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differential operators of order 1
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Abstract. We consider the initial value problem of a partial differential equa-
ou ou

tion — = ¢(z) — + g(z, u) in some function spaces X on the interval I of the

real line. By using the representation formula of the solution to the equation,
we define a Co-semigroup {T}},~, of bounded linear operators on X. When

c(x) = vz (v € R), g(z,u) = h(z)u (h € C(I,C)) and I is [0,1] or [1,00), we
give sufficient conditions for the semigroup to be chaotic by using the spectral
property of its infinitesimal generator. When c¢(z) = 1 and g(z, u) = h(z)u,
we also give sufficient conditions for the semigroup to be chaotic by using the
property of an admissible weight function.
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81. Introduction

The equation

(1.1) % = c(x)% +g(z,u) (z,t>0)

has been used to model the dynamics of a population of cells undergoing si-
multaneous proliferation and maturation, where x is the maturation variable
([4], [5]). The solution of (1.1) has some connection with Wiener process.
In fact, A. Lasota and M. C. Mackey [3] showed how to construct an exact,
continuous time, semidynamical system that corresponds to the partial differ-
ential equation above with ¢(z) = —z (z € [0,1]) and g(x,u) = Su by using a
one-dimensional Wiener process.
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52 M. MATSUI AND F. TAKEO

In this paper, we consider some special cases of (1.1) which generates
chaotic semigroups and generalize the result of A. Lasota and M. C. Mackey
3].

In §2, we consider the space X1 = {f € C([0,1],C) | f(0) =0} and the
following initial value problem of the partial differential equation:

ou ou
(1.2) %= %5 + h(z)u,
u(0,z) = f(z),

where v € C, h € C([0,1],C) and f € X;.

If u(t, z) is the classical solution of (1.2) for f € C1([0,1],C) N X3, then it
must be of the form u(t, z) = f(e"'z) exp(f(;t h(e?*9)z) ds). In order to satisfy
e’z €[0,1] for x € [0,1] and ¢ > 0, v must be a non-positive number. In this
case, by using this representation formula f(e'z) exp( jg h(e"®=*)z) ds) of the
solution of (1.2), we can define the bounded linear operators {7; },~, on X1 by
T f(x) = f(e"z) exp([5 h(e*=)z) ds) for f € X1. Then {T}},., is a strongly
continuous semigroup on X (Theorem 1). In this paper we call {T;},, the
solution semigroup on X; to the partial differential equation (1.2). B

In [1], W. Desch, W. Schappacher and G. F. Webb gave a sufficient condi-
tion (Theorem A) for {T;},., to be chaotic, by using the eigenvectors of the
infinitesimal generator A of the strongly continuous semigroup {7}},~o- By
applying their result to the solution semigroup, we give a sufficient condition
for the solution semigroup to be chaotic on X; (Theorem 1). In §3, we also give
a sufficient condition for the solution semigroup to be chaotic on L*([0,1], C)

(Theorem 2).
In §4, we deal with the partial differential equation
ou ou
/
_ b >
(1.3") 5= ot hMx)u  (x,t>0)

with the initial condition u(0, z) = f(z) with some f € Co(I,C), where I =
[0,00) and Cy(I,C) is the space of all complex-valued continuous functions on
I satisfying lim, o0 f(z) = 0. If u(t,z) is the classical solution of (1.3") for
f € Co(I,C), then it must be of the form u(t,z) = e G h(s)ds f (o + ~t). In
order to satisfy  +t € [0,00) for x € [0,00) and ¢ > 0, v must be a non-
negative number. Since the case v =0 is a special case, we shall consider the
case v > 0. So by replacing <t by ¢, we shall consider the following partial
differential equation instead of (1.3'):

ou Ou
(1.3) 5% = 92 + h(z)u. (z,t>0)

Since the method of the proof in §2 is not applicable in this case, we use
the result in [7] and show that the solution semigroup {73},-, to the par-
tial differential equation (1.3) is a chaotic, strongly continuous semigrroup on
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Co(I,C) (Theorem 4), if h is a bounded continuous function on I satisfying
Jo h(s)ds = oo.

The authors would like to express their deep gratitude to Professor Shizuo
Miyajima for his valuable comments and useful advices. At first the function
h(z) in Theorems 1 and 2 were considered as a constant function. By his
suggestion we improve the theorems by using the function h(z) in C(]0,1], C).

§2. Chaotic semigroups on C(I,C)

Recall that a family {7;},~, of bounded linear operators on a Banach space X
is called a strongly continuous semigroup if it satisfies the following conditions:
(1) Tygs = TiTs for all t,s € Ry, (2) To = Id, and (3) the mapping : t — Tix is
continuous from R4 to X for every x € X. A strongly continuous semigroup
{T}}, is called hypercyclicif there exists € X such that the set {Tix |t > 0}
is dense in X. The semigroup {7} },~ is called chaotic if {T;},~ is hypercyclic
and the set of periodic points Xper = {z € X |3t > 0 s.t. Tz = z} is dense in
X.

As to a sufficient condition for a semigroup to be chaotic, the following
theorem is known.

Theorem A ([1]). Let X be a separable Banach space and let A be the in-
finitesimal generator of a strongly continuous semigroup {Tt}t>0 on X. Let U
be an open subset of the point spectrum of A, which intersects the imaginary
axis, and for each A € U let x) be a nonzero eigenvector, i.e. Axy = Ax). For
each ¢ € X* we define a function Fg: U — C by Fy(\) = (¢, z»). Assume
that for each ¢ € X™* the function Fy is analytic and that Fy does not vanish
identically on U unless ¢ = 0. Then {T};},~q is chaotic.

We shall apply this theorem to the semigroup related to the following par-
tial differential equation. We consider the space X1 = {f € C([0,1],C) |
f(0) =0} and the following initial value problem of a partial differential equa-
tion:

Ou Ou
(2.1) o gy T
u(0,2) = f(z)

where v < 0, h € C([0,1],C) and f € X;. By using the representation formula
exp {fg h(eV(t=5)g) ds} f(ex) of the classical solution of (2.1), we define the
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bounded linear operator {7t },-, on Xi as follows:

Ti f(z) = exp {At h(eYt=9) ) ds} f(e'x) for fe X;.

Note that if v > 0 then ez ¢ [0,1] holds for x € (e™%1]. Since we
are interested in the case v # 0, we suppose v < 0. Since the equations
Th 41 f () = exp ifo““z he (e g) ds| f(&10H)a) = T, - Ty, f(@) and
Ty f(x) = f(x) hold for any f € Xj, {T}},., is a semigroup. Moreover the
semigroup {7} },~ becomes a strongly continuous semigroup on Xi. The proof
of continuity is shown in the following theorem. Recall that the infinitesimal
generator A: D(A) C X; — X of the strongly continuous semigroup {7%},~q

on X is given by
Af =lim Lf—f

tl0 t

for every f in its domain

D(A):{feX1

g Tf =1 }
im exists. .
L0 t

In this paper we call {T; t}tzo the solution semigroup to the partial differen-
tial equation. By applying Theorem A to the solution semigroup, we have a
sufficient condition for the solution semigroup to be chaotic.

Theorem 1. Let X; be the space { f € C([0,1],C) | f(0) =0} with sup norm.
We consider the following initial value problem of a partial differential equa-
tion:

ou ou
2.2) 5 = %5 + h(z)u
u(0,2) = f(z)

where v < 0, h € C([0,1],C) and f € X;. Then the solution semigroup
{Ti}iso (Tif(z) = exp {fot h(eYt=3)z) ds} f(etx)) to the partial differential
equation is a strongly continuous semigroup on Xi. Moreover if min {R(h(x)) |
x € [0, 1]} is positive, then {Ti},~ is chaotic.

Proof. Put a = sup, , 1 |h(z)|. For f € X1, we have

ITef = fIl = sup |elo M08 f(et) — f(a)

e — 1| sup |f(e"'z)| + sup |f(eMz) — f(x)]
0z 1 0z 1

= e = f]+ sup [£(e) — (@),
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which implies the strong continuity of {7 }~-

We shall show that {T;},., is chaotic if min{R(h(z)) | € [0,1]} > 0. To
show that all assumptions of Theorem A hold, we verify the following:
(i) X is a separable Banach space.
(ii) The existence of an open set U of the point spectrum of the infinitesimal
generator A which intersects the imaginary axis.
(iii) For A € U, put fi(x) = exp(—lfx1 %ﬁlds). For each ¢ € X{ we define
a function Fy : U — C by Fs(A) = {6, f). Then for each ¢ € X} the function
Fy is analyticon U.
(iv) If Fy =0 on U, then ¢ =0.

(i) It is clear that X7 is a separable Banach space by Weierstrass approximation
theorem.

(ii) Let A: D(A) C X1 — Xi be the infinitesimal generator of the strongly
continuous semigroup {7} },~,. Put

Dy = {f € X1NCY((0,1),0)| limaf'(@) = o}.

Then we shall show that D; = D(A) holds. For f € D(A), Af belongs to
X, and f is differentiable on (0,1). By a standard argument, we can see that
Af(z) = h(z)f(x) + yzf'(x) holds for = € (0,1]. So limy_,0 zf'(z) = 0, which
implies D(A) C Dy. Conversely, suppose f € Di. Then hf +~yzf' € Xi. So
for any € > 0, there exists 1 > §; > 0 such that |h(z)f(z) + yzf'(z)| < e
for any = € (0,601, |zf'(z) — 2 f'(2')] < € and |f(z) — f(2')| < e for any
z,x' €0,1] with |z — 2’| < §1. Since h is continuous, there exists d2 > 0 such
that |h(e7®z) —h(z)| < e for every 0 s < d2 and z € [0, 1]. So we have

efot h(e"t=9)g)ds 1
t

fg h(e?t=) ) ds

— h(z) ;

< — h(z)

t h
+ 1Al

< e+2t|h||% < 2

for 0 t < &3, where d3 = min {52, thl\oo’ 2Hff||2 } For 0 <t < min{%log(l —

d1),03}, by using the relations 0 z —ete < 6 and f(&z) — f(z) =
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fé ve¥zf' (e7%x)ds, we have

IO ) 1 )

efot h(eY(t=%)g)ds _ 1
t

f(e"z) = h(z)f(x)

v [ e (@) — e s @)ds
I Moo +[[Blloo +7)e,
which implies D1 C D(A). Hence D(A) = D;.
Put @ = min{R(h(z)) | z €[0,1]} and
U={AeC|R(\) <a}.
Since we assumed a > 0, the set U intersects the imaginary axis. For A € U,

n(x) =exp(— fl A h(s’) S—=ds) is continuous on [0,1]. It is easy to see that fi(x )
belongs to D; = D(A) and satisfies Afy = Afx. So U is an open subset of the

point spectrum of A.
(ifi) Let A € U. Put vpa(z) = Prp(@) — fa(2)

for p # 0 with |p| small enough

p
and set gy(z) = 1Og“’”exp(—%f1 Afg(s)ds) for x € (0,1] and g,(0) = 0. Since

Yy x
limg 0 9)\( ) =0, we have gy € X1. By using the relation fy,,(z) — fi(z) =
pfl lgz ¢ }Y fxl )‘_h(sﬁds)dt, we have for z € (0,1],

UP,A(CC) —gx(z)
= Al loix {exp(—% Al st) - exp(—%él )\_Th(s)ds)} dt

~ 0@ [ F -

Put ¢ = %ﬂ) > 0. For any € > 0, there exists d; > 0 such that

]k’% exp(—%f1 Mﬁﬁds)] <efor 0 x < 1, and there exists d2 > 0 such

that ]xv 1] < mapford 2z land0< Ip| < da.
For z € [0, 6] and 0 < |p| < ¢, we have

[vp A () = gx(2)]

e e

y s
1 1 P A—
+|28T exp(——/ )\—h(s)ds) }dt

v v 8
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For = € [01,1] and for 0 < |p| < &2, we have

1 t
(@) — 0x(@)|  lor(®)] / wF 1|t <.
0

Hence we have |vp, x(z) —gx(x)| < 2e for 0 < |p| < min{c, d2} and for x € [0, 1].
So |v, A(x) — gx ()] goes to 0 uniformly on [0,1] as p — 0 and

L Pap— Oy dFy
<¢5g)\> _]}1_13(1)<¢7 +pp > - d)\ .

Therefore Fy(\) is analytic with respect to A € U.
(iv) We shall show that if Fiy(A) = 0 for all A € U then qﬁ = 0. We recall

the following: U = {A € C|R(\) < a} and fi(z) = exp(~+ [} 2 ds) for
A € U. Take a real constant \g satisfying g < a. For %()\) < A0,

B = e[ 200 L[t
(2.3) = exp{—%él)\;)\ods}exp{—;A A()_Th(s)ds}

holds. Put the second factor of (2.3) as follows:

o) :exp{—%f A()_Th(s)ds}.

It is easy to see that ¢ is continuous on [0, 1] and positive except for x = 0.
The first factor of (2.3) becomes

— A—X
exp {—)‘ 7>\O . log(l)} =

X

Forn € {1,2,3,-- -}, put A, = yn+Xo. The assumption vy < 0 implies A, € U
forn=1,2,3,---.

Then we have fy (z)= z"q(x) forn=1,2,3,-

¢From the assumption, 0 = Fy(\,) = <¢, I > = (¢, 2"q) holds for n =
1,2,3,---. By the Stone-Weierstrass theorem, the linear span of {z"|n =
1,2,3,-- -} is dense in X7. Since g(x) > 0 for any x € (0, 1], the linear span of
{z"q|n=1,2,3,---} is also dense in X;. So we have ¢ = 0.

By (i) to (iv), all assumptions of Theorem A hold. So {73}, is chaotic by
Theorem A. |

The space Y1 = {f € C([1,00),C) | limy—00 f(z) = 0} has relation with the
space X1 = {f € C([0,1],C) | £(0) =0} by the mapping ¢ : X; — Y1 defined
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by (¢f)(x) = f(2). So we shall consider the corresponding equation in Y7 to
the equation (2.2) considered in X; as follows:

ou ou

(2.4) o= Wy

+ h(y)u.

Let {Tt};>( be the solution semigroup on X; with respect to (2.2) and {St};>
be the solution semigroup on Y; generated from the classical solution of (2.4).
Then the following diagram commutes.

X, 25 X,

s |o

i — 1"
St
Hence we have the following.
Corollary.
Let Yy be the space {f € C([1,00),C) | limy—y00 f(z) =0} with sup norm. We
consider the following initial value problem of a partial differential equation:

0 0
a—ltb = 756% +h(x)u
u(0,) = f(z)

where v > 0, f € Y1, h € C([1,00),C) and limgy_so0 h(x) ezists. Then the
solution semigroup {Si};~¢ (Sef(z) = elo h(ev(t—s)ff)dsf(ewx)) to the partial
differential equation is a strongly continuous semigroup on Y.

Moreover if inf {Rh(z) | z € [1,00)} >0, then {St},~( is chaotic.

§3. Chaotic semigroups on L?([)

Let Xy be the space L?([0,1],C). We shall consider the partial differential
equation in L2([0,1],C):

Ou ou
(3.1) {E =25 + h(z)u

u(0,z) = f(z)
where v < 0, h € C([0,1],C) and f € X5. By using the representation

formula exp < [ h(e?t=)z)ds} f(e'tz) of the classical solution of (3.1), we
can define a family {7}},-, of bounded linear operators on Xz by T;f(r) =

exp{fg h(eV(t=5)g) ds} f(eMz) for f € Xa. Then {Ti}, is a semigroup.
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Moreover the semigroup {7%},~, is a strongly continuous semigroup on Xo.
The proof of continuity is shown in the following theorem. By applying The-
orem A to the solution semigroup {7;},~,, we shall give a sufficient condition
for the solution semigroup to be chaotic.

Theorem 2.
Let X5 be the space L?([0,1],C). We consider the following initial value prob-
lem of a partial differential equation:

ou ou
5 = %5, +h(x)u

u(0,2) = f(z)

where v < 0, h € C([0,1],C) and f € Xa. Then the solution semigroup
{Ti}i>0 (Tif(x) = exp {jg h(eYt=3)z) ds} f(ex)) to the partial differential

equation is a strongly continuous semigroup on Xo.
Moreover if min{R(h(x)) | z € [0, 1]} > %, then {Ti};>o s chaotic.

Proof. To check the strong continuity of {7} },~, we shall show the continuity
of {T;};~¢ at t =0. -

Let f be an element of Xo. Then for any & > 0 there exists a continuous
function £ on [0, 1] such that

If =&llee <
Since £ is continuous, there exists d; > 0 such that
ITi€ — Elloo < 5
holds with 0 < ¢ < &1, where || - ||oo is the sup norm . For k € L?, we have
ITekllz e IRl L,
where ap = maxg » 1{R(h(z))} —%. Put § = min(dy, 100%2) Then we have

ITef = fllz - ITef = Tl +|Th€ —€llze +11€ — £l
0| = €llz2 + 1756 — Elloe + 1 = €l

< N~ €l ) + 5
£
6

for ¢ € (0,6). So {Tt} ;> is a strongly continuous semigroup.

9
1+2)+-=¢

< 2
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Hereafter we shall check the following (i) — (iv) as in the proof of Theorem 1
to show that all assumptions of Theorem A hold if min {®(h(z)) | z € [0,1]} >
+ holds.

(i) Xi is a separable Banach space.

(ii) The existence of an open set U of the point spectrum of the infinitesimal
generator A which intersects the imaginary axis.

(iii) For A € U, put fy(x) = exp(—%f; /\_—Z(S)ds). For each ¢ € X7 we define
afunction Fyy : U — Cby Fy()\) = (¢, f). Then for each ¢ € X7 the function
Fy is analytic on U.

(iv) If Fy =0 on U, then ¢ =0.

(i) It is obvious.
(i) Let A: D(A) C X; — X, be the infinitesimal generator of the strongly
continuous semigroup {Tt},>q. Put

Dy ={f e Xo| xf is absolutely continuous and (zf)" € Xo } .

We recall that f € Do holds if and only if f € X2 and zf belongs to the Sobolev
space H'(0,1). For f € D(A), there exists g € X3 such that lim; o T”;—# =g.
Since f is integrable on [0,1], we see that for [, m € [0,1]

/m Tf(a) = f(@) ™ el MU0 ferty) — f()
l

t l t
_ /mewt efOt h(e™5z)ds—t fa)de /m de
levt t ot
— —1le’>’lt [:«/t e _t evt)ef(f h(e_ww)ds_vtf(x)dx
N [m eo h(e™™ mt)dsqt -1 F @)
g [nm ML) e ()

converges to
O + [ i) =) @) + o m)

as t | 0 for almost all I,m ([6], Theorem 9-8 VI]). However, the left hand side
converges to flmg(x)da:. By redefining f on a null set we obtain

mf(m) = [ " %{g@:) — (h(@) — ) f@)}de +L1(1),
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which implies that zf(z) is an absolutely continuous function with derivative
(almost everywhere) equal to %{g(w) —(h(x)—)f(z)} and hence (zf) belongs
to Xs. So D(A) C Do.

Conversely for f € Dy, we have

B0 2 1@ (opia)+ b f @)

T h(eV(t—9) x
52) - (ef‘)h( )ds‘l—hw)) fleta)

t

# W) (f(ee) = fla) + { LD o).

We will show that each term of (3.2) goes to 0 as t — 0. It is obvious that the
norm of the first term of (3.2) converges to 0 as ¢ — 0 in a similar way to that
in Theorem 1. For each € > 0 and each t(tp >t > 0) with some fixed ¢y > 0,
there exists d1 > 0 such that

01
/0 |f(e"'z) — f(z)Pdr <e.

Since xf is absolutely continuous, f is absolutely continuous on [d1, 1] and
|h(z)(f(e™x) — f(x))|| converges to 0 as t — 0.

Put n(z) = vz f'(x). Then f € D, implies n € X,. For any € > 0, there
exists £ € C([0, 1], C) such that [|€ —n|| < e and there exists § > 0 such that
|E(e€73x) — E(etz)|| <eforany 0 s t<dand anyO0 =z 1. Moreover,
for 0 s< 6,

1
In(e”*z) — &(ez) || :A (n(ez) — £(e7°x))  da
B /oms (n(y) —&(y) e *dy e |In— €|

So |[n(e*z) —n(etz)|? (2+e F)efor 0 s ¢ <6, which implies that
the map s € [0,00) — n(€'®:) € L? is continuous. Therefore the Xo-valued
Riemann integral fg n(e'*z)ds exists. Since the equation

UGKIES GV /Ot A€z (e x)ds — n(x)

holds, for 0 < t < §, the norm of the third term of (3.2) can be rewritten as

follows:

f(e"z) — f(=)
t

[ el @) =7 [ 0 ads —na)]

1 t
; / In(*z) —n(@)ds < 2+e %),
0



62 M. MATSUI AND F. TAKEO

where fé n(e’x)ds is the Xo-valued Riemann integral.

This implies that Hw — vz f'(x)| goes to zero as t — 0. So f
belongs to D(A). Hence D(A) = D».
Put @ = min{R(h(z)) | z €[0,1]} and

Uz{AG(C\éR(A)<a—%}.

Since we assume o > —g—, the set U intersects the imaginary axis. For A € U,
it is easy to see that fy(z) = exp(—% ;%(s)ds) belongs to Dy = D(A) and
Afy=Afy,ie. f) is an eigenvector of A. So U is an open subset of the point
spectrum of A.

(iii) For ¢ € X3 = X5, we have
1
33) FyN) = @53z = [ @)@

For A\ € U, we shall show that ON(x) exists. For each z € (0,1), fa(z) is
differentiable with respect to A on U and

1 1 [ 1l 2tv=h(s) g 1A g
L{fr(@) - h@)}| = |—{e Ly by oLl b
v v

1 1 A—h(s) 11y

v
RM-a logz o
Y . x R
Y
with some 0 < 6 < 1. Since XA Awfo‘ > —%, we can choose a small number

vy > 0 satisfying w
w + % —b> —%. Since xzlogz € C((0,1],C) and lim,— 2°logz = 0,

there exists M > 0 such that ||z°logz||, M. Put 8 = W—FZ—O—I). Then
L{friv(@) — fr(@)}] %mﬁ and the function ‘—%xﬂ belongs to L?([0,1], C),

since 8 > —3. By putting ¢(z) = |¢(x)|£l4$|5, we have ¢ € L1([0,1],C) and

+ ”7—0 > —1. Furthermore, we can take b > 0 satisfying

B Frnle) ~ H@Y| ¥ ()

for any v with 0 < |v| 1o and z € [0, 1]. So we can apply Lebesgue’s domi-
nated convergence theorem to the equation (3.3). Hence Fy is analytic.

(iv) In a similar way to (iv) in the proof of Theorem 1, we can show that ¢ = 0
if Fg(A\) =0forall Ae U.
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By (i) to (iv), if min {R(h(x)) |z €[0,1]} > = then all assumptions of
Theorem A hold. So {T%},5 is chaotic by Theorem A.
|

We have the following similar corollary to that of Theorem 1.

Corollary. Let Y5 be the space L*([1, ), C). We consider the following initial
value problem of a partial differential equation:

ou ou
pri ’ya:% + h(z)u

u(0,2) = f(z)
where v > 0, f € Ya, h € C([1,00),C) and limg_so0 h(x) exists. Then the
solution semigroup {Ti};>o (Tif(x) = exp {fot h(evt=9)g) ds} f(etx)) to the

partial differential equation is a strongly continuous semigroup on Ya.
Moreover if inf {R(h(z)) | € [1,00)} > F, then {Ti}4> is chaotic.

§4. Chaotic semigroups on Cy(I,C) related to chaotic translation
semigroups on admissible weighted function spaces

Let I be the interval [0,00) and X be the space Co(I,C) of all complex-
valued continuous functions on I satisfying lim,; oo f(z) = 0 with || f||cc =
sup,cr | f(x)]. We shall consider the following partial differential equation:

ou Ou
(4.1) 7~ ag T
w(0,z) = f(x),

where h is a bounded continuous function on I and f € X.
x+t
By using the representation formula ela’ h(s)ds f(x+t) of the classical solu-

tion of (4.1), we define the bounded linear operator {Tt}t>0 on X as follows:

Tif(x) = els h@ds (g 1 p) for feX.

According to the paper [1], we call {ft }t>0 the solution semigroup on X to

the partial differential equation (4.1).
If X is an eigenvalue of the infinitesimal generator A of the strongly con-

tinuous semigroup {Tt}po’ then the eigenfunction fy is of the form fy(x) =

const. x e —Jo M()ds Tt seems impossible that there exists an open subset of
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the point spectrum of A, which intersects the imaginary axis. So we cannot
apply the method of Theorem A to show that {Tt} o is chaotic. Hence we
t

introduce the space Cp (I, C) defined by an admissible weight function p.
By an admissible weight function on I we mean a measurable function
p: I — R satisfying the following conditions:
i) p(z) >0forall z € I;
(ii) there exist constants M > 1 and w € R such that p(z) Me“'p(t + )
forall z € I and t > 0.
For an admissible weight function p on I = [0, c0), we consider the following
function space:

Cop(I,C) = {f : I — C| f continuous, Jirréop(x)f(x) = 0}

with || f]|, = supser | f(z)|p(2).
Let X be the space Cp (I, C) defined by an admissible weight function p.

For t > 0, we define T} € £(X) by
Tif(x) = f(z+ 1)

for f € X. We call {T;},5 the translation semigroup on X.
Put p(z) = e~ Jo Ms)ds - Since h is a bounded function, there exists a con-
stant w > 0 such that h(z) w for any z € I. So

T+t
/ h(s)ds —wt
T

holds. Rewriting the inequality we have

oo h(s)ds gt |~ Jo T h(s)ds

So pis continuous by the continuity of A, and p is an admissible weight function
since p(z) e“tp(z +t) holds.
/
By the definition of p, the equality P (2) = h(z) holds. So the partial

p()
differential equation (4.1) is rewritten as follows:

du_ou_ g

ot o0xr p(x) “
u(0,z) = f(x)

with a continuous admissible weight function p. Hence we have

(4.2) ult.) =Tf ) = - (f;fft) Flz+1) € Cy(I,0).
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Recall that X is the space Co(I, C) of all complex-valued continuous functions
on [ satisfying limg o0 f(2) = 0 with || f|lco = supger | f(z)]. We shall define
the following operator ¢ : X — X as

p(f)(x) = p(z)f (2)

for f € X and for z € I.

T;
X ——

It is easy to see that the following diagram commutes: "”l l“/’

X — X
T
Since p(x) > 0 for all z € I, ¢ is an isometric isomorphism. So we have the
following.

Proposition 3.  Let X be the space G ,(I,C) with a continuous admissible
weight function p and {Tt},-, be the translation semigroup on X. Let X be

the space Cy(I,C) and {Tt}t>0 be the semigroup defined by (4.2). Then

(1) {T;},> is hypercyclic on X iff {Tt}po is hypercyclic on X.

(2) {Ti}, s chaotic on X iff {Tt}po is chaotic on X.

To prove the following Theorem 4, we need the next result.

Theorem B ([7]). Let p be an admissible weight function and X be Cy ,(I, C)
with I =[0,00). Then the following assertions are equivalent:

(i) the translation semigroup {T;}+>0 on X is chaotic;

(ii) for anye >0 and for any l > 0, there exists P > 0 such that
p(l+nP)<e  forallneN.

Theorem 4. Let X = Co(I,C) with I = [0,00). We consider the partial
differential equation:

ou Ou

w(0,x) = f(x) with some f € X,

where h is a bounded continuous function on I.

Then the solution semigroup {Tt}t>0 s a strongly continuous semigroup

on X. Moreover if h(z) satisfies Jo° h(s)ds = oo, then {ﬁ }t>0 is chaotic.
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Proof. By the relation ﬁf(x) = ﬂf(m +1), it is easy to see that {f},}

p(x +1t) >0

is a semigroup.
To show the strong continuity of {T t} , we shall show the continuity at
>0

t=0. Put p(z) = e Jo M2)95 Since h is a bounded function, there exists a
constant w > 0 such that h(z) w for any x € I. For any € > 0 there exists
R > 0 such that |f(z)| < 36% for x > R. Then |u(t,z)| = |%f(m+ t)]

et f(z+1)| %for 0 t¢<1landz > R. Since u(t,z) is uniformly continuous

on [0,1] x [0, R], there exists 1 > § > 0 such that |u(t,x) —u(0,z)| < % for
0 t<dandz >0. So

ITef = fll = sup |u(t, @) —u(0,z)|

z€[0,00)

2
sup |u(t,z) — u(0,z)| + sup |u(t,z) — u(0,7)] < =+ ==¢
$€[0,R] ZL’G[R,OO) 3 3

for 0 t <. Hence {ﬁ} is a strongly continuous semigroup.
t>0

We shall check that {Tt}t>o is chaotic on Cy(I,C). By the assumption

Jo~ h(s)ds = oo, we have lim; o0 p(z) = 0. By Theorem B, the transla-
tion semigroup {7t} is chaotic on Cp,,(I,C) where Tif(z) = f(z +t). By

Proposition 3, {ﬁ}po is chaotic on Cy(I,C). O

References

[1] W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups
of linear operators, Ergod. Th. & Dynam. Sys. 17 (1997), 793-819.

[2] K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equa-
tions (Graduate Texts in Math. 194), Springer, 1999.

[3] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspect of
Dynamics (Applied Math. Sci. 97), Springer, 1994.

[4] A. Lasota, M. C. Mackey and M. Wazewska-Czyzewska, Minimizing therapeuti-
cally induced anemia, J. Math. Biology 13 (1981), 149-158.

[6] M. C. Mackey and P. Dérmer, Continuous maturation of proliferating erythoid
precursers, Cell Tissue Kinet 15 (1982), 381-392.

[6] A. E. Taylor, General Theory of Functions and Integration, Blaisdell Pub. Co.
1965.



CHAOTIC SEMIGROUPS BY CERTAIN DIFFERENTIAL OPERATORS

[7] M. Yamada and F. Takeo, Chaotic semigroups of linear operators,
Koukyuroku 1100 (1999), 8-18.

Mai Matsui

Doctoral Research Course in Human Culture, Ochanomizu University,
2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

E-mail: mai@tke.att .ne.jp

Fukiko Takeo

Department of Information Sciences, Ochanomizu University,
2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

E-mail: takeo@is.ocha.ac.jp

67

RIMS



