On cohomology rings of a cyclic group and a ring of integers

Takao Hayami and Katsunori Sanada ${ }^{\dagger}$

(Received November 6, 2002)

Abstract

We determine the ring homomorphism $H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$ explicitly, where G denotes the cyclic group of order p^{ν} and Γ denotes the ring of integers of the cyclotomic field $\mathbb{Q}(\zeta)$ for a primitive p^{ν}-th root of unity ζ.

AMS 1991 Mathematics Subject Classification. 16E40, 20J06.
Key words and phrases. Hochschild cohomology, group cohomology, cup product, cohomology ring.

Introduction

We have investigated some kinds of cohomology rings of generalized quaternion groups in [H], [HS] and [S2]. These results depends on the fact that generalized quaternion groups have a periodic resolution of period 4 and so it is easy to compute the group cohomology. We also know that cyclic groups have a periodic resolution of period 2. So, it may be natural to ask a cyclic group analogy of [S2] and [HS]. Our objective in this paper is to determine a ring homomorphism between a group cohomology ring of a cyclic group with coefficients in an order and the Hochschild cohomology ring of the order.

Let $G=\langle x\rangle$ denote the cyclic group of order p^{ν} for any prime number p and any positive integer $\nu \geqslant 1$. The rational group ring $\mathbb{Q} G$ is isomorphic to the direct sum of the cyclotomic fields $\mathbb{Q}\left(\zeta_{d}\right)$, where ζ_{d} denotes a primitive d-th root of 1 for d dividing p^{ν}, and there exist primitive idempotents e_{i} for $0 \leqslant i \leqslant \nu$ such that $\mathbb{Q} G e_{i} \simeq \mathbb{Q}\left(\zeta_{p^{i}}\right)$. Then we have a ring homomorphism $\phi: \mathbb{Z} G \rightarrow \mathbb{Z} G e_{\nu} ; x \mapsto x e_{\nu}$. Since $x e_{\nu}$ is a primitive p^{ν}-th root of e_{ν}, we identify $x e_{\nu}$ with $\zeta_{p^{\nu}}$ under the isomorphism stated above. We set $\Gamma=\mathbb{Z} G e_{\nu}(=$

[^0]$\left.\mathbb{Z}\left[\zeta_{p^{\nu}}\right]\right)$. In this paper, we explicitly determine the ring homomorphism F^{*} : $H H^{*}(\Gamma):=\bigoplus_{n \geqslant 0} H H^{n}(\Gamma) \rightarrow H^{*}(G, \Gamma):=\bigoplus_{n \geqslant 0} H^{n}(G, \Gamma)$ induced by the ring homomorphism ϕ. In the above, Γ in the right hand side is regarded as a G-module by conjugation, so it is a trivial G-module.

In Section 1, as preliminaries, we describe the detail of defining ring homomorphism F^{*} stated above.

In Section 2.1, we give a chain transformation lifting the identity map on \mathbb{Z} between the well known periodic resolution of period 2 and the standard resolution for G (Proposition 1). In Section 2.2, we give a pair of dual bases of Γ as a Frobenius \mathbb{Z}-algebra (Lemma 2). Furthermore, we give initial parts of a chain transformation lifting the identity map on Γ between a periodic resolution of period 2 (see [BF], [LL]) and the standard complex of Γ (Proposition $3)$.

In Section 3, as a main result of this paper, we will determine the ring homomorphism $F^{*}: H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$ by investigating the image of a generator of $H H^{*}(\Gamma)$ under F^{2} (Theorem).

§1. Preliminaries

Let R be a commutative ring and Λ an R-algebra which is a finitely generated projective R-module. If M is a left $\Lambda^{\mathrm{e}}\left(=\Lambda \otimes_{R} \Lambda^{\mathrm{op}}\right)$-module, then the n-th Hochschild cohomology of Λ with coefficients in M is defined by

$$
H^{n}(\Lambda, M):=\operatorname{Ext}_{\Lambda^{\mathrm{e}}}^{n}(\Lambda, M) .
$$

Suppose M^{\prime} is another Λ^{e}-module. Then for every pair of integers $p, q \geqslant 0$ there is a (Hochschild) cup product

$$
H^{p}(\Lambda, M) \otimes_{R} H^{q}\left(\Lambda, M^{\prime}\right) \leftrightharpoons H^{p+q}\left(\Lambda, M \otimes_{\Lambda} M^{\prime}\right) .
$$

If we put $M=M^{\prime}=\Lambda$, then the cup product gives $H H^{*}(\Lambda):=\bigoplus_{n \geqslant 0} H H^{n}(\Lambda)$ the structure of a graded ring with identity $1 \in Z(\Lambda) \simeq H H^{0}(\Lambda)$, where $H H^{n}(\Lambda)$ denotes $H^{n}(\Lambda, \Lambda)$ and $Z(\Lambda)$ denotes the center of $\Lambda . H H^{*}(\Lambda)$ is called the Hochschild cohomology ring of Λ.

Let G be a finite group and e a central idempotent of the rational group ring $\mathbb{Q} G$. In the following, we set $\Lambda=\mathbb{Z} G$ and $\Lambda^{\prime}=\mathbb{Z} G e$, and we regard Λ^{\prime} as a \mathbb{Z}-algebra. Then there is a ring homomorphism $\psi: \Lambda \rightarrow \Lambda^{\prime e} ; x \mapsto x e \otimes\left(x^{-1} e\right)^{\circ}$ for $x \in G$. Let M be a left $\Lambda^{\prime e}$-module, which is regarded as a left Λ-module using ψ above, hence we will denote it by ${ }_{\psi} M$. Then we have a homomorphism of \mathbb{Z}-modules (see [S2, Section 1] for example)

$$
F^{n}: H^{n}\left(\Lambda^{\prime}, M\right) \longrightarrow H^{n}\left(G,{ }_{\psi} M\right):=\operatorname{Ext}_{\Lambda}^{n}\left(\mathbb{Z},{ }_{\psi} M\right) .
$$

In the above, $H^{n}(G, \psi M)$ denotes the ordinary n-th group cohomology. Let (X_{G}, d_{G}) be the standard resolution of G, that is,

$$
\left(X_{G}\right)_{n}=\underbrace{\Lambda \otimes \cdots \otimes \Lambda}_{n+1 \text { times }} \quad \text { for } n \geqslant 0
$$

and the boundaries are given by

$$
\begin{aligned}
\left(d_{G}\right)_{1}([\sigma])= & \sigma[\cdot]-[\cdot], \\
\left(d_{G}\right)_{n}\left(\left[\sigma_{1}|\ldots| \sigma_{n}\right]\right)= & \sigma_{1}\left[\sigma_{2}|\ldots| \sigma_{n}\right] \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left[\sigma_{1}|\ldots| \sigma_{i-1}\left|\sigma_{i} \sigma_{i+1}\right| \sigma_{i+2}|\ldots| \sigma_{n}\right] \\
& +(-1)^{n}\left[\sigma_{1}|\ldots| \sigma_{n-1}\right] \quad \text { for } n \geqslant 2,
\end{aligned}
$$

where $\sigma[\cdot]$ denotes $\sigma \in\left(X_{G}\right)_{0}$ and $\sigma_{0}\left[\sigma_{1}|\ldots| \sigma_{n}\right]$ denotes $\sigma_{0} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{n} \in$ $\left(X_{G}\right)_{n}$ for $\sigma, \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n} \in G$. Furthermore, let $\left(X_{\Lambda^{\prime}}, d_{\Lambda^{\prime}}\right)$ be the standard complex of Λ^{\prime}, that is,

$$
\left(X_{\Lambda^{\prime}}\right)_{n}=\underbrace{\Lambda^{\prime} \otimes \cdots \otimes \Lambda^{\prime}}_{n+2 \text { times }} \quad \text { for } n \geqslant 0
$$

and the boundaries are given by

$$
\begin{aligned}
\left(d_{\Lambda^{\prime}}\right)_{1}\left(\left[\lambda^{\prime}\right]\right)= & \lambda^{\prime}[\cdot]-[\cdot] \lambda^{\prime}, \\
\left(d_{\Lambda^{\prime}}\right)_{n}\left(\left[\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right]\right)= & \lambda_{1}^{\prime}\left[\lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}\right] \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left[\lambda_{1}^{\prime}, \ldots, \lambda_{i-1}^{\prime}, \lambda_{i}^{\prime} \lambda_{i+1}^{\prime}, \lambda_{i+2}^{\prime}, \ldots, \lambda_{n}^{\prime}\right] \\
& +(-1)^{n}\left[\lambda_{1}^{\prime}, \ldots, \lambda_{n-1}^{\prime}\right] \lambda_{n}^{\prime} \quad \text { for } n \geqslant 2,
\end{aligned}
$$

where $\lambda_{0}^{\prime}[\cdot] \lambda_{1}^{\prime}$ denotes $\lambda_{0}^{\prime} \otimes \lambda_{1}^{\prime} \in\left(X_{A^{\prime}}\right)_{0}$ and $\lambda_{0}^{\prime}\left[\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right] \lambda_{n+1}^{\prime}$ denotes $\lambda_{0}^{\prime} \otimes$ $\lambda_{1}^{\prime} \otimes \cdots \otimes \lambda_{n+1}^{\prime} \in\left(X_{\Lambda^{\prime}}\right)_{n}$ for $\lambda^{\prime}, \lambda_{0}^{\prime}, \lambda_{1}^{\prime}, \ldots, \lambda_{n+1}^{\prime} \in \Lambda^{\prime}$. The homomorphism F^{n} is induced by

$$
\begin{aligned}
& \tilde{F}^{n}: \operatorname{Hom}_{\Lambda^{\prime}}\left(\left(X_{\Lambda^{\prime}}\right)_{n}, M\right) \longrightarrow \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n},{ }_{\psi} M\right), \\
& \tilde{F}^{n}(f)\left(x_{0}\left[x_{1}|\ldots| x_{n}\right]\right)=f\left(x_{0} e\left[x_{1} e, \ldots, x_{n} e\right]\left(x_{0} \cdots x_{n}\right)^{-1} e\right),
\end{aligned}
$$

for $x_{0}, x_{1}, \ldots, x_{n} \in G$.
Suppose A and B are G-modules. Then for every pair of integers $p, q \geqslant 0$ there exists a homomorphism called (ordinary) cup product

$$
H^{p}(G, A) \otimes H^{q}(G, B) \leftrightharpoons H^{p+q}(G, A \otimes B)
$$

Note that F^{n} preserves cup products, that is, the following diagram is commutative:

where M^{\prime} is another $\Lambda^{\prime e}$-module. In the above, \smile_{μ} denotes the map induced by the (ordinary) cup product and a left Λ-homomorphism $\mu:{ }_{\psi} M \otimes{ }_{\psi} M^{\prime} \rightarrow$ $\psi\left(M \otimes_{\Lambda^{\prime}} M^{\prime}\right) ; m \otimes m^{\prime} \mapsto m \otimes_{\Lambda^{\prime}} m^{\prime}$. If we put $M=M^{\prime}=\Lambda^{\prime}$ and identify Λ^{\prime} with $\Lambda^{\prime} \otimes_{\Lambda^{\prime}} \Lambda^{\prime}$ as a $\Lambda^{\prime e}$-module, then we have the following ring homomorphism:

$$
F^{*}: H H^{*}\left(\Lambda^{\prime}\right) \longrightarrow H^{*}\left(G,{ }_{\psi} \Lambda^{\prime}\right):=\bigoplus_{n \geqslant 0} H^{n}\left(G,{ }_{\psi} \Lambda^{\prime}\right)
$$

We treat the case $M=M^{\prime}=\Lambda^{\prime}$ only in the following. We make $\operatorname{Hom}_{\Lambda^{\prime} \mathrm{e}}\left(\left(X_{\Lambda^{\prime}}\right)_{n}, \Lambda^{\prime}\right)$ and $\operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n}, \psi^{\prime} \Lambda^{\prime}\right)$ into left $Z\left(\Lambda^{\prime}\right)$-modules by putting $(z \cdot f)(x)=z \cdot f(x),(z \cdot g)(y)=z \cdot g(y)$ for $f \in \operatorname{Hom}_{\Lambda^{\prime e}}\left(\left(X_{\Lambda^{\prime}}\right)_{n}, \Lambda^{\prime}\right), x \in\left(X_{\Lambda^{\prime}}\right)_{n}$, $g \in \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n},{ }_{\psi} \Lambda^{\prime}\right), y \in\left(X_{G}\right)_{n}$ and $z \in Z\left(\Lambda^{\prime}\right)$. Note that $\left(d_{\Lambda^{\prime}}\right)_{n+1}^{\#}:$ $\operatorname{Hom}_{\Lambda^{\prime} \mathrm{e}}\left(\left(X_{\Lambda^{\prime}}\right)_{n}, \Lambda^{\prime}\right) \rightarrow \operatorname{Hom}_{\Lambda^{\prime} \mathrm{e}}\left(\left(X_{\Lambda^{\prime}}\right)_{n+1}, \Lambda^{\prime}\right)$ is a $Z\left(\Lambda^{\prime}\right)$-homomorphism, where $\left(d_{\Lambda^{\prime}}\right)_{n+1}^{\#}$ is induced by the differential $\left(d_{\Lambda^{\prime}}\right)_{n+1}:\left(X_{\Lambda^{\prime}}\right)_{n+1} \rightarrow\left(X_{\Lambda^{\prime}}\right)_{n}$. Similarly, $\left(d_{G}\right)_{n+1}^{\#}: \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n},{ }_{\psi} \Lambda^{\prime}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n+1},{ }_{\psi} \Lambda^{\prime}\right)$ is a $Z\left(\Lambda^{\prime}\right)$-homomorphism, where $\left(d_{G}\right)_{n+1}^{\#}$ is induced by the differential $\left(d_{G}\right)_{n+1}:\left(X_{G}\right)_{n+1} \rightarrow$ $\left(X_{G}\right)_{n}$. Then $H H^{n}\left(\Lambda^{\prime}\right)$ and $H^{n}\left(G,{ }_{\psi} \Lambda^{\prime}\right)$ are also left $Z\left(\Lambda^{\prime}\right)$-modules. Note that \tilde{F}^{n} is a $Z\left(\Lambda^{\prime}\right)$-homomorphism.

On the other hand, let α be the image of $z \in Z\left(\Lambda^{\prime}\right)$ under the isomorphism $Z\left(\Lambda^{\prime}\right) \xrightarrow{\sim} H H^{0}\left(\Lambda^{\prime}\right)$. We make $H H^{n}\left(\Lambda^{\prime}\right)$ into a left $Z\left(\Lambda^{\prime}\right)$-module by putting $z \cdot \beta=\alpha \smile \beta$ for $\beta \in H H^{n}\left(\Lambda^{\prime}\right)$. Similarly, let α^{\prime} be the image of the above z under the isomorphism $\left({ }_{\psi} \Lambda^{\prime}\right)^{G}=Z\left(\Lambda^{\prime}\right) \xrightarrow{\sim} H^{0}\left(G, \Lambda^{\prime} \Lambda^{\prime}\right)$. We make $H^{n}\left(G,{ }_{\psi} \Lambda^{\prime}\right)$ into a left $Z\left(\Lambda^{\prime}\right)$-module by putting $z \cdot \beta^{\prime}=\alpha^{\prime} \smile_{\mu} \beta^{\prime}$ for $\beta^{\prime} \in H^{n}\left(G,{ }_{\psi} \Lambda^{\prime}\right)$. Note that $F^{0}(\alpha)=\alpha^{\prime}$ holds. Then it is easy to see that the $Z\left(\Lambda^{\prime}\right)$-module structure of $H H^{n}\left(\Lambda^{\prime}\right)$ and $H^{n}\left(G, \psi \Lambda^{\prime}\right)$ by the cochain level operations corresponds to the one by the cup products, respectively. Since F^{*} is a ring homomorphism, we have $F^{n}(z \cdot \beta)=F^{n}(\alpha \smile \beta)=F^{0}(\alpha) \smile_{\mu} F^{n}(\beta)=\alpha^{\prime} \smile_{\mu} F^{n}(\beta)=z \cdot F^{n}(\beta)$. Thus F^{*} is a homomorphism of graded $Z\left(\Lambda^{\prime}\right)$-algebras.

§2. Resolutions and chain transformations

2.1. The cyclic group of order m

Let $G=\langle x\rangle$ denote the cyclic group of order m for any positive integer $m \geqslant 2$. We set $\Lambda=\mathbb{Z} G$. Then the following periodic Λ-free resolution for \mathbb{Z} of period

2 is well known (see [CE, Chapter XII, Section 7] for example):

$$
\begin{aligned}
\left(Y_{G}, \delta_{G}\right): & \cdots \longrightarrow \longrightarrow \xrightarrow{\left(\delta_{G}\right)_{1}} \Lambda \xrightarrow{\left(\delta_{G}\right)_{2}} \Lambda \xrightarrow{\left(\delta_{G}\right)_{1}} \Lambda \xrightarrow{\left(\delta_{G}\right)_{2}} \Lambda \xrightarrow{\left(\delta_{G}\right)_{1}} \Lambda \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0 \\
& \left(\delta_{G}\right)_{1}(c)=c(x-1), \\
& \left(\delta_{G}\right)_{2}(c)=c \sum_{i=0}^{m-1} x^{i} .
\end{aligned}
$$

In the following, we set $\left(\delta_{G}\right)_{2 k+i}=\left(\delta_{G}\right)_{i}$ for any integer $k \geqslant 0$ and $i=1,2$ because $\left(Y_{G}, \delta_{G}\right)$ is a periodic resolution.
$\left(X_{G}, d_{G}\right)$ denotes the standard resolution of G stated in Section 1. We introduce the notation $*$ for basis elements in $\left(X_{G}\right)_{i}(i \geqslant 0)$ as follows:

$$
\begin{aligned}
\sigma_{0}\left[\sigma_{1}\right] * \sigma_{2}[\cdot] & :=\sigma_{0}\left[\sigma_{1} \sigma_{2}\right]\left(\in\left(X_{G}\right)_{1}\right), \\
\sigma_{0}\left[\sigma_{1}\right] * \sigma_{2}\left[\sigma_{3}|\ldots| \sigma_{i}\right] & :=\sigma_{0}\left[\sigma_{1} \sigma_{2}\left|\sigma_{3}\right| \ldots \mid \sigma_{i}\right]\left(\in\left(X_{G}\right)_{i-1}\right)
\end{aligned}
$$

for $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{i} \in G$. It is easy to see that the following equations hold:

$$
\begin{aligned}
{\left[\sigma_{1}\right] * \sigma_{2}[\cdot] } & =\left[\sigma_{1} \sigma_{2}\right] *[\cdot], \\
{\left[\sigma_{1}\right] * \sigma_{2}\left[\sigma_{3}|\ldots| \sigma_{i}\right] } & =\left[\sigma_{1} \sigma_{2}\right] *\left[\sigma_{3}|\ldots| \sigma_{i}\right] ; \\
\left(d_{G}\right)_{1}\left(\left[\sigma_{1}\right] * \sigma_{2}[\cdot]\right) & =\sigma_{1} \sigma_{2}[\cdot]-[\cdot], \\
\left(d_{G}\right)_{i-1}\left(\left[\sigma_{1}\right] * \sigma_{2}\left[\sigma_{3}|\ldots| \sigma_{i}\right]\right) & =\sigma_{1} \sigma_{2}\left[\sigma_{3}|\ldots| \sigma_{i}\right] \\
& -\left[\sigma_{1}\right] *\left(d_{G}\right)_{i-2}\left(\sigma_{2}\left[\sigma_{3}|\ldots| \sigma_{i}\right]\right) \quad \text { for } \quad i \geqslant 3 .
\end{aligned}
$$

Proposition 1. A chain transformation $u_{n}:\left(Y_{G}\right)_{n} \rightarrow\left(X_{G}\right)_{n} \quad(n \geqslant 0)$ lifting the identity map on \mathbb{Z} is given inductively as follows:

$$
\begin{aligned}
& u_{0}(1)=[\cdot] \\
& u_{2 k+1}(1)=[x] * u_{2 k}(1) \quad \text { for } k \geqslant 0 \\
& u_{2 k+2}(1)=\sum_{i=0}^{m-1}\left[x^{i}\right] * u_{2 k+1}(1) \quad \text { for } k \geqslant 0
\end{aligned}
$$

where each u_{n} is a left Λ-homomorphism.
Proof. It suffices to show that the equation $\left(d_{G}\right)_{n} \cdot u_{n}=u_{n-1} \cdot\left(\delta_{G}\right)_{n}$ holds for $n \geqslant 1$. By induction on k. First we verify the case $k=0$, that is, $n=1,2$. In the case $n=1$, noting that $u_{1}(1)=[x]$, we have the following:

$$
\left(\left(d_{G}\right)_{1} \cdot u_{1}\right)(1)=\left(d_{G}\right)_{1}([x])=x[\cdot]-[\cdot]=u_{0}(x-1)=\left(u_{0} \cdot\left(\delta_{G}\right)_{1}\right)(1)
$$

In the case $n=2$, we have the following:

$$
\begin{aligned}
\left(\left(d_{G}\right)_{2} \cdot u_{2}\right)(1) & =\left(d_{G}\right)_{2}\left(\sum_{i=0}^{m-1}\left[x^{i}\right] * u_{1}(1)\right) \\
& =\sum_{i=0}^{m-1} x^{i} u_{1}(1)-\sum_{i=0}^{m-1}\left[x^{i}\right] *\left(d_{G}\right)_{1}\left(u_{1}(1)\right) \\
& =u_{1}\left(\sum_{i=0}^{m-1} x^{i}\right)-\sum_{i=0}^{m-1}\left[x^{i}\right] *(x-1) u_{0}(1) \\
& =\left(u_{1} \cdot\left(\delta_{G}\right)_{2}\right)(1) .
\end{aligned}
$$

Suppose that the result holds for $k-1$. In the case $n=2 k+1$, using the assumption of induction, we have the following:

$$
\begin{aligned}
\left(\left(d_{G}\right)_{2 k+1} \cdot u_{2 k+1}\right)(1) & =\left(d_{G}\right)_{2 k+1}\left([x] * u_{2 k}(1)\right) \\
& =x u_{2 k}(1)-[x] *\left(d_{G}\right)_{2 k}\left(u_{2 k}(1)\right) \\
& =x u_{2 k}(1)-[x] *\left(u_{2 k-1} \cdot\left(\delta_{G}\right)_{2 k}\right)(1) \\
& =x u_{2 k}(1)-[x] *\left(\sum_{i=0}^{m-1} x^{i} u_{2 k-1}(1)\right) \\
& =x u_{2 k}(1)-\sum_{i=0}^{m-1}\left[x^{i+1}\right] * u_{2 k-1}(1) \\
& =x u_{2 k}(1)-u_{2 k}(1) \\
& =\left(u_{2 k} \cdot\left(\delta_{G}\right)_{2 k+1}\right)(1) .
\end{aligned}
$$

In the case $n=2 k+2$, using the above calculation, we have the following:

$$
\begin{aligned}
\left(\left(d_{G}\right)_{2 k+2} \cdot u_{2 k+2}\right)(1) & =\left(d_{G}\right)_{2 k+2}\left(\sum_{i=0}^{m-1}\left[x^{i}\right] * u_{2 k+1}(1)\right) \\
& =\sum_{i=0}^{m-1} x^{i} u_{2 k+1}(1)-\sum_{i=0}^{m-1}\left[x^{i}\right] *\left(d_{G}\right)_{2 k+1}\left(u_{2 k+1}(1)\right) \\
& =u_{2 k+1}\left(\sum_{i=0}^{m-1} x^{i}\right)-\sum_{i=0}^{m-1}\left[x^{i}\right] *(x-1) u_{2 k}(1) \\
& =\left(u_{2 k+1} \cdot\left(\delta_{G}\right)_{2 k+2}\right)(1)
\end{aligned}
$$

This completes the proof.
The chain transformation u_{2} will be used in Section 3, in the case $m=p^{\nu}$ for a prime number p and a positive integer ν.

2.2. The ring of integers $\mathbb{Z}[\zeta]$

Let ζ be a primitive p^{ν}-th root of 1 . We consider the ring of integers $\Gamma=\mathbb{Z}[\zeta]$ of the cyclotomic field $\mathbb{Q}(\zeta)$. It is well-known that $\left\{\zeta^{i}\right\}_{i=0}^{\varphi\left(p^{\nu}\right)-1}$ is a \mathbb{Z}-basis of Γ, where φ denotes the Euler function, so $\varphi\left(p^{\nu}\right)=p^{\nu=1}(p-1)$ (see [W, Lemma 7-5-3]).

We take a matrix $P \in M_{\varphi\left(p^{\nu}\right)}(\mathbb{Z})$ as follows:

$$
P=\left(\begin{array}{cccc}
P^{\prime} & \cdots & \cdots & P^{\prime} \\
\vdots & & \therefore & O \\
\vdots & \therefore & \therefore & \vdots \\
\underbrace{\prime}_{p-1} & O & \cdots & O
\end{array}\right) \text { where } P^{\prime}=\left(\begin{array}{ccc}
0 & & 1 \\
& \therefore & \\
1 & & 0
\end{array}\right) \in M_{p^{\nu-1}}(\mathbb{Z})
$$

Then it is easy to see that P is an invertible matrix in $M_{\varphi\left(p^{\nu}\right)}(\mathbb{Z})$. We define a set of elements $\left\{\zeta^{[i]}\right\}_{i=0}^{\varphi\left(p^{\nu}\right)-1}$ of Γ by

$$
\left(\zeta^{[0]}, \quad \zeta^{[1]}, \ldots, \quad \zeta^{\left[\varphi\left(p^{\nu}\right)-1\right]}\right)=\left(\zeta^{0}, \quad \zeta^{1}, \ldots, \quad \zeta^{\varphi\left(p^{\nu}\right)-1}\right) P
$$

Lemma 2. Γ is a Frobenius \mathbb{Z}-algebra with a pair of \mathbb{Z}-bases $\left\{\zeta^{i}\right\}_{i=0}^{\varphi\left(p^{\nu}\right)-1}$, $\left\{\zeta^{[i]}\right\}_{i=0}^{\varphi\left(p^{\nu}\right)-1}$ which satisfy the following equations:

$$
\gamma \zeta^{i}=\sum_{j=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{j} \alpha_{j i}(\gamma), \quad \zeta^{[j]} \gamma=\sum_{i=0}^{\varphi\left(p^{\nu}\right)-1} \alpha_{j i}(\gamma) \zeta^{[i]}
$$

for any $\gamma \in \Gamma$ and for some $\alpha_{j i}(\gamma) \in \mathbb{Z}$.
Proof. It is clear that $\left\{\zeta^{[i]}\right\}_{i=0}^{\varphi\left(p^{\nu}\right)-1}$ is a \mathbb{Z}-basis of Γ. The equations are verified for $\gamma=\zeta$ by direct computation, so they hold for any $\gamma \in \Gamma$. Hence, it follows that the homomorphism $\chi: \Gamma \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{Z})$ induced by $\chi\left(\zeta^{i}\right)\left(\zeta^{[j]}\right)=\delta_{i j}$ is an isomorphism of left Γ-modules. Therefore Γ is a Frobenius \mathbb{Z}-algebra.

Remark. The norm $N_{\Gamma}(\gamma)$ of $\gamma \in \Gamma$ is defined by

$$
N_{\Gamma}(\gamma)=\sum_{i=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{i} \gamma \zeta^{[i]}=\left(\sum_{i=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{i} \zeta^{[i]}\right) \gamma
$$

(cf. [S1, Section 1.1]). It is easy to see that $\sum_{i=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{i} \zeta^{[i]}=\Phi^{\prime}(\zeta)$, where $\Phi^{\prime}(x)$ denotes the derivative of the p^{ν}-th cyclotomic polynomial $\Phi(x)=x^{p^{\nu-1}(p-1)}+$ $x^{p^{\nu-1}(p-2)}+\cdots+x^{p^{\nu-1}}+1$. The ideal of Γ generated by $\Phi^{\prime}(\zeta)$ coincides with
the different $\pi^{\nu p^{\nu-1}(p-1)-p^{\nu-1}} \Gamma$ of the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$, where π denotes $\zeta-1$, which generates the prime ideal of $\mathbb{Q}(\zeta)$ lying above p (see [W, Propositions $4-8-18$ and $7-4-1]$). Hence we have

$$
N_{\Gamma}(\Gamma)=\pi^{\nu p^{\nu-1}(p-1)-p^{\nu-1}} \Gamma .
$$

Then there exists a Γ^{e}-projective resolution $\left(Y_{\Gamma}, \delta_{\Gamma}\right)$ for Γ of period 2 (see [BF], [LL]):

$$
\begin{aligned}
\left(Y_{\Gamma}, \delta_{\Gamma}\right): & \cdots \longrightarrow \Gamma \otimes \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{1}} \Gamma \otimes \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{2}} \Gamma \otimes \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{1}} \Gamma \otimes \Gamma \xrightarrow{\varepsilon} \Gamma \rightarrow 0 \\
& \left(\delta_{\Gamma}\right)_{1}([\cdot])=\zeta[\cdot]-[\cdot] \zeta \\
& \left(\delta_{\Gamma}\right)_{2}([\cdot])=\sum_{i=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[i]}[\cdot] \zeta^{i} .
\end{aligned}
$$

In the above, [•] denotes $1 \otimes 1 \in \Gamma \otimes \Gamma$.
Proposition 3. An initial part of a chain transformation $v_{n}:\left(X_{\Gamma}\right)_{n} \rightarrow\left(Y_{\Gamma}\right)_{n}$ lifting the identitiy map on Γ is given as follows:

$$
\begin{aligned}
& v_{0}([\cdot])=[\cdot] ; \\
& v_{1}\left(\left[\zeta^{i}\right]\right)= \begin{cases}0 & \text { if } i=0, \\
{[\cdot] \zeta^{i-1}+\zeta[\cdot] \zeta^{i-2}+\cdots+\zeta^{i-1}[\cdot]} & \text { if } i \geqslant 1 ;\end{cases} \\
& v_{2}\left(\left[\zeta^{i}, \zeta^{j}\right]\right)= \begin{cases}0 & \text { if } 0 \leqslant i+j<\varphi\left(p^{\nu}\right), \\
\zeta^{i+j-\varphi\left(p^{\nu}\right)}[\cdot] & \text { if } \varphi\left(p^{\nu}\right) \leqslant i+j<p^{\nu}, \\
\zeta^{i+j-p^{\nu}}\left(\zeta^{p^{\nu-1}}-1\right)[\cdot] & \text { if } p^{\nu} \leqslant i+j,\end{cases}
\end{aligned}
$$

for $0 \leqslant i, j<\varphi\left(p^{\nu}\right)$, where each v_{n} is a left Γ^{e}-homomorphism.
Proof. It suffices to show that the equation $v_{n-1} \cdot\left(d_{\Gamma}\right)_{n}=\left(\delta_{\Gamma}\right)_{n} \cdot v_{n}$ holds for $n=1,2$. In the case $n=1$, the left hand side is as follows:

$$
\begin{aligned}
\left(v_{0} \cdot\left(d_{\Gamma}\right)_{1}\right)\left(\left[\zeta^{i}\right]\right) & =v_{0}\left(\zeta^{i}[\cdot]-[\cdot] \zeta^{i}\right) \\
& =\zeta^{i}[\cdot]-[\cdot] \zeta^{i} \quad \text { for } i \geqslant 0
\end{aligned}
$$

The right hand side is divided into two cases:
Case $i=0$:

$$
\left(\left(\delta_{\Gamma}\right)_{1} \cdot v_{1}\right)([1])=0
$$

Case $i \geqslant 1$:

$$
\begin{aligned}
& \left(\left(\delta_{\Gamma}\right)_{1} \cdot v_{1}\right)\left(\left[\zeta^{i}\right]\right) \\
& \quad=\left(\delta_{\Gamma}\right)_{1}\left([\cdot] \zeta^{i-1}+\zeta[\cdot] \zeta^{i-2}+\cdots+\zeta^{i-1}[\cdot]\right) \\
& \quad=(\zeta[\cdot]-[\cdot] \zeta) \zeta^{i-1}+\zeta(\zeta[\cdot]-[\cdot] \zeta) \zeta^{i-2}+\cdots+\zeta^{i-1}(\zeta[\cdot]-[\cdot] \zeta) \\
& \quad=\zeta^{i}[\cdot]-[\cdot] \zeta^{i} .
\end{aligned}
$$

In the case $n=2$, the left hand side is divided into six cases:
Case $i j=0$:

$$
\left(v_{1} \cdot\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right)=0
$$

Case $0<i+j<\varphi\left(p^{\nu}\right), i j \neq 0$:

$$
\begin{aligned}
\left(v_{1} \cdot\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right)= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]-\left[\zeta^{i+j}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & \zeta^{i}\left([\cdot] \zeta^{j-1}+\zeta[\cdot] \zeta^{j-2}+\cdots+\zeta^{j-1}[\cdot]\right) \\
& -\left([\cdot] \zeta^{i+j-1}+\zeta[\cdot] \zeta^{i+j-2}+\cdots+\zeta^{i+j-1}[\cdot]\right) \\
& +\left([\cdot] \zeta^{i-1}+\zeta[\cdot] \zeta^{i-2}+\cdots+\zeta^{i-1}[\cdot]\right) \\
= & 0
\end{aligned}
$$

Case $i+j=\varphi\left(p^{\nu}\right)$:

$$
\begin{aligned}
\left(v_{1}\right. & \left.\cdot\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right) \\
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]-\left[\zeta^{i+j}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]+\sum_{k=0}^{p-2}\left[\zeta^{k p^{\nu-1}}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & \zeta^{i}\left([\cdot] \zeta^{j-1}+\zeta[\cdot] \zeta^{j-2}+\cdots+\zeta^{j-1}[\cdot]\right) \\
& +\sum_{k=1}^{p-2}\left([\cdot] \zeta^{k p^{\nu-1}-1}+\zeta[\cdot] \zeta^{k p^{\nu-1}-2}+\cdots+\zeta^{k p^{\nu-1}-1}[\cdot]\right) \\
& +\left([\cdot] \zeta^{i-1}+\zeta[\cdot] \zeta^{i-2}+\cdots+\zeta^{i-1}[\cdot]\right) \zeta^{j} \\
= & \sum_{k=1}^{p-1}\left([\cdot] \zeta^{k p^{\nu-1}-1}+\zeta[\cdot] \zeta^{k p^{\nu-1}-2}+\cdots+\zeta^{k p^{\nu-1}-1}[\cdot]\right) \\
= & \sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k} .
\end{aligned}
$$

Case $\varphi\left(p^{\nu}\right)<i+j<p^{\nu}$:
$\left(v_{1} \cdot\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right)$

$$
\begin{aligned}
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]-\left[\zeta^{i+j}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]+\sum_{k=0}^{p-2}\left[\zeta^{k p^{\nu-1}+i+j-\varphi\left(p^{\nu}\right)}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & \zeta^{i}\left([\cdot] \zeta^{j-1}+\zeta[\cdot] \zeta^{j-2}+\cdots+\zeta^{j-1}[\cdot]\right) \\
& +\sum_{k=0}^{p-2}\left([\cdot] \zeta^{i+j-\varphi\left(p^{\nu}\right)-1}+\zeta[\cdot] \zeta^{i+j-\varphi\left(p^{\nu}\right)-2}+\cdots+\zeta^{i+j-\varphi\left(p^{\nu}\right)-1}[\cdot]\right) \zeta^{k p^{\nu-1}} \\
& +\sum_{k=1}^{p-2} \zeta^{i+j-\varphi\left(p^{\nu}\right)}\left([\cdot] \zeta^{k p^{\nu-1}-1}+\zeta[\cdot] \zeta^{k p^{\nu-1}-2}+\cdots+\zeta^{k p^{\nu-1}-1}[\cdot]\right) \\
& +\left([\cdot] \zeta^{i-1}+\zeta[\cdot] \zeta^{i-2}+\cdots+\zeta^{i-1}[\cdot]\right) \zeta^{j} \\
= & \zeta^{i+j-\varphi\left(p^{\nu}\right)}\left(\sum_{k=1}^{p-1}\left([\cdot] \zeta^{k p^{\nu-1}-1}+\zeta[\cdot] \zeta^{k p^{\nu-1}-2}+\cdots+\zeta^{k p^{\nu-1}-1}[\cdot]\right)\right) \\
= & \zeta^{i+j-\varphi\left(p^{\nu}\right)}\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k}\right)
\end{aligned}
$$

Case $i+j=p^{\nu}$:

$$
\begin{aligned}
\left(v_{1} \cdot\right. & \left.\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right) \\
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]-[1]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & {[\cdot] \zeta^{p^{\nu}-1}+\zeta[\cdot] \zeta^{p^{\nu}-2}+\cdots+\zeta^{p^{\nu-1}-1}[\cdot] \zeta^{p^{\nu-1}(p-1)} } \\
& +\zeta^{p^{\nu-1}}[\cdot] \zeta^{p^{\nu-1}(p-1)-1}+\cdots+\zeta^{p^{\nu}-1}[\cdot] \\
= & -\sum_{k=1}^{p^{\nu-1}} \zeta^{k-1}[\cdot] \zeta^{p^{\nu-1}-k}\left(\zeta^{p^{\nu-1}(p-2)}+\zeta^{p^{\nu-1}(p-3)}+\cdots+1\right) \\
& +\zeta^{p^{\nu-1}}[\cdot] \zeta^{p^{\nu-1}(p-1)-1}+\zeta^{p^{\nu-1}+1}[\cdot] \zeta^{p^{\nu-1}(p-1)-2}+\cdots+\zeta^{p^{\nu-1}}[\cdot] \\
= & \sum_{m=1}^{p-1}\left(\zeta^{m p^{\nu-1}}-1\right)\left(\sum_{k=1}^{p^{\nu-1}} \zeta^{k-1}[\cdot] \zeta^{p^{\nu-1}(p-m)-k}\right) \\
= & \left(\zeta^{p^{\nu-1}}-1\right)\left(\sum_{m=1}^{p-1}\left(\zeta^{p^{\nu-1}(m-1)}+\zeta^{p^{\nu-1}(m-2)}+\cdots+1\right)\right. \\
= & \left(\zeta^{p^{\nu-1}}-1\right)\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k}\right)
\end{aligned}
$$

Case $i+j>p^{\nu}$:

$$
\begin{aligned}
\left(v_{1} \cdot\right. & \left.\left(d_{\Gamma}\right)_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right) \\
= & v_{1}\left(\zeta^{i}\left[\zeta^{j}\right]-\left[\zeta^{i+j-p^{\nu}}\right]+\left[\zeta^{i}\right] \zeta^{j}\right) \\
= & {[\cdot] \zeta^{i+j-1}+\zeta[\cdot] \zeta^{i+j-2}+\cdots+\zeta^{i+j-1}[\cdot] } \\
& -\left([\cdot] \zeta^{i+j-p^{\nu}-1}+\zeta[\cdot] \zeta^{i+j-p^{\nu}-2}+\cdots+\zeta^{i+j-p^{\nu}-1}[\cdot]\right) \\
= & \zeta^{i+j-p^{\nu}}\left([\cdot] \zeta^{p^{\nu}-1}+\zeta[\cdot] \zeta^{p^{\nu}-2}+\cdots+\zeta^{p^{\nu}-1}[\cdot]\right) \\
= & \zeta^{i+j-p^{\nu}}\left(\zeta^{p^{\nu-1}}-1\right)\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k}\right)
\end{aligned}
$$

The above last equality follows from the calculation in the case $i+j=p^{\nu}$. The right hand side is divided into three cases:
Case $0 \leqslant i+j<\varphi\left(p^{\nu}\right)$:

$$
\left(\left(\delta_{\Gamma}\right)_{2} \cdot v_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right)=0
$$

Case $\varphi\left(p^{\nu}\right) \leqslant i+j<p^{\nu}$:

$$
\begin{aligned}
\left(\left(\delta_{\Gamma}\right)_{2} \cdot v_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right) & =\left(\delta_{\Gamma}\right)_{2}\left(\zeta^{i+j-\varphi\left(p^{\nu}\right)}[\cdot]\right) \\
& =\zeta^{i+j-\varphi\left(p^{\nu}\right)}\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k}\right) .
\end{aligned}
$$

Case $i+j \geqslant p^{\nu}$:

$$
\begin{aligned}
\left(\left(\delta_{\Gamma}\right)_{2} \cdot v_{2}\right)\left(\left[\zeta^{i}, \zeta^{j}\right]\right) & =\left(\delta_{\Gamma}\right)_{2}\left(\zeta^{i+j-p^{\nu}}\left(\zeta^{p^{\nu-1}}-1\right)[\cdot]\right) \\
& =\zeta^{i+j-p^{\nu}}\left(\zeta^{p^{\nu-1}}-1\right)\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1} \zeta^{[k]}[\cdot] \zeta^{k}\right)
\end{aligned}
$$

This completes the proof of Proposition 3.

§3. The ring homomorphism $H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$

Let $G=\langle x\rangle$ denote the cyclic group of order p^{ν} for any prime number p and any positive integer $\nu \geqslant 1$ (we do not consider the case $p^{\nu}=2$). Then the rational group ring $\mathbb{Q} G$ is isomorphic to the direct sum of the cyclotomic fields $\mathbb{Q}\left(\zeta_{d}\right)$, where ζ_{d} denotes a primitive d-th root of 1 for d dividing p^{ν} :

$$
\mathbb{Q} G \simeq \bigoplus_{d \mid p^{\nu}} \mathbb{Q}\left(\zeta_{d}\right)
$$

There exist primitive idempotents e_{i} for $0 \leqslant i \leqslant \nu\left(e_{i}{ }^{2}=e_{i}, e_{i} e_{j}=0\right.$ for $i \neq$ $\left.j, 1=\sum_{i} e_{i}\right)$ such that $\mathbb{Q} G e_{i} \simeq \mathbb{Q}\left(\zeta_{p^{i}}\right)$. Then we have a ring homomorphism $\phi: \mathbb{Z} G \rightarrow \mathbb{Z} G e_{\nu} ; x \mapsto x e_{\nu}$. Note that $x e_{\nu}$ is a primitive p^{ν}-th root of e_{ν}. Under the isomorphism stated above, we identify $x e_{\nu}$ with $\zeta_{p^{\nu}}$. In the following, we set $\Lambda=\mathbb{Z} G$ and $\Gamma=\mathbb{Z} G e_{\nu}\left(=\mathbb{Z}\left[\zeta_{p^{\nu}}\right]\right)$, and we regard Γ as a \mathbb{Z}-algebra. In the rest of this section, we write ζ in place of $\zeta_{p^{\nu}}$ for brevity. By Section 1 , the ring homomorphism ϕ induces the following Γ-algebra homomorphism between the cohomology rings:

$$
F^{*}: H H^{*}(\Gamma) \longrightarrow H^{*}(G, \Gamma)
$$

In the above, Γ in the right hand side is regarded as a G-module using a ring homomorphism $\psi: \Lambda \rightarrow \Gamma^{\mathrm{e}} ; x \mapsto x e_{\nu} \otimes\left(x^{-1} e_{\nu}\right)^{\circ}=\zeta \otimes\left(\zeta^{-1}\right)^{\circ}$, so it is a trivial G-module. In this section, we will determine the ring homomorphism F^{*} : $H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$ by investigating the image of a generator of $H H^{*}(\Gamma)$ in degree 2 under F^{2}.

First, we state the cohomologies $H^{n}(G, \Gamma)$ and $H H^{n}(\Gamma)$.
Lemma 4. The cohomology $H^{n}(G, \Gamma)$ is as follows:

$$
H^{n}(G, \Gamma) \simeq \begin{cases}\Gamma & \text { for } n=0 \\ 0 & \text { for } n \equiv 1 \quad \bmod 2, \\ \Gamma / \pi^{\nu p^{\nu-1}(p-1)} \Gamma & \text { for } n \equiv 0 \quad \bmod 2, n \neq 0\end{cases}
$$

Moreover, the cohomology ring $H^{*}(G, \Gamma)$ is isomorphic to

$$
\Gamma[X] /\left(\pi^{\nu p^{\nu-1}(p-1)} X\right),
$$

where $\pi=\zeta-1$ and $\operatorname{deg} X=2$.
Proof. Applying the functor $\operatorname{Hom}_{\Lambda}(-, \Gamma)$ to the periodic resolution $\left(Y_{G}, \delta_{G}\right)$ in Section 2.1, we have the following complex which gives $H^{n}(G, \Gamma)$ where we identify $\operatorname{Hom}_{\Lambda}(\Lambda, \Gamma)$ with Γ as Γ-modules:

$$
\begin{aligned}
& \left(\operatorname{Hom}_{\Lambda}\left(Y_{G}, \Gamma\right),\left(\delta_{G}\right)^{\#}\right): 0 \longrightarrow \Gamma \xrightarrow{\left(\delta_{G}\right)_{1}^{\#}} \Gamma \xrightarrow{\left(\delta_{G}\right)_{2}^{\#}} \Gamma \xrightarrow{\left(\delta_{G}\right)_{1}^{\#}} \Gamma \longrightarrow \cdots \\
& \quad\left(\delta_{G}\right)_{1}^{\#}(\gamma)=(x-1) \gamma=0 \\
& \quad\left(\delta_{G}\right)_{2}^{\#}(\gamma)=\sum_{i=0}^{p^{\nu}-1} x^{i} \gamma=p^{\nu} \gamma .
\end{aligned}
$$

Since $p^{\nu} \Gamma=(\zeta-1)^{\nu p^{\nu-1}(p-1)} \Gamma$ holds (see [W, Proposition 7-4-1]), we have the module structure of $H^{n}(G, \Gamma)$. Now we put $X=e_{\nu}$ which is a generator of $H^{2}(G, \Gamma)$. Note that $H^{2 n}(G, \Gamma)$ is generated by $X^{n}=e_{\nu}$ (see [CE, Chapter XII, Section 7]). This completes the proof.

Lemma 5. The Hochschild cohomology of Γ is as follows:

$$
H H^{n}(\Gamma) \simeq \begin{cases}\Gamma & \text { for } n=0, \\ 0 & \text { for } n \equiv 1 \quad \bmod 2, \\ \Gamma / \pi^{\nu p^{\nu-1}(p-1)-p^{\nu-1}} \Gamma & \text { for } n \equiv 0 \quad \bmod 2, n \neq 0\end{cases}
$$

Moreover, the Hochschild cohomology ring $H H^{*}(\Gamma)$ is isomorphic to

$$
\Gamma[Y] /\left(\pi^{\nu p^{\nu-1}(p-1)-p^{\nu-1}} Y\right)
$$

where $\pi=\zeta-1$ and $\operatorname{deg} Y=2$.
Proof. Applying the functor $\operatorname{Hom}_{\Gamma^{\mathrm{e}}}(-, \Gamma)$ to the periodic resolution $\left(Y_{\Gamma}, \delta_{\Gamma}\right)$ in Section 2.2, we have the following complex which gives $H H^{n}(\Gamma)$, where we identify $\operatorname{Hom}_{\Gamma^{\mathrm{e}}}(\Gamma \otimes \Gamma, \Gamma)$ with Γ as Γ-modules:

$$
\begin{aligned}
& \left(\operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(Y_{\Gamma}, \Gamma\right),\left(\delta_{\Gamma}\right)^{\#}\right): 0 \longrightarrow \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{1}^{\#}} \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{2}^{\#}} \Gamma \xrightarrow{\left(\delta_{\Gamma}\right)_{1}^{\#}} \Gamma \longrightarrow \cdots \\
& \quad\left(\delta_{\Gamma}\right)_{1}^{\#}(\gamma)=\zeta \gamma-\gamma \zeta=0 \\
& \quad\left(\delta_{\Gamma}\right)_{2}^{\#}(\gamma)=\sum_{i=0}^{\phi\left(p^{\nu}\right)-1} \zeta^{[i]} \gamma \zeta^{i}=\Phi^{\prime}(\zeta) \gamma
\end{aligned}
$$

Therefore we have the above Γ-module structure of $H H^{n}(\Gamma)$ by Remark in Section 2.2. Since Γ is a Frobenius algebra, we can consider the complete cohomology $\hat{H}^{*}(\Gamma, \Gamma)=\bigoplus_{i \in \mathbb{Z}} \hat{H}^{i}(\Gamma, \Gamma)$. This cohomology is periodic of period 2. So, $\hat{H}^{*}(\Gamma, \Gamma)$ has an invertible element $Y \in \hat{H}^{2}(\Gamma, \Gamma)\left(=H H^{2}(\Gamma)\right)$ (cf. [S1, Section 3]).

Next, we determine the ring homomorphism $F^{*}: H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$ by calculating the image $F^{2}(Y)$ for the generator Y of $H H^{*}(\Gamma)$.

Theorem. The ring homomorphism $F^{*}: H H^{*}(\Gamma) \rightarrow H^{*}(G, \Gamma)$ is induced by $F^{2}(Y)=\left(\zeta^{p^{\nu-1}}-1\right) X$.

Proof. It is easy to see that F^{n} is an isomorphism for $n=0$ and the zero map for n odd. Thus we calculate $F^{2}(Y)$. This is obtained by the composition of the following maps on the cochain level:

$$
\begin{aligned}
& \Gamma \xrightarrow{\beta} \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(Y_{\Gamma}\right)_{2}, \Gamma\right) \xrightarrow{v_{2}^{\#}} \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{2}, \Gamma\right) \\
& \quad \xrightarrow{\tilde{F}^{2}} \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{2}, \Gamma\right) \xrightarrow{u_{2}^{\#}} \operatorname{Hom}_{\Lambda}\left(\left(Y_{G}\right)_{2}, \Gamma\right) \xrightarrow{\alpha} \Gamma
\end{aligned}
$$

In the above, α denotes the isomorphism $\operatorname{Hom}_{\Lambda}\left(\left(Y_{G}\right)_{2}, \Gamma\right) \rightarrow \Gamma$ and β denotes the isomorphism $\Gamma \rightarrow \operatorname{Hom}_{\Gamma^{e}}\left(\left(Y_{\Gamma}\right)_{2}, \Gamma\right)$. For $\gamma \in \Gamma$, we have

$$
\begin{aligned}
& \left(\alpha \cdot u_{2}^{\#} \cdot \tilde{F}^{2} \cdot v_{2}^{\#} \cdot \beta\right)(\gamma) \\
& =\left(\tilde{F}^{2}\left(\beta(\gamma) \cdot v_{2}\right)\right)\left(u_{2}(1)\right) \\
& =\left(\tilde{F}^{2}\left(\beta(\gamma) \cdot v_{2}\right)\right)\left(\sum_{k=0}^{p^{\nu}-1}\left[x^{k} \mid x\right]\right) \\
& =\left(\beta(\gamma) \cdot v_{2}\right)\left(\sum_{k=0}^{p^{\nu}-1}\left[\zeta^{k}, \zeta\right] \zeta^{-k-1}\right) \\
& =\left(\beta(\gamma) \cdot v_{2}\right)\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1}\left[\zeta^{k}, \zeta\right] \zeta^{-k-1}+\sum_{l=0}^{p^{\nu-1}-1}\left[\zeta^{\varphi\left(p^{\nu}\right)+l}, \zeta\right] \zeta^{-\varphi\left(p^{\nu}\right)-l-1}\right) \\
& =\left(\beta(\gamma) \cdot v_{2}\right)\left(\sum_{k=0}^{\varphi\left(p^{\nu}\right)-1}\left[\zeta^{k}, \zeta\right] \zeta^{-k-1}-\sum_{l=0}^{p^{\nu-1}-1} \sum_{k=0}^{p-2}\left[\zeta^{p^{\nu-1}} k+l\right.\right. \\
& k] \\
& = \\
& =\beta(\gamma)\left([\cdot] \zeta^{-\varphi\left(p^{\nu}\right)-l-1}\right) \\
& =\left(\zeta^{p^{\nu-1}(p-1)}-[\cdot]\right) \\
& \left.p^{\nu-1}-1\right) \gamma .
\end{aligned}
$$

This completes the proof.
Corollary. $F^{2 n}(n \geqslant 1)$ is a monomorphism if and only if $n=1$. Moreover, $F^{2 n}$ is the zero map if and only if $n \geqslant \nu(p-1)$.
Proof. Noting that $\left(\zeta^{p^{\nu-1}}-1\right) \Gamma=(\zeta-1)^{p^{\nu-1}} \Gamma=\pi^{p^{\nu-1}} \Gamma$, we have

$$
\begin{aligned}
\pi^{k} Y^{n} \in \operatorname{Ker} F^{2 n} & \Longleftrightarrow F^{2 n}\left(\pi^{k} Y^{n}\right)=0 \text { in } H^{2 n}(G, \Gamma) \\
& \Longleftrightarrow\left(\pi^{k}\left(\zeta^{p^{\nu-1}}-1\right)^{n}\right) X^{n} \subset\left(\pi^{\nu p^{\nu-1}(p-1)}\right) X^{n} \\
& \Longleftrightarrow\left(\pi^{k}\left(\zeta^{p^{\nu-1}}-1\right)^{n}\right) \subset\left(\pi^{\nu p^{\nu-1}(p-1)}\right) \\
& \Longleftrightarrow\left(\pi^{k+n p^{\nu-1}}\right) \subset\left(\pi^{\nu p^{\nu-1}(p-1)}\right) \\
& \Longleftrightarrow k+n p^{\nu-1} \geqslant \nu p^{\nu-1}(p-1) \\
& \Longleftrightarrow k \geqslant \nu p^{\nu-1}(p-1)-n p^{\nu-1} .
\end{aligned}
$$

Hence, considering the case $k=0$, it follows that $F^{2 n}$ is the zero map if and only if $n \geqslant \nu(p-1)$. By Lemma 5 , it is easy to see that $F^{2 n}$ is a monomorphism if and only if $n=1$.

Acknowledgement

The authors would like to express their gratitude to Professor T. Nozawa and the referee for valuable comments and many helpful suggestions.

References

[BF] F. R. Bobovich and D. K. Faddeev, Hochschild cohomologies for \mathbb{Z}-rings with a power basis, Mat. Zametki 4-2 (1968), 141-150 = Math. Notes 4 (1968), 575-581.
[CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton. NJ., 1956.
[H] T. Hayami, Hochschild cohomology ring of the integral group ring of the generalized quaternion group, SUT J. of Math. 38 (2002), 83-126.
[HS] T. Hayami and K. Sanada, Cohomology ring of the generalized quaternion group with coefficients in an order, Comm. Algebra 30 (2002), 3611-3628.
[LL] M. Larsen and A. Lindenstrauss, Cyclic Homology of Dedekind Domains, KTheory 6 (1992), 301-334.
[S1] K. Sanada, On the cohomology of Frobenius algebras, J. Pure Appl. Algebra 80 (1992), 65-88.
[S2] K. Sanada, Remarks on cohomology rings of the quaternion group and the quaternion algebra, SUT J. of Math. 31 (1995), 85-92.
[W] E. Weiss, Algebraic Number Theory, Dover Publications, Inc., N. Y. , 1998.

Takao Hayami
Department of Mathematics, Science University of Tokyo
Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan
E-mail: hayami@minserver.ma.kagu.sut.ac.jp
Katsunori Sanada
Department of Mathematics, Science University of Tokyo
Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan
E-mail: sanada@rs.kagu.tus.ac.jp

[^0]: ${ }^{\dagger}$ This research was partially supported by Grant-in-Aid for Joint Research (No. 108), Tokyo University of Science, Japan.

