Vertex-Disjoint Copies of $K_1 + (K_1 \cup K_2)$ in Graphs

Shinya Fujita

(Received November 11, 2002)

Abstract. Let S denote the graph obtained from K_4 by removing two edges which have an endvertex in common. Let k be an integer with $k \ge 2$. Let G be a graph with $|V(G)| \ge 4k$ and $\sigma_2(G) \ge |V(G)|/2 + 2k - 1$, and suppose that G contains k vertex-disjoint triangles. In the case where |V(G)| = 4k + 2, suppose further that $G \ncong K_{4t+3} \cup K_{4k-4t-1}$ for any t with $0 \le t \le k - 1$. Under these assumptions, we show that G contains k vertex-disjoint copies of S.

AMS 1991 Mathematics Subject Classification. 05C70.

Key words and phrases. Vertex-disjoint, subgraph.

§1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by V(G), E(G)and $\delta(G)$ the vertex set, the edge set and the minimum degree of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and we let $d_G(x) := |N_G(x)|$. For a noncomplete graph G, let $\sigma_2(G) := \min\{d_G(x) + d_G(y) | xy \notin E(G)\}$; if G is a complete graph, let $\sigma_2(G) := \infty$. For a subset L of V(G), the subgraph induced by L is denoted by $\langle L \rangle$. For a subset M of V(G), we let $G - M = \langle V(G) - M \rangle$ and, for a vertex x of G, we let $G - x = \langle V(G) - \{x\} \rangle$. For subsets L and M of V(G), we let E(L, M) denote the set of edges of G joining a vertex in L and a vertex in M. When L or M consists of a single vertex, say $L = \{x\}$ or $M = \{y\}$, we write E(x, M) or E(L, y) for E(L, M).

Let K_n denote the complete graph of order n, and let K_n^- be the graph obtained from K_n by removing one edge. Also let S be the graph obtained from K_4 by removing two edges which have an endvertex in common; thus $S = K_1 + (K_1 \cup K_2)$.

S. FUJITA

In this paper, we are concerned with conditions on $\sigma_2(G)$ for the existence of vertex-disjoint subgraphs. As examples of results concerning such conditions, we mention that it is proved in Justesen [2] that a graph G of order at least 3k with $\sigma_2(G) \ge |V(G)| + k$ has k vertex-disjoint triangles, and it is proved in Enomoto [1] that a graph G of order at least 3k with $\sigma_2(G) \ge 4k - 1$ has k vertex-disjoint cycles. This paper is concerned with the following theorem proved by Kawarabayashi in [3].

Theorem 1. Let k be an integer with $k \ge 2$, and let G be a graph with $|V(G)| \ge 4k$ and $\sigma_2(G) \ge |V(G)| + k$. Then G contains k vertex-disjoint copies of S.

In Theorem 1, the bound on $\sigma_2(G)$ is sharp. But this is simply because there exists a graph G with $|V(G)| \ge 4k$ and $\sigma_2(G) = |V(G)| + k - 1$ such that G does not even contain k vertex-disjoint triangles (see [2]). Based on this observation, Kawarabayashi and Ota [4] suggested the possibility of lowering the bound on $\sigma_2(G)$ by adding the assumption that G contains k vertex-disjoint triangles. Along this line, we prove the following theorem.

Theorem 2. Let k be an integer with $k \ge 2$. Let G be a graph with $|V(G)| \ge 4k$ and $\sigma_2(G) \ge |V(G)|/2 + 2k - 1$, and suppose that G contains k vertexdisjoint triangles. In the case where |V(G)| = 4k + 2, suppose further that $G \ncong K_{4t+3} \cup K_{4k-4t-1}$ for any t with $0 \le t \le k - 1$. Then G contains k vertex-disjoint copies of S.

It is easy to verify that if a graph G with $|V(G)| \ge 4k$ and $\delta(G) \ge 4k - 1$ contains k vertex-disjoint triangles, then it contains k vertex-disjoint copies of S. Thus as an immediate corollary of Theorem 2, we obtain the following theorem.

Theorem 3. Let k be an integer with $k \ge 2$. Let G be a graph with $|V(G)| \ge 4k$ and $\delta(G) \ge \min\{|V(G)|/4 + k - 1/2, 4k - 1\}$, and suppose that G contains k vertex-disjoint triangles. In the case where |V(G)| = 4k + 2 and k is odd, suppose further that $G \ncong K_{2k+1} \cup K_{2k+1}$. Then G contains k vertex-disjoint copies of S.

In the remainder of this section, we discuss the sharpness of conditions in Theorem 2 and 3. We first show that in Theorem 2, the bound on $\sigma_2(G)$ is sharp. For reference in the discussion of the sharpness of Theorem 3, we

construct three families of examples.

Example 1. Let k, n be integers with $k \ge 2$ and $n \ge 4k$, and let s be an integer with $0 \le s \le k - 1$. We construct a graph F(n, k, s) of order n as follows. Let A, B, C, D be vertex-disjoint graphs with $|V(A)| = \lceil (n+1)/2 \rceil - 2k$, $|V(B)| = \lfloor (n+1)/2 \rfloor - 2k + s, |V(C)| = s$ and |V(D)| = 4k - 2s - 1 such that A, B and C have no edge and D is a complete graph. Join A completely to B, i.e., join each vertex of A to all vertices of B. Further join B completely to C, and C completely to D. Let F(n, k, s) denote the resulting graph. Then F(n, k, s) satisfies $\sigma_2(F(n, k, s)) = \lfloor (n-1)/2 \rfloor + 2k - 1 (= \lceil n/2 \rceil + 2k - 2)$ and contains k vertex-disjoint triangles, but does not contain k vertex-disjoint copies of S.

Example 2. Let k, n be integers with $k \ge 2$ and $n \ge 4k$, and let r be an integer with $0 \le r \le k-1$. We construct a graph G(n,k,r) of order n as follows. Let A, B, C, D, E be vertex-disjoint graphs with $|V(A)| = \lceil (n-2r-3)/2 \rceil - (2k-r-2), |V(B)| = \lfloor (n-2r-3)/2 \rfloor, |V(C)| = 2(k-1-r), |V(D)| = r, |V(E)| = 2r+3$ such that A and B have no edge and C, D and E are complete graphs. Join A completely to B, B completely to $C \cup D$, and $C \cup D$ completely to E. Let G(n,k,r) denote the resulting graph. Then G(n,k,r) satisfies $\sigma_2(G(n,k,r)) = \lceil n/2 \rceil + 2k-2$ and contains k vertex-disjoint triangles, but does not contain k vertex-disjoint copies of S.

Example 3. Let k, n be integers with $k \ge 2$ and $n \ge 4k$ such that n is even, and let q be an integer with $0 \le q \le k-2$. We construct a graph H(n, k, q)of order n as follows. Let A, B, C, D, E, F be vertex-disjoint graphs with |V(A)| = n/2 - 2k + 2, |V(B)| = n/2 - q - 2, |V(C)| = 2k - 2q - 4, |V(D)| = q, |V(E)| = 2q + 3 and |V(F)| = 1 such that A, B and D have no edge and Cand E are complete graphs. Join A completely to B, B completely to $C \cup D$, $C \cup D$ completely to E, and $A \cup B \cup C \cup D \cup E$ completely to F. Let H(n, k, q)denote the resulting graph. Then H(n, k, q) satisfies $\sigma_2(H(n, k, r)) = n/2 + 2k - 2$ and contains k vertex-disjoint triangles, but does not contain k vertexdisjoint copies of S.

We now show that in Theorem 3, the bound on $\delta(G)$ is sharp. First we consider the case where $n \ge 8k-1$. In this case, let s = 0 or $3k - \lfloor (n+1)/4 \rfloor - 1$ in Example 1, according as $n \ge 12k-5$ or $8k-1 \le n \le 12k-6$. Then F(n,k,s) has minimum degree 4k-2 or $\lfloor (n+1)/4 \rfloor + k-1 (= \lceil (n-2)/4 \rceil + k-1)$ according as $n \ge 12k-5$ or $8k-1 \le n \le 12k-6$, which means that the bound on $\delta(G)$ in Theorem 3 is sharp. Next we consider the case where $4k+1 \le n \le 8k-2$. In this case, let $r = \lfloor (n-1)/4 \rfloor - k$ in Example 2. Then G(n,k,r) has minimum degree $\lfloor (n-3)/2 \rfloor - \lfloor (n-1)/4 \rfloor + k (= \lceil (n-2)/4 \rceil + k-1)$. Finally we consider the case where $4k \le n \le 8k-6$ and n is even (this includes the case where n = 4k, which is excluded from the preceding case). In this

case, let $q = \lfloor n/4 \rfloor - k$ in Example 3. Then H(n, k, q) has minimum degree $\lfloor n/4 \rfloor + k - 1$.

§2. Preparation for the proof of Theorem 2

Let k, G be as in Theorem 2. Write |V(G)| = 4k + l. By assumption, G has k vertex-disjoint triangles. Let S_1, \ldots, S_k be k vertex-disjoint induced subgraphs of G such that for each i, either $|V(S_i)| = 4$ and S_i contains S as a spanning subgraph, or $S_i \cong K_3$. We may assume that there exists k' such that $S_i \supset S$ and $|V(S_i)| = 4$ for each i with $1 \le i \le k'$ and $S_i \cong K_3$ for each i with $k' + 1 \le i \le k$. We choose S_1, \ldots, S_k so that k' is maximum and, subject to the condition that k' is maximum, $\sum_{i=1}^k |E(S_i)|$ is maximum. If k' = k, then the desired conclusion holds. Hence we may assume that $k' \le k - 1$. Let L := $\cup_{i=1}^{k'}V(S_i)$ and $M := \bigcup_{i=k'+1}^{k-1}V(S_i)$. Let v be a vertex in $G - L - M - V(S_k)$. For a subgraph N of G, let $d_N = 3|E(v, V(N))| + \sum_{x \in V(S_k)}|E(x, V(N))|$. Note that $d_G = \sum_{x \in V(S_k)}(|E(v, V(G))| + |E(x, V(G))|) \ge 3\sigma_2(G)$ because $E(v, V(S_k)) = \emptyset$. Let $Z := G - L - M - V(S_k) - v$. For each i with $1 \le i \le k'$, write $V(S_i) = \{a_i, b_i, c_i, d_i\}$ so that $d_{S_i}(b_i) \ge d_{S_i}(c_i) \ge d_{S_i}(d_i) \ge d_{S_i}(a_i)$; thus $d_{S_i}(a_i) = 1, d_{S_i}(b_i) = 3, d_{S_i}(c_i) = d_{S_i}(d_i) = 2$ if $S_i \cong S$, and $d_{S_i}(b_i) = d_{S_i}(c_i) = 3$ and $d_{S_i}(a_i) = d_{S_i}(d_i) = 2$ if $S_i \cong K_4^-$.

The main aim of this section is to prove that $d_{S_i} \leq 13$ for each $1 \leq i \leq k'$ (see Lemma 2.4). We start with easy lemmas.

Lemma 2.1. Let i be an integer with $1 \le i \le k'$. Then the following statements hold:

- (i) Suppose that there exists a subgraph X of S_i such that X ≅ K₃ and N_G(v) ⊃ V(X). Then S_i ≅ K₄.
- (ii) Suppose that there exists a subgraph X of S_i such that $X \cong K_3$ and $|N_G(v) \cap V(X)| \ge 2$. Then $S_i \not\cong S$.
- (iii) If $S_i \cong K_4^-$, then $|E(v, V(S_i))| \leq 3$.
- (iv) If $S_i \cong K_4^-$ and $|E(v, V(S_i))| = 3$, then $|N_G(v) \cap \{b_i, c_i\}| = 1$.
- (v) If $S_i \cong S$, then $|E(v, V(S_i))| \leq 2$.
- (vi) If $S_i \cong S$ and $|E(v, V(S_i))| = 2$, then $a_i v \in E(G)$.

Proof. If $S_i \not\cong K_4$, and there exists a subgraph X of S_i such that $X \cong K_3$ and $N_G(v) \supset V(X)$, then by replacing S_i by $\langle V(X) \cup \{v\} \rangle$, we get a contradiction

to the maximality of $\sum_{i=1}^{k} |E(S_i)|$ because $\langle V(X) \cup \{v\} \rangle \cong K_4$. Thus (i) holds, and we can similarly prove (ii). Now (iii) and (iv) immediately follow from (i), and (v) and (vi) follow from (ii).

Lemma 2.2. Let $x \in V(S_k)$, and let *i* be an integer with $1 \le i \le k'$. Then the following statements hold:

- (i) If $S_i \cong K_4$, then there exist no independent edges $xy, vz \in E(G)$ with $y, z \in V(S_i)$; in particular, $|E(\{x, v\}, V(S_i))| \le 4$.
- (ii) If $S_i \cong K_4^-$, then $|E(\{x, v\}, V(S_i))| \le 4$.

Proof. Suppose that $S_i \cong K_4$ and there exist two independent edges $xy, vz \in E(G)$ with $y, z \in V(S_i)$. Then each of $\langle \{y\} \cup V(S_k) \rangle$ and $\langle \{v\} \cup V(S_i - y) \rangle$ contains a copy of S, and these two copies of S are vertex-disjoint, which contradicts the maximality of k'. Thus (i) follows. Next suppose that $S_i \cong K_4^-$ and $|E(\{v,x\},V(S_i))| \geq 5$. Then there exist independent edges $xy, vz \in E(G)$ with $y, z \in V(S_i)$. If $y \in \{a_i, d_i\}$, then $\langle \{v\} \cup V(S_i - y) \rangle \supset S$ and $\langle \{y\} \cup V(S_k) \rangle \supset S$, which contradicts the maximality of k'. Thus there are no independent edges xy, vz with $y, z \in V(S_i)$ such that $y \in \{a_i, d_i\}$. Since $|E(\{x, v\}, V(S_i))| \geq 5$, this implies $N_G(x) \cap V(S_i) \subseteq \{b_i, c_i\}$ and $|N_G(v) \cap V(S_i)| \geq 3$. In view of Lemma 2.1(ii), this forces $N_G(x) \cap V(S_i) = \{a_i, b_i, d_i\}$. But then each of $\langle \{c_i\} \cup V(S_k) \rangle$ and $\langle \{v\} \cup V(S_i - c_i) \rangle$ contains S, which contradicts the maximality of k'. \Box

Lemma 2.3. Let *i* be an integer with $1 \le i \le k'$. If $S_i \cong S$, then $|E(a_i, V(S_k))| \le 1$, and equality holds only if $E(v, V(S_i - a_i)) = \emptyset$.

Proof. Otherwise, we can easily get a contradiction to the maximality of k' or $\sum_{i=1}^{k} |E(S_i)|$.

Lemma 2.4. Let $1 \leq i \leq k'$. Then $d_{S_i} \leq 13$, and equality holds only if $S_i \cong S$, c_i or d_i , say, c_i , is adjacent to v, $E(v, V(S_i)) = \{a_i v, c_i v\}, N_G(a_i) \cap V(S_k) = \emptyset, N_G(d_i) \supset V(S_k), N_G(b_i) \cap V(S_k) = N_G(c_i) \cap V(S_k) \text{ and } |N_G(b_i) \cap V(S_k)| = 2.$

Proof. If $S_i \cong K_4$ or K_4^- , then by Lemma 2.2, $|E(\{v, x\}, V(S_i))| \leq 4$ for any $x \in V(S_k)$, which implies $d_{S_i} \leq 12$. Thus we may assume $S_i \cong$

S. If $E(v, V(S_i)) = \emptyset$, then $d_{S_i} = \sum_{x \in V(S_i)} |E(x, V(S_i))| \le 12$. Hence by Lemma 2.1(v), we may assume $1 \leq |E(v, V(S_i))| \leq 2$. Suppose that $|E(v, V(S_i))| = 1$. If $a_i v \notin E(G)$, then by Lemma 2.3, $E(a_i, V(S_k)) = \emptyset$, and hence $d_{S_i} = 3|E(v, V(S_i))| + \sum_{x \in V(S_k)} |E(x, V(S_i))| \le 3 + 9 = 12$. Thus we may assume $a_i v \in E(G)$. If $|E(V(S_i), V(S_k))| \ge 10$, then it follows from Lemma 2.3 that there exists $x \in V(S_k)$ such that $N_G(x) \supset V(S_i)$, and we have $N_G(y) \supset V(S_i - a_i)$ for each $y \in V(S_k - x)$, and hence $\langle \{x, v, a_i, b_i\} \rangle \supset S$ and $\langle V(S_k - x) \cup \{c_i, d_i\} \rangle \supset S$, a contradiction. Thus $|E(V(S_i), V(S_k))| \leq 9$, and hence $d_{S_i} \leq 12$. Consequently we may assume $|E(v, V(S_i))| = 2$. If $|E(V(S_i), V(S_k))| \leq 6$, then $d_{S_i} \leq 12$. Thus we may assume $|E(V(S_i), V(S_k))| \geq 6$ 7. Note that by Lemma 2.1(vi) and Lemma 2.3, $a_i v \in E(G)$ and $E(a_i, V(S_k)) =$ \emptyset . Hence $|E(y, V(S_i))| \leq 3$ for each $y \in V(S_k)$, and there exists $x \in V(S_k)$ such that $|E(x, V(S_i))| = 3$ and $N_G(x) \cap V(S_i) = \{b_i, c_i, d_i\}$. If $vb_i \in E(G)$, then $\langle \{v, a_i, b_i, c_i\} \rangle \supset S$ and $\langle \{d_i\} \cup V(S_k) \rangle \supset S$, a contradiction. Thus we may assume $N_G(v) \cap V(S_i) = \{a_i, c_i\}$. If $|E(b_i, V(S_k))| = 3$, then $\{\{a_i, b_i\} \cup \}$ $V(S_k - x) \ge S, \langle V(S_i - \{a_i, b_i\}) \cup \{x, v\} \ge S, \text{ a contradiction; similarly, if}$ $|E(c_i, V(S_k))| = 3$, then $\langle \{v, c_i\} \cup V(S_k - x) \rangle \supset S$ and $\langle V(S_i - c_i) \cup \{x\} \rangle \supseteq S$, a contradiction. Thus $|E(b_i, V(S_k))| \leq 2$ and $|E(c_i, V(S_k))| \leq 2$. Since $|E(V(S_i), V(S_k))| \geq 7$, this forces $|E(b_i, V(S_k))| = 2$, $|E(c_i, V(S_k))| = 2$ and $|E(d_i, V(S_k))| = 3$, and hence $d_{S_i} = 13$. Now if $(N_G(b_i) \cap V(S_k)) \neq 1$ $(N_G(c_i) \cap V(S_k))$, say, $N_G(b_i) \cap V(S_k) = \{x, y\}$ and $N_G(c_i) \cap V(S_k) = \{x, z\}$, then $\langle \{a_i, b_i, x, y\} \rangle \supset S$ and $\langle \{v, z, c_i, d_i\} \rangle \supset S$, a contradiction. Thus the lemma follows.

Lemma 2.5. $G - L - M - V(S_k) \not\supseteq K_3$.

Proof. We see from the maximality of k' that in $G - L - M - V(S_k)$, there is no subgraph isomorphic to S. Thus it suffices to show that there is no triangle component in $G - L - M - V(S_k)$. By way of contradiction, let S_{k+1} be a triangle component in $G - L - M - V(S_k)$, and take $y \in V(S_{k+1})$ and $x \in V(S_k)$. Note that by the maximality of k', $E(V(S_i), V(G - L - V(S_i))) = \emptyset$ for each i with $k' + 1 \le i \le k + 1$. We separate the following point of the proof, and present it as a subclaim.

Subclaim. Let $1 \le i \le k'$. Then there exist no independent edges $xu, yw \in E(G)$ such that $u, w \in V(S_i)$.

Proof. If there exist two independent edges $xu, yw \in E(G)$ such that $u, w \in V(S_i)$, then by replacing S_i by $\langle \{u\} \cup V(S_k) \rangle$ and $\langle \{w\} \cup V(S_{k+1}) \rangle$, we get a contradiction to the maximality of k'.

Now by the subclaim, $|E(\{x, y\}, V(S_i))| \leq 4$ for each *i* with $1 \leq i \leq k'$. Consequently $d_G(x) + d_G(y) \leq 4k' + 2 + 2 \leq 4(k-1) + 4 = 4k$. On the other hand, since $xy \notin E(G)$ by the maximality of k', it follows from the assumption of Theorem 2 that $d_G(x) + d_G(y) \ge \sigma_2(G) \ge 4k + \frac{l}{2} - 1$. Hence k' = k - 1, l = 2and, for each i with $1 \le i \le k-1$, $|E(\{x, y\}, V(S_i))| = 4$. By the subclaim, this implies that for each i with $1 \leq i \leq k-1$, either $|E(x, V(S_i))| = 4$ and $E(y, V(S_i)) = \emptyset$ or $|E(y, V(S_i))| = 4$ and $E(x, V(S_i))| = \emptyset$. We may assume there exists t such that $E(x, V(S_i)) = \emptyset$ for each $1 \leq i \leq t$ and $|E(x, V(S_i))| = 4$ for each $t + 1 \le i \le k - 1$. Since $y \in V(S_{k+1})$ is arbitrary, for each $z \in V(S_{k+1})$, we have $|E(\{x, z\}, V(S_i))| = 4$ for each $1 \le i \le k-1$, and hence $|E(z, V(S_i))| = 4$ for each $1 \le i \le t$ and $E(z, V(S_i)) = \emptyset$ for each $t+1 \leq i \leq k-1$. Thus $N_G(z) = V(S_{k+1} - \{z\}) \cup (\bigcup_{i=1}^t V(S_i))$ for each $z \in V(S_{k+1})$. Now let $1 \leq i \leq t$. Applying Lemma 2.1(i) to y, we see that $S_i \cong K_4$. Take $u \in V(S_i)$. Then arguing as above with S_i and S_{k+1} replaced by $\langle V(S_i-u)\cup\{y\}\rangle$ and $\langle V(S_{k+1}-\{y\})\cup\{u\}\rangle$, we obtain $N_G(u)=((\cup_{i=1}^t V(S_i)) \{u\}$) \cup $V(S_{k+1})$. Consequently $\langle (\cup_{i=1}^{t} V(S_i)) \cup V(S_{k+1}) \rangle$ is a component of G, and is isomorphic to K_{4t+3} . Arguing similarly with the roles of S_k and S_{k+1} replaced by each other, we also see that $\langle \bigcup_{i=t+1}^{k} V(S_i) \rangle$ is a component of G and isomorphic to $K_{4k-4t-1}$. Therefore, $G \cong K_{4t+3} \cup K_{4k-4t-1}$, which contradicts the assumption of Theorem 2.

§3. Proof of Theorem 2

We continue with the notation of the preceding section. Note that Lemmas 2.1 through 2.4 hold for any choice of $v \in V(G - L - M - V(S_k))$. In this section, we assume that we have chosen v so that |E(v, V(Z))| is minimum.

Lemma 3.1. $|E(v, V(Z))| \leq \frac{|V(Z)|+1}{2}$.

Proof. If $N_{G-L-M-V(S_k)}(v) = \emptyset$, then the assertion of the lemma obviously holds. Hence we may assume there exists an edge $vw \in E(G-L-M-V(S_k))$. By Lemma 2.5, it follows that $N_{G-L-M-V(S_k)}(v) \cap N_{G-L-M-V(S_k)}(w) = \emptyset$. Consequently $|E(v, V(Z))| + |E(w, V(Z))| \le |V(Z)| + 1$. Hence by the choice of v, the assertion holds.

Lemma 3.2. The following statements hold:

- (i) For each i with $k' + 1 \leq i \leq k 1$, $d_{S_i} \leq 9$.
- (ii) $d_Z \leq 3|E(v, V(Z))|$.

Proof. It follows from the maximality of k' that $E(v, V(S_i)) = \emptyset$ for i with $k'+1 \le i \le k-1$ and $E(V(Z), V(S_k)) = \emptyset$. Hence the desired results obviously hold.

Lemma 3.3. There exists i with $1 \le i \le k'$ such that $d_{S_i} = 13$.

Proof. Suppose that $d_{S_i} \leq 12$ for all i with $1 \leq i \leq k'$. Then by Lemma 3.1 and Lemma 3.2, $d_G = \sum_{i=1}^{k-1} d_{S_i} + d_Z + 2 + 2 + 2 \leq 12k' + 9(k-1-k') + \frac{3(|V(Z)|+1)}{2} + 6 = 3k' + 9k - 3 + \frac{3}{2}\{4k + l - 4k' - 3(k-1-k') - 4 + 1\} = 9k + \frac{3}{2}(k+k') + \frac{3}{2}l - 3 \leq 9k + \frac{3}{2}(k+k-1) + \frac{3}{2}l - 3 = 12k + \frac{3}{2}l - \frac{9}{2}$. On the other hand, by assumption, $d_G \geq 3\sigma_2(G) \geq 12k + \frac{3}{2}l - 3$. This is a contradiction. \Box

By Lemma 2.4 and Lemma 3.3, we may assume that $d_{S_1} = 13, S_1 \cong S$, and $N_G(v) \cap V(S_1) = \{a_1, c_1\}$. Write $V(S_k) = \{a, b, c\}$. By Lemma 2.4, we may assume $N_{S_1}(a) = \{d_1\}$, and $N_{S_1}(b) = N_{S_1}(c) = \{b_1, c_1, d_1\}$. For a subgraph N of G, let $d'_N = 2|E(v, V(N))| + |E(a_1, V(N))| + \sum_{x \in V(S_k)} |E(x, V(N))|$. Since $E(\{a_1, v\}, V(S_k)) = \emptyset$, it follows from the assumption of Theorem 2 that $d'_G \ge 3\sigma_2(G) \ge 12k + \frac{3}{2}l - 3$. (A)

Also, note that by the symmetry of the roles of v and a_1 in $\langle V(S_1) \cup V(S_k) \cup \{v\}\rangle$, we can apply Lemmas 2.1 through 2.4 to a_1 as well; i.e., we can apply those lemmas with S_1 and v replaced by $\langle \{v, b_1, c_1, d_1\}\rangle$ and a_1 .

Lemma 3.4. For each *i* with $2 \le i \le k'$, $d'_{S_i} \le 12$.

Proof. Suppose that $d'_{S_i} \geq 13$. Let $p = 3|E(a_1, V(S_i))| + |E(V(S_k), V(S_i))|$. Applying Lemma 2.4 to v and a_1 , we get $d_{S_i} \leq 13$ and $p \leq 13$. Since $d'_{S_i} = \frac{2}{3}d_{S_i} + \frac{1}{3}p$, this implies $d_{S_i} = 13$ and p = 13. Hence, again applying Lemma 2.4 to v or a_1 , we see that $S_i \cong S$ and $a_i v, a_i a_1 \in E(G)$. Consequently, by replacing S_1, S_i, S_k by $\langle \{v, a_1, a_i, b_1\} \rangle$, $\langle \{d_1, a, b, c\} \rangle$, $\langle \{b_i, c_i, d_i\} \rangle$, respectively, we get a contradiction to the maximality of $\sum_{i=1}^k |E(S_i)|$ because $\langle \{d_1, a, b, c\} \rangle \cong K_4$. \Box

Lemma 3.5. The following statements hold:

- (i) For each *i* with $k' + 1 \le i \le k 1$, $d'_{S_i} \le 9$.
- (ii) For each $z \in V(Z)$, $|E(\{a_1, v\}, z)| \le 1$.
- (iii) $d'_Z \le \frac{3|V(Z)|+1}{2}$.

Proof. It follows from the maximality of k' that $E(v, V(S_i)) = \emptyset$ for each i with $k' + 1 \leq i \leq k - 1$. Also, by symmetry, we have $E(a_1, V(S_i)) = \emptyset$ for each i with $k' + 1 \leq i \leq k - 1$. Hence (i) obviously holds. To show (ii), suppose that $|E(\{a_1, v\}, z)| \geq 2$. Then $\langle \{a_1, b_1, v, z\} \rangle \supset S$ and $\langle \{d_1, a, b, c\} \rangle \supset K_4$, which contradicts the maximality of k'. Thus (ii) holds. Now by (ii), $|E(a, V(Z))| \leq |V(Z)| - |E(v, V(Z))|$. Since $E(V(S_k), V(Z)) = \emptyset$, this together with Lemma 3.1 implies $d'_Z = 2|E(v, V(Z))| + |E(a, V(Z))| \leq |V(Z)| + |V(Z)| \leq |V(Z)| + |V(Z)|$. This proves (iii).

By Lemma 3.4 and (i) and (iii) of Lemma 3.5, we now obtain

$$\begin{split} d'_G &\leq 12(k'-1) + 9(k-1-k') + \frac{3}{2}\{4k+l-4k'-3(k-k')-1\} \\ &\quad + \frac{1}{2} + 4 + 2 + 5 + 5 + 3 = 9k + \frac{3}{2}(k+k') + \frac{3}{2}l - 3 \\ &\quad \leq 9k + \frac{3}{2}(k+k-1) + \frac{3}{2}l - 3 = 12k + \frac{3}{2}l - \frac{9}{2}, \end{split}$$

which contradicts (A). This completes the proof of Theorem 2.

Acknowledgment

I would like to thank Professor Katsuhiro Ota and Dr.Ken-ichi Kawarabayashi for stimulating discussions concerning the problem discussed in this paper.

References

- H.Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18(1998) 487-492.
- [2] P.Justesen, On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa, Annals of Discrete Mathematics 41(1989) 299-306.
- [3] K.Kawarabayashi, F-factor and vertex-disjoint F in a graph, Ars Combinatoria 62(2002) 183-187.
- [4] K.Kawarabayashi and K.Ota, private communication (1999)

Shinya Fujita Department of Applied Mathematics, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan *E-mail*: shinyaa@mti.biglobe.ne.jp