Vertex-Disjoint Copies of $K_{1}+\left(K_{1} \cup K_{2}\right)$ in Graphs

Shinya Fujita

(Received November 11, 2002)

Abstract

Let S denote the graph obtained from K_{4} by removing two edges which have an endvertex in common. Let k be an integer with $k \geq 2$. Let G be a graph with $|V(G)| \geq 4 k$ and $\sigma_{2}(G) \geq|V(G)| / 2+2 k-1$, and suppose that G contains k vertex-disjoint triangles. In the case where $|V(G)|=4 k+2$, suppose further that $G \nsupseteq K_{4 t+3} \cup K_{4 k-4 t-1}$ for any t with $0 \leq t \leq k-1$. Under these assumptions, we show that G contains k vertex-disjoint copies of S.

AMS 1991 Mathematics Subject Classification. 05C70.
Key words and phrases. Vertex-disjoint, subgraph.

§1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by $V(G), E(G)$ and $\delta(G)$ the vertex set, the edge set and the minimum degree of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_{G}(x)$, and we let $d_{G}(x):=\left|N_{G}(x)\right|$. For a noncomplete graph G, let $\sigma_{2}(G):=\min \left\{d_{G}(x)+d_{G}(y) \mid x y \notin E(G)\right\}$; if G is a complete graph, let $\sigma_{2}(G):=\infty$. For a subset L of $V(G)$, the subgraph induced by L is denoted by $\langle L\rangle$. For a subset M of $V(G)$, we let $G-M=\langle V(G)-M\rangle$ and, for a vertex x of G, we let $G-x=\langle V(G)-\{x\}\rangle$. For subsets L and M of $V(G)$, we let $E(L, M)$ denote the set of edges of G joining a vertex in L and a vertex in M. When L or M consists of a single vertex, say $L=\{x\}$ or $M=\{y\}$, we write $E(x, M)$ or $E(L, y)$ for $E(L, M)$.

Let K_{n} denote the complete graph of order n, and let K_{n}^{-}be the graph obtained from K_{n} by removing one edge. Also let S be the graph obtained from K_{4} by removing two edges which have an endvertex in common; thus $S=K_{1}+\left(K_{1} \cup K_{2}\right)$.

In this paper, we are concerned with conditions on $\sigma_{2}(G)$ for the existence of vertex-disjoint subgraphs. As examples of results concerning such conditions, we mention that it is proved in Justesen [2] that a graph G of order at least $3 k$ with $\sigma_{2}(G) \geq|V(G)|+k$ has k vertex-disjoint triangles, and it is proved in Enomoto [1] that a graph G of order at least $3 k$ with $\sigma_{2}(G) \geq 4 k-1$ has k vertex-disjoint cycles. This paper is concerned with the following theorem proved by Kawarabayashi in [3].

Theorem 1. Let k be an integer with $k \geq 2$, and let G be a graph with $|V(G)| \geq 4 k$ and $\sigma_{2}(G) \geq|V(G)|+k$. Then G contains k vertex-disjoint copies of S.

In Theorem 1 , the bound on $\sigma_{2}(G)$ is sharp. But this is simply because there exists a graph G with $|V(G)| \geq 4 k$ and $\sigma_{2}(G)=|V(G)|+k-1$ such that G does not even contain k vertex-disjoint triangles (see [2]). Based on this observation, Kawarabayashi and Ota [4] suggested the possibility of lowering the bound on $\sigma_{2}(G)$ by adding the assumption that G contains k vertex-disjoint triangles. Along this line, we prove the following theorem.

Theorem 2. Let k be an integer with $k \geq 2$. Let G be a graph with $|V(G)| \geq$ $4 k$ and $\sigma_{2}(G) \geq|V(G)| / 2+2 k-1$, and suppose that G contains k vertexdisjoint triangles. In the case where $|V(G)|=4 k+2$, suppose further that $G \nsubseteq K_{4 t+3} \cup K_{4 k-4 t-1}$ for any t with $0 \leq t \leq k-1$. Then G contains k vertex-disjoint copies of S.

It is easy to verify that if a graph G with $|V(G)| \geq 4 k$ and $\delta(G) \geq 4 k-1$ contains k vertex-disjoint triangles, then it contains k vertex-disjoint copies of S. Thus as an immediate corollary of Theorem 2, we obtain the following theorem.

Theorem 3. Let k be an integer with $k \geq 2$. Let G be a graph with $|V(G)| \geq$ $4 k$ and $\delta(G) \geq \min \{|V(G)| / 4+k-1 / 2,4 k-1\}$, and suppose that G contains k vertex-disjoint triangles. In the case where $|V(G)|=4 k+2$ and k is odd, suppose further that $G \nsubseteq K_{2 k+1} \cup K_{2 k+1}$. Then G contains k vertex-disjoint copies of S.

In the remainder of this section, we discuss the sharpness of conditions in Theorem 2 and 3. We first show that in Theorem 2, the bound on $\sigma_{2}(G)$ is sharp. For reference in the discussion of the sharpness of Theorem 3, we
construct three families of examples.
Example 1. Let k, n be integers with $k \geq 2$ and $n \geq 4 k$, and let s be an integer with $0 \leq s \leq k-1$. We construct a graph $F(n, k, s)$ of order n as follows. Let A, B, C, D be vertex-disjoint graphs with $|V(A)|=\lceil(n+1) / 2\rceil-2 k$, $|V(B)|=\lfloor(n+1) / 2\rfloor-2 k+s,|V(C)|=s$ and $|V(D)|=4 k-2 s-1$ such that A, B and C have no edge and D is a complete graph. Join A completely to B, i.e., join each vertex of A to all vertices of B. Further join B completely to C, and C completely to D. Let $F(n, k, s)$ denote the resulting graph. Then $F(n, k, s)$ satisfies $\sigma_{2}(F(n, k, s))=\lfloor(n-1) / 2\rfloor+2 k-1(=\lceil n / 2\rceil+2 k-2)$ and contains k vertex-disjoint triangles, but does not contain k vertex-disjoint copies of S.
Example 2. Let k, n be integers with $k \geq 2$ and $n \geq 4 k$, and let r be an integer with $0 \leq r \leq k-1$. We construct a graph $G(n, k, r)$ of order n as follows. Let A, B, C, D, E be vertex-disjoint graphs with $|V(A)|=\lceil(n-2 r-$ 3) $/ 2\rceil-(2 k-r-2),|V(B)|=\lfloor(n-2 r-3) / 2\rfloor,|V(C)|=2(k-1-r)$, $|V(D)|=r,|V(E)|=2 r+3$ such that A and B have no edge and C, D and E are complete graphs. Join A completely to B, B completely to $C \cup D$, and $C \cup D$ completely to E. Let $G(n, k, r)$ denote the resulting graph. Then $G(n, k, r)$ satisfies $\sigma_{2}(G(n, k, r))=\lceil n / 2\rceil+2 k-2$ and contains k vertex-disjoint triangles, but does not contain k vertex-disjoint copies of S.
Example 3. Let k, n be integers with $k \geq 2$ and $n \geq 4 k$ such that n is even, and let q be an integer with $0 \leq q \leq k-2$. We construct a graph $H(n, k, q)$ of order n as follows. Let A, B, C, D, E, F be vertex-disjoint graphs with $|V(A)|=n / 2-2 k+2,|V(B)|=n / 2-q-2,|V(C)|=2 k-2 q-4,|V(D)|=$ $q,|V(E)|=2 q+3$ and $|V(F)|=1$ such that A, B and D have no edge and C and E are complete graphs. Join A completely to B, B completely to $C \cup D$, $C \cup D$ completely to E, and $A \cup B \cup C \cup D \cup E$ completely to F. Let $H(n, k, q)$ denote the resulting graph. Then $H(n, k, q)$ satisfies $\sigma_{2}(H(n, k, r))=n / 2+$ $2 k-2$ and contains k vertex-disjoint triangles, but does not contain k vertexdisjoint copies of S.

We now show that in Theorem 3, the bound on $\delta(G)$ is sharp. First we consider the case where $n \geq 8 k-1$. In this case, let $s=0$ or $3 k-\lfloor(n+1) / 4\rfloor-1$ in Example 1, according as $n \geq 12 k-5$ or $8 k-1 \leq n \leq 12 k-6$. Then $F(n, k, s)$ has minimum degree $4 k-2$ or $\lfloor(n+1) / 4\rfloor+k-1(=\lceil(n-2) / 4\rceil+k-1)$ according as $n \geq 12 k-5$ or $8 k-1 \leq n \leq 12 k-6$, which means that the bound on $\delta(G)$ in Theorem 3 is sharp. Next we consider the case where $4 k+1 \leq n \leq 8 k-2$. In this case, let $r=\lfloor(n-1) / 4\rfloor-k$ in Example 2. Then $G(n, k, r)$ has minimum degree $\lfloor(n-3) / 2\rfloor-\lfloor(n-1) / 4\rfloor+k(=\lceil(n-2) / 4\rceil+k-1)$. Finally we consider the case where $4 k \leq n \leq 8 k-6$ and n is even (this includes the case where $n=4 k$, which is excluded from the preceding case). In this
case, let $q=\lfloor n / 4\rfloor-k$ in Example 3. Then $H(n, k, q)$ has minimum degree $\lfloor n / 4\rfloor+k-1$.

§2. Preparation for the proof of Theorem 2

Let k, G be as in Theorem 2. Write $|V(G)|=4 k+l$. By assumption, G has k vertex-disjoint triangles. Let S_{1}, \ldots, S_{k} be k vertex-disjoint induced subgraphs of G such that for each i, either $\left|V\left(S_{i}\right)\right|=4$ and S_{i} contains S as a spanning subgraph, or $S_{i} \cong K_{3}$. We may assume that there exists k^{\prime} such that $S_{i} \supset S$ and $\left|V\left(S_{i}\right)\right|=4$ for each i with $1 \leq i \leq k^{\prime}$ and $S_{i} \cong K_{3}$ for each i with $k^{\prime}+1 \leq i \leq k$. We choose S_{1}, \ldots, S_{k} so that k^{\prime} is maximum and, subject to the condition that k^{\prime} is maximum, $\sum_{i=1}^{k}\left|E\left(S_{i}\right)\right|$ is maximum. If $k^{\prime}=k$, then the desired conclusion holds. Hence we may assume that $k^{\prime} \leq k-1$. Let $L:=$ $\cup_{i=1}^{k^{\prime}} V\left(S_{i}\right)$ and $M:=\cup_{i=k^{\prime}+1}^{k-1} V\left(S_{i}\right)$. Let v be a vertex in $G-L-M-V\left(S_{k}\right)$. For a subgraph N of G, let $d_{N}=3|E(v, V(N))|+\sum_{x \in V\left(S_{k}\right)}|E(x, V(N))|$. Note that $d_{G}=\sum_{x \in V\left(S_{k}\right)}(|E(v, V(G))|+|E(x, V(G))|) \geq 3 \sigma_{2}(G)$ because $E\left(v, V\left(S_{k}\right)\right)=\emptyset$. Let $Z:=G-L-M-V\left(S_{k}\right)-v$. For each i with $1 \leq i \leq k^{\prime}$, write $V\left(S_{i}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ so that $d_{S_{i}}\left(b_{i}\right) \geq d_{S_{i}}\left(c_{i}\right) \geq d_{S_{i}}\left(d_{i}\right) \geq d_{S_{i}}\left(a_{i}\right)$; thus $d_{S_{i}}\left(a_{i}\right)=1, d_{S_{i}}\left(b_{i}\right)=3, d_{S_{i}}\left(c_{i}\right)=d_{S_{i}}\left(d_{i}\right)=2$ if $S_{i} \cong S$, and $d_{S_{i}}\left(b_{i}\right)=d_{S_{i}}\left(c_{i}\right)=$ 3 and $d_{S_{i}}\left(a_{i}\right)=d_{S_{i}}\left(d_{i}\right)=2$ if $S_{i} \cong K_{4}^{-}$.

The main aim of this section is to prove that $d_{S_{i}} \leq 13$ for each $1 \leq i \leq k^{\prime}$ (see Lemma 2.4). We start with easy lemmas.

Lemma 2.1. Let i be an integer with $1 \leq i \leq k^{\prime}$. Then the following statements hold:
(i) Suppose that there exists a subgraph X of S_{i} such that $X \cong K_{3}$ and $N_{G}(v) \supset V(X)$. Then $S_{i} \cong K_{4}$.
(ii) Suppose that there exists a subgraph X of S_{i} such that $X \cong K_{3}$ and $\left|N_{G}(v) \cap V(X)\right| \geq 2$. Then $S_{i} \nsubseteq S$.
(iii) If $S_{i} \cong K_{4}^{-}$, then $\left|E\left(v, V\left(S_{i}\right)\right)\right| \leq 3$.
(iv) If $S_{i} \cong K_{4}^{-}$and $\left|E\left(v, V\left(S_{i}\right)\right)\right|=3$, then $\left|N_{G}(v) \cap\left\{b_{i}, c_{i}\right\}\right|=1$.
(v) If $S_{i} \cong S$, then $\left|E\left(v, V\left(S_{i}\right)\right)\right| \leq 2$.
(vi) If $S_{i} \cong S$ and $\left|E\left(v, V\left(S_{i}\right)\right)\right|=2$, then $a_{i} v \in E(G)$.

Proof. If $S_{i} \nsubseteq K_{4}$, and there exists a subgraph X of S_{i} such that $X \cong K_{3}$ and $N_{G}(v) \supset V(X)$, then by replacing S_{i} by $\langle V(X) \cup\{v\}\rangle$, we get a contradiction
to the maximality of $\sum_{i=1}^{k}\left|E\left(S_{i}\right)\right|$ because $\langle V(X) \cup\{v\}\rangle \cong K_{4}$. Thus (i) holds, and we can similarly prove (ii). Now (iii) and (iv) immediately follow from (i), and (v) and (vi) follow from (ii).

Lemma 2.2. Let $x \in V\left(S_{k}\right)$, and let i be an integer with $1 \leq i \leq k^{\prime}$. Then the following statements hold:
(i) If $S_{i} \cong K_{4}$, then there exist no independent edges $x y, v z \in E(G)$ with $y, z \in V\left(S_{i}\right)$; in particular, $\left|E\left(\{x, v\}, V\left(S_{i}\right)\right)\right| \leq 4$.
(ii) If $S_{i} \cong K_{4}^{-}$, then $\left|E\left(\{x, v\}, V\left(S_{i}\right)\right)\right| \leq 4$.

Proof. Suppose that $S_{i} \cong K_{4}$ and there exist two independent edges $x y, v z \in$ $E(G)$ with $y, z \in V\left(S_{i}\right)$. Then each of $\left\langle\{y\} \cup V\left(S_{k}\right)\right\rangle$ and $\left\langle\{v\} \cup V\left(S_{i}-y\right)\right\rangle$ contains a copy of S, and these two copies of S are vertex-disjoint, which contradicts the maximality of k^{\prime}. Thus (i) follows. Next suppose that $S_{i} \cong K_{4}^{-}$ and $\left|E\left(\{v, x\}, V\left(S_{i}\right)\right)\right| \geq 5$. Then there exist independent edges $x y, v z \in$ $E(G)$ with $y, z \in V\left(S_{i}\right)$. If $y \in\left\{a_{i}, d_{i}\right\}$, then $\left\langle\{v\} \cup V\left(S_{i}-y\right)\right\rangle \supset S$ and $\left\langle\{y\} \cup V\left(S_{k}\right)\right\rangle \supset S$, which contradicts the maximality of k^{\prime}. Thus there are no independent edges $x y, v z$ with $y, z \in V\left(S_{i}\right)$ such that $y \in\left\{a_{i}, d_{i}\right\}$. Since $\left|E\left(\{x, v\}, V\left(S_{i}\right)\right)\right| \geq 5$, this implies $N_{G}(x) \cap V\left(S_{i}\right) \subseteq\left\{b_{i}, c_{i}\right\}$ and $\mid N_{G}(v) \cap$ $V\left(S_{i}\right) \mid \geq 3$. In view of Lemma 2.1(iii), this forces $N_{G}(x) \cap V\left(S_{i}\right)=\left\{b_{i}, c_{i}\right\}$ and $\left|N_{G}(v) \cap V\left(S_{i}\right)\right|=3$. By Lemma 2.1(iv), we may assume $N_{G}(v) \cap V\left(S_{i}\right)=$ $\left\{a_{i}, b_{i}, d_{i}\right\}$. But then each of $\left\langle\left\{c_{i}\right\} \cup V\left(S_{k}\right)\right\rangle$ and $\left\langle\{v\} \cup V\left(S_{i}-c_{i}\right)\right\rangle$ contains S, which contradicts the maximality of k^{\prime}.

Lemma 2.3. Let i be an integer with $1 \leq i \leq k^{\prime}$. If $S_{i} \cong S$, then $\mid E\left(a_{i}, V\left(S_{k}\right)\right.$ $) \mid \leq 1$, and equality holds only if $E\left(v, V\left(S_{i}-a_{i}\right)\right)=\emptyset$.

Proof. Otherwise, we can easily get a contradiction to the maximality of k^{\prime} or $\sum_{i=1}^{k}\left|E\left(S_{i}\right)\right|$.

Lemma 2.4. Let $1 \leq i \leq k^{\prime}$. Then $d_{S_{i}} \leq 13$, and equality holds only if $S_{i} \cong$ S, c_{i} or d_{i}, say, c_{i}, is adjacent to $v, E\left(v, V\left(S_{i}\right)\right)=\left\{a_{i} v, c_{i} v\right\}, N_{G}\left(a_{i}\right) \cap V\left(S_{k}\right)=$ $\emptyset, N_{G}\left(d_{i}\right) \supset V\left(S_{k}\right), N_{G}\left(b_{i}\right) \cap V\left(S_{k}\right)=N_{G}\left(c_{i}\right) \cap V\left(S_{k}\right)$ and $\left|N_{G}\left(b_{i}\right) \cap V\left(S_{k}\right)\right|=2$.

Proof. If $S_{i} \cong K_{4}$ or K_{4}^{-}, then by Lemma 2.2, $\left|E\left(\{v, x\}, V\left(S_{i}\right)\right)\right| \leq 4$ for any $x \in V\left(S_{k}\right)$, which implies $d_{S_{i}} \leq 12$. Thus we may assume $S_{i} \cong$
S. If $E\left(v, V\left(S_{i}\right)\right)=\emptyset$, then $d_{S_{i}}=\sum_{x \in V\left(S_{k}\right)}\left|E\left(x, V\left(S_{i}\right)\right)\right| \leq 12$. Hence by Lemma 2.1(v), we may assume $1 \leq\left|E\left(v, V\left(S_{i}\right)\right)\right| \leq 2$. Suppose that $\left|E\left(v, V\left(S_{i}\right)\right)\right|=1$. If $a_{i} v \notin E(G)$, then by Lemma 2.3, $E\left(a_{i}, V\left(S_{k}\right)\right)=\emptyset$, and hence $d_{S_{i}}=3\left|E\left(v, V\left(S_{i}\right)\right)\right|+\sum_{x \in V\left(S_{k}\right)}\left|E\left(x, V\left(S_{i}\right)\right)\right| \leq 3+9=12$. Thus we may assume $a_{i} v \in E(G)$. If $\left|E\left(V\left(S_{i}\right), V\left(S_{k}\right)\right)\right| \geq 10$, then it follows from Lemma 2.3 that there exists $x \in V\left(S_{k}\right)$ such that $N_{G}(x) \supset V\left(S_{i}\right)$, and we have $N_{G}(y) \supset V\left(S_{i}-a_{i}\right)$ for each $y \in V\left(S_{k}-x\right)$, and hence $\left\langle\left\{x, v, a_{i}, b_{i}\right\}\right\rangle \supset S$ and $\left\langle V\left(S_{k}-x\right) \cup\left\{c_{i}, d_{i}\right\}\right\rangle \supset S$, a contradiction. Thus $\left|E\left(V\left(S_{i}\right), V\left(S_{k}\right)\right)\right| \leq 9$, and hence $d_{S_{i}} \leq 12$. Consequently we may assume $\left|E\left(v, V\left(S_{i}\right)\right)\right|=2$. If $\left|E\left(V\left(S_{i}\right), V\left(S_{k}\right)\right)\right| \leq 6$, then $d_{S_{i}} \leq 12$. Thus we may assume $\left|E\left(V\left(S_{i}\right), V\left(S_{k}\right)\right)\right| \geq$ 7. Note that by Lemma 2.1(vi) and Lemma 2.3, $a_{i} v \in E(G)$ and $E\left(a_{i}, V\left(S_{k}\right)\right)=$ \emptyset. Hence $\left|E\left(y, V\left(S_{i}\right)\right)\right| \leq 3$ for each $y \in V\left(S_{k}\right)$, and there exists $x \in V\left(S_{k}\right)$ such that $\left|E\left(x, V\left(S_{i}\right)\right)\right|=3$ and $N_{G}(x) \cap V\left(S_{i}\right)=\left\{b_{i}, c_{i}, d_{i}\right\}$. If $v b_{i} \in E(G)$, then $\left\langle\left\{v, a_{i}, b_{i}, c_{i}\right\}\right\rangle \supset S$ and $\left\langle\left\{d_{i}\right\} \cup V\left(S_{k}\right)\right\rangle \supset S$, a contradiction. Thus we may assume $N_{G}(v) \cap V\left(S_{i}\right)=\left\{a_{i}, c_{i}\right\}$. If $\left|E\left(b_{i}, V\left(S_{k}\right)\right)\right|=3$, then $\left\langle\left\{a_{i}, b_{i}\right\} \cup\right.$ $\left.V\left(S_{k}-x\right)\right\rangle \supset S,\left\langle V\left(S_{i}-\left\{a_{i}, b_{i}\right\}\right) \cup\{x, v\}\right\rangle \supset S$, a contradiction; similarly, if $\left|E\left(c_{i}, V\left(S_{k}\right)\right)\right|=3$, then $\left\langle\left\{v, c_{i}\right\} \cup V\left(S_{k}-x\right)\right\rangle \supset S$ and $\left\langle V\left(S_{i}-c_{i}\right) \cup\{x\}\right\rangle \supseteq S$, a contradiction. Thus $\left|E\left(b_{i}, V\left(S_{k}\right)\right)\right| \leq 2$ and $\left|E\left(c_{i}, V\left(S_{k}\right)\right)\right| \leq 2$. Since $\left|E\left(V\left(S_{i}\right), V\left(S_{k}\right)\right)\right| \geq 7$, this forces $\left|E\left(b_{i}, V\left(S_{k}\right)\right)\right|=2,\left|E\left(c_{i}, V\left(S_{k}\right)\right)\right|=2$ and $\left|E\left(d_{i}, V\left(S_{k}\right)\right)\right|=3$, and hence $d_{S_{i}}=13$. Now if $\left(N_{G}\left(b_{i}\right) \cap V\left(S_{k}\right)\right) \neq$ $\left(N_{G}\left(c_{i}\right) \cap V\left(S_{k}\right)\right)$, say, $N_{G}\left(b_{i}\right) \cap V\left(S_{k}\right)=\{x, y\}$ and $N_{G}\left(c_{i}\right) \cap V\left(S_{k}\right)=\{x, z\}$, then $\left\langle\left\{a_{i}, b_{i}, x, y\right\}\right\rangle \supset S$ and $\left\langle\left\{v, z, c_{i}, d_{i}\right\}\right\rangle \supset S$, a contradiction. Thus the lemma follows.

Lemma 2.5. $G-L-M-V\left(S_{k}\right) \nsupseteq K_{3}$.
Proof. We see from the maximality of k^{\prime} that in $G-L-M-V\left(S_{k}\right)$, there is no subgraph isomorphic to S. Thus it suffices to show that there is no triangle component in $G-L-M-V\left(S_{k}\right)$. By way of contradiction, let S_{k+1} be a triangle component in $G-L-M-V\left(S_{k}\right)$, and take $y \in V\left(S_{k+1}\right)$ and $x \in V\left(S_{k}\right)$. Note that by the maximality of $k^{\prime}, E\left(V\left(S_{i}\right), V\left(G-L-V\left(S_{i}\right)\right)\right)=\emptyset$ for each i with $k^{\prime}+1 \leq i \leq k+1$. We separate the following point of the proof, and present it as a subclaim.

Subclaim. Let $1 \leq i \leq k^{\prime}$. Then there exist no independent edges $x u, y w \in$ $E(G)$ such that $u, w \in V\left(S_{i}\right)$.

Proof. If there exist two independent edges $x u, y w \in E(G)$ such that $u, w \in$ $V\left(S_{i}\right)$, then by replacing S_{i} by $\left\langle\{u\} \cup V\left(S_{k}\right)\right\rangle$ and $\left\langle\{w\} \cup V\left(S_{k+1}\right)\right\rangle$, we get a contradiction to the maximality of k^{\prime}.
Now by the subclaim, $\left|E\left(\{x, y\}, V\left(S_{i}\right)\right)\right| \leq 4$ for each i with $1 \leq i \leq k^{\prime}$. Consequently $d_{G}(x)+d_{G}(y) \leq 4 k^{\prime}+2+2 \leq 4(k-1)+4=4 k$. On the other
hand, since $x y \notin E(G)$ by the maximality of k^{\prime}, it follows from the assumption of Theorem 2 that $d_{G}(x)+d_{G}(y) \geq \sigma_{2}(G) \geq 4 k+\frac{l}{2}-1$. Hence $k^{\prime}=k-1, l=2$ and, for each i with $1 \leq i \leq k-1,\left|E\left(\{x, y\}, V\left(S_{i}\right)\right)\right|=4$. By the subclaim, this implies that for each i with $1 \leq i \leq k-1$, either $\left|E\left(x, V\left(S_{i}\right)\right)\right|=4$ and $E\left(y, V\left(S_{i}\right)\right)=\emptyset$ or $\left|E\left(y, V\left(S_{i}\right)\right)\right|=4$ and $E\left(x, V\left(S_{i}\right)\right) \mid=\emptyset$. We may assume there exists t such that $E\left(x, V\left(S_{i}\right)\right)=\emptyset$ for each $1 \leq i \leq t$ and $\left|E\left(x, V\left(S_{i}\right)\right)\right|=4$ for each $t+1 \leq i \leq k-1$. Since $y \in V\left(S_{k+1}\right)$ is arbitrary, for each $z \in V\left(S_{k+1}\right)$, we have $\left|E\left(\{x, z\}, V\left(S_{i}\right)\right)\right|=4$ for each $1 \leq i \leq k-1$, and hence $\left|E\left(z, V\left(S_{i}\right)\right)\right|=4$ for each $1 \leq i \leq t$ and $E\left(z, V\left(S_{i}\right)\right)=\emptyset$ for each $t+1 \leq i \leq k-1$. Thus $N_{G}(z)=V\left(S_{k+1}-\{z\}\right) \cup\left(\cup_{i=1}^{t} V\left(S_{i}\right)\right)$ for each $z \in V\left(S_{k+1}\right)$. Now let $1 \leq i \leq t$. Applying Lemma 2.1(i) to y, we see that $S_{i} \cong K_{4}$. Take $u \in V\left(S_{i}\right)$. Then arguing as above with S_{i} and S_{k+1} replaced by $\left\langle V\left(S_{i}-u\right) \cup\{y\}\right\rangle$ and $\left\langle V\left(S_{k+1}-\{y\}\right) \cup\{u\}\right\rangle$, we obtain $N_{G}(u)=\left(\left(\cup_{i=1}^{t} V\left(S_{i}\right)\right)-\right.$ $\{u\}) \cup V\left(S_{k+1}\right)$. Consequently $\left\langle\left(\cup_{i=1}^{t} V\left(S_{i}\right)\right) \cup V\left(S_{k+1}\right)\right\rangle$ is a component of G, and is isomorphic to $K_{4 t+3}$. Arguing similarly with the roles of S_{k} and S_{k+1} replaced by each other, we also see that $\left\langle\cup_{i=t+1}^{k} V\left(S_{i}\right)\right\rangle$ is a component of G and isomorphic to $K_{4 k-4 t-1}$. Therefore, $G \cong K_{4 t+3} \cup K_{4 k-4 t-1}$, which contradicts the assumption of Theorem 2.

§3. Proof of Theorem 2

We continue with the notation of the preceding section. Note that Lemmas 2.1 through 2.4 hold for any choice of $v \in V\left(G-L-M-V\left(S_{k}\right)\right)$. In this section, we assume that we have chosen v so that $|E(v, V(Z))|$ is minimum.

Lemma 3.1. $|E(v, V(Z))| \leq \frac{|V(Z)|+1}{2}$.
Proof. If $N_{G-L-M-V\left(S_{k}\right)}(v)=\emptyset$, then the assertion of the lemma obviously holds. Hence we may assume there exists an edge $v w \in E\left(G-L-M-V\left(S_{k}\right)\right)$. By Lemma 2.5, it follows that $N_{G-L-M-V\left(S_{k}\right)}(v) \cap N_{G-L-M-V\left(S_{k}\right)}(w)=\emptyset$. Consequently $|E(v, V(Z))|+|E(w, V(Z))| \leq|V(Z)|+1$. Hence by the choice of v, the assertion holds.

Lemma 3.2. The following statements hold:
(i) For each i with $k^{\prime}+1 \leq i \leq k-1, d_{S_{i}} \leq 9$.
(ii) $d_{Z} \leq 3|E(v, V(Z))|$.

Proof. It follows from the maximality of k^{\prime} that $E\left(v, V\left(S_{i}\right)\right)=\emptyset$ for i with $k^{\prime}+1 \leq i \leq k-1$ and $E\left(V(Z), V\left(S_{k}\right)\right)=\emptyset$. Hence the desired results obviously hold.

Lemma 3.3. There exists i with $1 \leq i \leq k^{\prime}$ such that $d_{S_{i}}=13$.
Proof. Suppose that $d_{S_{i}} \leq 12$ for all i with $1 \leq i \leq k^{\prime}$. Then by Lemma 3.1 and Lemma 3.2, $d_{G}=\sum_{i=1}^{k-1} d_{S_{i}}+d_{Z}+2+2+2 \leq 12 k^{\prime}+9\left(k-1-k^{\prime}\right)+$ $\frac{3(|V(Z)|+1)}{2}+6=3 k^{\prime}+9 k-3+\frac{3}{2}\left\{4 k+l-4 k^{\prime}-3\left(k-1-k^{\prime}\right)-4+1\right\}=$ $9 k+\frac{3}{2}\left(k+k^{\prime}\right)+\frac{3}{2} l-3 \leq 9 k+\frac{3}{2}(k+k-1)+\frac{3}{2} l-3=12 k+\frac{3}{2} l-\frac{9}{2}$. On the other hand, by assumption, $d_{G} \geq 3 \sigma_{2}(G) \geq 12 k+\frac{3}{2} l-3$. This is a contradiction.

By Lemma 2.4 and Lemma 3.3, we may assume that $d_{S_{1}}=13, S_{1} \cong S$, and $N_{G}(v) \cap V\left(S_{1}\right)=\left\{a_{1}, c_{1}\right\}$. Write $V\left(S_{k}\right)=\{a, b, c\}$. By Lemma 2.4, we may assume $N_{S_{1}}(a)=\left\{d_{1}\right\}$, and $N_{S_{1}}(b)=N_{S_{1}}(c)=\left\{b_{1}, c_{1}, d_{1}\right\}$. For a subgraph N of G, let $d_{N}^{\prime}=2|E(v, V(N))|+\left|E\left(a_{1}, V(N)\right)\right|+\sum_{x \in V\left(S_{k}\right)}|E(x, V(N))|$. Since $E\left(\left\{a_{1}, v\right\}, V\left(S_{k}\right)\right)=\emptyset$, it follows from the assumption of Theorem 2 that

$$
\begin{equation*}
d_{G}^{\prime} \geq 3 \sigma_{2}(G) \geq 12 k+\frac{3}{2} l-3 . \tag{A}
\end{equation*}
$$

Also, note that by the symmetry of the roles of v and a_{1} in $\left\langle V\left(S_{1}\right) \cup V\left(S_{k}\right) \cup\right.$ $\{v\}\rangle$, we can apply Lemmas 2.1 through 2.4 to a_{1} as well; i.e., we can apply those lemmas with S_{1} and v replaced by $\left\langle\left\{v, b_{1}, c_{1}, d_{1}\right\}\right\rangle$ and a_{1}.

Lemma 3.4. For each i with $2 \leq i \leq k^{\prime}, d_{S_{i}}^{\prime} \leq 12$.
Proof. Suppose that $d_{S_{i}}^{\prime} \geq 13$. Let $p=3\left|E\left(a_{1}, V\left(S_{i}\right)\right)\right|+\left|E\left(V\left(S_{k}\right), V\left(S_{i}\right)\right)\right|$. Applying Lemma 2.4 to v and a_{1}, we get $d_{S_{i}} \leq 13$ and $p \leq 13$. Since $d_{S_{i}}^{\prime}=$ $\frac{2}{3} d_{S_{i}}+\frac{1}{3} p$, this implies $d_{S_{i}}=13$ and $p=13$. Hence, again applying Lemma 2.4 to v or a_{1}, we see that $S_{i} \cong S$ and $a_{i} v, a_{i} a_{1} \in E(G)$. Consequently, by replacing S_{1}, S_{i}, S_{k} by $\left\langle\left\{v, a_{1}, a_{i}, b_{1}\right\}\right\rangle,\left\langle\left\{d_{1}, a, b, c\right\}\right\rangle,\left\langle\left\{b_{i}, c_{i}, d_{i}\right\}\right\rangle$, respectively, we get a contradiction to the maximality of $\sum_{i=1}^{k}\left|E\left(S_{i}\right)\right|$ because $\left\langle\left\{d_{1}, a, b, c\right\}\right\rangle \cong K_{4}$.

Lemma 3.5. The following statements hold:
(i) For each i with $k^{\prime}+1 \leq i \leq k-1, d_{S_{i}}^{\prime} \leq 9$.
(ii) For each $z \in V(Z),\left|E\left(\left\{a_{1}, v\right\}, z\right)\right| \leq 1$.
(iii) $d_{Z}^{\prime} \leq \frac{3|V(Z)|+1}{2}$.

Proof. It follows from the maximality of k^{\prime} that $E\left(v, V\left(S_{i}\right)\right)=\emptyset$ for each i with $k^{\prime}+1 \leq i \leq k-1$. Also, by symmetry, we have $E\left(a_{1}, V\left(S_{i}\right)\right)=$ \emptyset for each i with $k^{\prime}+1 \leq i \leq k-1$. Hence (i) obviously holds. To show (ii), suppose that $\left|E\left(\left\{a_{1}, v\right\}, z\right)\right| \geq 2$. Then $\left\langle\left\{a_{1}, b_{1}, v, z\right\}\right\rangle \supset S$ and $\left\langle\left\{d_{1}, a, b, c\right\}\right\rangle \supset K_{4}$, which contradicts the maximality of k^{\prime}. Thus (ii) holds. Now by (ii), $|E(a, V(Z))| \leq|V(Z)|-|E(v, V(Z))|$. Since $E\left(V\left(S_{k}\right), V(Z)\right)=\emptyset$, this together with Lemma 3.1 implies $d_{Z}^{\prime}=2|E(v, V(Z))|+|E(a, V(Z))| \leq$ $|E(v, V(Z))|+|V(Z)| \leq \frac{|V(Z)|+1}{2}+|V(Z)|$. This proves (iii).

By Lemma 3.4 and (i) and (iii) of Lemma 3.5, we now obtain

$$
\begin{aligned}
d_{G}^{\prime} \leq & 12\left(k^{\prime}-1\right)+9\left(k-1-k^{\prime}\right)+\frac{3}{2}\left\{4 k+l-4 k^{\prime}-3\left(k-k^{\prime}\right)-1\right\} \\
& +\frac{1}{2}+4+2+5+5+3=9 k+\frac{3}{2}\left(k+k^{\prime}\right)+\frac{3}{2} l-3 \\
& \leq 9 k+\frac{3}{2}(k+k-1)+\frac{3}{2} l-3=12 k+\frac{3}{2} l-\frac{9}{2}
\end{aligned}
$$

which contradicts (A). This completes the proof of Theorem 2.

Acknowledgment

I would like to thank Professor Katsuhiro Ota and Dr.Ken-ichi Kawarabayashi for stimulating discussions concerning the problem discussed in this paper.

References

[1] H.Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18(1998) 487-492.
[2] P.Justesen, On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa, Annals of Discrete Mathematics 41(1989) 299-306.
[3] K.Kawarabayashi, F-factor and vertex-disjoint F in a graph, Ars Combinatoria $62(2002)$ 183-187.
[4] K.Kawarabayashi and K.Ota, private communication (1999)

Shinya Fujita
Department of Applied Mathematics, Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan
E-mail: shinyaa@mti.biglobe.ne.jp

