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Vertex-Disjoint Copies of K; + (K7 U K3) in Graphs
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Abstract. Let S denote the graph obtained from K4 by removing two edges
which have an endvertex in common. Let k£ be an integer with k > 2. Let G be
a graph with |V(G)| > 4k and 02(G) > |V(G)|/2 + 2k — 1, and suppose that G
contains k vertex-disjoint triangles. In the case where |V (G)| = 4k + 2, suppose
further that G 2 Kat4+3 U Kar—4¢—1 for any ¢t with 0 < ¢ < k — 1. Under these
assumptions, we show that G contains k vertex-disjoint copies of S.
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§1. Introduction

In this paper, we consider only finite, simple, undirected graphs with
no loops and no multiple edges. For a graph G, we denote by V(G), E(G)
and 0(G) the vertex set, the edge set and the minimum degree of G, re-
spectively. For a vertex x of a graph G, the neighborhood of z in G is de-
noted by Ng(x), and we let dg(x) := |[Ng(x)|. For a noncomplete graph G,
let 02(G) :=min{dg(x) + da(y)| zy ¢ E(G)}; if G is a complete graph, let
02(G) := oo. For a subset L of V(G), the subgraph induced by L is denoted
by (L). For a subset M of V(G), we let G — M = (V(G) — M) and, for a
vertex x of G, we let G — z = (V(G) — {x}). For subsets L and M of V(G),
we let E(L, M) denote the set of edges of G joining a vertex in L and a vertex
in M. When L or M consists of a single vertex, say L = {z} or M = {y}, we
write F(xz, M) or E(L,y) for E(L,M).

Let K, denote the complete graph of order n, and let K, be the graph
obtained from K,, by removing one edge. Also let S be the graph obtained
from K4 by removing two edges which have an endvertex in common; thus
S =K+ (Kl UKQ).
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In this paper, we are concerned with conditions on o2 (G) for the existence of
vertex-disjoint subgraphs. As examples of results concerning such conditions,
we mention that it is proved in Justesen [2] that a graph G of order at least
3k with 09(G) > |V(G)| + k has k vertex-disjoint triangles, and it is proved
in Enomoto [1] that a graph G of order at least 3k with 02(G) > 4k — 1 has
k vertex-disjoint cycles. This paper is concerned with the following theorem
proved by Kawarabayashi in [3].

Theorem 1. Let k be an integer with k > 2, and let G be a graph with
[V(G)| > 4k and 02(G) > |V(G)| + k. Then G contains k vertex-disjoint
copies of S.

In Theorem 1, the bound on 05(G) is sharp. But this is simply because there
exists a graph G with |V(G)| > 4k and 02(G) = |V(G)|+k—1 such that G does
not even contain k vertex-disjoint triangles (see [2]). Based on this observation,
Kawarabayashi and Ota [4] suggested the possibility of lowering the bound on
02(G) by adding the assumption that G' contains k vertex-disjoint triangles.
Along this line, we prove the following theorem.

Theorem 2. Let k be an integer with k > 2. Let G be a graph with |V (G)| >
4k and o2(G) > |V(G)|/2 + 2k — 1, and suppose that G contains k vertex-
disjoint triangles. In the case where |V (G)| = 4k + 2, suppose further that
G 2 Kyy3 U Kyg_g1—1 for any t with 0 < t < k—1. Then G contains k
vertex-disjoint copies of S.

It is easy to verify that if a graph G with |V(G)| > 4k and 6(G) > 4k — 1
contains k vertex-disjoint triangles, then it contains k vertex-disjoint copies
of S. Thus as an immediate corollary of Theorem 2, we obtain the following
theorem.

Theorem 3. Let k be an integer with k > 2. Let G be a graph with |V (G)| >
4k and 6(G) > min{|V(G)|/4+k —1/2,4k — 1}, and suppose that G contains
k vertex-disjoint triangles. In the case where |V (G)| = 4k + 2 and k is odd,
suppose further that G 22 Kopy1 U Kogy1. Then G contains k vertez-disjoint
copies of S.

In the remainder of this section, we discuss the sharpness of conditions in
Theorem 2 and 3. We first show that in Theorem 2, the bound on oy(G)
is sharp. For reference in the discussion of the sharpness of Theorem 3, we
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construct three families of examples.

Example 1. Let k,n be integers with k > 2 and n > 4k, and let s be an integer
with 0 < s < k — 1. We construct a graph F(n,k,s) of order n as follows.
Let A, B,C,D be vertex-disjoint graphs with |V (A)| = [(n + 1)/2] — 2k,
[V(B)| = [(n+1)/2] —2k+s, |V(C)| = s and |[V(D)| = 4k — 25 — 1 such that
A, B and C have no edge and D is a complete graph. Join A completely to
B, i.e., join each vertex of A to all vertices of B. Further join B completely to
C, and C completely to D. Let F(n,k,s) denote the resulting graph. Then
F(n,k,s) satisfies o9(F(n,k,s)) = [(n —1)/2| + 2k — 1(= [n/2] + 2k — 2)
and contains k vertex-disjoint triangles, but does not contain k vertex-disjoint
copies of S.

Example 2. Let k,n be integers with £ > 2 and n > 4k, and let r be an
integer with 0 < r < k — 1. We construct a graph G(n,k,r) of order n as
follows. Let A, B,C, D, E be vertex-disjoint graphs with |V (A)| = [(n — 2r —
3)/2] — 2k —r —2), [V(B)| = [(n—2r — 3)/2], [V(C)| = 2(k — 1 — ),
|[V(D)| =r, |V(E)| = 2r + 3 such that A and B have no edge and C, D and
E are complete graphs. Join A completely to B, B completely to C U D,
and C'U D completely to E. Let G(n, k,r) denote the resulting graph. Then
G(n, k,r) satisfies o2(G(n, k,7)) = [n/2]4+2k—2 and contains k vertex-disjoint
triangles, but does not contain k vertex-disjoint copies of S.

Example 3. Let k,n be integers with £ > 2 and n > 4k such that n is even,
and let ¢ be an integer with 0 < ¢ < k — 2. We construct a graph H(n,k,q)
of order n as follows. Let A, B,C,D,FE,F be vertex-disjoint graphs with
[V(A)|=n/2-2k+2, |V(B)|=n/2—q—2, |V(C)| =2k—-29—4,|V(D)| =
q, |[V(E)| =2¢+3 and |V (F)| =1 such that A, B and D have no edge and C
and F are complete graphs. Join A completely to B, B completely to C' U D,
C'UD completely to F, and AUBUCUDUE completely to F. Let H(n,k,q)
denote the resulting graph. Then H(n,k,q) satisfies oo(H (n,k,7)) = n/2 +
2k — 2 and contains k vertex-disjoint triangles, but does not contain k vertex-
disjoint copies of S.

We now show that in Theorem 3, the bound on §(G) is sharp. First we
consider the case where n > 8k—1. In this case, let s = 0 or 3k—[(n+1)/4]—1
in Example 1, according asn > 12k—5 or 8k—1 < n < 12k—6. Then F(n, k, s)
has minimum degree 4k—2 or | (n+1)/4]+k—1(= [(n—2)/4]4+k—1) according
asn > 12k —5 or 8k — 1 < n < 12k — 6, which means that the bound on §(G)
in Theorem 3 is sharp. Next we consider the case where 4k +1 < n < 8k — 2.
In this case, let » = [(n — 1)/4| — k in Example 2. Then G(n,k,r) has
minimum degree [(n—3)/2| — |(n—1)/4]| + k(= [(n—2)/4] + k —1). Finally
we consider the case where 4k < n < 8k — 6 and n is even (this includes
the case where n = 4k, which is excluded from the preceding case). In this
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case, let ¢ = |n/4] — k in Example 3. Then H(n,k,q) has minimum degree
In/4] +k — 1.

§2. Preparation for the proof of Theorem 2

Let k,G be as in Theorem 2. Write |V(G)| = 4k + . By assumption,
G has k vertex-disjoint triangles. Let Si,..., Sk be k vertex-disjoint induced
subgraphs of G such that for each i, either |V (S;)| = 4 and S; contains S as a
spanning subgraph, or S; = K3. We may assume that there exists &’ such that
S; D S and |V(S;)| = 4 for each i with 1 <14 < k" and S; & K3 for each i with
k' +1 <i < k. We choose Si,...,S) so that ¥’ is maximum and, subject to
the condition that &’ is maximum, Y% |E(S;)| is maximum. If & = k, then
the desired conclusion holds. Hence we may assume that &’ < k—1. Let L :=
U V(S;) and M := Uf:_lg,HV(Si). Let v be a vertex in G — L — M — V (Sy).
For a subgraph N of G, let dy = 3|E(v,V(N))| + X cv (s, [E(z, V(N))].
Note that dg = >, cv(s,)([E@,V(G))| + |[E(z,V(G))]) = 302(G) because
E(w,V(Sg))=0. Let Z:=G—L—M—V(Sg)—v. For each i with 1 <7 <Fk/,
write V(S;) = {a;, bi, ¢i, d; } so that dg,(b;) > dg,(¢;) > dg,(d;) > ds,(a;); thus
ds,(a;) = 1,dg,(b;) = 3,ds,(¢;) = dg,(d;) =2if S; = S, and dg, (b;) = dg,(¢;) =
The main aim of this section is to prove that dg, < 13 for each 1 <1 < K
(see Lemma 2.4). We start with easy lemmas.

Lemma 2.1. Let i be an integer with 1 < i < k'. Then the following state-
ments hold:

(i) Suppose that there exists a subgraph X of S; such that X = Ks and
Ng(v) D V(X). Then S; = Kjy.

(ii) Suppose that there exists a subgraph X of S; such that X = Ks and
ING(v) NV (X)| > 2. Then S; 2 S.

(i) If S; = K, then |E(v,V(Sy))| < 3.

(iv) If S; = Ky and |E(v,V(S:)| = 3, then |Ng(v) N {bi, c;}| = 1.
(v) If S; 22 S, then |E(v,V(S;))| < 2.

(vi) If S; = S and |E(v, V(S;))| = 2, then aw € E(G).

Proof. If S; 2 K,, and there exists a subgraph X of S; such that X = K3 and
N¢g(v) D V(X), then by replacing S; by (V(X)U {v}), we get a contradiction



VERTEX-DISJOINT COPIES OF K + (K; U K2) IN GRAPHS 205

to the maximality of Zle |E(S;)| because (V(X)U{v}) = K4. Thus (i) holds,
and we can similarly prove (ii). Now (iii) and (iv) immediately follow from
(i), and (v) and (vi) follow from (ii). O

Lemma 2.2. Let x € V(Sg), and let i be an integer with 1 < i < k'. Then
the following statements hold:

(i) If S; = Ky, then there exist no independent edges xy,vz € E(G) with
y,z € V(S;); in particular, |E({z,v},V(S;))| < 4.

(i) If S; = K, then |E({z,v},V(Sy)| < 4.

Proof. Suppose that S; &£ K4 and there exist two independent edges xy, vz €
E(G) with y,z € V(S;). Then each of ({y} UV (Sg)) and ({v} UV(S; —y))
contains a copy of S, and these two copies of S are vertex-disjoint, which
contradicts the maximality of &’. Thus (i) follows. Next suppose that S; = K
and |E({v,z},V(S;))] > 5. Then there exist independent edges zy,vz €
E(G) with y,z € V(S;). If y € {a;,d;}, then {v} UV(S; —y)) D S and
({y} UV (Sk)) D S, which contradicts the maximality of &’. Thus there are
no independent edges xy,vz with y,z € V(S;) such that y € {a;,d;}. Since
|E({z,v},V(S;))| > 5, this implies Ng(x) N V(S;) C {b;,c;} and |Ng(v) N
V(S;)| > 3. In view of Lemma 2.1(iii), this forces Ng(z) NV (S;) = {b;, ¢}
and |Ng(v)NV(S;)| = 3. By Lemma 2.1(iv), we may assume Ng(v) NV (S;) =
{ai,bi,d;}. But then each of ({¢;} UV (Sk)) and ({v} UV (S; —¢;)) contains S,
which contradicts the maximality of &’. a

Lemma 2.3. Let i be an integer with 1 <i < k'. If S; = S, then |E(a;, V(Sk)
)| <1, and equality holds only if E(v,V (S; — a;)) = 0.

Proof. Otherwise, we can easily get a contradiction to the maximality of &’
k
or > iy [E(S)]- =

Lemma 2.4. Let 1 < i < k'. Then ds, < 13, and equality holds only if S; =
S, ¢ ord;, say, ¢i, is adjacent tov, E(v,V(S;)) = {a;v, c;v}, Ng(a; )NV (Sk)
0, N(;(di) D V(Sk), Ng(bi)ﬂV(Sk) = Ng(ci)ﬂV(Sk) and |Ng(bi)ﬂV(Sk)| = 2.

Proof. If S; = K, or K, then by Lemma 2.2, |E({v,z},V(S;))| <
for any = € V(Sg), which implies dg, < 12. Thus we may assume S,
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S. If E(v,V(5;)) = 0, then ds, = > cy (s, [E(z,V(5))] < 12. Hence
by Lemma 2.1(v), we may assume 1 < |E(v,V(S;))] < 2. Suppose that
|E(v,V(S;))| = 1. If ajv ¢ E(G), then by Lemma 2.3, E(a;,V(Sk)) = 0,
and hence ds, = 3|E(v, V(5))| + Xsev (s, [E(@,V(Si))] <3+ 9 =12. Thus
we may assume a;v € E(G). If |[E(V(S;),V(Sk))| > 10, then it follows from
Lemma 2.3 that there exists € V(Sg) such that Ng(z) D V(S;), and we
have Ng(y) D V(S; —a;) for each y € V(S —x), and hence ({z,v,a;,b;}) D S
and (V(Sk —x) U{¢,d;}) D S, a contradiction. Thus |E(V(S;), V(Sk))| <9,
and hence dg; < 12. Consequently we may assume |E(v,V(S;))] = 2. If
|E(V(Si),V(Sk))| <6, thends, < 12. Thus we may assume |E(V (S;), V(Sk))| >
7. Note that by Lemma 2.1(vi) and Lemma 2.3, a;v € E(G) and E(a;, V(Sk)) =
0. Hence |E(y,V(S;))| < 3 for each y € V(Sk), and there exists z € V(S)
such that |E(z,V(S;))| = 3 and Ng(x) NV (S;) = {b;, ¢, d;}. If vb; € E(G),
then ({v,a;,b;,¢;}) D S and ({d;} UV(Sk)) D S, a contradiction. Thus we
may assume Ng(v) NV (S;) = {a;, ¢} If |[E(b;, V(Sk))| = 3, then ({a;,b;} U
V(Sy—x)) DS, (V(S; —{ai,bi}) U{z,v}) D S, a contradiction; similarly, if
|E(ci, V(Sk))| = 3, then ({v,¢;} UV (Sy —z)) D S and (V(S; —¢;)U{x}) DS,
a contradiction. Thus |[E(b;,V(Sk))| < 2 and |E(c;, V(Sk))| < 2. Since
B(V(S), V()| > 7, this forces [E(bi, V(Se)| = 2, |B(e, V()| = 2
and |E(d;,V(Sk))| = 3, and hence dg, = 13. Now if (Ng(b;) NV (Sk)) #
(Na(ci) NV (Sk)), say, Na(bi) NV (Sk) = {z,y} and Ng(¢;) NV (Sk) = {z, 2z},
then ({a;,b;i,xz,y}) DO S and ({v,z,¢;,d;}) D S, a contradiction. Thus the
lemma follows. O

Lemma 2.5. G—L— M — V(Sk) 2 K3.

Proof. We see from the maximality of &’ that in G — L — M — V(Sy), there
is no subgraph isomorphic to S. Thus it suffices to show that there is no
triangle component in G — L — M — V(Sg). By way of contradiction, let Si1
be a triangle component in G — L — M — V(Sk), and take y € V(Sk41) and
x € V(Sk). Note that by the maximality of k', E(V(S;),V(G—L-V(S;))) =0
for each ¢ with ¥ +1 < i < k+ 1. We separate the following point of the
proof, and present it as a subclaim.

Subclaim. Let 1 < i < k'. Then there exist no independent edges xu,yw €
E(G) such that u,w € V(5;).

Proof. If there exist two independent edges xu,yw € E(G) such that u,w €
V' (Si), then by replacing S; by ({u} UV (Sk)) and ({w} UV (Skt+1)), we get a
contradiction to the maximality of &'. O
Now by the subclaim, |E({z,y}, V(S;))] < 4 for each i with 1 < i < k.
Consequently dg(x) +dg(y) < 4K +2+2 < 4(k — 1) + 4 = 4k. On the other
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hand, since zy ¢ E(G) by the maximality of &', it follows from the assumption
of Theorem 2 that dg(z)+dg(y) > 02(G) > 4k+L£ —1. Hence k' = k—1,1 = 2
and, for each ¢ with 1 <1i <k —1, |[E({z,y},V(Si))| = 4. By the subclaim,
this implies that for each ¢ with 1 < i < k — 1, either |E(z,V(S;))| = 4
and E(y,V(S;)) = 0 or |E(y,V(S;))| = 4 and E(z,V(S;))| = 0. We may
assume there exists ¢ such that E(z,V(S;)) = 0 for each 1 < ¢ < t and
|E(z,V(S;))] =4 foreach t +1 < i <k —1. Since y € V(Sk+1) is arbitrary,
for each z € V(Sk41), we have |E({z,2},V(S;))| =4 for each 1 <i < k —1,
and hence |E(z,V(S;))] = 4 for each 1 < i <t and E(z,V(S;)) = 0 for each
t+1<4i<k—1 Thus Ng(z) = V(Sks1 — {2}) U (U'_;V(S;)) for each
z € V(Sky1).- Now let 1 < i < t. Applying Lemma 2.1(i) to y, we see that
S; =2 Ky. Takeu € V(.5;). Then arguing as above with \S; and Sy replaced by
(V(S;—u)U{y}) and (V (Sks1—{y})U{u}), we obtain Ng(u) = ((U:_,V(S;))—
{u}) UV (Sks1). Consequently ((Ut_;V(S;)) UV (Sks1)) is a component of G,
and is isomorphic to K4;+3. Arguing similarly with the roles of Sy and Sjy1
replaced by each other, we also see that (U, ;V/(S;)) is a component of G and
isomorphic to K4x_4¢—1. Therefore, G = Ky13 U K441, which contradicts
the assumption of Theorem 2. O

83. Proof of Theorem 2

We continue with the notation of the preceding section. Note that Lemmas
2.1 through 2.4 hold for any choice of v € V(G — L — M — V(Sk)). In this
section, we assume that we have chosen v so that |E(v,V(Z))| is minimum.

V(Z)|+1
Lemma 3.1. |E(v,V(2))| < XEIEL

Proof. If Ng_1_p—v(s,)(v) = 0, then the assertion of the lemma obviously
holds. Hence we may assume there exists an edge vw € E(G—L—M —V(Sg)).
By Lemma 2.5, it follows that Ng_1_n—v(s,)(v) N No—r—m—v(s,)(w) = 0.
Consequently |E(v,V(Z))|+ |E(w,V(Z))| < |V(Z)| + 1. Hence by the choice
of v, the assertion holds. O

Lemma 3.2. The following statements hold:

(i) For eachi with k' +1<i<k—1,ds, <9.
(i) dz < 3|E(v,V(2))].
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Proof. It follows from the maximality of k¥’ that E(v,V(S;)) = 0 for ¢ with
EF+1<i<k—1and E(V(Z),V(Sk)) = 0. Hence the desired results obviously
hold. O

Lemma 3.3. There exists i with 1 <1i <k’ such that dg, = 13.

Proof. Suppose that dg, < 12 for all ¢ with 1 < i < k’. Then by Lemma 3.1
and Lemma 3.2, dg = St dg, +dy +2+2+2 < 12K +9(k — 1 — K') +
SVDIF) 6 — 3k + Ok — 3+ 3{dk +1— 4K —3(k —1— k) —4+ 1} =
Ok+3(k+k)+31-3 < 9k+3(k+k—1)+31—3 =12k+ 31— 3. On the other
hand, by assumption, dg > 302(G) > 12k + %l — 3. This is a contradiction.O

By Lemma 2.4 and Lemma 3.3, we may assume that dg, = 13,51 = 5, and
Na(v) NV (S1) = {a1,c1}. Write V(Sk) = {a,b,c}. By Lemma 2.4, we may
assume Ng, (a) = {d1}, and Ng, (b) = Ng, (c) = {b1,c1,d;}. For a subgraph N
of G, let diy = 2|E(v, V(N))|+ |E(a1, V(N)|+ >, cv(s,) [E(z, V(N))|. Since
E({a1,v},V(Sk)) =0, it follows from the assumption of Theorem 2 that

diy > 309(G) > 12k + 31 - 3. (A)
Also, note that by the symmetry of the roles of v and a; in (V(S1) UV (Sg) U
{v}), we can apply Lemmas 2.1 through 2.4 to a; as well; i.e., we can apply
those lemmas with S and v replaced by ({v,b1,c1,d1}) and a;.

Lemma 3.4. For each i with 2 <1i <k, d’Si < 12.

Proof. Suppose that ds > 13. Let p = 3|E(a1, V(S;))| + [E(V (Sk), V(Si))I-
Applying Lemma 2.4 to v and a;, we get dg, < 13 and p < 13. Since d’Si =
%dsi + %p, this implies dg; = 13 and p = 13. Hence, again applying Lemma 2.4
to v or ap, we see that S; = S and a;v, a;a1 € E(G). Consequently, by replacing
S1,8:, Sk by ({v,a1,a;,01}), ({d1,a,b,c}), ({bi,ci,di}), respectively, we get a
contradiction to the maximality of Zle |E(S;)| because ({d1,a,b,c}) = Ky.
O

Lemma 3.5. The following statements hold:

(i) For eachi with k' +1<i<k—1, dgi <9,
(ii) For each z € V(Z), |E({a1,v},2)| < 1.

3|V (Z2)|+1
(i) d, < %
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Proof. It follows from the maximality of k¥’ that E(v,V(S;)) = 0 for each
i with ¥ +1 < i < k— 1. Also, by symmetry, we have E(a1,V(S;)) =
0 for each ¢ with ¥ +1 < i < k — 1. Hence (i) obviously holds. To
show (ii), suppose that |E({ai,v},2)| > 2. Then ({ai,b1,v,2}) D S and
({dy,a,b,c}) D Ky, which contradicts the maximality of ¥’. Thus (ii) holds.
Now by (ii), |E(a,V(2))| < |V(Z)|—|E(v,V (Z))]|. Since E(V(Sk),V(Z)) = 0,
this together with Lemma 3.1 implies d, = 2|E(v,V(Z))| + |E(a,V(2))| <

|E(v,V(2))|+ |V(2)| < YEIE 1 1v(Z)|. This proves (iii). O

By Lemma 3.4 and (i) and (iii) of Lemma 3.5, we now obtain

dg <12(K — 1)+ 9(k — 1 — k') + 3{dk + 1 — 4k’ — 3(k — k') — 1}
14442454543 =9k+3(k+k)+31-3
<9k+3(k+k—1)+31-3=12k+ 31— 3,

which contradicts (A). This completes the proof of Theorem 2. O
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