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Abstract. We determine the ring homomorphism HH∗(Γ ) → H∗(G, Γ ) ex-
plicitly, where G denotes the cyclic group of order pν and Γ denotes the ring of
integers of the cyclotomic field �(ζ) for a primitive pν-th root of unity ζ.
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Introduction

We have investigated some kinds of cohomology rings of generalized quater-
nion groups in [H], [HS] and [S2]. These results depends on the fact that
generalized quaternion groups have a periodic resolution of period 4 and so it
is easy to compute the group cohomology. We also know that cyclic groups
have a periodic resolution of period 2. So, it may be natural to ask a cyclic
group analogy of [S2] and [HS]. Our objective in this paper is to determine a
ring homomorphism between a group cohomology ring of a cyclic group with
coefficients in an order and the Hochschild cohomology ring of the order.

Let G = 〈x〉 denote the cyclic group of order pν for any prime number p
and any positive integer ν � 1. The rational group ring QG is isomorphic
to the direct sum of the cyclotomic fields Q(ζd), where ζd denotes a primitive
d-th root of 1 for d dividing pν , and there exist primitive idempotents ei
for 0 � i � ν such that QGei � Q(ζpi). Then we have a ring homomorphism
φ : ZG→ ZGeν ;x �→ xeν . Since xeν is a primitive pν-th root of eν , we identify
xeν with ζpν under the isomorphism stated above. We set Γ = ZGeν(=
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Z[ζpν ]). In this paper, we explicitly determine the ring homomorphism F ∗ :
HH∗(Γ ) :=

⊕
n�0HH

n(Γ ) → H∗(G,Γ ) :=
⊕

n�0H
n(G,Γ ) induced by the

ring homomorphism φ. In the above, Γ in the right hand side is regarded as
a G-module by conjugation, so it is a trivial G-module.

In Section 1, as preliminaries, we describe the detail of defining ring homo-
morphism F ∗ stated above.

In Section 2.1, we give a chain transformation lifting the identity map on
Z between the well known periodic resolution of period 2 and the standard
resolution for G (Proposition 1). In Section 2.2, we give a pair of dual bases of
Γ as a Frobenius Z-algebra (Lemma 2). Furthermore, we give initial parts of
a chain transformation lifting the identity map on Γ between a periodic reso-
lution of period 2 (see [BF], [LL]) and the standard complex of Γ (Proposition
3).

In Section 3, as a main result of this paper, we will determine the ring
homomorphism F ∗ : HH∗(Γ ) → H∗(G,Γ ) by investigating the image of a
generator of HH∗(Γ ) under F 2 (Theorem).

§1. Preliminaries

Let R be a commutative ring and Λ an R-algebra which is a finitely generated
projective R-module. If M is a left Λe(= Λ ⊗R Λ

op)-module, then the n-th
Hochschild cohomology of Λ with coefficients in M is defined by

Hn(Λ,M) := ExtnΛe(Λ,M).

Suppose M ′ is another Λe-module. Then for every pair of integers p, q � 0
there is a (Hochschild) cup product

Hp(Λ,M) ⊗R H
q(Λ,M ′) �−→ Hp+q(Λ,M ⊗ΛM

′).

If we putM = M ′ = Λ, then the cup product givesHH∗(Λ) :=
⊕

n�0HH
n(Λ)

the structure of a graded ring with identity 1 ∈ Z(Λ) � HH0(Λ), where
HHn(Λ) denotes Hn(Λ,Λ) and Z(Λ) denotes the center of Λ. HH∗(Λ) is
called the Hochschild cohomology ring of Λ.

Let G be a finite group and e a central idempotent of the rational group
ring QG. In the following, we set Λ = ZG and Λ′ = ZGe, and we regard Λ′ as a
Z-algebra. Then there is a ring homomorphism ψ : Λ→ Λ′e;x �→ xe⊗ (x−1e)◦

for x ∈ G. Let M be a left Λ′e-module, which is regarded as a left Λ-module
using ψ above, hence we will denote it by ψM . Then we have a homomorphism
of Z-modules (see [S2, Section 1] for example)

Fn : Hn(Λ′,M) −→ Hn(G, ψM) := ExtnΛ(Z, ψM).
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In the above, Hn(G, ψM) denotes the ordinary n-th group cohomology. Let
(XG, dG) be the standard resolution of G, that is,

(XG)n = Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
n+ 1 times

for n � 0,

and the boundaries are given by

(dG)1 ([σ]) = σ[·] − [·],
(dG)n ([σ1| . . . |σn]) = σ1[σ2| . . . |σn]

+
n−1∑
i=1

(−1)i[σ1| . . . |σi−1|σiσi+1|σi+2| . . . |σn]

+ (−1)n[σ1| . . . |σn−1] for n � 2,

where σ[·] denotes σ ∈ (XG)0 and σ0[σ1| . . . |σn] denotes σ0 ⊗ σ1 ⊗ · · · ⊗ σn ∈
(XG)n for σ, σ0, σ1, . . . , σn ∈ G. Furthermore, let (XΛ′ , dΛ′) be the standard
complex of Λ′, that is,

(XΛ′)n = Λ′ ⊗ · · · ⊗ Λ′︸ ︷︷ ︸
n+ 2 times

for n � 0,

and the boundaries are given by

(dΛ′)1
(
[λ′]
)

= λ′[·] − [·]λ′,
(dΛ′)n

(
[λ′1, . . . , λ

′
n]
)

= λ′1[λ
′
2, . . . , λ

′
n]

+
n−1∑
i=1

(−1)i[λ′1, . . . , λ
′
i−1, λ

′
iλ

′
i+1, λ

′
i+2, . . . , λ

′
n]

+ (−1)n[λ′1, . . . , λ
′
n−1]λ

′
n for n � 2,

where λ′0[·]λ′1 denotes λ′0 ⊗ λ′1 ∈ (XΛ′)0 and λ′0[λ′1, . . . , λ′n]λ′n+1 denotes λ′0 ⊗
λ′1⊗· · ·⊗λ′n+1 ∈ (XΛ′)n for λ′, λ′0, λ′1, . . . , λ′n+1 ∈ Λ′. The homomorphism Fn

is induced by

F̃n :HomΛ′e((XΛ′)n,M) −→ HomΛ((XG)n, ψM),

F̃n(f) (x0[x1| . . . |xn]) = f
(
x0e[x1e, . . . , xne](x0 · · · xn)−1e

)
,

for x0, x1, . . . , xn ∈ G.
Suppose A and B are G-modules. Then for every pair of integers p, q � 0

there exists a homomorphism called (ordinary) cup product

Hp(G,A) ⊗Hq(G,B) �−→ Hp+q(G,A ⊗B).
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Note that Fn preserves cup products, that is, the following diagram is com-
mutative:

Hp(Λ′,M) ⊗Hq(Λ′,M ′) �−−−→ Hp+q(Λ′,M ⊗Λ′ M ′)

F p⊗F q


 
F p+q

Hp(G, ψM) ⊗Hq(G, ψM ′) −−−→
�µ

Hp+q (G, ψ(M ⊗Λ′ M ′)) ,

where M ′ is another Λ′e-module. In the above, 	µ denotes the map induced
by the (ordinary) cup product and a left Λ-homomorphism µ : ψM ⊗ ψM

′ →
ψ(M ⊗Λ′ M ′); m ⊗m′ �→ m⊗Λ′ m′. If we put M = M ′ = Λ′ and identify Λ′

with Λ′⊗Λ′Λ′ as a Λ′e-module, then we have the following ring homomorphism:

F ∗ : HH∗(Λ′) −→ H∗(G, ψΛ′) :=
⊕
n�0

Hn(G, ψΛ′).

We treat the case M = M ′ = Λ′ only in the following. We make
HomΛ′e((XΛ′)n, Λ′) and HomΛ((XG)n, ψΛ′) into left Z(Λ′)-modules by putting
(z ·f)(x) = z ·f(x), (z ·g)(y) = z ·g(y) for f ∈ HomΛ′e((XΛ′)n, Λ′), x ∈ (XΛ′)n,
g ∈ HomΛ((XG)n, ψΛ′), y ∈ (XG)n and z ∈ Z(Λ′). Note that (dΛ′)#n+1 :
HomΛ′e((XΛ′)n, Λ′) → HomΛ′e((XΛ′)n+1, Λ

′) is a Z(Λ′)-homomorphism, where
(dΛ′)#n+1 is induced by the differential (dΛ′)n+1 : (XΛ′)n+1 → (XΛ′)n. Simi-
larly, (dG)#n+1 : HomΛ((XG)n, ψΛ′) → HomΛ((XG)n+1, ψΛ

′) is a Z(Λ′)-homo-
morphism, where (dG)#n+1 is induced by the differential (dG)n+1 : (XG)n+1 →
(XG)n. Then HHn(Λ′) and Hn(G, ψΛ′) are also left Z(Λ′)-modules. Note
that F̃n is a Z(Λ′)-homomorphism.

On the other hand, let α be the image of z ∈ Z(Λ′) under the isomorphism
Z(Λ′) ∼→ HH0(Λ′). We make HHn(Λ′) into a left Z(Λ′)-module by putting
z · β = α 	 β for β ∈ HHn(Λ′). Similarly, let α′ be the image of the above z
under the isomorphism (ψΛ′)G = Z(Λ′) ∼→ H0(G, ψΛ′). We make Hn(G, ψΛ′)
into a left Z(Λ′)-module by putting z·β′ = α′ 	µ β

′ for β′ ∈ Hn(G, ψΛ′). Note
that F 0(α) = α′ holds. Then it is easy to see that the Z(Λ′)-module structure
of HHn(Λ′) and Hn(G, ψΛ′) by the cochain level operations corresponds to the
one by the cup products, respectively. Since F ∗ is a ring homomorphism, we
have Fn(z · β) = Fn(α 	 β) = F 0(α) 	µ F

n(β) = α′ 	µ F
n(β) = z · Fn(β).

Thus F ∗ is a homomorphism of graded Z(Λ′)-algebras.

§2. Resolutions and chain transformations

2.1. The cyclic group of order m

Let G = 〈x〉 denote the cyclic group of order m for any positive integer m � 2.
We set Λ = ZG. Then the following periodic Λ-free resolution for Z of period
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2 is well known (see [CE, Chapter XII, Section 7] for example):

(YG, δG) : · · · −→ Λ
(δG)1−−−→ Λ

(δG)2−−−→ Λ
(δG)1−−−→ Λ

(δG)2−−−→ Λ
(δG)1−−−→ Λ

ε−→ Z → 0,
(δG)1(c) = c(x− 1),

(δG)2(c) = c

m−1∑
i=0

xi.

In the following, we set (δG)2k+i = (δG)i for any integer k � 0 and i = 1, 2
because (YG, δG) is a periodic resolution.

(XG, dG) denotes the standard resolution of G stated in Section 1. We
introduce the notation ∗ for basis elements in (XG)i (i � 0) as follows:

σ0[σ1] ∗ σ2[·] : = σ0[σ1σ2] (∈ (XG)1),
σ0[σ1] ∗ σ2[σ3| . . . |σi] : = σ0[σ1σ2|σ3| . . . |σi] (∈ (XG)i−1)

for σ0, σ1, . . . , σi ∈ G. It is easy to see that the following equations hold:

[σ1] ∗ σ2[·] = [σ1σ2] ∗ [·],
[σ1] ∗ σ2[σ3| . . . |σi] = [σ1σ2] ∗ [σ3| . . . |σi];
(dG)1 ([σ1] ∗ σ2[·]) = σ1σ2[·] − [·],

(dG)i−1([σ1] ∗ σ2[σ3| . . . |σi]) = σ1σ2[σ3| . . . |σi]
− [σ1] ∗ (dG)i−2 (σ2[σ3| . . . |σi]) for i � 3.

Proposition 1. A chain transformation un : (YG)n → (XG)n (n � 0) lifting
the identity map on Z is given inductively as follows:

u0(1) = [·];
u2k+1(1) = [x] ∗ u2k(1) for k � 0;

u2k+2(1) =
m−1∑
i=0

[xi] ∗ u2k+1(1) for k � 0,

where each un is a left Λ-homomorphism.

Proof. It suffices to show that the equation (dG)n · un = un−1 · (δG)n holds for
n � 1. By induction on k. First we verify the case k = 0, that is, n = 1, 2. In
the case n = 1, noting that u1(1) = [x], we have the following:

((dG)1 · u1) (1) = (dG)1([x]) = x[·] − [·] = u0(x− 1) = (u0 · (δG)1) (1).
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In the case n = 2, we have the following:

((dG)2 · u2) (1) = (dG)2

(
m−1∑
i=0

[xi] ∗ u1(1)

)

=
m−1∑
i=0

xiu1(1) −
m−1∑
i=0

[xi] ∗ (dG)1 (u1(1))

= u1

(
m−1∑
i=0

xi

)
−
m−1∑
i=0

[xi] ∗ (x− 1)u0(1)

= (u1 · (δG)2) (1).

Suppose that the result holds for k − 1. In the case n = 2k + 1, using the
assumption of induction, we have the following:

((dG)2k+1 · u2k+1) (1) = (dG)2k+1([x] ∗ u2k(1))
= xu2k(1) − [x] ∗ (dG)2k (u2k(1))
= xu2k(1) − [x] ∗ (u2k−1 · (δG)2k) (1)

= xu2k(1) − [x] ∗
(
m−1∑
i=0

xiu2k−1(1)

)

= xu2k(1) −
m−1∑
i=0

[xi+1] ∗ u2k−1(1)

= xu2k(1) − u2k(1)
= (u2k · (δG)2k+1) (1).

In the case n = 2k + 2, using the above calculation, we have the following:

((dG)2k+2 · u2k+2) (1) = (dG)2k+2

(
m−1∑
i=0

[xi] ∗ u2k+1(1)

)

=
m−1∑
i=0

xiu2k+1(1) −
m−1∑
i=0

[xi] ∗ (dG)2k+1 (u2k+1(1))

= u2k+1

(
m−1∑
i=0

xi

)
−
m−1∑
i=0

[xi] ∗ (x− 1)u2k(1)

= (u2k+1 · (δG)2k+2) (1).

This completes the proof.

The chain transformation u2 will be used in Section 3, in the case m = pν for
a prime number p and a positive integer ν.
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2.2. The ring of integers Z[ζ]

Let ζ be a primitive pν-th root of 1. We consider the ring of integers Γ = Z[ζ]
of the cyclotomic field Q(ζ). It is well-known that

{
ζi
}ϕ(pν)−1

i=0
is a Z-basis

of Γ , where ϕ denotes the Euler function, so ϕ(pν) = pν−1(p − 1) (see [W,
Lemma 7-5-3]).

We take a matrix P ∈Mϕ(pν)(Z) as follows:

P =



P ′ · · · · · · P ′
... · · · O
... · · · · · · ...
P ′ O · · · O




︸ ︷︷ ︸
p−1

where P ′ =


0 1

· · ·
1 0


 ∈Mpν−1(Z).

Then it is easy to see that P is an invertible matrix in Mϕ(pν)(Z). We define

a set of elements
{
ζ [i]
}ϕ(pν)−1

i=0
of Γ by(

ζ [0], ζ [1], . . . , ζ [ϕ(pν)−1]
)

=
(
ζ0, ζ1, . . . , ζϕ(pν)−1

)
P.

Lemma 2. Γ is a Frobenius Z-algebra with a pair of Z-bases
{
ζi
}ϕ(pν)−1

i=0
,{

ζ [i]
}ϕ(pν)−1

i=0
which satisfy the following equations:

γζi =
ϕ(pν)−1∑
j=0

ζjαji(γ), ζ [j]γ =
ϕ(pν)−1∑
i=0

αji(γ)ζ [i]

for any γ ∈ Γ and for some αji(γ) ∈ Z.

Proof. It is clear that
{
ζ [i]
}ϕ(pν)−1

i=0
is a Z-basis of Γ . The equations are verified

for γ = ζ by direct computation, so they hold for any γ ∈ Γ . Hence, it follows
that the homomorphism χ : Γ → Hom�(Γ,Z) induced by χ(ζi)(ζ [j]) = δij is
an isomorphism of left Γ -modules. Therefore Γ is a Frobenius Z-algebra.

Remark. The norm NΓ (γ) of γ ∈ Γ is defined by

NΓ (γ) =
ϕ(pν)−1∑
i=0

ζiγζ [i] =


ϕ(pν)−1∑

i=0

ζiζ [i]


 γ

(cf. [S1, Section 1.1]). It is easy to see that
∑ϕ(pν)−1

i=0 ζiζ [i] = Φ′(ζ), where Φ′(x)
denotes the derivative of the pν-th cyclotomic polynomial Φ(x) = xp

ν−1(p−1) +
xp

ν−1(p−2) + · · · + xp
ν−1

+ 1. The ideal of Γ generated by Φ′(ζ) coincides with
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the different πνp
ν−1(p−1)−pν−1

Γ of the extension Q(ζ)/Q, where π denotes ζ−1,
which generates the prime ideal of Q(ζ) lying above p (see [W, Propositions
4-8-18 and 7-4-1]). Hence we have

NΓ (Γ ) = πνp
ν−1(p−1)−pν−1

Γ.

Then there exists a Γ e-projective resolution (YΓ , δΓ ) for Γ of period 2 (see
[BF], [LL]):

(YΓ , δΓ ) : · · · −→ Γ ⊗ Γ
(δΓ )1−−−→ Γ ⊗ Γ

(δΓ )2−−−→ Γ ⊗ Γ
(δΓ )1−−−→ Γ ⊗ Γ

ε−→ Γ → 0,
(δΓ )1([·]) = ζ[·] − [·]ζ,

(δΓ )2([·]) =
ϕ(pν)−1∑
i=0

ζ [i][·]ζi.

In the above, [·] denotes 1 ⊗ 1 ∈ Γ ⊗ Γ .

Proposition 3. An initial part of a chain transformation vn : (XΓ )n → (YΓ )n
lifting the identitiy map on Γ is given as follows:

v0 ([·]) = [·];

v1
(
[ζi]
)

=

{
0 if i = 0,
[·]ζi−1 + ζ[·]ζi−2 + · · · + ζi−1[·] if i � 1;

v2
(
[ζi, ζj]

)
=




0 if 0 � i+ j < ϕ(pν),
ζi+j−ϕ(pν)[·] if ϕ(pν) � i+ j < pν ,

ζi+j−pν
(ζp

ν−1 − 1)[·] if pν � i+ j,

for 0 � i, j < ϕ(pν), where each vn is a left Γ e-homomorphism.

Proof. It suffices to show that the equation vn−1 · (dΓ )n = (δΓ )n · vn holds for
n = 1, 2. In the case n = 1, the left hand side is as follows:

(v0 · (dΓ )1)
(
[ζi]
)

= v0
(
ζi[·] − [·]ζi)

= ζi[·] − [·]ζi for i � 0.

The right hand side is divided into two cases:
Case i = 0:

((δΓ )1 · v1) ([1]) = 0.
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Case i � 1:

((δΓ )1 · v1)
(
[ζi]
)

= (δΓ )1
(
[·]ζi−1 + ζ[·]ζi−2 + · · · + ζi−1[·])

= (ζ[·] − [·]ζ) ζi−1 + ζ (ζ[·] − [·]ζ) ζi−2 + · · · + ζi−1 (ζ[·] − [·]ζ)
= ζi[·] − [·]ζi.

In the case n = 2, the left hand side is divided into six cases:
Case ij = 0:

(v1 · (dΓ )2)
(
[ζi, ζj]

)
= 0.

Case 0 < i+ j < ϕ(pν), ij 	= 0:

(v1 · (dΓ )2)
(
[ζi, ζj]

)
= v1

(
ζi[ζj] − [ζi+j] + [ζi]ζj

)
= ζi

(
[·]ζj−1 + ζ[·]ζj−2 + · · · + ζj−1[·])

− ([·]ζi+j−1 + ζ[·]ζi+j−2 + · · · + ζi+j−1[·])
+
(
[·]ζi−1 + ζ[·]ζi−2 + · · · + ζi−1[·])

= 0.

Case i+ j = ϕ(pν):

(v1 · (dΓ )2)
(
[ζi, ζj]

)
= v1

(
ζi[ζj] − [ζi+j] + [ζi]ζj

)
= v1

(
ζi[ζj ] +

p−2∑
k=0

[ζkp
ν−1

] + [ζi]ζj
)

= ζi
(
[·]ζj−1 + ζ[·]ζj−2 + · · · + ζj−1[·])

+
p−2∑
k=1

(
[·]ζkpν−1−1 + ζ[·]ζkpν−1−2 + · · · + ζkp

ν−1−1[·]
)

+
(
[·]ζi−1 + ζ[·]ζi−2 + · · · + ζi−1[·]) ζj

=
p−1∑
k=1

(
[·]ζkpν−1−1 + ζ[·]ζkpν−1−2 + · · · + ζkp

ν−1−1[·]
)

=
ϕ(pν)−1∑
k=0

ζ [k][·]ζk.

Case ϕ(pν) < i+ j < pν :

(v1 · (dΓ )2)
(
[ζi, ζj]

)
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= v1
(
ζi[ζj] − [ζi+j] + [ζi]ζj

)
= v1

(
ζi[ζj ] +

p−2∑
k=0

[ζkp
ν−1+i+j−ϕ(pν)] + [ζi]ζj

)

= ζi
(
[·]ζj−1 + ζ[·]ζj−2 + · · · + ζj−1[·])

+
p−2∑
k=0

(
[·]ζi+j−ϕ(pν)−1 + ζ[·]ζi+j−ϕ(pν)−2 + · · · + ζi+j−ϕ(pν)−1[·]

)
ζkp

ν−1

+
p−2∑
k=1

ζi+j−ϕ(pν)
(
[·]ζkpν−1−1 + ζ[·]ζkpν−1−2 + · · · + ζkp

ν−1−1[·]
)

+
(
[·]ζi−1 + ζ[·]ζi−2 + · · · + ζi−1[·]) ζj

= ζi+j−ϕ(pν)

(
p−1∑
k=1

(
[·]ζkpν−1−1 + ζ[·]ζkpν−1−2 + · · · + ζkp

ν−1−1[·]
))

= ζi+j−ϕ(pν)


ϕ(pν)−1∑

k=0

ζ [k][·]ζk

 .

Case i+ j = pν :

(v1 · (dΓ )2)
(
[ζi, ζj ]

)
= v1

(
ζi[ζj] − [1] + [ζi]ζj

)
= [·]ζpν−1 + ζ[·]ζpν−2 + · · · + ζp

ν−1−1[·]ζpν−1(p−1)

+ ζp
ν−1

[·]ζpν−1(p−1)−1 + · · · + ζp
ν−1[·]

= −
pν−1∑
k=1

ζk−1[·]ζpν−1−k
(
ζp

ν−1(p−2) + ζp
ν−1(p−3) + · · · + 1

)
+ ζp

ν−1
[·]ζpν−1(p−1)−1 + ζp

ν−1+1[·]ζpν−1(p−1)−2 + · · · + ζp
ν−1[·]

=
p−1∑
m=1

(ζmp
ν−1 − 1)


pν−1∑

k=1

ζk−1[·]ζpν−1(p−m)−k




= (ζp
ν−1 − 1)

(
p−1∑
m=1

(
ζp

ν−1(m−1) + ζp
ν−1(m−2) + · · · + 1

)

×

pν−1∑
k=1

ζk−1[·]ζpν−1(p−m)−k






= (ζp
ν−1 − 1)


ϕ(pν)−1∑

k=0

ζ [k][·]ζk

 .
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Case i+ j > pν :

(v1 · (dΓ )2)
(
[ζi, ζj]

)
= v1

(
ζi[ζj] − [ζi+j−p

ν
] + [ζi]ζj

)
= [·]ζi+j−1 + ζ[·]ζi+j−2 + · · · + ζi+j−1[·]
− ([·]ζi+j−pν−1 + ζ[·]ζi+j−pν−2 + · · · + ζi+j−p

ν−1[·])
= ζi+j−p

ν (
[·]ζpν−1 + ζ[·]ζpν−2 + · · · + ζp

ν−1[·])
= ζi+j−p

ν
(ζp

ν−1 − 1)


ϕ(pν)−1∑

k=0

ζ [k][·]ζk

 .

The above last equality follows from the calculation in the case i + j = pν .
The right hand side is divided into three cases:
Case 0 � i+ j < ϕ(pν):

((δΓ )2 · v2)
(
[ζi, ζj]

)
= 0.

Case ϕ(pν) � i+ j < pν :

((δΓ )2 · v2)
(
[ζi, ζj]

)
= (δΓ )2

(
ζi+j−ϕ(pν)[·]

)

= ζi+j−ϕ(pν)


ϕ(pν)−1∑

k=0

ζ [k][·]ζk

 .

Case i+ j � pν :

((δΓ )2 · v2)
(
[ζi, ζj ]

)
= (δΓ )2

(
ζi+j−p

ν
(ζp

ν−1 − 1)[·]
)

= ζi+j−p
ν
(ζp

ν−1 − 1)


ϕ(pν)−1∑

k=0

ζ [k][·]ζk

 .

This completes the proof of Proposition 3.

§3. The ring homomorphism HH∗(Γ ) → H∗(G,Γ )

Let G = 〈x〉 denote the cyclic group of order pν for any prime number p and
any positive integer ν � 1 (we do not consider the case pν = 2). Then the
rational group ring QG is isomorphic to the direct sum of the cyclotomic fields
Q(ζd), where ζd denotes a primitive d-th root of 1 for d dividing pν :

QG �
⊕
d | pν

Q(ζd).
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There exist primitive idempotents ei for 0 � i � ν (ei2 = ei, eiej = 0 for i 	=
j, 1 =

∑
i ei) such that QGei � Q(ζpi). Then we have a ring homomorphism

φ : ZG→ ZGeν ;x �→ xeν . Note that xeν is a primitive pν-th root of eν . Under
the isomorphism stated above, we identify xeν with ζpν . In the following, we
set Λ = ZG and Γ = ZGeν(= Z[ζpν ]), and we regard Γ as a Z-algebra. In
the rest of this section, we write ζ in place of ζpν for brevity. By Section
1, the ring homomorphism φ induces the following Γ -algebra homomorphism
between the cohomology rings:

F ∗ : HH∗(Γ ) −→ H∗(G,Γ ).

In the above, Γ in the right hand side is regarded as a G-module using a ring
homomorphism ψ : Λ→ Γ e;x �→ xeν ⊗ (x−1eν)◦ = ζ⊗ (ζ−1)◦, so it is a trivial
G-module. In this section, we will determine the ring homomorphism F ∗ :
HH∗(Γ ) → H∗(G,Γ ) by investigating the image of a generator of HH∗(Γ ) in
degree 2 under F 2.

First, we state the cohomologies Hn(G,Γ ) and HHn(Γ ).

Lemma 4. The cohomology Hn(G,Γ ) is as follows:

Hn(G,Γ ) �



Γ for n = 0,
0 for n ≡ 1 mod 2,
Γ/πνp

ν−1(p−1)Γ for n ≡ 0 mod 2, n 	= 0.

Moreover, the cohomology ring H∗(G,Γ ) is isomorphic to

Γ [X]/(πνp
ν−1(p−1)X),

where π = ζ − 1 and degX = 2.

Proof. Applying the functor HomΛ(−, Γ ) to the periodic resolution (YG, δG)
in Section 2.1, we have the following complex which gives Hn(G,Γ ) where we
identify HomΛ(Λ,Γ ) with Γ as Γ -modules:

(
HomΛ(YG, Γ ), (δG)#

)
: 0 −→ Γ

(δG)#1−−−→ Γ
(δG)#2−−−→ Γ

(δG)#1−−−→ Γ −→ · · · ,
(δG)#1 (γ) = (x− 1)γ = 0,

(δG)#2 (γ) =
pν−1∑
i=0

xiγ = pνγ.

Since pνΓ = (ζ−1)νp
ν−1(p−1)Γ holds (see [W, Proposition 7-4-1]), we have the

module structure of Hn(G,Γ ). Now we put X = eν which is a generator of
H2(G,Γ ). Note that H2n(G,Γ ) is generated by Xn = eν (see [CE, Chapter
XII, Section 7]). This completes the proof.
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Lemma 5. The Hochschild cohomology of Γ is as follows:

HHn(Γ ) �



Γ for n = 0,
0 for n ≡ 1 mod 2,
Γ/πνp

ν−1(p−1)−pν−1
Γ for n ≡ 0 mod 2, n 	= 0.

Moreover, the Hochschild cohomology ring HH∗(Γ ) is isomorphic to

Γ [Y ]/(πνp
ν−1(p−1)−pν−1

Y ),

where π = ζ − 1 and deg Y = 2.

Proof. Applying the functor HomΓ e(−, Γ ) to the periodic resolution (YΓ , δΓ )
in Section 2.2, we have the following complex which gives HHn(Γ ), where we
identify HomΓ e(Γ ⊗ Γ, Γ ) with Γ as Γ -modules:

(
HomΓ e(YΓ , Γ ), (δΓ )#

)
: 0 −→ Γ

(δΓ )#1−−−→ Γ
(δΓ )#2−−−→ Γ

(δΓ )#1−−−→ Γ −→ · · · ,
(δΓ )#1 (γ) = ζγ − γζ = 0,

(δΓ )#2 (γ) =
φ(pν)−1∑
i=0

ζ [i]γζi = Φ′(ζ)γ.

Therefore we have the above Γ -module structure of HHn(Γ ) by Remark in
Section 2.2. Since Γ is a Frobenius algebra, we can consider the complete
cohomology Ĥ∗(Γ,Γ ) =

⊕
i∈�Ĥ

i(Γ,Γ ). This cohomology is periodic of period
2. So, Ĥ∗(Γ,Γ ) has an invertible element Y ∈ Ĥ2(Γ,Γ )

(
= HH2(Γ )

)
(cf. [S1,

Section 3]).

Next, we determine the ring homomorphism F ∗ : HH∗(Γ ) → H∗(G,Γ ) by
calculating the image F 2(Y ) for the generator Y of HH∗(Γ ).

Theorem. The ring homomorphism F ∗ : HH∗(Γ ) → H∗(G,Γ ) is induced by
F 2(Y ) = (ζp

ν−1 − 1)X.

Proof. It is easy to see that Fn is an isomorphism for n = 0 and the zero map
for n odd. Thus we calculate F 2(Y ). This is obtained by the composition of
the following maps on the cochain level:

Γ
β−→ HomΓ e((YΓ )2, Γ )

v#2−→ HomΓ e((XΓ )2, Γ )

F̃ 2−→ HomΛ((XG)2, Γ )
u#
2−→ HomΛ((YG)2, Γ ) α−→ Γ.
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In the above, α denotes the isomorphism HomΛ((YG)2, Γ ) → Γ and β denotes
the isomorphism Γ → HomΓ e((YΓ )2, Γ ). For γ ∈ Γ , we have(

α · u#
2 · F̃ 2 · v#

2 · β
)

(γ)

=
(
F̃ 2(β(γ) · v2)

)
(u2(1))

=
(
F̃ 2(β(γ) · v2)

)(pν−1∑
k=0

[xk|x]
)

= (β(γ) · v2)
(
pν−1∑
k=0

[ζk, ζ]ζ−k−1

)

= (β(γ) · v2)

ϕ(pν)−1∑

k=0

[ζk, ζ]ζ−k−1 +
pν−1−1∑
l=0

[ζϕ(pν)+l, ζ]ζ−ϕ(pν)−l−1




= (β(γ) · v2)

ϕ(pν)−1∑

k=0

[ζk, ζ]ζ−k−1 −
pν−1−1∑
l=0

p−2∑
k=0

[ζp
ν−1k+l, ζ]ζ−ϕ(pν)−l−1




= β(γ)
(
[·]ζ−pν−1(p−1) − [·]

)
=
(
ζp

ν−1 − 1
)
γ.

This completes the proof.

Corollary. F 2n (n � 1) is a monomorphism if and only if n = 1. Moreover,
F 2n is the zero map if and only if n � ν(p− 1).

Proof. Noting that (ζp
ν−1 − 1)Γ = (ζ − 1)p

ν−1
Γ = πp

ν−1
Γ , we have

πkY n ∈ Ker F 2n ⇐⇒ F 2n(πkY n) = 0 in H2n(G,Γ )

⇐⇒ (πk(ζp
ν−1 − 1)n)Xn ⊂ (πνp

ν−1(p−1))Xn

⇐⇒ (πk(ζp
ν−1 − 1)n) ⊂ (πνp

ν−1(p−1))

⇐⇒ (πk+np
ν−1

) ⊂ (πνp
ν−1(p−1))

⇐⇒ k + npν−1 � νpν−1(p− 1)

⇐⇒ k � νpν−1(p− 1) − npν−1.

Hence, considering the case k = 0, it follows that F 2n is the zero map if and
only if n � ν(p−1). By Lemma 5, it is easy to see that F 2n is a monomorphism
if and only if n = 1.
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