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Abstract. The weighted three point rule is investigated in the current article.
It involves f (n) (t) being of bounded variation for t ∈ [a, b] . The rule consists
of evaluations at the ends of the interval and at an interior point x. Weighted
Ostrowski and Trapezoidal rules and their related bounds are recaptured as
particular instances of the current development. The unweighted results of
Ostrowski, Trapezoidal and three point rules are also procured if we take the
weight to be unity.
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§1. Introduction

Cerone and Dragomir [5] obtained the following identity involving n−time
differentiable functions with evaluation at an interior point and at the end
points.

For f : [a, b] → R a mapping such that f (n−1) is absolutely continuous on
[a, b] with α : [a, b] → [a, b] and β : [a, b] → [a, b], α ≤ x ≤ β, then for all
x ∈ [a, b] the following identity holds

(1.1) (−1)n
∫ b

a
Kn (x, t) f (n) (t) dt

=
∫ b

a
f (t) dt −

n∑
k=1

1
k!

[
Rk (x) f (k−1) (x) + Sk (x)

]
,
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18 P. CERONE

where the kernel Kn : [a, b]2 → R is given by

Kn (x, t) :=




(t−α(x))n

n! , t ∈ [a, x]

(t−β(x))n

n! , t ∈ (x, b],
(1.2)




Rk (x) = (β (x) − x)k + (−1)k−1 (x − α (x))k

and
Sk (x) = (α (x) − a)k f (k−1) (a) + (−1)k−1 (b − β (x))k f (k−1) (b) .

(1.3)

They obtained inequalities for f (n) ∈ Lp [a, b], p ≥ 1. In an earlier paper [2]
the same authors treated the case n = 1 but also examined the results emanat-
ing from the Riemann-Stieltjes integral

∫ b
a K1 (x, t) df (t) and obtained bounds

for f being of bounded variation, Lipschitzian or monotonic. Applications to
numerical quadrature were investigated covering rules of Newton-Cotes type
containing the evaluation of the function at three possible points: the interior
and extremities. The development included the midpoint, trapezoidal and
Simpson type rules. However, unlike the classical rules (see Atkinson [1]), the
results were not as restrictive in that the bounds were derived in terms of
the behaviour of at most the first derivative and the Peano kernel K1 (x, t).
Perturbed rules were also obtained using Grüss type inequalities. (For other
particular instances of the work [5], see also [2] – [7]).

In 1938, Ostrowski (see for example [15, p. 468]) proved the following
integral inequality:

Let f : I ⊆ R → R be a differentiable mapping on I̊ (̊I is the interior of
I), and let a, b ∈̊I with a < b. If f ′ : (a, b) → R is bounded on (a, b), i.e.,
‖f ′‖∞ := sup

t∈(a,b)
|f ′ (t)| < ∞, then we have the inequality:

∣∣∣∣f (x) − 1
b − a

∫ b

a
f (t) dt

∣∣∣∣ ≤
[

1
4

+

(
x − a+b

2

)2
(b − a)2

]
(b − a)

∥∥f ′∥∥
∞(1.4)

for all x ∈ [a, b].
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller
one.

Fink [10] used the integral remainder from a Taylor series expansion to
show that for f (n−1) absolutely continuous on [a, b], then the identity

∫ b

a
f (t) dt =

1
n

(
(b − a) f (x) +

n−1∑
k=1

Fk (x)

)
+
∫ b

a
KF (x, t) f (n) (t) dt(1.5)
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is shown to hold where

KF (x, t) =
(x − t)n−1

(n − 1)!
· p (x, t)

n
(1.6)

with p (x, t) being given by

p (x, t) =




t − a, t ∈ [a, x]

t − b, t ∈ (x, b]

and

Fk (x) =
n − k

k!

[
(x − a)k f (k−1) (a) + (−1)k−1 (b − x)k f (k−1) (b)

]
.

Fink then proceeds to obtain a variety of bounds from (1.5), (1.6) for f (n) ∈
Lp [a, b]. It may be noticed that (1.5) is again an identity that involves function
evaluations at three points to approximate the integral from the resulting
inequalities. See Mitrinović, Pečarić and Fink [15, Chapter XV] for further
related results.

The following theorem was obtained in Cerone and Dragomir [5]

Theorem 1. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b] and, let α : [a, b] → [a, b] and β : [a, b] → [a, b], α ≤ x ≤ β.
Then the following inequalities hold for all x ∈ [a, b]

|Pn (x)|(1.7)

: =

∣∣∣∣∣
∫ b

a
f (t) dt −

n∑
k=1

1
k!

[
Rk (x) f (k−1) (x) + Sk (x)

]∣∣∣∣∣

≤




‖f(n)‖∞
n! Qn (1, x) if f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n! [Qn (q, x)]
1
q if f (n) ∈ Lp [a, b]

with p > 1, 1
p + 1

q = 1,
‖f(n)‖

1
n! Mn (x) , if f (n) ∈ L1 [a, b] ,

where

Qn (q, x) =
1

nq + 1

[
(α (x) − a)nq+1 + (x − α (x))nq+1(1.8)

+ (β (x) − x)nq+1 + (b − β (x))nq+1
]
,
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M (x)(1.9)

=
1
2

{
b − a

2
+
∣∣∣∣α (x) − a + x

2

∣∣∣∣+
∣∣∣∣β (x) − x + b

2

∣∣∣∣
+
∣∣∣∣x − a + b

2
+
∣∣∣∣α (x) − a + x

2

∣∣∣∣+
∣∣∣∣β (x) − x + b

2

∣∣∣∣
∣∣∣∣
}

,

Rk (x), Sk (x) are given by (1.3), and∥∥∥f (n)
∥∥∥
∞

: = ess sup
t∈[a,b]

∣∣∣f (n) (t)
∣∣∣ < ∞(1.10)

and
∥∥∥f (n)

∥∥∥
p

: =
(∫ b

a

∣∣∣f (n) (t)
∣∣∣p)

1
p

, 1 ≤ p < ∞.

Specialisations of the above results were also considered such as taking

α (x) = (1 − γ) a + γx and β (x) = γx + (1 − γ) b.(1.11)

They obtained results involving Taylor series and procured explicit expressions
for composite rules including a priori estimates of the error.

It is the express aim of the current article to obtain weighted generalisations
of the identity (1.1) and its corresponding bounds (1.7). Bounds insisting on
weaker conditions of bounded variation rather than absolute continuity will be
obtained since the identity will involve a Riemann-Stieltjes integral of f (n) (t)
rather than a Riemann integral of f (n+1) (t) .

The analysis will be based on some results obtained for the weighted trape-
zoidal rules by Cerone and Roumeliotis [8]. Earlier, Matić et al. [14] consid-
ered the weighted Ostrowski problem in which expressions involve evaluation
at one point x ∈ [a, b] rather than trapezoidal type results that involve the end
points a and b. The current development contains these two as special cases
and recaptures earlier results involving unweighted Newton-Cotes rules. The
weighted rules to be investigated here are related to rules known as product
integration rules (see Atkinson [1]).

§2. Some Notation and an Identity Involving Three Points

Before proceeding to develop identities, it is worthwhile to introduce some
notation. The notation of Cerone and Roumeliotis [8] will be utilised.

Let w (·) be a weight function and suppose that w : [a, b] → [0,∞) is
integrable on the interval [a, b] and such that∫ b

a
w (t) dt > 0.
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Also, let

mk (c, d;w) =
∫ d

c
ukw (u) du(2.1)

represent the kth moment about the origin of the weight function w (·) over
the interval [c, d] ⊆ [a, b]. Further, let

Ln (c, d;w) =
1
n!

∫ d

c
(u − c)n w (u) du,(2.2)

Un (c, d;w) =
1
n!

∫ d

c
(d − u)n w (u) du,(2.3)

and

νn (c, γ, d;w) =
1
n!

∫ d

c
|u − γ|n w (u) du.(2.4)

Then

Ln (c, d;w) = νn (c, c, d;w)

and

Un (c, d;w) = νn (c, d, d;w) ,

which are incidentally all nonnegative.
We may notice from (2.2) and (2.3)

0 ≤ Ln (a, x;w) =
1
n!

∫ x

a
(u − a)n w (u) du(2.5)

=
1
n!

n∑
k=0

(
n
k

)
(−a)n−k mk (a, x;w)

and

0 ≤ Un (x, b;w) =
1
n!

∫ b

x
(b − u)n w (u) du(2.6)

=
1
n!

n∑
k=0

(
n
k

)
bn−k (−1)k mk (x, b;w) .

It may be observed that for x ∈ [a, b]

L0 (a, x;w) + U0 (x, b;w) =
∫ b

a
w (t) dt = m0 (a, b;w)
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and

Ln (a, x; 1) =
(x − a)n+1

(n + 1)!
, Un (x, b; 1) =

(b − x)n+1

(n + 1)!
.(2.7)

We introduce the kernel (here we explicitly show the dependence on a and b
of Qn)

Qn (a, x, b; t;w) :=




1
(n − 1)!

∫ t

x
(t − u)n−1 w (u) du, n ∈ N,

w (t) , n = 0,

x, t ∈ [a, b]

(2.8)

which satisfies

∂Qn

∂t
= Qn−1, n ∈ N.(2.9)

The kernel may further be written, using (2.5) and (2.6), as

Qn (a, x, b; t;w) :=




(−1)n Ln−1 (t, x;w) , a ≤ t ≤ x,

Un−1 (x, t;w) , x < t ≤ b,
n ∈ N(2.10)

and Q0 (a, x, b; t;w) = w (t) , x, t ∈ [a, b] .
Further, define the functional

Tn (a, x, b; f ;w)(2.11)

:=
∫ b

a
w (t) f (t) dt −

n∑
k=0

[
Lk (a, x;w) f (k) (a) + (−1)k Uk (x, b;w) f (k) (b)

]

for f : [a, b] → R, x ∈ [a, b] and w (·) is a weight function with Lk (c, d;w) ,
Uk (c, d;w) as defined by (2.5) and (2.6). The following theorem was obtained
by Cerone and Roumeliotis [8].

Theorem 2. Let f : [a, b] → R with a < b. For n = 0, 1, 2, . . . let Qn+1 (a, x, b; t;w)
be as given by (2.8) and Q0 (a, x, b; t;w) = w (t) . Further, suppose that for
some n ∈ N ∪ {0}, f (n) (t) exists for t ∈ [a, b], where f (0) (t) ≡ f (t) then for
f (n) (·) of bounded variation the identity

Tn (a, x, b; f ;w) = (−1)n+1
∫ b

a
Qn+1 (a, x, b; t;w) df (n) (t)(2.12)

holds where Tn and Qn+1 are as defined by (2.9) and (2.8) respectively.
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The following identity involves function evaluation at three points.

Theorem 3. Let the conditions of Theorem 2 hold, then for a < α ≤ x ≤
β < b :

Tn (a, α, x, β, b; f ;w) = (−1)n+1
∫ b

a
κn+1 (a, α, x, β, b; t;w) df (n) (t) ,(2.13)

where

Tn (a, α, x, β, b; f ;w)(2.14)

: =
∫ b

a
w (t) f (t) dt −

n∑
k=0

{
Lk (a, α;w) f (k) (a)

+
[
(−1)k Uk (α, x;w) + Lk (x, β;w)

]
f (k) (x)

+ (−1)k Uk (β, b;w) f (k) (b)
}

and

κn+1 (a, α, x, β, b; t;w)(2.15)

=




1
n!

∫ t

α
(t − u)n w (u) du, t ∈ [a, x] , n ∈ N,

1
n!

∫ t

β
(t − u)n w (u) du, t ∈ (x, b],

w (t) , t ∈ [a, b] , n = 0.

Proof. The proof follows directly from (2.12) of Theorem 2. An application of
the theorem on the interval [a, x] gives

Tn (a, α, x; f ;w) = (−1)n+1
∫ x

a
Qn+1 (a, α, x, t;w) df (n) (t)(2.16)

and similarly on (x, b]

Tn (x, β, b, f ;w) = (−1)n+1
∫ b

x
Qn+1 (x, β, b, f ;w) df (n) (t) .(2.17)

Adding (2.16) and (2.17) produces, on utilising (2.11) and (2.8), (2.13) with
its elements being as presented in (2.14) and (2.15).

Remark 1. We note that if we take α = β = x, then identity (2.12) for the
generalised weighted trapezoidal rule is recaptured. If α and β are chosen
so that α = a and β = b, then the identity obtained by Matić et al. [14] is
recaptured as a special case.
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With the definitions (2.2) and (2.3), we may write, from (2.15),

κn+1 (a, α, x, β, b; t;w) =




(−1)n+1 Ln (t, α;w) , t ∈ [a, α]

Un (α, t;w) , t ∈ (α, x]

(−1)n+1 Ln (t, β;w) , t ∈ (x, β]

Un (β, t;w) , t ∈ (β, b]

w (t) , t ∈ [a, b] , n = 0.

, n ∈ N,

(2.18)

§3. Inequalities for the Weighted Three Point Rule

The following well known lemmas (see [2] for proofs) will prove useful for
procuring bounds for a Riemann-Stieltjes integral. They will be stated here
for lucidity.

Lemma 1. Let g, v : [a, b] → R be such that g is continuous and v is of
bounded variation on [a, b]. Then the Riemann-Stieltjes integral

∫ b
a g (t) dv (t)

exists and is such that∣∣∣∣
∫ b

a
g (t) dv (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) ,(3.1)

where
∨b

a (v) is the total variation of v on [a, b].

Lemma 2. Let g, v : [a, b] → R be such that g is Riemann integrable on [a, b]
and v is L−Lipschitzian on [a, b]. Then∣∣∣∣

∫ b

a
g (t) dv (t)

∣∣∣∣ ≤ L
∫ b

a
|g (t)| dt(3.2)

with v is L−Lipschitzian if it satisfies

|v (x) − v (y)| ≤ L |x − y|

for all x, y ∈ [a, b].

Lemma 3. Let g, v : [a, b] → R be such that g is Riemann integrable on [a, b]
and v is monotonic nondecreasing on [a, b]. Then∣∣∣∣

∫ b

a
g (t) dv (t)

∣∣∣∣ ≤
∫ b

a
|g (t)| dv (t) .(3.3)
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Note that if v is nonincreasing, then −v is nondecreasing.

Theorem 4. Let the conditions of Theorems 2 and 3 continue to hold such
that f (n) (t) is of bounded variation for t ∈ [a, b] . We then have for α, x, β ∈
[a, b] , α < x < β and n ∈ N ∪ {0}

|Tn (a, α, x, β, b; f ;w)|(3.4)

≤




max {An (a, α, x;w) , Bn (x, β, b;w)} 1
2

∨b
a

(
f (n)

)
,

L [Ln+1 (a, α;w) + Un+1 (α, x;w) + Ln+1 (x, β;w) + Un+1 (β, b;w)] ,
f (n) is L− Lipschitzian,

Ln (a, α;w)
[
f (n) (α) − f (n) (a)

]
+ Un (α, x;w)

[
f (n) (x) − f (n) (α)

]
+Ln (x, β;w)

[
f (n) (β) − f (n) (x)

]
+ Un (β, b;w)

[
f (n) (b) − f (n) (β)

]
,

f (n) is monotonic nondecreasing

where Tn (a, α, x, β, b; f ;w) is given by (2.14),

An (a, α, x;w) = Ln (a, α;w) + Un (α, x;w) + |Un (α, x;w) − Ln (a, α;w)| ,
(3.5)

Bn (x, β, b;w) = Ln (x, β;w) + Un (β, b;w) + |Un (β, b;w) − Ln (x, β;w)|
(3.6)

and Ln (·, ·;w), Un (·, ·;w) are given by (2.2) and (2.3) respectively.
Here, by

∨b
a (h) is meant to represent the total variation of h (t) for t ∈

[a, b] . That is,
∨b

a (h) =
∫ b
a |h (t)| dt.

Proof. Taking the modulus of (2.13) and utilising Lemma 1, we have

|Tn (a, α, x, β, b; f ;w)| =
∣∣∣∣
∫ b

a
κn+1 (a, α, x, β, b; t;w) df (n) (t)

∣∣∣∣(3.7)

≤ sup
t∈[a,b]

|κn+1 (a, α, x, β, b; t;w)|
b∨
a

(
f (n)

)
.

Now, from (2.15) or the more explicit form (2.18), we have,

sup
t∈[a,b]

|κn+1 (a, α, x, β, b; t;w)|(3.8)

=
1
n!

max
{∫ α

a
(u − a)n w (u) du,

∫ x

α
(x − u)n w (u) du,

∫ β

x
(u − x)n w (u) du,

∫ b

β
(b − u)n w (u) du

}
= max {Ln (a, α;w) , Un (α, x;w) , Ln (x, β;w) , Un (β, b;w)}

=
1
2

max {An (a, α, x;w) , Bn (x, β, b;w)}
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where

An (a, α, x;w) = 2max {Ln (a, α;w) , Un (α, x;w)}

and

Bn (x, β, b;w) = 2max {Ln (x, β;w) , Un (β, b;w)}

and, using the fact that max {u, v} = 1
2 [u + v + |u − v|] , we have from (3.7)

and (3.8) the first inequality in (3.4).
If f (n) (·) is L−Lipschitzian on [a, b] , then from Lemma 2 and (2.13) we

have

|Tn (a, α, x, β, b; f ;w)| =
∣∣∣∣
∫ b

a
κn+1 (a, α, x, β, b; t;w) df (n) (t)

∣∣∣∣(3.9)

≤ L
∫ b

a
|κn+1 (a, α, x, β, b; t;w)| dt.

Making use of (2.18) we have

(3.10)
∫ b

a
|κn+1 (a, α, x, β, b; t;w)| dt

=
∫ α

a
Ln (t, α;w) dt+

∫ x

α
Un (α, t;w) dt+

∫ β

x
Ln (t, β;w) dt+

∫ b

β
Un (β, t;w) dt.

We may simplify the expression on the right by an interchange of the order of
integration to give∫ α

a
Ln (t, α;w) dt =

1
n!

∫ α

a

∫ α

t
(u − t)n w (u) dudt

=
1
n!

∫ α

a
w (u)

∫ u

a
(u − t)n dtdu

=
1

(n + 1)!

∫ α

a
(u − a)n+1 w (u) du = Ln+1 (a, α;w)

and∫ x

α
Un (α, t;w) dt =

1
n!

∫ x

α

∫ t

α
(t − u)n w (u) dudt

=
1
n!

∫ x

α
w (u)

∫ x

u
(t − u)n dtdu

=
1

(n + 1)!

∫ x

α
(x − u)n+1 w (u) du = Un+1 (α, x;w) .
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In a similar fashion, or alternatively making the appropriate associations, we
have ∫ β

x
Ln (t, β;w) dt = Ln+1 (x, β;w)

and ∫ b

β
Un (β, t;w) dt = Un+1 (β, b;w) .

Thus, from (3.9) and (3.10),

∫ b

a
|κn+1 (a, α, x, β, b; t;w)| dt(3.11)

= Ln+1 (a, α;w) + Un+1 (α, x;w) + Ln+1 (x, β;w) + Un+1 (β, b;w) ,

giving the second inequality in (3.4).
For the final inequality in (3.4) when f (n) (t) is monotonic nondecreasing

on [a, b], we have from the identity (2.13) and utilising Lemma 3

|Tn (a, α, x, β, b; f ;w)| ≤
∫ b

a
|κn+1 (a, α, x, β, b; t;w)| df (n) (t) .(3.12)

Now, from (2.18),

∫ b

a
|κn+1 (a, α, x, β, b; t;w)| df (n) (t)(3.13)

=
∫ α

a
Ln (t, α;w) df (n) (t) +

∫ x

α
Un (α, t;w) df (n) (t)

+
∫ β

x
Ln (t, β;w) df (n) (t) +

∫ b

β
Un (β, t;w) df (n) (t) .

We have for t ≤ γ

Ln (t, γ;w) =
1
n!

∫ γ

t
(u − t)n w (u) du(3.14)

and so

L′
n (t, γ;w) =




−Ln−1 (t, γ;w) , n ∈ N

−w (t) , n = 0,
(3.15)

where the dash represents differentiation with respect to t.
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Also for t ≥ γ

Un (γ, t;w) =
1
n!

∫ t

γ
(t − u)n w (u) du(3.16)

differentiation with respect to t gives

U ′
n (γ, t;w) =




Un−1 (γ, t;w) , n ∈ N

w (t) , n = 0.
(3.17)

Thus integration by parts of each of the integrals on the right hand side of
(3.13) and using (3.14) – (3.17) gives

∫ b

a
|κ (a, α, x, β, b; t;w)| df (t)(3.18)

= L0 (a, α;w) f (a) +
∫ α

a
w (t) f (t) dt + U0 (α, x;w) f (x)

−
∫ x

α
w (t) f (t) dt − L0 (x, β;w) f (x)

+
∫ β

x
w (t) f (t) dt + U0 (β, b;w) f (b) −

∫ b

β
w (t) f (t) dt

≤ L0 (a, α;w) [f (α) − f (a)] + U0 (α, x;w) [f (x) − f (α)]
+L0 (x, β;w) [f (β) − f (x)] + U0 (β, b;w) [f (b) − f (β)] .

Here we have used the facts that if g (t) > 0 and f (t) is monotonic nonde-
creasing for t ∈ [a, b] , then



∫ b
a g (t) f (t) dt ≤ f (b)

∫ b
a g (t) dt and,

−
∫ b
a g (t) f (t) dt ≤ −f (a)

∫ b
a g (t) dt.

(3.19)

Further, for n ∈ N, from (3.13) and using (3.14) – (3.17) gives on integration
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by parts∫ b

a
|κn+1 (a, α, x, β, b; t;w)| df (n) (t)(3.20)

= −Ln (a, α;w) f (n) (a) +
∫ α

a
Ln−1 (t, α;w) f (n) (t) dt

+Un (α, x;w) f (n) (x) −
∫ x

α
Un−1 (α, t;w) f (n) (t) dt

−Ln (x, β;w) f (n) (x) +
∫ β

x
Ln−1 (t, x;w) f (n) (t) dt

+Un (β, b;w) f (n) (b) −
∫ b

β
Un−1 (x, t;w) f (n) (t) dt

≤ Ln (a, α;w)
[
f (n) (α) − f (n) (a)

]
+ Un (α, x;w)

[
f (n) (x) − f (n) (α)

]
+Ln (x, β;w)

[
f (n) (β) − f (n) (x)

]
+ Un (β, b;w)

[
f (n) (b) − f (n) (β)

]
,

where we have utilised (3.19). We notice that the inequality in (3.20) includes
that in (3.18) on taking n = 0. Thus substitution of (3.20) into (3.12) gives
the third inequality in (3.4).

The following theorem gives bounds on |Tn (a, α, x, β, b; f ;w)| in terms of∥∥f (n+1)
∥∥

p
, p ≥ 1, the Lebesgue norms as defined by (1.10).

Theorem 5. Let the conditions of Theorem 4 hold and further let f (n) (t) be
absolutely continuous for t ∈ [a, b] then

|Tn (a, α, x, β, b; f ;w)|(3.21)

≤




[Ln+1 (a, α;w) + Un+1 (α, x;w) + Ln+1 (x, β;w)
+Un+1 (β, b;w)]

∥∥f (n+1)
∥∥
∞ , f (n+1) ∈ L∞ [a, b] ;

‖κn+1 (a, α, x, β, b; ·;w)‖q

∥∥f (n+1)
∥∥

p
, f (n+1) ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;

max {An (a, α, x;w) , Bn (x, β, b;w)} ‖f(n+1)‖
1

2 , f (n+1) ∈ L1 [a, b] ,

where Tn (a, α, x, β, b; f ;w) is as given by (2.14) and Ln (·, ·;w), Un (·, ·;w) by
(2.2), (2.3),

An (a, α, x;w) = 2max {Ln (a, α;w) , Un (α, x;w)}

and

Bn (x, β, b;w) = 2max {Ln (x, β;w) , Un (β, b;w)} .
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Proof. From identity (2.13) we have for f (n) (t) absolutely continuous on [a, b]
that df (n) (t) = f (n+1) (t) dt giving the identity

Tn (a, α, x, β, b; f ;w) = (−1)n+1
∫ b

a
κn+1 (a, α, x, β, b;w) f (n+1) (t) dt.(3.22)

Thus using the well known properties of the modulus and integral, we have
from (3.22)

|Tn (a, α, x, β, b; f ;w)| ≤
∫ b

a

∣∣∣κn+1 (a, α, x, β, b, t;w) f (n+1) (t)
∣∣∣ dt.(3.23)

Now, for f (n+1) ∈ L∞ [a, b]

∫ b

a

∣∣∣κn+1 (a, α, x, β, b, t;w) f (n+1) (t)
∣∣∣ dt ≤

∥∥∥f (n+1)
∥∥∥
∞

∫ b

a
|κn+1 (a, α, x, β, b, t;w)| dt

and so from (3.11) produces the first inequality.
For the second inequality we use Hölder’s integral inequality in (3.23) to

give ∫ b

a

∣∣∣κn+1 (a, α, x, β, b, t;w) f (n+1) (t)
∣∣∣ dt

≤
(∫ b

a
|κn+1 (a, α, x, β, b, t;w)|q dt

) 1
q

×
(∫ b

a

∣∣∣f (n+1) (t)
∣∣∣p dt

) 1
p

= ‖κn+1 (a, α, x, β, b; ·;w)‖q

∥∥∥f (n+1)
∥∥∥

p
, p > 1,

1
p

+
1
q

= 1.

The final inequality is obtained for f (n+1) ∈ L1 [a, b] from (3.23) to give

∫ b

a

∣∣∣κn+1 (a, α, x, β, b, t;w) f (n+1) (t)
∣∣∣ dt ≤ sup

t∈[a,b]
|κn+1 (a, α, x, β, b, t;w)|

∥∥∥f (n+1)
∥∥∥

1
,

which from (3.8) and (3.5), (3.6) give the required result.

Remark 2. If we take w (t) ≡ 1 in Theorem 5 and reduce n by one, we
obtain the results of Theorem 1 the unweighted three point rule for n−time
differentiable function f (t) of Cerone and Dragomir [5]. Taking α = β = x
gives the corresponding trapezoidal type result of Cerone et al. [7] and α = a,
β = b reproduces the Ostrowski type results of Cerone et al. [6].

Remark 3. Taking α = β = x gives the generalised weighted trapezoidal
rule of Cerone and Roumeliotis [8] while if α = a and β = b, the weighted
Ostrowski type results of Matić et al. [10]. The results of Cerone et al. [9] are
also recaptured for n = 1 consisting of bounds involving f ′′ (·).
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§4. Some Coarser Bounds and Other Results

The results given by (3.21) are valid for any α, x, β ∈ [a, b] with α ≤ x ≤
β.With regards to the first and third inequality in (3.21), let

I (α, x, β) : = Ln+1 (a, α;w) + Un+1 (α, x;w)(4.1)
+Ln+1 (x, β;w) + Un+1 (β, b;w)

and

J (α, x, β) := max {Ln (a, α;w) , Un (α, x;w) , Ln (x, β;w) , Un (β, b;w)} .
(4.2)

The following lemma investigates obtaining coarser bounds which may
prove useful in practice. It involves obtaining bounds on

‖κn+1 (a, α, x, β, b; t;w)‖1 = I (α, x, β) ,

where I (α, x, β) is given by (4.1).

Lemma 4. Let w (t) be a weight function defined on [a, b] and α, x, β ∈ [a, b]
with α ≤ x ≤ β. Then,

|I (α, x, β)| = ‖κn+1 (a, α, x, β, b; t;w)‖1(4.3)

≤




D (n + 2) ‖w‖∞ , w ∈ L∞ [a, b] ;

D
1
q (q (n + 1) + 1) ‖w‖p , w ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
θn+1

(n + 1)!
‖w‖1 , w ∈ L1 [a, b] ,

where

ηD (η) = (α − a)η + (x − α)η + (β − x)η + (b − β)η(4.4)

and

θ =
1
2

{
b − a

2
+
∣∣∣∣α − a + x

2

∣∣∣∣+
∣∣∣∣β − x + b

2

∣∣∣∣(4.5)

+
∣∣∣∣x − a + b

2
+
∣∣∣∣α − a + x

2

∣∣∣∣−
∣∣∣∣β − x + b

2

∣∣∣∣
∣∣∣∣
}

.

Proof. From (4.1) with (2.2) and (2.3), it may be noticed that

I (α, x, β) =
1

(n + 1)!

∫ b

a
φn+1 (a, α, x, β, b;u) w (u) du,(4.6)
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where

φ (a, α, x, β, b;u) =




u − a, u ∈ [a, α] ,

x − u, u ∈ (α, x],

u − x, u ∈ (x, β],

b − u, u ∈ (β, b].

(4.7)

Now, for w ∈ Lp [a, b] , 1 < p < ∞, then

(n + 1)!I (α, x, β) ≤
(∫ b

a
φq(n+1) (a, α, x, β, b;u) du

) 1
q
(∫ b

a
wp (u) du

) 1
p

.

(4.8)

Explicitly, from (4.7),

(∫ b

a
φq(n+1) (a, α, x, β, b;u) du

) 1
q

=
{∫ α

a
(u − a)q(n+1) du +

∫ x

α
(x − u)q(n+1) du

+
∫ β

x
(u − x)q(n+1) du +

∫ b

β
(b − u)q(n+1) du

} 1
q

=

{
(α − a)q(n+1)+1 + (x − α)q(n+1)+1 + (β − x)q(n+1)+1 + (b − β)q(n+1)+1

q (n + 1) + 1

} 1
q

.

Hence, from (4.8) the second inequality in (4.3) results. The first inequality
is also procured on noting that it corresponds to the case q = 1.

To obtain the final inequality, we note from (4.6) that for w ∈ L1 [a, b]

(n + 1)!I (α, x, β) ≤ sup
u∈[a,b]

φn+1 (a, α, x, β, b;u) ‖w‖1 .(4.9)

Now,

sup
u∈[a,b]

φn+1 (a, α, x, β, b;u) = maxn+1 {α − a, x − α, β − x, b − β} .(4.10)

Further, using the fact that max {X,Y } = X+Y
2 + |X−Y |

2 , then

m1 = max {α − a, x − α} =
x − a

2
+
∣∣∣∣α − a + x

2

∣∣∣∣
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and

m2 = max {β − x, b − β} =
b − x

2
+
∣∣∣∣β − x + b

2

∣∣∣∣
giving

max {α − a, x − α, β − x, b − β} = max {m1,m2}

=
1
2

{
b − a

2
+
∣∣∣∣α − a + x

2

∣∣∣∣+
∣∣∣∣β − x + b

2

∣∣∣∣
+
∣∣∣∣x − a + b

2
+
∣∣∣∣α − a + x

2

∣∣∣∣−
∣∣∣∣β − x + b

2

∣∣∣∣
∣∣∣∣
}

= θ, as given above by (4.5).

Thus, from (4.9) and (4.10) we readily obtain the third inequality in (4.3).

Karamata [10] proved the following theorem.

Theorem 6. Let g,w : [a, b] → R be integrable on [a, b] and suppose m ≤
g (t) ≤ M and 0 < c ≤ w (t) ≤ λc for t ∈ [a, b] and some constants m,M, c
and λ. If G and A (g,w) are defined as

G :=
1

b − a

∫ b

a
g (t) dt and A (g,w) :=

∫ b
a g (t)w (t) dt∫ b

a w (t) dt
(4.11)

then

λm (M − G) + M (G − m)
λ (M − G) + (G − m)

≤ A (g,w) ≤ m (M − G) + λM (G − m)
(M − G) + λ (G − m)

.(4.12)

Using the above theorem of Karamata, the third inequality in (4.3) may be
improved.

If we associate φn+1 (a, α, x, β, b;w), as defined by (4.7), with g (t) above,
then

0 ≤ φ (a, α, x, β, b;u) ≤ θ = max {α − a, x − α, β − x, b − β} ,

where θ may be represented by (4.5), and

G =
1

b − a

∫ b

a
φn+1 (a, α, x, β, b;u) du =

1
b − a

D (n + 2) ,

where D (η) is as defined by (4.4).
Hence from (4.11) and (4.12) we have

I (α, x, β) = ‖κn+1 (a, α, x, β, b; t;w)‖1

≤ λθn+1D (n + 2) ‖w‖1

(b − a) θn+1 − D (n + 2) + λD (n + 2)
.
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Remark 4. The above results obtain coarser bounds for I (α, x, β) which are
perhaps easier to implement. The parameters α, x and β may be chosen in
many ways such that a ≤ α ≤ x ≤ β ≤ b. If for example α = β = x then
from (2.14) Tn (a, x, x, x, b; f ;w) produces a product trapezoidal rule for the
weighted integral with bounds provided by (3.4) or (3.21).

If we choose α, x and β to be at their respective midpoints, then
Tn

(
a, 2a+b

2 , a+b
2 , a+2b

2 , b; f ;w
)

may be bounded by either (3.4) or (3.21) with
α = a+x

2 , x = a+b
2 and β = x+b

2 .
If we choose α, x and β satisfying

Ln (a, α̃;w) = Un (α̃, x̃;w) , Ln

(
x̃, β̃;w

)
= Un

(
β̃, b;w

)
(4.13)

and

Ln

(
x̃, β̃;w

)
= Un (α̃, x̃;w)

then from (2.14)

(4.14) Tn

(
a, α̃, x̃, β̃, b; f ;w

)
=
∫ b

a
w (t) f (t) dt −

n∑
k=0

W̃k

(
α̃, x̃, β̃

)

×
{

f (k) (a) +
[
(−1)k + 1

]
f (k) (x) + f (k) (b)

}
where

W̃k

(
α̃, x̃, β̃

)
= Lk (a, α̃;w) = Uk (α̃, x̃;w) = Lk

(
x̃, β̃;w

)
= Uk

(
β̃, b;w

)
.

(4.15)

The bounds for (4.14) may be obtained from (3.4) or (3.11) with α = α̃, β = β̃
and x = x̃. In particular, for f (n+1) ∈ L1 (a, b)

∣∣∣Tn

(
a, α̃, x̃, β̃, b; f ;w

)∣∣∣ ≤ J
(
α̃, x̃, β̃

) ∥∥f (n+1)
∥∥

1

2
(4.16)

= W̃n

(
α̃, x̃, β̃

) ∥∥f (n+1)
∥∥

1

2
,

where W̃n

(
α̃, x̃, β̃

)
is as defined in (4.15). If w (t) ≡ 1, then α̃, x̃ and β̃, as

may be shown from solving (4.13), would be at their respective midpoints,
recovering the first choice given above.

If only α and β are taken at their respective midpoints so that α = α∗ = a+x
2

and β = β∗ = x+b
2 , then we may choose x = x∗ to satisfy

Un (α∗, x∗;w) = Ln (x∗, β∗;w) .(4.17)
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From (2.14) we would then have

(4.18) Tn (a, α∗, x∗, β∗, b; f ;w) =
∫ b

a
w (t) f (t) dt

−
n∑

k=0

{
Lk (a, α∗;w) f (k) (a) +

[
(−1)k + 1

]
W ∗

k (α∗, x∗, β∗) f (k) (x∗)

+ (−1)k Uk (β∗, b;w) f (k) (b)
}

,

where

W ∗
k (α∗, x∗, β∗) = Un (α∗, x∗, β∗) = Ln (α∗, x∗, β∗)(4.19)

with

α∗ =
a + x∗

2
, β∗ =

x∗ + b

2
.(4.20)

Again the bounds may be obtained from either (3.4) or (3.21) depending on
the assumption regarding f (n+1) (·) .

In particular, for f (n+1) ∈ L∞ [a, b] then from (3.21), (4.1) and (4.18)

|Tn (a, α∗, x∗, β∗, b; f ;w)| ≤ I (α∗, x∗, β∗)
∥∥∥f (n+1)

∥∥∥
∞

.

The question of the rule Tn (a, α, x, β, b; f ;w) providing the tightest bounds
for various assumptions on the behaviour of f (n+1) (t) , t ∈ [a, b] remains an
open issue.
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