
SUT Journal of Mathematics
Vol. 38, No. 1 (2002), 75–82

Totally contact-umbilical semi-invariant
submanifolds of a Sasakian manifold

S. H. Kon and Tee-How Loo

(Received November 13, 2001)

Abstract. This paper gives a characterization of totally contact-umbilical
semi-invariant submanifolds of a Sasakian manifold.

AMS 1991 Mathematics Subject Classification. Primary 53B20; Secondary
53B25, 53C25.

Key words and phrases. Sasakian manifold, generalized Hopf manifold, totally
contact-umbilical semi-invariant submanifold.

§1. Introduction

Bejancu [1] introduced the notion of CR-submanifolds and begin the study of
CR-submanifolds of a Kaehler manifold. In particular the geometry of totally
umbilical CR-submanifolds of a Kaehler manifold has been studied by many
differential geometers. Bejancu [3] and Chen [6] independently classified a
totally umbilical CR-submanifold M of a Kaehler manifold and showed that
either (i) M is totally geodesic; or (ii) M is anti-invariant; or (iii) the anti-
invariant distribution D⊥ is of dimension 1. Further, Toyonari and Nemoto [8]
characterized totally umbilical CR-submanifolds of a Kaehler manifold, which
occurs in the third case (dimD⊥ = 1 ), i.e., they proved the following

Theorem 1.1. Let M be a connected non-totally geodesic, totally umbilical
proper m-dimensional CR-submanifold in a Kaehler manifold, (m > 4). Then
it is homothetic to a Sasakian manifold.

Motivated by this, we obtain a characterization of totally contact-umbilical
semi-invariant submanifolds of a Sasakian manifold (cf. Theorem 4.2).
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§2. Preliminaries

Let N be a (2n + 1)-dimensional Sasakian manifold with structure tensors
(φ, ξ, η, g). Then they satisfy

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,(2.1)

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)(2.2)

for any vector fields X and Y tangent to N . We denote by ∇ the Levi-Civita
connection on N and R the curvature tensor corresponding to ∇. Then we
have [11]

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, ∇Xξ = −φX,(2.3)

R(X,Y )φZ = φR(X,Y )Z + g(φX,Z)Y − g(Y,Z)φX(2.4)
+g(X,Z)φY − g(φY,Z)X,

g(R(φX,φY )φZ,φW ) = g(R(X,Y )Z,W ) − η(Y )η(Z)g(X,W )(2.5)
−η(X)η(W )g(Y,Z) + η(Y )η(W )g(X,Z) + η(X)η(Z)g(Y,W ),

R(X, ξ)Y = −(∇Xφ)Y = −g(X,Y )ξ + η(Y )X(2.6)

for any vector fields X,Y,Z and W tangent to N .
An m-dimensional submanifold M of N is said to be a semi-invariant sub-

manifold if there exists a pair of orthogonal distributions (D,D⊥) satisfying
the conditions [5]

(i) TM = D
⊕
D⊥ ⊕{ξ};

(ii) the distribution D is invariant by φ, i.e., φ(Dx) = Dx, x ∈M ;

(iii) the distribution D⊥ is anti-invariant, i.e., φ(D⊥
x ) ⊂ TxM

⊥, x ∈M

where TM and TM⊥ denote the tangent bundle and normal bundle to M
respectively. It follows that the normal bundle splits as TM⊥ = φD⊥ ⊕

ν ,
where ν is an invariant sub-bundle of TM⊥ by φ. If D = {0} (resp. D⊥ = {0})
then M is said to be an anti-invariant (resp. invariant) submanifold. We say
that M is proper if it is neither invariant nor anti-invariant.

For any vector bundle S over M we denote by Γ(S) the module of all
differentiable sections on S. Let ∇ be the induced Levi-Civita connection on
M and ∇⊥ the induced normal connection on TM⊥. Then the Gauss and
Weingarten formulae are given respectively by

∇XY = ∇XY + h(X,Y ),
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∇Xζ = −AζX + ∇⊥
Xζ

for any X,Y ∈ Γ(TM) and ζ ∈ Γ(TM⊥), where h is the second fundamental
form of M and the shape opertor Aζ is related to h by

g(AζX,Y ) = g(h(X,Y ), ζ).

The projection morphism of TM on D and D⊥ are denoted by P and Q
respectively. For ζ ∈ Γ(TM⊥) we denote by tζ the tangential part and fζ the
normal part of φζ respectively. Also, we put ψ = φ ◦ P and ω = φ ◦Q. Then
we have [2]

(∇Xψ)Y = th(X,Y ) +AωYX + g(X,Y )ξ − η(Y )X,(2.7)
(∇Xω)Y = fh(X,Y ) − h(X,ψY ),(2.8)
(∇Xf)ζ = −h(X, tζ) − ωAζX,(2.9)
h(X, ξ) = −ωX, ∇Xξ = −ψX(2.10)

for any X,Y ∈ Γ(TM) and ζ ∈ Γ(TM⊥).
Now we recall the definition of a locally conformal Kaehler manifold. Let

M be a Hermitian manifold with complex structure J . Then M is called a
locally conformal Kaehler manifold if there exists a closed 1-form τ , called the
Lee form, on M such that

dΩ = τ ∧ Ω

or equivalently,

(∇XJ)Y =
1
2
{θ(Y )X − τ(Y )JX − Ω(X,Y )B − g(X,Y )A)}(2.11)

for X,Y ∈ Γ(TM), where Ω(X,Y ) = g(X,JY ), B is the Lee vector field such
that g(B,X) = τ(X), θ = τ ◦ J is the anti-Lee 1-form and A = −JB is
the anti-Lee vector field. Moreover, a generalized Hopf manifold is a locally
conformal Kaehler manifold whose Lee form is parallel, i.e., ∇τ = 0 (cf. [9]).

§3. Geometry of Totally Contact-umbilical Semi-invariant
Submanifolds

A submanifold M is said to be totally umbilical if h(X,Y ) = g(X,Y )H , for
all X,Y ∈ Γ(TM), where H = 1

m(trace of h), is the mean curvature vector of
M . If the mean curvature vector H = 0 then M is called a totally geodesic
submanifold.

Now, it follows from (2.10) that a Sasakian manifold N does not admit any
non-totally geodesic, totally umbilical semi-invariant submanifold (cf. [10,
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p.47, Proposition 1.2]). From this point of view, Bejancu [4] considered the
concept of totally contact-umbilical semi-invariant submanifolds. The notion
of totally contact-umbilical submanifold was first defined by Kon [7].

A semi-invariant submanifold M is said to be totally contact-umbilical if

h(X,Y ) = g(φX,φY )H + η(Y )h(X,ξ) + η(X)h(Y, ξ)(3.1)
= {g(X,Y ) − η(X)η(Y )}H − η(Y )ωX − η(X)ωY

or equivalently,

AζX = g(H, ζ)X − {η(X)g(H, ζ) + g(ωX, ζ)}ξ + η(X)tζ(3.2)

for any X,Y ∈ Γ(TM) and ζ ∈ Γ(TM⊥), where H is a normal vector field on
M . If H ≡ 0 then M is called a totally contact-geodesic submanifold. Bejancu
[4] has shown the following

Theorem 3.1. Any totally contact-umbilical proper semi-invariant subman-
ifold of a Sasakian manifold N with dimD⊥ > 1 is a totally contact-geodesic
submanifold.

In the rest of this section, suppose M , (dimM > 4), is a connected non-
totally contact-geodesic, totally contact-umbilical proper semi-invariant sub-
manifold of a Sasakian manifoldN . It follows from Theorem 3.1 that dimD⊥ =
1. We first state

Lemma 3.2. H ∈ Γ(φD⊥).

Proof. By putting Y = X ∈ Γ(D) in (2.8) and taking account of (3.1) we
obtain

−ω∇XX = g(X,X)fH.

Note that the left side and the right side of the above equation is respectively
in Γ(φD⊥) and Γ(ν), hence fH = 0 or H ∈ Γ(φD⊥).

Lemma 3.3. ∇⊥
XH ∈ Γ(φD⊥), for any X ∈ Γ(TM).

Proof. By putting ζ = H in (2.9) and taking account of the fact that fH = 0,
we obtain

−f∇⊥
XH = −h(X, tH) − ωAHX.

Note that the left side of this equation is in Γ(ν) while the right side is in
Γ(φD⊥) by virtue of (3.1) and Lemma 3.2. It follows that f∇⊥

XH = 0 and so
∇⊥

XH ∈ Γ(φD⊥).
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Lemma 3.4.

[R(X,Y )W ]⊥ = {g(Y,W ) − η(Y )η(W )}∇⊥
XH

−{g(X,W ) − η(X)η(W )}∇⊥
Y H

−g(ψY,W )ωX + g(ψX,W )ωY + 2g(ψX,Y )ωW,

for any X,Y,W ∈ Γ(TM).

Proof. For any X,Y,W ∈ Γ(TM), by using (2.8), (2.10) and (3.1) we obtain

(∇Xh)(Y,W ) = {g(Y,W ) − η(Y )η(W )}∇⊥
XH − {(∇Xη)Y · η(W )

+η(Y )(∇Xη)W}H − (∇Xη)Y · ωW − η(Y )(∇Xω)W
−(∇Xη)W · ωY − η(W )(∇Xω)Y

= {g(Y,W ) − η(Y )η(W )}∇⊥
XH + {g(Y, ψX)η(W )

+η(Y )g(W,ψX)}H + g(Y, ψX)ωW − η(Y ){fh(X,W )
−h(X,ψW )} + g(W,ψX)ωY
−η(W ){fh(X,Y ) − h(X,ψY )}.

It follows from (3.1) and Lemma 3.2 that this equation reduces to

(∇Xh)(Y,W ) = {g(Y,W ) − η(Y )η(W )}∇⊥
XH + g(Y, ψX)ωW + g(W,ψX)ωY.

Exchanging X and Y in the above equation, we have

(∇Y h)(X,W ) = {g(X,W )−η(X)η(W )}∇⊥
Y H+g(X,ψY )ωW +g(W,ψY )ωX.

From these equations and the Codazzi equation we obtain the Lemma.

Since M is non-totally contact-geodesic, we may choose a connected open
set G on M such that H is nowhere zero on G. For the moment, we restrict
our arguments on such an open set G. Define a unit vector field Z in D⊥ by
Z = − 1

µφH, where µ =‖ H ‖. Then we have the following

Lemma 3.5. ∇XZ = µψX, for any X ∈ Γ(TM).

Proof. For any X ∈ Γ(TM), we have

g(∇XZ,Z) = 0 and g(∇XZ, ξ) = −g(Z,∇Xξ) = g(Z,ψX) = 0.

Next, by using (2.7) we obtain

−ψ∇XZ = th(X,Z) +AωZX + g(X,Z)ξ.

By applying ψ to this equation and taking account of (3.2) we get

∇XZ = ψAωZX = g(H,ωZ)ψX = µψX.

Remark. Lemma 3.2 to Lemma 3.5 also hold when dimM = 4.
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Lemma 3.6. The normal vector field H is parallel.

Proof. Let Y ∈ Γ(D) be a unit vector field. Then from (2.6) and Lemma 3.4

∇⊥
ξ H = [R(ξ, Y )Y ]⊥ = 0.

Now, consider a unit vector field X ∈ Γ(D) with g(X,Y ) = g(X,ψY ) = 0.
Then by (2.4) we have

R(φZ,X)φ2X = φR(φZ,X)φX − φZ.

By taking inner product with Y we get

g(R(φZ,X)X,Y ) = g(R(φZ,X)φX,φY )

or
g(R(Y,X)X,φZ) = g(R(φY, φX)X,φZ).

Together with Lemma 3.4, we obtain

g(∇⊥
Y H,φZ) = 0.

Next, by making use of (2.5) we obtain

g(R(Z,Y )Y, φZ) = g(R(φZ,φY )φY, φ2Z) = −g(R(φZ,φY )φY,Z).

On the other hand, it follows from Lemma 3.4 that we obtain

g(R(Z,Y )Y, φZ) = g(R(φZ,φY )φY,Z) = g(∇⊥
ZH,φZ).

These two equations imply that g(∇⊥
ZH,φZ) = 0. All this amount to say that

∇⊥
XH ∈ Γ(ν), for all X ∈ Γ(TM). Together with Lemma 3.3, we obtain that

H is parallel.

It follows from Lemma 3.6 that µ is a constant on G. Since M is connected,
µ is a nonzero constant on M . Hence we have

Lemma 3.7. Z is a unit vector field defined on the whole of M.

§4. Characterization of Totally Contact-umbilical Semi-invariant
Submanifolds

We first prove

Theorem 4.1. Let M be a connected proper, non-totally contact-geodesic, to-
tally contact-umbilical m-dimensional semi-invariant submanifold of a Sasakian
manifold N, (m > 4). Then it is a generalized Hopf manifold.
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Proof. From our assumption and Theorem 3.1, we can see that dimD⊥ = 1.
Hence, for any X ∈ Γ(TM), we may put

X = PX + α(X)Z + η(X)ξ = −ψ2X + α(X)Z + η(X)ξ

where α(X) = g(X,Z). Now we define a tensor field J of type (1,1) on M by

JX = ψX + α(X)ξ − η(X)Z.(4.1)

It is clear that J is an almost complex structure on M . Furthermore, we define
a vector field B and a 1-form τ on M by

B = 2(µξ + Z), τ(X) = g(B,X) = 2(α(X) + µη(X))(4.2)

for any X ∈ Γ(TM).
It follows from (2.10), (4.2) and Lemma 3.5 that, we have (∇Xτ)Y = 0, for

any X,Y ∈ Γ(TM). Hence, τ is parallel (and so is closed).
Finally, we shall show that (2.11) holds. For any X,Y ∈ Γ(TM), it follows

from (2.7), (2.10), (4.1) and Lemma 3.5 that

(∇XJ)Y = (∇Xψ)Y + (∇Xα)Y · ξ + α(Y )∇Xξ − (∇Xη)Y · Z − η(Y )∇XZ

= th(X,Y ) + α(Y )AωZX + g(X,Y )ξ − η(Y )X + µg(ψX,Y )ξ
−α(Y )ψX + g(ψX,Y )Z − µη(Y )ψX.

Now, from (3.1) and (3.2) the above equation becomes

(∇XJ)Y = −{g(X,Y ) − η(X)η(Y )}µZ + η(X)α(Y )Z + η(Y )α(X)Z
α(Y ){µX − µη(X)ξ − η(X)Z − α(X)ξ} + g(X,Y )ξ − η(Y )X
µg(ψX,Y )ξ − α(Y )ψX + g(ψX,Y )Z − µη(Y )ψX.

This, together with (4.1) and (4.2) give

(∇XJ)Y =
1
2
{g(X,Y )JB − g(JB, Y )X + g(JX,Y )B − g(B,Y )JX}

=
1
2
{g(X,Y )JB − g(X,JY )B + τ(JY )X − τ(Y )JX}.

This completes the proof of the Theorem.

As an immediate consequence of Theorem 3.1 and Theorem 4.1, we obtain
the following

Theorem 4.2. Let M be a connected totally contact-umbilical m-dimensional
semi-invariant submanifold of a Sasakian manifold N, (m > 4). Then either

(i) M is totally contact-geodesic; or

(ii) M is anti-invariant; or

(iii) M is a generalized Hopf manifold.
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