1.
By Theorem 4, we get
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Corollary 4. Let m0 and m1 ≥ m2 ≥ · · · ≥ mr be positive integers. The
union K1,m0 ∪ 2K1,m1 ∪ 2K1,m2 ∪ · · · ∪ 2K1,mr

admits a (2r + 1)-interlaced
labeling.

Proof. Put S1+r±i := K1,mi
for all i = 0, 1, . . . , r. We show that there is a

super edge-magic labeling ofH := ∪2r+1
i=1 Si such that the label of central vertex

of Si is equal to i and its magic number is 4 + 5r + 2m0 + 4(m1 + · · · +mr).
We employ induction on m = max{m0,m1, . . . ,mr}.

If m = 1, then a graph H is isomorphic to (2r+1)P2 and ψ2r+1 is a required
labeling with magic number 9r + 6.

Now suppose that m > 1. Let m∗
i = mi if mi < m, m∗

i = mi − 1 if
mi = m, s = |{j : mj = m, 1 ≤ j ≤ r}| and t = r − s. Put H∗ := ∪2r+1

i=1 S∗
i ,

where S∗
1+r±i := K1,m∗

i
. By the induction hypothesis there exists a super

edge-magic labeling g of H∗ such that the label of central vertex of S∗
i is

equal to i and its magic number is 4 + 5r + 2m∗
0 + 4(m∗

1 + · · · + m∗
r). If

m0 = m, then H is a graph isomorphic to H∗(g−1(t+1), . . . , g−1(t+2s+1))�
(2s+ 1)P2(ψ−1

2s+1(1), . . . , ψ−1
2s+1(2s+ 1)). By Theorem 4, H admits a required

labeling. If m0 < m, then H is isomorphic to H∗(g−1(t+ 1), . . . , g−1(t+ 2s+
1))� (2sP2 ∪P1)(ϕ−1

2s+1(1), . . . , ϕ−1
2s+1(2s+ 1)) and according to Theorem 4, it

admits a required labeling. �

In ([1]) [8] there is proved that kP2 is (super) edge-magic if and only if k is
odd. Figueroa-Centeno, Ichishima and Muntaner-Batle [4] show that P3∪kP2

is super edge-magic for all k. In ([4]) [11] it is shown that kP3 is (super) edge-
magic when k is odd. Yegnanarayanan also conjectures that for all k, kP3 has
an edge-magic total labeling. We conclude this note with a characterization
of (super) edge-magic graphs nP3 ∪ kP2.

Theorem 5. Let n and k be nonnegative integers such that n+ k ≥ 1. Then

(i) nP3 ∪ kP2 is edge-magic if and only if either n ≥ 1 or n = 0 and k is
odd;

(ii) nP3 ∪ kP2 is super edge-magic if and only if it is edge-magic and is
different from 2P3.

Proof. If n + k is odd, then by Corollary 4, nP3 ∪ kP2 (= nK1,2 ∪ kK1,1) is
super edge-magic. So, next assume that n+ k is even. Consider the following
cases.

A. n = 0. Suppose that f is an edge-magic total labeling of kP2 with
magic number σ. Then

kσ =
∑

xy∈E

(f(x) + f(y) + f(xy)) = 1 + · · · + 3k =
1
2
(3k + 1)3k.

Hence, σ = 3(3k + 1)/2. As σ is an integer, k must be odd.
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B. n = 1. Let {v0,0} ∪ {vj,i : j = 1, 2; i = 0, 1, . . . , k} be the vertex set and
let {v0,0v1,0} ∪ {v1,iv2,i : i = 0, 1, . . . , k} be the edge set of P3 ∪ kP2. Consider
a bijection ξk from the vertex set of P3 ∪ kP2 to {1, 2, . . . , 2k + 3} given by

ξk(vj,i) =
{

1 + k + j for j ∈ {0, 1, 2} and i = 0,
i for j = 1 and i ∈ {1, . . . , k},

ξ1(v2,1) = 5,

and for k = 4s± 1, s ≥ 1, by

ξ4s−1(v2,i) =




1 + 6s+ i for i ∈ {1, . . . , 2s} − {s, s + 1},
2 + 5s for i = s,
1 + 7s for i = s+ 1,
2 + 2s+ i for i ∈ {2s+ 1, . . . , 4s− 1} − {3s},
2 + 7s for i = 3s,

ξ4s+1(v2,i) =




4 + 6s+ i for i ∈ {1, . . . , 2s+ 1} − {s+ 1},
4 + 5s for i = s+ 1,
3 + 2s+ i for i ∈ {2s+ 2, . . . , 4s+ 1} − {3s+ 1, 3s+ 2},
5 + 5s for i = 3s+ 1,
5 + 7s for i = 3s+ 2.

It is not difficult to check that ξk satisfies (P) for µ = 2 + 3(k + 1)/2. Thus
there is an extension of ξk to a super edge-magic labeling of P3 ∪ kP2 with
magic number 4 + 9(k + 1)/2.

C. n > 1, k > 1. Put r := n+ k − 1, G := P3 ∪ rP2 and t := 1 + �k/2. If
n is even, then nP3 ∪ kP2 is isomorphic to
G(ξ−1

r (t+ 1), . . . , ξ−1
r (t+ n− 1)) � (n− 1)P2(ψ−1

n−1(1), . . . , ψ−1
n−1(n− 1)).

If n is odd, then nP3 ∪ kP2 is isomorphic to
G(ξ−1

r (t+ 1), . . . , ξ−1
r (t+ n)) � ((n− 1)P2 ∪ P1)(ϕ−1

n (1), . . . , ϕ−1
n (n)).

By Theorem 4, nP3 ∪ kP2 is super edge-magic.
D. n = 2, k = 0. Theorem 2 and Theorem 3 imply that 2P3 is edge-magic

but it is not super edge-magic.
E. n > 2, k = 0. Denote the vertices of nP3 by wj,i, j ∈ {0, 1, 2}, i ∈

{1, . . . , n}, in such a way that its edges are w0,iw1,i and w0,iw2,i, i = 1, . . . , n.
As n is even, there exists an integer m such that n = 2m. If m is even, then
define a mapping ζn : V (nP3) → {1, . . . , 3n} by

ζn(wj,i) =




i if j = 0, 1 ≤ i ≤ n− 1,
2n if j = 0, i = n,
3n− 2 − 2i+ j if j > 0, 1 ≤ i ≤ m− 1, i ≡ 1 (mod 2),
4n− 2i+ j if j > 0, m+ 1 ≤ i ≤ n− 1, i ≡ 1 (mod 2),
2n+ 1 − 2i+ j if j > 0, 2 ≤ i ≤ m, i ≡ 0 (mod 2),
3n− 1 − 2i+ j if j > 0, m+ 2 ≤ i ≤ n, i ≡ 0 (mod 2).
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If m is odd, then define ζn by

ζn(wj,i) =




i if j = 0, 1 ≤ i ≤ n− 1,
2n if j = 0, i = n,
3n− 3 + j if j > 0, i = 1,
3n− 2 − 2i+ j if j > 0, 2 ≤ i ≤ m− 1, i ≡ 0 (mod 2),
3n− 3 if j = 1, i = m+ 1,
3n if j = 2, i = m+ 1,
4n− 2 − 2i+ j if j > 0, m+ 3 ≤ i ≤ n− 2, i ≡ 0 (mod 2),
3m− 3 + i+ j if j > 0, 3 ≤ i ≤ m, i ≡ 1 (mod 2),
m− 3 + i+ j if j > 0, m+ 2 ≤ i ≤ n− 1, i ≡ 1 (mod 2),
3m− 2 + j if j > 0, i = n.

One can check that ζn is a bijection which satisfies (P) for µ = 2 + 3m.
Therefore, nP3 is super edge-magic.

F. n > 2, k = 1. In this case n is odd and m := (n + 1)/2 is an integer.
Clearly, the value ζn+1(w2,m+1) = 3(n + 1) and the sum ζn+1(w0,m+1) +
ζn+1(w2,m+1) = 3(n + 1) + m + 1 are maximal. So, a mapping ζ ′n+1 from
V ((n+1)P3−w2,m+1) into integers, given by ζ ′n+1(x) = ζn+1(x), satisfies (P).
Therefore, nP3∪P2 (isomorphic to (n+1)P3−w2,m+1) is super edge-magic. �
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