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Abstract. The *-exponential function ey is defined in a transcendently
extended Weyl algebra. In the Weyl ordering expression, this is given as the
real analytic solution in ¢ of

hia hia

hi
T,U) - E&)Ft(u—k —,1})},

hi
Oy Fy(u,v) = e { (u + %)Ft(u—k 5

F‘o(u7 1}) =1.

For generic initial functions, this equation can be solved for all ¢, but the unique-
ness holds only for one direction.
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§1. Introduction

In this paper, we treat the Weyl algebra W} generated over C by two elements
u, v. Wi is the associative algebra with the fundamental relation uxv—v*u =
—hi where h is a positive constant.

In the Weyl ordering expression (cf. [9]), the Weyl algebra is understood
as the space of polynomials with the Moyal product as follows:

Flu,0) # g, 0) = Fexp{ 28, 13 }g

. -3 (5) v () ok enok).
n=0 k=0

where <8_v A Z = <8_v . Z — <8_u . 8_,;, and the arrow indicates to which side the

operator acts. This product formula yields u *« v — v *x v = —hi, and hence
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defines the Weyl algebra. The usual commutative product in the polynomial
algebra plays only the supplementary role to write elements in a unique way.

Using this concrete product formula (1.1), we can extend the product * as
follows: Let C°°(U) be the space of all C*°-functions on an open subset U of
the real 2-plane R? with the C*°-topology.

e fx g is defined, if one of f, g is a polynomial.

e The associativity f * (g * h) = (f * g) * h holds if two of f,g,h are
polynomials.

e If p is a polynomial, then p* and *p are continuous linear mapping of
C*(U) into itself.

Remark that such extension can be considered also for entire functions Hol (C?)
with compact open topology, instead of C*°(U).

In such an extended system, which will be called a C[u, v]-module, the first
task we should do is to fix product formula of several transcendental functions,
and to determine exponential functions of several elements with respect to
the product *. Several results are already given in [10] for the x-exponential
functions of quadratic forms.

If we change variables u, v by a transformation ¢ given as follows:

(Z:) - (Z Z) (Z) ad —be =1,

then we see [v/,v'] = —hi and (o*f) * (p*g) = *(f * g), if the product f x g
is defined. This is the most useful property of the Moyal product formula.

We call (f,g) a quantum canonical conjugate pair, if [f,g] = —hi holds.
(u’,v") is a quantum canonical conjugate pair which is linearly related to the
original (u,v), but there are a lot of quantum canonical conjugate pair (f,g)
which relates transcendentally to the original (u,v). For instance, (u’,v") =
(%,2v?) is a quantum canonical conjugate pair, treated in [12] and [8].

In this paper, we treat a quantum canonical conjugate pair (e’ xu, —%e““’)
for a > 0. We can easily check [e®  u, —1e7%] = —hi by a direct calculation
using the Moyal product formula (1.1).

By the Moyal product formula, we see easily that u * f(u,v) = uf(u,v) —

B9, f(u,v) and

e x f(u,v) = e‘wz %(ﬁ;_a

k

) @) f(uv).
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Since the above sum is the Taylor expansion of f(u + h’%, v), we extend the
x-product by e’ as follows:

av . av hza
e x f(u,v) =e f(u—l——2 ,v),
and
av __ av o hia
f(u,’u)*e =€ f(u 9 ,’U),

by a similar reasoning. Of course we assume that ¢ * f (u,v) is well defined
if and only if f(u,v) is a function such that f(u -+ 22, v) is well defined.

. . eV . . .
To define the *-exponential function e%¢""*“, we consider the linear equation

d d
— Ly = (ie™ s u) * Ly, —R; = Ry * (ie™ % u),

(1.2) dt resp. dt
LO:g(u,v), Rozg(u7v)'

We call this the left (resp. right) equation.

Remark that if we set y = e*” xu and v = —%e““’, then u, v can play the

same role as u, v after changing variables by such a transcendental transforma-
tion. These also generate the Weyl algebra which is isomorphic to Wy. Thus,
in a geometrical intuitive mind, e?¢*"** is expected to play as if ef*. In the
Moyal product formula, we see that el“ is the ordinary exponential function
e’. Hence left-( resp. right-) multiplication ef“s (resp. *e') are invertible

linear operator on C*°(U).

It is remarkable that if we take the Fourier transform, the equation (1.2)

turns out to be a simple differential equation.
In this paper, we show that the x-exponential function e%¢*"** is well-

defined for all ¢ € R and it is real analytic. By the uniqueness of real analytic

. e . .
solutions, we see that e/ *“ satisfies the exponential law:
s+t)ieVxu ; oQU ey
e)(k ) — eize *U eize *u'

However, e/¢*"** behaves very strangely. We show that there are a lot of
non-real analytic solutions and the uniqueness does not hold to the positive
direction. In spite of this, the uniqueness holds for the negative direction. As
a result, we can show the phenomenon of associativity breaking.

Throughout this paper, we concentrate to obtain the concrete formula of

tie®Vxu Ziyw

; 5aV ; Lav 24 —
etze *U etze *U xen W and el xe R ’

* Y * €
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because it is known that functions 2e7 " and 2~ %W play important roles
in the construction of operator representation of our Clu, v]-module. By the

Moyal product formula, we see that
v e = 0, w % 2e” R =0,
but
2R W 5 2eH W = 26%7“}, e HW 4 Q" HW = 2e” n MY
and
2R x 26T HUY = diverge.

Ziy,

By the formula u * e 7%Y = 0, we see that

(e *u) * e T =,

Hence, it is natural to expect that el¢""*" « e~ HUW — ¢~ 7" Such an identity
is obtained as a bi-product of our proof of the main theorem.

§2. x-exponential function of e® xu

Since e x u = u x €™ = ™ x (u — hia), €™ % u is not an hermite element,
though uw and v are restricted in reals.
Set Li(g) = Fi(u,v). Since

hi
e % f(u,v) = ie‘“’f(u + %,v),

we see that (1.2) turns out to be

hia hia hi

- _av hia
O Fi(u,v) =ie (u -+ T)Ft(u -+ 7,1}) Y

ath(u + 77”)}7
with initial condition Fy = g(u,v). If we set Fy(u,v) = Gt(u,’u)e_%“”, then
we have
h hia

(2.1) 0, G(u,v) = 562‘“’8,,6’,5 (u + 50 v),
with the initial condition Gy = g(u, v)e%“”. This is not a differential equation,
but an evolution equation of a differential-difference operator.

Real analytic solutions, if they exist, are unique with respect to initial func-
tions. The solution, if exists, might be written as the x-exponential function
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% g, where ¢ is the initial function, and e%¢*"** is the real analytic

solution with initial function 1.

tie®V xu
*

For the sake of self-containedness, we repeat here the definition of real
analyticity. Remark first that C°°(U) is a Fréchet space whose topology is
given by countable seminorms. Let E be a Fréchet space whose topology is
given by countable seminorms || |[x. A smooth mapping f : R — E is real
analytic, if for every || ||k, and for every ty € R, the Taylor series at every ty
converges in || || on some neighborhood of ty which may depend on k.

However, if Gy is restricted to periodic functions Gy(u + h’%, v) = Gi(u,v),
then (2.1) turns out to be

(8t — ge%v&,)Gt(u, v) =0,

and the solution is given by

Gt(u,v) = @(ua 5 %e (w)-
Thus, if the initial function G is restricted furthermore to a periodic function
Go(u,v + %) = Go(u,v), then the solution is written uniquely by the above
shape.

Next, we want to restrict the variables u,v to the real line. To do this,
denote by & be the space of all rapidly decreasing functions of the variable
&, and let & be its dual space, that is the space of all slowly increasing
distributions.

First we assume that Gy(u, v) is written as
S .
Gi(u,v) = / a(t, &, v)e v de,
—0o0

by using slowly increasing Schwartz distribution a(t, &, v) with respect to &
Oie. a(t, &, v)is a &'-valued C* function). Then the above equation (2.1) is
changed into the differential equation

(2.2) (eah£/2at — ge2a”8v)a(t, & v)=0.

It is remarkable that £ plays only as a parameter. (2.2) shows that a(t,&,v)
is constant along the real analytic vector field e®*/29, — %62(“}81,.
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Figure 1: Level curves of %e‘ah&ﬂ — %

Along the integral curves of this vector field, n = %e‘ahg/ 2 %6_2(“) is con-
stant.
Thus, by fixing & arbitrarily, and by replacing

Y=t ihe—Q(zveaﬁﬁ/27 v
a

pry ’U’
the identities
2
Op =8y, Oy = —ﬁeahﬁ/%—?m}at + 9,

shows that if ¢ is fixed in R, the solutions a(t,§,v) are given by arbitrary
functions of ¥, not containing v’. That is, the solutions are given as arbitrary
functions of %e‘ah&ﬂ — %6_2(“) by multiplying %e‘ah5/2 to both sides.

Our main theorem is as follows:

Theorem 1. Ift <0 (resp. t > 0), then the equation

d d
23) %Lt = (ie™ x u) * Ly, ERt = Ry * (ie™ % u),
) resp.

L():g(u,’l)), R():g(u,’l)),
has the unique solution Li(g), (resp. R—¢(g) ) for almost all initial functions
g with polynomial growth. However, if t > 0 (resp. t < 0), then the equation

has a solution for almost all initial functions g with polynomial growth, but
these are not unique, i.e. Ly, t > 0 is not defined as operators.

Precise definition of “almost all” will be clarified in the proof.
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For every (t,v), we may view a(t, &, v) as an &’-valued function a(t,v)(&),
that is for every test function ¥ (§) € &,

[ (Buate.0)@e = L2 0,a(0,0)(€) () de = 0

The solution is written by using a &’-valued C* function ¢(v)(§) = ¢(§, v)
as

ie—Qav) .

h
(24) a(ta 57 ’U) = ()0(57 Ete_ahg/2 - 24

The right hand side of (2.4) is the distribution defined for the test function
() e

h
[ole Gl = emmye) de.

The condition that has been imposed is as follows:

Condition 1. ¢(&,v) is a &'-valued C*° function such that for every (¢,v),

ie—Qav)

It _neso
(& e 5a

is also a slowly increasing Schwartz distribution.

Let S, be the set of all Fourier image of such functions. In particular, if
supp ¢ is bounded below with respected to &, then ¢ satisfies the condition.

Setting ¢t = 0 in (2.4) gives the Fourier inverse image of the initial function.
Remark

ci e vy
ent = / (& ——)e " de.
oo h
Then the solution ¢ with initial function g being e%“”, 1 or e 7u
respectively as follows:

, 1s given

e E (S R (SO R 3}

@(57 _2a

In general if §(&,v) = [ e~ g(u, v) du is the Fourier transform of g(u, v), then
the Fourier image of Go(u,v) = g(u, v)e%“” with respect to the variable u is

v(6.0) = [8(¢ = Tale — € 00 = 56— Fv),
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and hence

(25) ()0(57 5

Thus the distribution ¢(&,7) which gives the initial function Go(u,v) =

e W or Go(u,v) = g(u, v)e%“” is given respectively, by putting —2an = e~2%

at the place n < 0, as followings:

pl€.m) = 5(¢ + —r Tog(~2am)),

A 1 1
(&) = §(& + — log(—2an), —%log(—Qan))

and these are arbitrary where 1 > 0.
By this, if the initial condition is Fy(u,v) = 1, then the solution is

@ —ah§/2 _ i —2av) _ i —2av __ —ah&/2
(2.6) (&, 5 € 5, ¢ )= 5<£ + e log(e ahte ))

For the general initial function Fy(u,v) = g(u,v), we see

1 1
(27) = g(é’ + E 10g (6—2(11) —ahte_ahgﬂ), _% log(e—Qav_ahte—ah§/2)> )

In general, if n > 0, t is always positive > 0 on the curve defined by
%e‘ah&ﬂ — %62‘“} =1 (see Figure 1). So this curve does not cross the initial
surface t = 0.

Since we are trying to fix the solution by means of initial data, this is
possible only for n < 0. For nn > 0, ¢ is arbitrary. Hence the solution is not
unique.

Remark 2. The family of curves %e‘ahg/ 2 _ %6_2‘“’ = 7 is holomorphic.
Thus, if (¢,v) is complex, then every curve does cross the initial surface ¢ = 0.

Recall that the solution of (2.2) is given by

ht —a L _ av
a(t,f,’l)) = ()0(5756 nefz %6 2 )7

and the initial data is given as a(§, v) = ¢(&, —%6_2(“)). Hence, the restriction

for the initial data is only that a(§, v) has the periodicity a(§,v) = a(§, v+72).
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§3. The solutions with initial data 1, e%“”, e~ huw

In particular, write the solution L;(1) with initial data 1 by Fy(u,v). Then,
Fy(u,v) is given by

~ i & 1 .
F(u,v) = e~ R / 5<£ + —log (6_2‘“’ — ahte_ahgﬂ))e’f“ dg.
—o ah
For ¢t <0, we see that
1
=&+ s log (6_2‘“’ — ahte_ah5/2)
a

gives a diffeomorphism of {-space. Thus it is better to change the variable
by this diffeomorphism. Since the property of delta function gives G¢(u,v) =

eifug—é‘ , we express this as a function of u,v. Since
£=0

g’ .1 ahte™he/?
¢ 2 e—2av _ gfte—ah&/2’

ah&
the point & = 0 is given as the solution of the equation e~ + ahte™ 2 =
e~2%_ For both t < 0 and t > 0, the solution is given by

(3.1) 2072 — _aht + /(aht)? 4 de=2v

We write the right hand side of (3.1) as ¢, and

de’
(3.2) dg’ - " |
d¢lg=0 4+ aht
Thu87 we have
A 2iu 1
Gi(u,v) = e~ an 1083Y Y ’
e 2 ¥+ aht
Ft(u’ 'U) = e_%log %d)ﬁe_%uv

These are real analytic in (¢,v). This solution can be extended naturally
to the domain ¢ > 0. It is also easy to check that this is a solution for all ¢ by
remarking the following identity:

; . 2
ét(u—l—a—m,v) = ¢ an o8 3Y v

2 2(y + aht)’

w 6—2(11)
= — _— - _4 .
O aﬁ¢ T OV U+ ant

F;(u,v) is real analytic by its construction.
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Lemma 3. For every s,t € R, the exponential law
Fs(“? ’U) * Ft(u7 ’U) = Fs+t(u7 ’U)
holds.

. y av nd .
We can write e?®""** = F}(u,v) precisely as

(3.3)
F(u fu) = 6_%1(){%%6“1]7’[)& (w¢ = —ahte® + ( ht av)2 1+ 4

Hu,v) = o+ et e = —ahte ahte .
Moreover,

1 1 1 1 —
(34) 4/ (§eavaht)2 +1+ §eavaht = (y/ (§eavaht)2 +1-— §e‘“’aht) g

(35) [1-—— 4ot = S
(ewaht)? 4 4 (ewaht)? + 4 (e™aht)? + 4

Remarking above, we see e®V)(—t,v) = ahte®™ + \/(ahte®)? + 4 and

Fly(u,v) = ¢ ar loB 3" b (=) e™p(—t,v)
7 e (—t,v) — e%aht
— e—% log % (e'“’aht-‘,— (ea1iaht)2+4) (1 N e ahit )
(e®aht)? + 4

We have also
F_i(u,v) = Fy(u,v) (V/ (e™aht)? + 4 + e‘“’aht)2.

The reason why Ft(u, v) is not a unitary element is that e*” * u is not hermite
and e x u = u * .

Since €™ * u = e™(u + L) and u x e® = €™ (u — 2%), we have ey =
e % (u — “Tm) is an hermite element. Thus, if we replace u by u + % and
construct

A tz(e(l/liu)
Fi(u,v) = ey ,
then,

By ) = e ST (2 )

(ewvaht)? + 4/
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It is easy to see that

A

F_y(u,v) = Fy(u,v).

On the other hand, for the original Ft(u, v) we can check that the bracket
vanishes

I

2iu 1, L ) ) e aht
e wu, ¢ %3 (Viewart? taterant) (1 + 4)

(e®aht)? +

by direct computations. By these, we see that

Proposition 4.

e‘gﬁ log %( (e_zvaht)2+4+e‘“’aht) (1 n e aht )
(e®aht)? + 4

is the solution of the right equation

d
aRt:Rt*(ieav*u), Ry =1.

3.1. The solution of the initial condition e%“”. The distribution which
gives the solution ¢ in (2.4) is given by

(& n) =6(¢+ % log(—2an)).

Thus, the solution at the time ¢ is

i6_2‘“’) = 5(5 + 2 log (6_2‘“’ — ahte_ahgm)).

It _neso
P& e % ah

This is similar to (2.6), but since the coefficient is changed from ah to ah/2,
the behavior is changed as follows: If 2At < 1, then we see

2
§+ p log (e_2“” - ahte_ah5/2> >0,
a

and therefore the right hand side vanishes.
All together, we see the following:

Theorem 5. Foreveryt € R, Lt(e%“”), Lt(e__%“”) is a real analytic solution
in t. Moreover, Lt(e_%“”) — e "™ and Lt(e%“”) =0 for 2ht < 1.
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Proof. For initial functions eh U and e_%“”, these Fourier images are §(§ — %”)
and §(§). They satisfy the Condition 1.

The first one is obtained by viewing the equation as the equation of vector
field (e % u) * ) Actually this is obtained by the fact that the initial

function is ¢(&,n) = 6(€) (cf. (3.6)). O

The relation [2e=%, e x u] = —hi gives the following:

Proposition 6. Let

Ft(u v) = e_%g IOgé(W—em’aht) (1 _ e*aht )
) 4 ’

(e®aht)? +

then

Proof. At t =0, we have [e=%, Fy(u,v)] = 0. Taking the derivative

d .1 _,. = | 2
E[Ee 7Ft(u7fu)]:[ae , 1€ x u* Fy(u,v)]

1 .
= hF(u,v) 4+ ie™ s« ux[—e~ ", Fi(u,v)].
a

Set [Le=, Fy(u,v)] = Fy(u,v) * g; and looking for the solution, then F(u, v) *
% gt = hF(u,v) gives it Fy(u,v) is a real analytic solution. However, this does
not give the uniqueness. This is given by the direct calculation: Since

@7’0) - Ft(u—i_ m—avv))v

[e‘a”, Ft(u,v)} = e““’(ﬁt(u - 5

(3.4) gives that the result. O

Rewriting the above, for (e=% — ahs) * Fy = Fy x =%, then, we have the
following.

Lemma 7. If s > 0,

F_o(u,v) * (7% % Fy(u,v)) — ahs = F_,(u,v) * ((e7® — ahs) * Fy(u, v))
= F_o(u,v) * (Fy(u,v) x e”%) = e,
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Proof. Fs(u,v) x ¢~ % is defined and the solution of left equation with the
initial function e~. The first equality is given by the distributive law and
the exponential law. On the other hand, for £ > 0 the uniqueness for the left
equation, the exponential law gives F_(u, v) % (Fy(u, v) % g) = F_;4s(u,v) % g.
Then, set t = s. ]

This is indeed a dangerous equality. If the associativity holds then, applying
F, and F_g to both side from left and right, we see that the above formula is
valid for s < 0. It follows

1= (F_gxe™xFg)x (F_gxe W xFy) = (Fs*xe x F_g) x (e~ + ahs),

and hence e~ + ahs is invertible for s < 0. This makes contradiction. Thus,
we see that the associativity must break at some point.
We want to see how the associativity breaks down.

3.2. For general initial functions. For a general initial function g, the
solution for ¢ < 0 is given by (2.7) and this is

Gi(u,v)

. 1 1
ifu o —2av —ah&/2 1 —2av —ah&/2 ) )
/e g(f—l——ah log (e —ahte ), % og(e —ahte )) d¢

This is determined uniquely by g. Denote this by L:(g) (¢t < 0). The real
analyticity in ¢ does not hold unless g has some smooth property. But for
t <0, L; is a linear operator of S, ,, into Sy

For t > 0, there is a place such that e 2% — akite=%¢/2 < (. In such a place
the solution is not determined by the initial function g, but ¢ may be chosen
arbitrarily so that Gy¢(u,v) is C*°. This implies that for ¢ > 0 the uniqueness
does not hold for the left equation.

Avoiding this inconvenience, we fix the solution. One way to fix the solution
is that we set p(&,n) = 0 for n > 0.

This means we set to 0 on the domain e~2% —alite=**%/2 < 0. Here Gy(u, v)
must be C*°. For this we must have that

/90(57 @e—ah§/2 o ie—Qav)eifu d§
2 2a
2 log(aht)—L4v hit
— o " v —ah&/2 i —2av ifud
/" (€, e — L) g

is C*° function and this looks like a new condition. But the imposed condition
is in fact that this must be a slowly increasing distribution for every fixed t, v.
Hence the C'*°-ness in t, v is satisfied automatically.
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Thus, if we set

It _apess 1 _og
(3.6) ol(&, 5 € 5q¢ )
1

1
g (f—l— pr log (e72% —ahte~€/2), — % log(e 2w — ahte—ah5/2)>

= (e=20v — ahte=*¢/2 > ()
0, (e72av ahte=a"¢/2 < 0),

then we have the solution for ¢ > 0. Write this by L;(g). The second line
of (3.6) may not be used if lim, o g(§, v) = 0. Thus, L¢(g) is defined for all
g € Sy Fort >0, it is clear that Li(g) = L(g).

In any way, for every initial function g(u,v) € S, ., the solution of the
equation (2.3) is defined for all ¢ € R.
The direct calculation shows this is a solution. This proved Theorem 1.

L, for t > 0 is by the equality(3.6) has the property that L;(g) = 0 means
g = 0. That is to say L; : Sy,v — Sy, is @ monomorphism for ¢ > 0.

However there are other solutions, and the uniqueness does not hold. For
t >0, Ly(g) = F; * g may not hold. Such identity holds only for ¢ < 0.

The above observation tells us many: For ¢ > 0, i_t(g) is determined by g.
If we denote by g; a solution with initial function g, then L_;(g;) = g holds.

We have many g;. Hence the linearity of the left equation gives for ¢ > 0
that L_; has the non trivial kernel (L_;(K) = 0). L_;(K) may be written as
i_t(l) « K, F, = f)t(l) and the exponential law holds for F;. Since FyxF_; = 1,
0 = Fy* (F_4% K) # K shows that the associativity breaks down at such place.

Lemma 8. L_; : Sup — Suw has non-trivial kernel fort > 0, and L_iL;=1.

3.3. KerL,. Fort <0, f)t(g) is uniquely determined for initial functions.
Here we consider the case t < 0. Recall (3.3) at first. In (3.6) the initial
function (&, v) satisfies for some ¢ < 0 that

(3.7)

It _aness 1 _oaw
p(& e 5. )

1 1
= f](f + pr log (6_2‘“’ - ahte_ahgﬂ), ~5 log(e 2™ — ahte_ahgm)) =0.

Let G(u,v) = [ §(&, v)e®*d¢ be the initial function corresponding to (&, v).
Then setting K (u,v) = G(u, ’U)e_%“”, we see that Li(K) = Fy(u,v) * K = 0.
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We want to characterize §(&,v). Fix t < 0 and we first determine the
domain

1 1 1 o —a
(38)  Bi={(€+pp —5n) | n=—logle > —ahte™"/?) £ v € R},

If the supp g is in the complement of F;, § satisfies this condition.
If t < 0is fixed, the above p in (3.8) moves in the range p > log(—ahte%¢/2)
for every &, since e”2% takes arbitrary positive number, By this, we see

B = {(&m) | n < o€~ ~log(~aht)}.

A distribution, supported in Dy = Ef and satisfying Condition 1, satisfies
also (3.7). In particular for every 7 this must be a slowly increasing distribution
with respect to £&. By the property of the domain Dy, it is finite for the direction
E>0.1f0>t>1t, D C Dy is clear.

Initial function §(¢&,v) reflects L;(g) at t < 0 only for the part (&,v) € E.

Proposition 9. For §(§,v), if suppg C Dy, t < 0, Setting

2%

Gluo) = [9l6 00 de, Kl o) = Glu,o)e F

we have Li(K) = Fy(u,v) * K = 0.
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