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Chaotic semigroups generated by certain
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Abstract. We consider the initial value problem of a partial di®erential equa-

tion @u
@t

= c(x) @u
@x

+ g(x; u) in some function spaces X on the interval I of the
real line. By using the representation formula of the solution to the equation,
we de¯ne a C0-semigroup fTtgţ 0 of bounded linear operators on X . When
c(x) = °x (° 2 R), g(x; u) = h(x)u (h 2 C(I;C)) and I is [0,1] or [1;1), we
give su±cient conditions for the semigroup to be chaotic by using the spectral
property of its in¯nitesimal generator. When c(x) = 1 and g(x; u) = h(x)u,
we also give su±cient conditions for the semigroup to be chaotic by using the
property of an admissible weight function.
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x1. Introduction

The equation

@u
@t

= c(x)
@u
@x

+ g(x;u) (x; t ¸ 0)(1.1)

has been used to model the dynamics of a population of cells undergoing si-
multaneous proliferation and maturation, where x is the maturation variable
([4], [5]). The solution of (1.1) has some connection with Wiener process.
In fact, A. Lasota and M. C. Mackey [3] showed how to construct an exact,
continuous time, semidynamical system that corresponds to the partial di®er-
ential equation above with c(x) =¡x (x 2 [0;1]) and g(x;u) = 1

2u by using a
one-dimensional Wiener process.
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52 M. MATSUI AND F. TAKEO

In this paper, we consider some special cases of (1.1) which generates
chaotic semigroups and generalize the result of A. Lasota and M. C. Mackey
[3].

In x2, we consider the space X1 = ff 2C([0;1];C) j f(0) = 0g and the
following initial value problem of the partial di®erential equation:

8
<
:

@u
@t

= °x
@u
@x

+h(x)u;

u(0;x) = f(x);
(1.2)

where ° 2 C, h 2C([0;1];C) and f 2 X1.
If u(t; x) is the classical solution of (1.2) for f 2 C1([0; 1];C) \X1, then it

must be of the form u(t; x) = f(e°tx) exp(
R t
0 h(e°(t¡s)x)ds). In order to satisfy

e°tx 2 [0; 1] for x 2 [0; 1] and t ¸ 0, ° must be a non-positive number. In this
case, by using this representation formula f(e°tx) exp(

R t
0 h(e°(t¡s)x)ds) of the

solution of (1.2), we can de¯ne the bounded linear operators fTtgt¸0 onX1 by
Ttf(x) = f(e°tx) exp(

R t
0 h(e

°(t¡s)x)ds) for f 2X1. Then fTtgt¸0 is a strongly
continuous semigroup on X1 (Theorem 1). In this paper we call fTtgt 0̧ the
solution semigroup on X1 to the partial di®erential equation (1.2).

In [1], W. Desch, W. Schappacher and G. F. Webb gave a su±cient condi-
tion (Theorem A) for fTtgt¸0 to be chaotic, by using the eigenvectors of the
in¯nitesimal generator A of the strongly continuous semigroup fTtgt¸0. By
applying their result to the solution semigroup, we give a su±cient condition
for the solution semigroup to be chaotic onX1 (Theorem 1). In x3, we also give
a su±cient condition for the solution semigroup to be chaotic on L2([0;1];C)
(Theorem 2).

In x4, we deal with the partial di®erential equation

(1:30)
@u
@t

= °
@u
@x

+ h(x)u (x; t ¸ 0)

with the initial condition u(0; x) = f(x) with some f 2 C0(I;C), where I =
[0;1) and C0(I;C) is the space of all complex-valued continuous functions on
I satisfying limx!1 f(x) = 0. If u(t;x) is the classical solution of (1.30) for
f 2 C0(I;C), then it must be of the form u(t;x) = e

Rx+t
x h(s)dsf(x+ °t). In

order to satisfy x+ t 2 [0;1) for x 2 [0;1) and t ¸ 0, ° must be a non-
negative number. Since the case ° = 0 is a special case, we shall consider the
case ° > 0. So by replacing °t by t, we shall consider the following partial
di®erential equation instead of (1.30):

@u
@t

=
@u
@x

+h(x)u: (x; t ¸ 0)(1.3)

Since the method of the proof in x2 is not applicable in this case, we use
the result in [7] and show that the solution semigroup fTtgt¸0 to the par-
tial di®erential equation (1.3) is a chaotic, strongly continuous semigrroup on
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C0(I;C) (Theorem 4), if h is a bounded continuous function on I satisfyingR1
0 h(s)ds =1.

The authors would like to express their deep gratitude to Professor Shizuo
Miyajima for his valuable comments and useful advices. At ¯rst the function
h(x) in Theorems 1 and 2 were considered as a constant function. By his
suggestion we improve the theorems by using the function h(x) in C([0;1];C).

x2. Chaotic semigroups on C(I;C)

Recall that a family fTtgt 0̧ of bounded linear operators on a Banach space X
is called a strongly continuous semigroup if it satis̄ es the following conditions:
(1) Tt+s = TtTs for all t; s 2 R+, (2) T0 = Id, and (3) the mapping : t 7! Ttx is
continuous from R+ to X for every x 2 X . A strongly continuous semigroup
fTtgt 0̧ is called hypercyclic if there exists x 2 X such that the set fTtx j t ¸ 0g
is dense inX. The semigroup fTtgt¸0 is called chaotic if fTtgt¸0 is hypercyclic
and the set of periodic points Xper = fx 2 X j 9t > 0 s:t: Ttx = xg is dense in
X.

As to a su±cient condition for a semigroup to be chaotic, the following
theorem is known.

Theorem A ([1]). Let X be a separable Banach space and let A be the in-
¯nitesimal generator of a strongly continuous semigroup fTtgt¸0 on X. Let U
be an open subset of the point spectrum of A, which intersects the imaginary
axis, and for each ¸ 2U let x¸ be a nonzero eigenvector, i.e. Ax¸ = ¸x¸. For
each Á 2 X¤ we de¯ne a function FÁ : U ! C by FÁ(¸) = hÁ; x¸i. Assume
that for each Á 2 X¤ the function FÁ is analytic and that FÁ does not vanish
identically on U unless Á= 0. Then fTtgt¸0 is chaotic.

We shall apply this theorem to the semigroup related to the following par-
tial di®erential equation. We consider the space X1 = ff 2 C([0; 1];C) j
f(0) = 0g and the following initial value problem of a partial di®erential equa-
tion:

8
<
:
@u
@t

= °x@u
@x

+h(x)u

u(0;x) = f(x)
(2.1)

where ° < 0, h 2 C([0;1];C) and f 2 X1. By using the representation formula
exp

nR t
0 h(e

°(t¡s)x)ds
o
f(e°tx) of the classical solution of (2.1), we de¯ne the
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bounded linear operator fTtgt¸0 on X1 as follows:

Ttf(x) = exp
½Z t

0
h(e°(t¡s)x)ds

¾
f(e°tx) for f 2 X1:

Note that if ° > 0 then e°tx =2 [0; 1] holds for x 2 (e¡°t;1]. Since we
are interested in the case ° 6= 0, we suppose ° < 0. Since the equations
Tt1+t2f(x) = exp

nR t1+t2
0 h(e°(t1+t2¡s)x)ds

o
f(e°(t1+t2)x) = Tt1 ¢ Tt2f(x) and

T0f(x) = f(x) hold for any f 2 X1, fTtgt¸0 is a semigroup. Moreover the
semigroup fTtgt¸0 becomes a strongly continuous semigroup onX1. The proof
of continuity is shown in the following theorem. Recall that the in¯nitesimal
generator A : D(A)µ X1 ! X1 of the strongly continuous semigroup fTtgt¸0
on X1 is given by

Af = lim
t#0

Ttf ¡ f
t

for every f in its domain

D(A) =
½
f 2X1

¯̄
¯̄ lim
t#0

Ttf ¡ f
t

exists.
¾
:

In this paper we call fTtgt¸0 the solution semigroup to the partial di®eren-
tial equation. By applying Theorem A to the solution semigroup, we have a
su±cient condition for the solution semigroup to be chaotic.

Theorem 1. Let X1 be the space ff 2 C([0;1];C) j f(0) = 0g with sup norm.
We consider the following initial value problem of a partial di®erential equa-
tion:

8
<
:

@u
@t

= °x
@u
@x

+h(x)u

u(0;x) = f(x)
(2.2)

where ° < 0, h 2 C([0; 1];C) and f 2 X1. Then the solution semigroup
fTtgt 0̧ (Ttf(x) = exp

nR t
0 h(e°(t¡s)x)ds

o
f(e°tx)) to the partial di®erential

equation is a strongly continuous semigroup onX1. Moreover if min f<(h(x)) j
x 2 [0; 1]g is positive, then fTtgt¸0 is chaotic.

Proof. Put a= sup0·x·1 jh(x)j. For f 2 X1, we have

kTtf ¡ fk = sup
0·x·1

je
R t
0 h(e

°(t¡s)x)dsf(e°tx)¡ f(x)j

· jeat ¡ 1j sup
0·x·1

jf(e°tx)j + sup
0·x·1

jf(e°tx)¡ f(x)j

= jeat ¡ 1jjjf jj+ sup
0·x·1

jf(e°tx)¡ f(x)j;
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which implies the strong continuity of fTtgt¸0.

We shall show that fTtgt¸0 is chaotic if minf<(h(x)) j x 2 [0; 1]g > 0. To
show that all assumptions of Theorem A hold, we verify the following:
(i) X1 is a separable Banach space.
(ii) The existence of an open set U of the point spectrum of the in¯nitesimal
generator A which intersects the imaginary axis.
(iii) For ¸ 2 U , put f¸(x) = exp(¡1

°
R 1
x
¸¡h(s)

s ds). For each Á 2 X¤
1 we de¯ne

a function FÁ : U ! C by FÁ(¸) = hÁ;f¸i. Then for each Á 2 X¤
1 the function

FÁ is analytic on U .
(iv) If FÁ = 0 on U , then Á = 0.

(i) It is clear thatX1 is a separable Banach space by Weierstrass approximation
theorem.
(ii) Let A : D(A) µ X1 ! X1 be the in¯nitesimal generator of the strongly
continuous semigroup fTtgt¸0. Put

D1 =
n
f 2 X1 \C1((0;1];C)

¯̄
¯ lim
x!0

xf 0(x) = 0
o
:

Then we shall show that D1 =D(A) holds. For f 2 D(A), Af belongs to
X1 and f is di®erentiable on (0,1). By a standard argument, we can see that
Af(x) = h(x)f(x)+ °xf 0(x) holds for x 2 (0;1]. So limx!0 xf 0(x) = 0, which
implies D(A) ½ D1. Conversely, suppose f 2 D1. Then hf + °xf 0 2 X1. So
for any " > 0, there exists 1 > ±1 > 0 such that jh(x)f(x) + °xf 0(x)j < "
for any x 2 [0; ±1], jxf 0(x) ¡ x0f0(x0)j < " and jf(x) ¡ f(x0)j < " for any
x;x0 2 [0;1] with jx¡ x0j < ±1. Since h is continuous, there exists ±2 > 0 such
that jh(e°sx)¡h(x)j < " for every 0 · s < ±2 and x 2 [0; 1]. So we have

¯̄
¯̄
¯
e
R t
0 h(e

°(t¡s)x)ds ¡ 1
t

¡ h(x)
¯̄
¯̄
¯ <

¯̄
¯̄
¯

R t
0 h(e

°(t¡s)x)ds
t

¡h(x)

¯̄
¯̄
¯+

t
2
jjhjj21etjjhjj1

< "+2tjjhjj21 < 2"

for 0 · t < ±3, where ±3 = min
n
±2; 1

jjhjj1 ;
"

2jjhjj21

o
. For 0 < t <minf 1

° log(1 ¡
±1); ±3g, by using the relations 0 · x ¡ e°tx < ±1 and f(e°tx) ¡ f(x) =
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R t
0 °e

°sxf 0(e°sx)ds, we have
¯̄
¯̄Ttf(x)¡ f(x)

t
¡ (°xf0(x) +h(x)f(x))

¯̄
¯̄

·
¯̄
¯̄
¯
e
R t
0 h(e

°(t¡s)x)ds ¡ 1
t

f(e°tx)¡h(x)f(x)

¯̄
¯̄
¯

+
1
t

Z t

0
j°e°sxf0(e°sx)¡ °xf 0(x)jds

· (2jjf jj1 + jjhjj1 + °)";

which implies D1 ½D(A). Hence D(A) =D1:
Put ®= minf<(h(x)) j x 2 [0;1]g and

U = f¸ 2 C j <(¸) < ®g :
Since we assumed ® > 0, the set U intersects the imaginary axis. For ¸ 2 U ,
f¸(x) = exp(¡1

°
R 1
x
¸¡h(s)

s ds) is continuous on [0,1]. It is easy to see that f¸(x)
belongs to D1 = D(A) and satis̄ es Af¸ = ¸f¸. So U is an open subset of the
point spectrum of A.

(iii) Let ¸ 2 U. Put vp;¸(x) =
f¸+p(x)¡ f¸(x)

p
for p 6= 0 with jpj small enough

and set g¸(x) = log x
° exp(¡1

°
R 1
x
¸¡h(s)

s ds) for x 2 (0;1] and g¸(0) = 0. Since
limx!0 g¸(x) = 0, we have g¸ 2 X1. By using the relation f¸+p(x)¡ f¸(x) =
p
R 1
0

log x
° exp(¡1

°
R 1
x
¸¡h(s)+tp

s ds)dt, we have for x 2 (0;1],

vp;¸(x)¡ g¸(x)

=
Z 1

0

logx
°

½
exp(¡ 1

°

Z 1

x

¸¡ h(s)+ tp
s

ds)¡ exp(¡1
°

Z 1

x

¸¡h(s)
s

ds)
¾
dt

= g¸(x)
Z 1

0
(x

tp
° ¡ 1)dt:

Put c = ®¡<(¸)
2 > 0. For any " > 0, there exists ±1 > 0 such that

jlog x
° exp(¡1

°
R 1
x
¸¡h(s)+c

s ds)j < " for 0 · x < ±1, and there exists ±2 > 0 such

that jx
tp
° ¡ 1j < "

kg¸k for ±1 · x · 1 and 0 < jpj < ±2.
For x 2 [0; ±1] and 0 < jpj < c, we have

jvp;¸(x)¡ g¸(x)j

·
Z 1

0

½¯̄
¯̄logx
°

exp(¡ 1
°

Z 1

x

¸¡ h(s) + tp
s

ds)
¯̄
¯̄

+
¯̄
¯̄logx
°

exp(¡1
°

Z 1

x

¸¡h(s)
s

ds)
¯̄
¯̄
¾
dt

< 2":
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For x 2 [±1;1] and for 0 < jpj < ±2, we have

jvp;¸(x)¡ g¸(x)j · jg¸(x)j
Z 1

0
jx

tp
° ¡ 1jdt < ":

Hence we have jvp;¸(x)¡g¸(x)j < 2" for 0 < jpj < min fc; ±2g and for x 2 [0; 1].
So jvp;¸(x)¡ g¸(x)j goes to 0 uniformly on [0,1] as p! 0 and

hÁ;g¸i = lim
p!0

hÁ; f¸+p¡ f¸
p

i =
dFÁ
d¸

:

Therefore FÁ(¸) is analytic with respect to ¸ 2 U.
(iv) We shall show that if FÁ(¸) = 0 for all ¸ 2 U then Á = 0. We recall
the following: U = f¸ 2 C j <(¸) < ®g and f¸(x) = exp(¡1

°
R 1
x
¸¡h(s)

s ds) for
¸ 2 U. Take a real constant ¸0 satisfying ¸0 < ®. For <(¸) < ¸0,

f¸(x) = exp
½
¡1
°

Z 1

x

¸¡¸0
s

ds¡ 1
°

Z 1

x

¸0 ¡h(s)
s

ds
¾

= exp
½
¡1
°

Z 1

x

¸¡¸0

s
ds
¾

exp
½
¡1
°

Z 1

x

¸0¡ h(s)
s

ds
¾

(2.3)

holds. Put the second factor of (2.3) as follows:

q(x) = exp
½
¡1
°

Z 1

x

¸0 ¡ h(s)
s

ds
¾
:

It is easy to see that q is continuous on [0; 1] and positive except for x = 0.
The ¯rst factor of (2.3) becomes

exp
½
¡¸¡ ¸0

°
¢ log( 1

x
)
¾

= x
¸¡¸0
° :

For n 2 f1; 2;3; ¢ ¢ ¢ g, put ¸n = °n+¸0. The assumption ° < 0 implies ¸n 2 U
for n = 1; 2; 3; ¢ ¢ ¢ .

Then we have f¸n (x) = xnq(x) for n = 1;2; 3; ¢ ¢ ¢ .
>From the assumption, 0 = FÁ(¸n) = hÁ; f¸ni = hÁ; xnqi holds for n =

1;2;3; ¢ ¢ ¢ . By the Stone-Weierstrass theorem, the linear span of fxn jn =
1;2;3; ¢ ¢ ¢ g is dense inX1. Since q(x)> 0 for any x 2 (0; 1], the linear span of
fxnq j n= 1; 2;3; ¢ ¢ ¢ g is also dense in X1. So we have Á = 0.

By (i) to (iv), all assumptions of Theorem A hold. So fTtgt¸0 is chaotic by
Theorem A.

The space Y1 = ff 2 C([1;1);C) j limx!1 f(x) = 0g has relation with the
space X1 = ff 2 C([0; 1];C) j f(0) = 0g by the mapping Á : X1 ! Y1 de¯ned
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by (Áf)(x) = f( 1
x). So we shall consider the corresponding equation in Y1 to

the equation (2.2) considered in X1 as follows:

@u
@t

= ¡°y @u
@y

+ h(y)u:(2.4)

Let fTtgt¸0 be the solution semigroup on X1 with respect to (2.2) and fStgt¸0
be the solution semigroup on Y1 generated from the classical solution of (2.4).
Then the following diagram commutes.

X1
Tt¡¡¡! X1

Á
??y

??yÁ

Y1 ¡¡¡!
St

Y1

Hence we have the following.
Corollary.
Let Y1 be the space ff 2 C([1;1);C) j limx!1 f(x) = 0g with sup norm. We
consider the following initial value problem of a partial di®erential equation:

8
<
:

@u
@t

= °x
@u
@x

+h(x)u

u(0;x) = f(x)

where ° > 0, f 2 Y1, h 2 C([1;1);C) and limx!1h(x) exists. Then the
solution semigroup fStgt¸0 (Stf(x) = e

R t
0 h(e

°(t¡s)x)dsf(e°tx)) to the partial
di®erential equation is a strongly continuous semigroup on Y1.

Moreover if inf f<h(x) j x 2 [1;1)g > 0, then fStgt¸0 is chaotic.

x3. Chaotic semigroups on L2(I)

Let X2 be the space L2([0;1];C). We shall consider the partial di®erential
equation in L2([0; 1];C):

8
<
:

@u
@t

= °x
@u
@x

+h(x)u

u(0;x) = f(x)
(3.1)

where ° < 0, h 2 C([0; 1];C) and f 2 X2. By using the representation
formula exp

nR t
0 h(e

°(t¡s)x)ds
o
f(e°tx) of the classical solution of (3.1), we

can de¯ne a family fTtgt 0̧ of bounded linear operators on X2 by Ttf(x) =

exp
nR t

0 h(e
°(t¡s)x)ds

o
f(e°tx) for f 2 X2. Then fTtgt 0̧ is a semigroup.
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Moreover the semigroup fTtgt¸0 is a strongly continuous semigroup on X2.
The proof of continuity is shown in the following theorem. By applying The-
orem A to the solution semigroup fTtgt¸0, we shall give a su±cient condition
for the solution semigroup to be chaotic.

Theorem 2.
Let X2 be the space L2([0;1];C). We consider the following initial value prob-
lem of a partial di®erential equation:

8
<
:

@u
@t

= °x
@u
@x

+h(x)u

u(0;x) = f(x)

where ° < 0, h 2 C([0; 1];C) and f 2 X2. Then the solution semigroup
fTtgt 0̧ (Ttf(x) = exp

nR t
0 h(e°(t¡s)x)ds

o
f(e°tx)) to the partial di®erential

equation is a strongly continuous semigroup on X2.
Moreover if minf<(h(x)) j x 2 [0; 1]g > °

2 , then fTtgt¸0 is chaotic.

Proof. To check the strong continuity of fTtgt¸0, we shall show the continuity
of fTtgt¸0 at t = 0.

Let f be an element of X2. Then for any " > 0 there exists a continuous
function » on [0; 1] such that

jjf ¡ »jjL2 <
"
6
:

Since » is continuous, there exists ±1 > 0 such that

jjTt»¡ »jj1 < "
2

holds with 0 < t < ±1, where jj ¢ jj1 is the sup norm . For k 2L2, we have

jjTtkjjL2 · e®0tjjkjjL2;

where ®0 = max0·x·1 f<(h(x))g ¡ °
2 . Put ± = min(±1; log 2

®0
). Then we have

jjTtf ¡ f jjL2 · jjTtf ¡Tt»jjL2 + jjTt»¡ »jjL2 + jj»¡ f jjL2

· e®0tjjf ¡ »jjL2 + jjTt» ¡ »jj1 + jjf ¡ »jjL2

< jjf ¡ »jjL2(1 + e®0t) +
"
2

<
"
6
(1 + 2) +

"
2

= "

for t 2 (0; ±). So fTtgt 0̧ is a strongly continuous semigroup.
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Hereafter we shall check the following (i) { (iv) as in the proof of Theorem 1
to show that all assumptions of Theorem A hold if min f<(h(x)) j x 2 [0;1]g >
°
2 holds.
(i) X1 is a separable Banach space.
(ii) The existence of an open set U of the point spectrum of the in¯nitesimal
generator A which intersects the imaginary axis.
(iii) For ¸ 2 U , put f¸(x) = exp(¡1

°
R 1
x
¸¡h(s)

s ds). For each Á 2 X¤
1 we de¯ne

a function FÁ : U ! C by FÁ(¸) = hÁ;f¸i. Then for each Á 2 X¤
1 the function

FÁ is analytic on U .
(iv) If FÁ = 0 on U , then Á = 0.

(i) It is obvious.
(ii) Let A : D(A) µ X1 ! X1 be the in¯nitesimal generator of the strongly
continuous semigroup fTtgt¸0. Put

D2 =
©
f 2 X2

¯̄
xf is absolutely continuous and (xf)0 2X2

ª
:

We recall that f 2 D2 holds if and only if f 2X2 and xf belongs to the Sobolev
space H1(0;1). For f 2 D(A), there exists g 2X2 such that limt#0

Ttf¡f
t = g.

Since f is integrable on [0,1], we see that for l; m 2 [0;1]

Z m

l

Ttf(x)¡ f(x)
t

dx =
Z m

l

e
R t
0 h(e

°(t¡s)x)dsf(e°tx)¡ f(x)
t

dx

=
Z me°t

le°t

e
R t
0 h(e¡°sx)ds¡°t

t
f(x)dx¡

Z m

l

f(x)
t
dx

=
1

l ¡ le°t
Z l

le°t

l(1¡ e°t)
t

e
R t
0 h(e

¡°sx)ds¡°tf(x)dx

+
Z m

l

e
R t
0 h(e

¡°sx)ds¡°t ¡ 1
t

f(x)dx

¡ 1
m¡me°t

Z m

me°t

m(1 ¡ e°t)
t

e
R t
0 h(e

¡°sx)ds¡°tf(x)dx

converges to

¡l°f(l) +
Z m

l
(h(x)¡ °)f(x)dx+m°f(m)

as t # 0 for almost all l;m ([6], Theorem 9-8 VI]). However, the left hand side
converges to

Rm
l g(x)dx. By rede¯ning f on a null set we obtain

mf(m) =
Z m

l

1
°
fg(x)¡ (h(x)¡ °)f(x)gdx+ lf(l);
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which implies that xf(x) is an absolutely continuous function with derivative
(almost everywhere) equal to 1

°fg(x)¡(h(x)¡°)f(x)g and hence (xf)0 belongs
to X2. So D(A)½ D2.

Conversely for f 2 D2, we have

Ttf(x)¡ f(x)
t

¡ (°xf 0(x)+ h(x)f(x))

=

Ã
e
R t
0 h(e

°(t¡s)x)ds ¡ 1
t

¡ h(x)
!
f(e°tx)(3.2)

+ h(x)(f(e°tx)¡ f(x)) +
½
f(e°tx)¡ f(x)

t
¡ °xf 0(x)

¾
:

We will show that each term of (3.2) goes to 0 as t! 0. It is obvious that the
norm of the ¯rst term of (3.2) converges to 0 as t! 0 in a similar way to that
in Theorem 1. For each " > 0 and each t(t0 > t ¸ 0) with some ¯xed t0 > 0,
there exists ±1 > 0 such that

Z ±1

0
jf(e°tx)¡ f(x)j2dx < ":

Since xf is absolutely continuous, f is absolutely continuous on [±1; 1] and
kh(x)(f(e°tx)¡ f(x))k converges to 0 as t! 0.

Put ´(x) = °xf 0(x). Then f 2 D2 implies ´ 2 X2. For any " > 0, there
exists » 2 C([0; 1];C) such that k» ¡ ´k < " and there exists ± > 0 such that
k»(e°sx)¡ »(e°tx)k < " for any 0 · s · t < ± and any 0 · x · 1. Moreover,
for 0 · s < ±,

k´(e°sx)¡ »(e°sx)k2 =
Z 1

0
(´(e°sx)¡ »(e°sx))2dx

=
Z e°s

0
(´(y)¡ »(y))2e¡°sdy · e¡°±k´ ¡ »k2:

So k´(e°sx) ¡ ´(e°tx)k2 · (2 + e¡
°±
2 )" for 0 · s · t < ±, which implies that

the map s 2 [0;1) 7! ´(e°s¢) 2 L2 is continuous. Therefore the X2-valued
Riemann integral

R t
0 ´(e

°sx)ds exists. Since the equation

f(e°tx)¡ f(x)
t

¡ °xf 0(x) = 1
t

Z t

0
°e°sxf 0(e°sx)ds¡ ´(x)

holds, for 0 < t < ±, the norm of the third term of (3.2) can be rewritten as
follows:

kf(e°tx)¡ f(x)
t

¡ °xf0(x)k = k1
t

Z t

0
´(e°sx)ds¡ ´(x)k

· 1
t

Z t

0
k´(e°sx)¡ ´(x)kds < (2 + e¡

°±
2 )";
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where
R t
0 ´(e

°sx)ds is the X2-valued Riemann integral.
This implies that kf(e°tx)¡f(x)t ¡ °xf0(x)k goes to zero as t ! 0. So f

belongs to D(A). Hence D(A) =D2.
Put ®= minf<(h(x)) j x 2 [0;1]g and

U =
n
¸ 2C j <(¸) < ®¡ °

2

o
:

Since we assume ® > °
2 , the set U intersects the imaginary axis. For ¸ 2 U ,

it is easy to see that f¸(x) = exp(¡1
°
R 1
x
¸¡h(s)

s ds) belongs to D2 =D(A) and
Af¸ = ¸f¸ , i.e. f¸ is an eigenvector of A. So U is an open subset of the point
spectrum of A.
(iii) For Á 2 X¤

2 =X2, we have

FÁ(¸) = hÁ;f¸iL2 =
Z 1

0
Á(x)f¸(x)dx:(3.3)

For ¸ 2 U , we shall show that
@f¸(x)
@¸

exists. For each x 2 (0;1), f¸(x) is
di®erentiable with respect to ¸ on U and

j1
º
ff¸+º(x)¡ f¸(x)gj = j 1

º

½
e¡

1
°

R 1
x
¸+º¡h(s)

s ds ¡ e¡
1
°

R 1
x

¸¡h(s)
s ds

¾
j

= je¡
1
°

R 1
x
¸¡h(s)

s ds 1
º

n
e¡

1
°

R 1
x

º
s ds ¡ 1

o
j

· x
< (̧ )¡®

° ¢ logx
°

x
µº
° ;

with some 0 < µ < 1. Since <(¸)¡®
° > ¡1

2, we can choose a small number
º0 > 0 satisfying <(¸)¡®

° + º0
° > ¡1

2. Furthermore, we can take b > 0 satisfying
<( )̧¡®

° + º0
° ¡ b > ¡1

2 . Since xb logx 2 C((0; 1];C) and limx!0 xb logx = 0,
there exists M > 0 such that jjxb logxjj1 ·M . Put ¯ = <(¸)¡®

° + º0
° ¡b. Then

j 1º ff¸+º(x)¡ f¸(x)gj · M
j°jx

¯ and the function M
j°jx

¯ belongs to L2([0;1];C),

since ¯ > ¡1
2. By putting Ã(x) = jÁ(x)jMx¯

j° j , we have Ã 2 L1([0; 1];C) and
¯̄
¯̄Á(x)

1
º
ff¸+º(x)¡ f¸(x)gj

¯̄
¯̄ · Ã(x)

for any º with 0 < jºj · º0 and x 2 [0; 1]. So we can apply Lebesgue's domi-
nated convergence theorem to the equation (3.3). Hence FÁ is analytic.
(iv) In a similar way to (iv) in the proof of Theorem 1, we can show that Á= 0
if FÁ(¸) = 0 for all ¸ 2 U.
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By (i) to (iv), if min f<(h(x)) j x 2 [0;1]g > °
2 then all assumptions of

Theorem A hold. So fTtgt¸0 is chaotic by Theorem A.

We have the following similar corollary to that of Theorem 1.

Corollary. Let Y2 be the space L2([1;1);C). We consider the following initial
value problem of a partial di®erential equation:

8
<
:

@u
@t

= °x
@u
@x

+h(x)u

u(0;x) = f(x)

where ° > 0, f 2 Y2, h 2 C([1;1);C) and limx!1h(x) exists. Then the
solution semigroup fTtgt¸0 (Ttf(x) = exp

nR t
0 h(e°(t¡s)x) ds

o
f(e°tx)) to the

partial di®erential equation is a strongly continuous semigroup on Y2.
Moreover if inf f<(h(x)) j x 2 [1;1)g > °

2 , then fTtgt¸0 is chaotic.

x4. Chaotic semigroups on C0(I;C) related to chaotic translation
semigroups on admissible weighted function spaces

Let I be the interval [0;1) and eX be the space C0(I;C) of all complex-
valued continuous functions on I satisfying limx!1 f(x) = 0 with kfk1 =
supx2I jf(x)j. We shall consider the following partial di®erential equation:

8
<
:

@u
@t

=
@u
@x

+ h(x)u

u(0;x) = f(x);
(4.1)

where h is a bounded continuous function on I and f 2 eX.
By using the representation formula e

R x+t
x h(s)dsf(x+t) of the classical solu-

tion of (4.1), we de¯ne the bounded linear operator
n
eTt
o
t¸0

on eX as follows:

eTtf(x) = e
R x+t
x h(s)dsf(x+ t) for f 2 eX:

According to the paper [1], we call
n
eTt
o
t¸0

the solution semigroup on eX to

the partial di®erential equation (4.1).
If ¸ is an eigenvalue of the in¯nitesimal generator A of the strongly con-

tinuous semigroup
n
eTt
o
t¸0

, then the eigenfunction f¸ is of the form f¸(x) =

const:£ e¸x¡
R x
0 h(s)ds. It seems impossible that there exists an open subset of
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the point spectrum of A, which intersects the imaginary axis. So we cannot
apply the method of Theorem A to show that

n
eTt
o
t¸0

is chaotic. Hence we

introduce the space C0;½(I;C) de¯ned by an admissible weight function ½.
By an admissible weight function on I we mean a measurable function

½ : I !R satisfying the following conditions:
(i) ½(x) > 0 for all x 2 I;
(ii) there exist constants M ¸ 1 and ! 2 R such that ½(x) ·Me!t½(t + x)
for all x 2 I and t > 0.

For an admissible weight function ½ on I = [0;1), we consider the following
function space:

C0;½(I;C) =
n
f : I !C j f continuous; lim

x!1
½(x)f(x) = 0

o

with kfk½ = supx2I jf(x)j½(x).
Let X be the space C0;½(I;C) de¯ned by an admissible weight function ½.

For t ¸ 0, we de¯ne Tt 2 L(X) by

Ttf(x) = f(x+ t)

for f 2X . We call fTtgt 0̧ the translation semigroup on X.
Put ½(x) = e¡

Rx
0 h(s)ds. Since h is a bounded function, there exists a con-

stant ! > 0 such that h(x) · ! for any x 2 I. So
Z x+t

x
h(s)ds · !t

holds. Rewriting the inequality we have

e¡
R x
0 h(s)ds · e!t ¢ e¡

Rx+t
0 h(s)ds:

So ½ is continuous by the continuity of h, and ½ is an admissible weight function
since ½(x) · e!t½(x+ t) holds.

By the de¯nition of ½, the equality ¡½
0(x)
½(x)

= h(x) holds. So the partial

di®erential equation (4.1) is rewritten as follows:
8
<
:

@u
@t

=
@u
@x
¡ ½0(x)
½(x)

u

u(0;x) = f(x)

with a continuous admissible weight function ½. Hence we have

u(t; x) = eTtf(x) = ½(x)
½(x+ t)

f(x+ t) 2C0(I;C):(4.2)
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Recall that eX is the space C0(I;C) of all complex-valued continuous functions
on I satisfying limx!1 f(x) = 0 with kfk1 = supx2I jf(x)j. We shall de¯ne
the following operator ' : X ! eX as

'(f)(x) = ½(x)f(x)

for f 2X and for x 2 I .

It is easy to see that the following diagram commutes:

X Tt¡¡¡! X

'
??y

??y'
eX ¡¡¡!

eTt
eX

.

Since ½(x)> 0 for all x 2 I, ' is an isometric isomorphism. So we have the
following.

Proposition 3. Let X be the space C0;½(I;C) with a continuous admissible
weight function ½ and fTtgt 0̧ be the translation semigroup on X. Let eX be

the space C0(I;C) and
n
eTt
o
t¸0

be the semigroup de¯ned by (4.2). Then

(1) fTtgt¸0 is hypercyclic on X i®
n
eTt
o
t¸0

is hypercyclic on eX:

(2) fTtgt¸0 is chaotic on X i®
n
eTt
o
t 0̧

is chaotic on eX:

To prove the following Theorem 4, we need the next result.

Theorem B ([7]). Let ½ be an admissible weight function andX be C0;½(I;C)
with I = [0;1). Then the following assertions are equivalent:

(i) the translation semigroup fTtgt¸0 on X is chaotic;

(ii) for any " > 0 and for any l > 0, there exists P > 0 such that
½(l + nP )< " for all n 2 N:

Theorem 4. Let eX = C0(I;C) with I = [0;1). We consider the partial
di®erential equation:

8
<
:

@u
@t

=
@u
@x

+h(x)u

u(0; x) = f(x) with some f 2 eX;

where h is a bounded continuous function on I .
Then the solution semigroup

n
eTt
o
t 0̧

is a strongly continuous semigroup

on eX. Moreover if h(x) satis¯es
R1
0 h(s)ds =1, then

n
eTt
o
t¸0

is chaotic.
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Proof. Bythe relation eTtf(x) =
½(x)

½(x+ t)
f(x+ t), it is easy to see that

n
eTt
o
t¸0

is a semigroup.
To show the strong continuity of

n
eTt
o
t¸0

, we shall show the continuity at

t = 0. Put ½(x) = e¡
Rx
0 h(s)ds. Since h is a bounded function, there exists a

constant ! > 0 such that h(x) · ! for any x 2 I. For any " > 0 there exists

R > 0 such that jf(x)j < "
3e!

for x > R. Then ju(t;x)j = j ½(x)
½(x+ t)

f(x+ t)j ·

e!tjf(x+t)j · "
3

for 0 · t < 1 and x > R. Since u(t;x) is uniformly continuous

on [0; 1] £ [0; R], there exists 1 > ± > 0 such that ju(t;x)¡u(0; x)j < "
3

for
0 · t < ± and x > 0. So

jj eTtf ¡ f jj = sup
x2[0;1)

ju(t; x)¡ u(0;x)j

· sup
x2[0;R]

ju(t; x)¡ u(0;x)j + sup
x2[R;1)

ju(t; x)¡ u(0;x)j < "
3

+
2"
3

= "

for 0 · t < ±. Hence
n
eTt
o
t¸0

is a strongly continuous semigroup.

We shall check that
n
eTt
o
t¸0

is chaotic on C0(I;C). By the assumption
R1
0 h(s)ds = 1, we have limx!1½(x) = 0. By Theorem B, the transla-

tion semigroup fTtgt¸0 is chaotic on C0;½(I;C) where Ttf(x) = f(x+ t). By

Proposition 3,
n
eTt
o
t¸0

is chaotic on C0(I;C).
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