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Abstract. In this paper, we consider the Cauchy problem for the following
nonlinear Schrédinger equations

(NLS) iOu + Au = N (u, Vu, 4, Va), (t,z) e RxRYN, N >3,
U(va) = UO('T)7 T e RNv

where
N(u,v,u,v) = Z Aapu®t a0 %2,

2<|al+|8I<I,
r<|Bl<!

Aag €C, 1 2>2 r>1if N=3,4,0orr > 0if N > 5. We study analyticity of
global solutions for (NLS) with small initial data uwo. To be precise, we show
that global solutions of (NLS) are analytic in space and time for [¢t| # 0 if the
norm of the initial data is sufficiently small in analytical space with respect to
z-V.
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§1. Introduction

In this paper, we consider the Cauchy problem for the following nonlinear
Schrodinger equations

(NLS) i0wu + Au = N (u, Vu, u, Vi), (t,z) ER xRN N >3,
u(0, z) = up(z), z e RN,

where
N(u,v,u,0) = Z Aagualﬂ”v’glf)’g?,
2<]al+|B|<L,
r<|B|<i
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with A\qyg € C, 1 >2, 7 >1if N=3,4,orr >0if N > 5.

Our purpose in this paper is to prove analyticity of solutions in space and
time to nonlinear Schrodinger equations with nonlinearity of power greater
than 2 including the derivative of unknown functions if the norm of the initial
data is sufficiently small in analytical space with respect to z - V.

Global existence of solutions to (NLS) is started in [19, 20, 22]. They
show the existence of global solutions under the condition Re 9,N = 0. N.
Hayashi [8, 9] proves global existence of solutions to (NLS) with [ = 2 with-
out the condition Re d,N = 0 by using the operators P = z - V + 2td;,
Q = (k) (1<j<k<n) With Qjp = 2;0, — 240; and 9 which commute with the
linear Schrédinger equation. N. Hayashi and T. Ozawa [17] study global ex-
istence of solutions to (NLS) by using a gauge transformation and the above
operators. N. Hayashi and H. Hirata [10] obtain global existence result to
(NLS) by using the smoothing properties of solutions to linear Schrédinger
equation. H. Chihara [1, 2, 3] proves global existence of solutions to (NLS) by
applying the zeroth-order pseudo-differential operators in order to make use
of the smoothing properties of solutions to linear Schrédinger equation (see
also [6]). N. Hayashi, C. Miao and P.I. Naumkin [14] also apply the operators
as H. Chihara [1, 2, 3] uses and show that global solution of (NLS) exists if
the initial data ug is sufficiently small in H™ N H™~22 with m > [N/2] + 3,
where H™* = {¢ € L? ; ||(1 + |z]?)%/2(1 — A)™/?¢||p2 < o0}, m, s € RT.

N. Hayashi and K. Kato [13] prove analyticity of solutions to (NLS) with
I = 2 in space if the initial data is analytical with respect to = - V and 0. N.
Hayashi and K. Kato [12] study regularity in time for the nonlinear Schrédinger
equations with nonlinear terms not including the unknown derivative function.
They show that solution is in Gevrey class of order s (> 1) in time variable
except for t = 0 if the initial data is in Gevrey class of order s with respect
to -V and 9. K. Kato and K. Taniguchi [18] treat Gevrey regularity for the
nonlinear Schrédinger equations under the condition that the nonlinearity is
in Gevrey class with respect to ¢, x and u. They prove analyticity of solutions
for t # 0 if the initial data is in Gevrey class of order s (> 1) with respect to
z-V.

H. Chihara [5] and N. Hayashi, P.I. Naumkin and P.N. Pipolo [16] study
the analyticity for the cubic derivative nonlinear Schrédinger equations with
nonlinear terms satisfying the gauge invariant condition that

N (ewu, v, ey, ei9v> = N (u,v,7,7) for any € R and u,v € C.

They make use of the smoothing properties of solutions to the linear Schro-
dinger equation to overcome the so-called loss of derivative. They do not use
analyticity of the initial data. N. Hayashi, P.I. Naumkin and P.N. Pipolo
[16] show that solution is analytic in one space dimension if the initial data



ANALYTICITY OF SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS 107

is sufficiently small in Sobolev space H*? and decays exponentially. By a
diagonalization technique which H. Chihara [4], N. Hayashi and E.I. Kaikina
[11] and P.N. Pipolo [21] use, H. Chihara [5] announces gain of analyticity if
the initial data without smallness is in Sobolev space H?? with § > N/2 + 3
and decays at infinity exponentially.

Applying the energy method to (NLS), so-called loss of derivative occurs
because nonlinear terms of (NLS)do not satisfy the condition Red,N' = 0. To
overcome it, we use the following operator

(1.1) S(p) = HSJ‘(SOJ‘),

which is used to obtain a smoothing property of the linear Schrodinger equa-
tion in [14]. Here S;(¢;) = cosh(p;)+sinh(p;)H;, H; is Hilbert transformation
with respect to the j-th variable. Here, we choose ¢; as follows:

) zj(t) =" )
(1.2 pittz) =0 [ )y,
—0o0
where p = % + o with o € (0, %) The original one of such operators is

introduced by S. Doi [6] for Schrédinger type equations with derivatives (see
also [2]).

(1+9) D

N X5 —
S0 — / 1422 Ao’ =3 | |
exp jzl _OO< +33j ) T <Dj>

where § > 0, D; = i0; and (D;) = (1 — 832)1/2. H. Chihara [3, 4] uses the
following operator based on S™):

N oy D;
@ —exp (Y [ttt Eons dolps
=/ 5 {Dj)

He applies the above operator to nonlinear Schrédinger equations with nonlin-
earity of power greater than 3. To use S and S, they need the knowledge
concerning pseudo-differential operators and complicated calculation to ob-
tain the generalized energy inequalities including these operators. However,
for nonlinear Schrodinger equations obtained by transforming variables of Ishi-
mori and Davey-Stewartson systems N. Hayashi and P.I. Naumkin [15] use

2
S®(p) = [[(S;(ps) = cosh(ip;) + sinh(p;)H,)
=1
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where

T
pitte) =2 [ 10 But iy dej  forjk=1.2 5 £k
—0o0

The calculation with communitators become explicit because of the operator
S. N. Hayashi, C. Miao and P.I. Naumkin [14] introduce the operator (1.1)
based on the operator S®). We use the operator S to prove our result. In
Lemma 2.4 of section 2, we can get an energy estimate in which we have the
norm of half derivative of the unknown function u by using the operator S.
Owing to the above, we are able to overcome loss of derivative.

We easily see that the operator S acts continuously from L? to L? with the
following estimate

1S(@)v]l < Cllll.
The inverse operator Sj_l = (1+itanh (p;)H;)~!

uous in L2 :

— L exists and is contin-
cosh (¢;)

ISTH )l < (1 = tanh ([@lloo)) "Ml < Clll.

And to prove analyticity in space and time, we have the help of a operator
P =z -V + 2t9,. This operator have properties [P, L] = —2L,

1 !
(tat)l = Z i '(_x . V)hplz
=+l 1%

and
tAPYu = —iP""hu +i(z - V)P u 4 2t(P 4+ 2)"N.

where £ = i0; + A, [A, B] = AB — BA, N is a nonlinear term. From these
properties, we show analyticity in space and time.

Notation and function spaces. We use Lebesgue space
L? = {¢ :¢ is measurable on R ||¢||1» < oo},

where

1/p
16l = </RN‘¢(I')‘pd:L') , if1<p< oo,

ess.sup{|¢(x)|; x € RV}, if p= 0.

Inner product on L? is defined by (f, g) = [ fgdz. We define weighted Sobolev
space

H™ — (¢ € L% lhms = (1 + [o2)2(1 — &)™y < o0}.
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For convenience, H™ stands for H™?, and we write || - ||, = || - [[m,0- We also
use || || = [ - |2

We let 0% = 9% = o' -0y, o] = a1 + -+ + ay. We denote the
operators Q = x -V + 2itA, and J = (J;)1<j<ny, With J; = x; + 2itd; and
x-V = 2101+ - -+xn0n. We note these operators have the following relations:

Q=P +2itL
pu— J . v
=U(t)zU(-t) -V,

where £ = 10y + A and

Ut)p = (2mit) N/ / exp(ilz — 2'[2/4t)p(a)da.

We also have the following properties with the commutator:

Q, V] =[P, V]=-V,

@, J] =[P, J] =,

[P, Q] =1, Pl =[Q,Q] =0,
(1'3) [ajv J] - 5137

Qjx, 0] = 5kl3 — 0510k,

[ Jiko ]

\

where 6, = 1if j = k and d;, = 0 if j # k. We define operator vectors
I' = (P,Q,A 1) and © = (Q,9,A,1). We also use a operator vector I'?> =
(P,Q,A1)2 = (P?2, PQ, PA, P,Q% QA Q, A% AL 1).

Let Fj¢ be the Fourier transform of ¢ € C§°(RY) with respect to j-th
variable, namely

fj¢($1, . ,xj_l,fj,xj+1, e ,.CI?N)

1 itz
= —/¢($1, yTj—1,Tjy Tjtly - - ,xN)e Zg]x]dl’j.
V2T Jr

We also denote by .7-711# the inverse Fourier transform of the function ¢ €
C5°(RY) with respect to j-th variable,

Filpn 61,25, &1, - 5 EN)
1 &,
= \/T—W/RW&--- &5-1,85, 8541, - -, EN) eI dE;.
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We use the following notation |0;| = .7-"3»_1\53‘\‘7:]‘ = —H;0;. The Hilbert trans-
formation with respect to the variable z; is defined as follows

j¢($1,.. .lej 1,:1:j,:1:j+1,... ,.leN)

=He;d(w1, .0, Tj1, T4, Tjg1, -, TN)

:—P /qul,.. ,Tj 1,zxj+1,...,:1:N)dZ

€Tj— =%

L&

= —F 1ol

7]

where j = 1,..., N and Pv means the principal value of the singular integral.
The fractional derivative |0;]7, v € (0,1) is defined by

‘7:]¢7

0517 = F &1 Fig

_C/R((ﬁ(xlv 7xj—17xj+2,xj+1,... 7;1:'N)

dz
— ¢($1, e ,xj_l,xj,xj+1, e ,xN))W
and similarly we have
1 &
05" H ¢ = —iF; =51 Fig
(31
_C/((b(xlv s Tj—1, Tj + 2, Tjgl - ,.leN)
R
dz
_ ¢(x1,xj_1, ey TGy Ty e ,xN))M,

with some constant C, see [23].

We note that factorial of zero and negative number is always considered
as 1. In other word, v and v; (j = 1,2,3) are max(v,1) and max(v;, 1)
respectively in the notation such as

2
Z 14 Z 14
... OI‘ ...
! 1402143

1202148
v=v1+vo+v3 17273 v=v1+v2+v3

We define function spaces in order to show our main results.

Zma = {0 € L% |dllz,, , < oo},
where m, A € RT,

0 2v

A
1611z, =D wone e V) ol

v=0
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and

1618, = D 199 V)"l im—sjal-20)-

la|+b<2
And putting w; = e(z;(t)~#)~#, the function space Y,, 4 is defined by
Yo ={¢ € C(R;LAR")); 4]y, . < o0},
where m, A € RT,
e A2V

161R,..0 = 2 =y Pl

v=0

and
2
lol%,. = sup 026 _, +sup|[TOs|2, _,
teR teR

+ sup |02,y +sup(t) ™ [ Q%%
teR teR

A3 [ st

We state our main results.

Theorem 1.1. Suppose that the initial data ug belong to Z, o with some
positive constant A and m > [5]+ 6 for N > 3 and satisfy ||uo|z,, , < ¢
with a sufficiently small positive number €. Then (NLS) has a unique global
solution v € C(R; H™) such that

Pluc C(R:H™) (v=0,1,2,...)

and satisfies the estimate

sup Z

tER

2

Remark 1.1. We give two function as example of the initial data.

(1) Let d be sufficiently small. For a and b with 2b—N/2—1>a > m—N/2,
u(x) = 0|z |*(1 + |2[*) 7

(2) Let 6 sufficiently small. For ¢ > m + 2, ug(z) = §|z|%17l.
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These functions belong to Z,, 4 for some A > 0.

Theorem 1.2. Let u be the solution of (NLS) constructed in Theorem 1.1.
Then there exist constants C7, A3, Ag and Ag such that

”a(x)|u|+2maf1auu”m < Ch7|t| ™" max{1, ‘t‘—|u\—m}AgM|A|8M|+H1 A$1(|M| + 1),

fort # 0, any k1 € NU {0} and any multi-index p, where a(x) = (x)~ =

1/(1+ [N,

Remark 1.2. Theorem 1.2 shows the analyticity in space and time of solutions
to (NLS).

The rest of this paper is organized as follows. In section 2, we present
the energy estimate including the operator S, based on a smoothing property
of the free linear Schrédinger equation and some estimates for nonlinearities.
Section 3 is assigned as the proof of Theorem 1.1. In section 4, the result of
analyticity is shown. Its proof has four steps.

§2. Preliminaries

In this section, we prepare some lemmas to prove the existence of solutions.
We study the following linear Schrédinger equation to get the energy estimates
of the solutions.

2.1) { Lu = f, (t,z) € R x RN,

’U,(O, .CI?) = ’U,()(JI), T RNa

where £ = i0; + A.
In order to show two important lemmas, we prepare some lemmas.

Lemma 2.1 (The Gagliardo-Nirenberg inequality). Let 1 < ¢,r < oo.
Let integer number j, m satisfy the inequality 0 < j < m. Let p be such that

1 ] 1 m 1—a
__i+a<___)+u,
q
where a satisfy j/m < a <1 ifm—j—n/r € NU{0}, and j/m < a <1
otherwise. Then the following estimate is valid:
> 10%le < Cnmjar Y 1074l I6lla"
=5 18]=m

provided that the right hand side is finite.
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For the proof of Lemma 2.1, see, e.g., A. Friedman [7].

Lemma 2.2 (Hayashi-Miao-Naumkin [14], Hayashi-Naumkin [15]). For
0<(1-6)/2<~v<1-0<1, the following inequalities

100517, 811l < Clida, g~ (Il + I, L) 0

and
1—~—0
1107 Hy, @191l < Clla,llpes ™ (16llLee + 1o, =) ||
are valid, provided that the right hand sides are bounded.

In [14] and [15], they show the lemma in the case of =1 —~ and § = 1/2
respectively.

Lemma 2.3. The following inequalities stand up for a sufficiently small con-
stant €.
10105172, cosh(gj)wslé]| < Ce(t)~ 4@,

|| sinh(ep;)H, {10512, wilél| < Ce(t) 4|4,
| sinh(,)[|0;]Y/2H;, w;)él| < Ce®) 4|4,

and
1118512, sinh(;)w;H; 8|l < Ce(t)~/4||¢]],

where w; = e(x;(t) ) 7H.

Proof. We have

I cosh(ip;) ¢l < exp([lejllso)lldll < Cli 4]
and

Isinh(;)ell < exp([lojlleo) [0l < CliI
where v = 1/2 and # = ¢/(1 4+ 20) . Hence, from Lemma 2.2, this lemma
follows. O

In the next lemma, we can get an energy estimate in which we have the
norm of half derivative of the unknown function u by using the operator S
defined by (1.1).

Lemma 2.4 (Hayashi-Miao-Naumkin [14]). The inequality

" t dr
2 1/2 2
)P+ 3 [ s P i
2 t 2 ¢ o dr
< Juol2+C /0 Im(Su, Sf)|dr + C= /0 ) P

is valid for the solution w of the Cauchy problem (2.1).
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We also need the next lemma in order to estimate the nonlinear terms of
(NLS).

Lemma 2.5 (Hayashi-Miao-Naumkin [14]). The estimate

Im(Swojv, Su)|
<Ce((t) ™ |lull + ;81051 ull)

w 12 ajw 12 w 1/2—6
12l esiol vu+c( Ll S )
J llpee J ILee Wi || g,00
Oow B w 1/2+0 ) w
x (‘— Lty ) bl + e 2| ol
wj Lo RIS wj Lo©

+ C([|wallre + (&)~ (|wl|ze) [[ull[|o]]-
1s valid, provided that the right hand side is bounded.

We improve Lemma 2.2 in [14] to show our theorem and obtain the lemma.
Hence, the lemma can be shown in the same way as in the proof of [14, Lemma
2.2] by using Lemma 2.3.

When we deal with both the norms of the half derivative term given by the
linear part of (NLS) in Lemma 2.4 and ones given by the nonlinear part of
(NLS) in Lemma 2.5, we can overcome the loss of derivative with the nonlinear
terms of (NLS).

Next two lemmas are also shown by N. Hayashi, C. Miao and P.I. Naumkin
in [14].

Lemma 2.6. The following estimates are true:

(1) For all N > 3,
IVell, < ClO)~ 0] Vel
where a = (N/2)(1 —2/p) > 0,2 <p <2N/(N —2).
(2) For all N > 3,
Igll, < Ct)~lleg]|llo] ',

where a = (N/4)(1 —2/p) > 0, and p is such that 2 < p < oo for N =3,
2<p<oofor N=4,and2 <p<2N/(N —4) for the case of the space
dimension N > 5.

(8) For all N > 5,
Iglly < )M 1O Im,

where p > 2N/(N —4) and m > N/2— N/p—2 > 0.
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(4) For the case of N = 3,4,
IVoll, < Gy~ 0% *|0s] ',
where a = (N/4)(1 —2/N —2/p) > 0, p > 2N/(N — 2).
(5) For all N > 5,
lell, < C{H)y =1 e%g|10s] ",

where a = (N/4)(1 —2/p) —1 > 0, and p is such that 2 < p < oo for
N =5,6,7,2<p<oo for N=8, and2<p>2N/(N —8) for N <9.

(6) For all N > 9,
6l < C6) 167 llm,
where m > N/2 — N/p —4, p > 2N/(N — 8).

Lemma 2.7. We have the estimate for alln >3, m > [5]+6 and o € (0, 3),

(2} 27 < C) 7702674 O]l S + C1O¢lm—a.

m—4

83. The Proof of Theorem 1.1

We consider the linearized version of the Cauchy problem (NLS)
(LE)
i0pu + Au = N(v,01v,...,0N0,T,01T, ... ,0ND), (t,z) € R x RN,
{ u(0, x) = up(z), r € RV,

We assume that ||[v]ly,, , <&, m > (5] +6,meNande= |uol|z,, ,- Then
we define a mapping u = Vv by the above problem and show that W is a
mapping from (Y, 4)V ! into itself. We discuss the case ¢t > 0 only since the
case t < 0 can be treated similarly.

For simplicity, we prove this theorem only in the case that

N(v,7, Vv, Vo) = N1 + Na

where

N N N N
Ni =X\ Z ak’l)2 + v Z OpU + )\352 Opv + \g Z 8@2
k=1 k=1 k=1 k=1
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and
=X (Z 8kv> + X6 (il akv> (i am> + A7 (i am> 2 :

Since we have (P + 2)(uv) = (Pu)v + u(P + 1)v + uwv and (P + 2)(uv) =
((P + 1)u)v + u(P + 1)v, we obtain identities
(3.1) (P+2" (@)= ) PP + 1)y

v '1/ '1/
v=v1+v2+v3 1:72mat

and

(3.2) (P +2)"(¢)) = V;LVQ VI!VQ' (P + 1)1 (P + 1)),
Also, we have

(3.3) (P+1)"0xp = O P .

Multiplying (LE) by the operator AYP" /(v — 1)!, using (3.1) and (3.2) in the
case of N7 and N, respectively and applying (3.3), we have

AP L AP
w1 2w

vAY3
- Z 141 !1/2 !1/3!

v=v1+v2+v3

16,5

N N
X ( 2A1(AY P10) Y D Ok APV v + Mg(A PV ) Y 0, A P
k=1 k=1

N N
+ A3(AYTPD) > 0 A P 4 2X4(AY PYT) Y Ok AV PV )

k=1 k=1
VA3
o
141 !1/2 !

v—1=v1+1»

N N
X { As (Z 8kA”1P”1v> (Z 8kA”2P”2v>

k=1 1

N N
+ g (Z O AV P v> Z O AV2 P2 @)
k= k=1

1
O A2 P2 ﬁ) }

N
A7 (Z O AV P”l@) (
k= k=

RS

=

—_
—_
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v v 2
Since we shall obtain the estimate of »~>° HF28{”_4%U,(1‘)‘ , we apply

Lemmas 2.4 and 2.5 to the equation (LE). We note these lemmas are important
to estimate the nonlinear terms which cause so-called loss of derivative, when
we use the classical energy method. Here, we consider

AV(P _|_ 2)VN B Z AV3V Al/lPl/l AVQPVQ’U

(v—1)! vyl ! vk V! Y

v=v1+v2+v3

as the nonlinearity. Differentiating this term m — 4 times and multiplying the
result by the operator ST'2, the term becomes

Avsy AP Av2pra
34)  srrt Y u v, v
v=11 toa-+vs Vg! Vl! VQ!
B A3y AVly 9 am—a A2V
= S Z V3! Vl! ’Uak; <F 81 V—2!’U —|—SF

v=v1+vo+v3

Using Lemma 2.6, the second term of the above is estimated by

AV p7
(1/1 — 1)'

Av2 p2
(1/2 — 1)'

35) [SFl <ot Y A%y

141 V2V3!

v=v1+v2+v3 Xm Xm

Multiplying the first term of the right hand side of (3.4) by SI29;"*
(AVPY /(v — 1)!)7, integrate it with respect to = in RY | taking the imaginary
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part of it and applying Lemma 2.5 to the result, we have the inequality

Avsy An pn Av2 pr2 AvPY
(s 3y - v <r2alm—4 v) , ST u>

vl 1! vo! (v —1)!

v=v1+v2+v3

AV1 PV1
(1/1 — 1)'

v

<oy Yy A

141 V2V3!

v=vi+v2+v3 Xm

X ||wkS|ax|V2T2om

|

AV PY
2 am—4
o <v—1>!“’“

AV1 PV1
(1/1 — 1)'

Avs
oY Y v v

141 V2V3!

v=v1+va+v3 Xm

AVQPVQ
(s —1)1°

AvpY
wi S|V

1/212 gm—4
wrS|0k| /T 0] w1

X

Loz 3 A%

141 V2V3!

AV1PV1
(1 - 1)!”1

v=v1+v2+v3 Xm

AV2 PV2
(1/2 — 1)'

AYPY

% 1)

v

F28lm_4 u

Xm

AV1 PV1
(1/1 — 1)'

AV
+o@Trer N -

v
141 V2V3!

v=v1+v2+v3 Xm

AV PY
W S| 2T29 T

AVQPVQ
1 1)

(r2—1)

.

AV1 PV1
(1/1 — 1)'

Avs
romTt Y -

v
141 V2V3!

v=v1+va+v3 Xm

AV2 PV2
(1/2 — 1)'

, AVPY
-1
AV1 PV1

(1 - 1)!”'

X

v

2o

"U,
Xm :

+om Y A

v1vovs!
v=v1+v2+v3 17273

Xm

AV2 PV2

4 AVPY
—
(v —1)! X

1/202 qm—
wi S| 0| “T0] (u—l)!u

X

9

m
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ow

Wi

ow

since we have the estimates Hw/w?HL < C{)~Y?*72|w||x,, and
w
H—1/2
D) v

( o) )
Loo Wy || ge0 Wy [l g00

< ) wlx,,
by Lemmas 2.6 and 2.7. Applying Lemma 2.4 to (LE), we obtain the inequality
by the commutator’s relations (1.3) , the estimate (3.5) and the above

+ (142
Loo

AYPY AV PY 2

t
Wi S|8 |2 T2

2 am—4
' a (v— 1)!u(t) = 1)!u(7) dr
AVQQ T - v b+v 2
S Z (I/(— 1)‘) uQ
la]+b<2 : (m—2|a|—2b)
AV AV pv
+C/ ATV \=3/4-(3/2)0 FQam 4 .
v= V1+ZV2+V3 V1V2V3'< > ( _ 1) (
N
V1 py1 Av2 pr2
(Vl - 1)‘ X kel l (1/2 — 1)‘
V3 AVPV
+ C/ Z Ay —-1/2—20 wksyak‘l/QFQalm—47u(T)
v=v1+va+vs3 1V2V3' (I/ — )
N
AVI PV1 1/2 2 i AVQP]/Q
“Nor=or"|lx ; wi |0k 2129 mvm ir
AV3V o — AVPV
+C/ 2 1V2V31<T> Rl L/ 4(1/— 1)! yu(T)
v=v1+v2+u3 :
Am P AVQPVQ
8 ﬁv WU(T) dr
Xom X,
Ay —3/4—(3/2)c
+C > ool
v=v1+v2+u3 :
v Av1 pri Av2 pre
xz wkS!ak\lmmam 4 AY P H ‘ ape .
k=1 (1 — 1 (vg — 1) N
t — AVPV d
i C’62/0 ro 4(1/ — 1) u(T) < (r)1+o
Aw oy, I 9 qm—a APV 2 gr
H —1)! uQ 5, | L 0, (V_l)!u(T) B
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We consider I;. We have by the Schwarz’s inequality

AV PY
L =C —3/4=(=3/2)0 FQam—4
1 / - 1)!’LL(T)
V3 V1 pU1
% Z vA AP v‘
v=v1+va+vs vivavs! (Vl - 1)! Xm

AVQPVQ
wks"?k\l/QF2a{n_4(v — 1),1}(7) dr
k=1 2 !
t .
<C/ <7—>—1/2—(1/2)0' F2am_4 AP u(T)
> 0 1 (I/ — 1)‘
1/2
V2 A2V3 AV pvi 2
" V333 v
<VV1+ZV2+V3 V%V%V?%) < VV1+ZV2+V3 (V3 - 1)!2 (1/1 - 1)! Xm

N Av2 pva 9\ 1/2
—1/2—2¢ 1/212qm—4 A 717
X (T wrS|0 ) olr 0
S B VL )
t .
SC/< ~1/2-(1/2)e || p2gm—4 AP u(r)
0 (I/ _ 1)
A2V3 Al/lpyl 2
8 v
< VV1+ZUQ+V3 (V?) - 1)‘2 (1/1 — 1)‘ X,

N A2 o 5\ 1/2
AT enSIon POt () ) dr
k=1 2 :
1/2
t A"PY 2 dr
< m—4
<C (/0 O )| e
A2V3 AV1P]/1 2
% v
< VV1+ZI/2+V3 (V?) - 1)‘2 (1/1 — 1)‘ X,

AVQ Pl/g
(v —1)!

dr 1/2
i

2

t
wksyak‘l/QFQalm—4

u(T)

2 g 1/2
(r)1/2+20 >

_, AvPY

=¢ </0t (v—1)!

A2V3
y ( >

v=v1+v2+v3

F2alm

u(7)

AVt p1
v —1)"

AV2 pv2
(v = 1)1

2 1/2
v
Xm

Xm
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since we have

2
v
su E < C.
P <V1V2V3) o

Y v=u +otus
Using the fact that the function v(¢, x) is in Y, 4, that is,

2

x
AY PY
[0l A = 2 <e
;) -1 |Ix,,
we have
A2V3 Av1 pvi AVv2 pv2
(3.6) y Anpe
A py 2 o] AV2 pv2 2 [e'e] A2V3
=¢ —V -
Z (- Xmuzzo (v2 — 1) megzo(’/:a—l)!2
<Cet
Hence we have the estimate
00 ) t ) 1 AY PY 2 dr
—
Zoh < Ce ; r<o, = 1)!U(T) T + Ot

In the same way as the above, we also obtain the estimates for the other terms

V=0 =2
AY pY dr
< 2 am— 4
Cg T 8 I/ — 1) (T) <7_>1+O'
/ AY pPY 2 dr
1/21:2 am—4 4
+Ce wksyak\ P )| v O
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Hence the integral inequality becomes

o0 AVPV 2
3.7 sup |F23m_4 u(?)
( ) ;)te[opo) l (I/ _ 1)| (
co N [e'e) AVPV 2 dT
1/22 qm—4
+ZZ/ ‘wkslak\ /129, ( _1)1“’(7) (12420
v=0k=1"0 Y ' )
e¢] Ay(mv)V 2
<C — U
= ;) -1 g,
) AV PV 2 oo qr
+ C¢e? sup 'F28m_4 u(t) / T\ 1to
;)te[O,oo) Lo =1) ( o (m)tte
© 0 N AV PV 2 ar
9 1/212 gm—4 L 2
+Ce ZO/O ; wiS| O]/ *T0, (,,_1)!“(7) <T>1/2+2J+C€

If we choose a sufficiently small constant € as 1 —Ce? > 0, we have from above
estimate,

o0

£

v=0 te [0,00)

AYPY

rom—t = 1)!u(t)

<Ce* + Ce? Z sup '
v=0 tE[0,00)

AYPY

F28lm_4mu(7)

Therefore we obtain one of the desired estimate

o0

(3.8) > sup ‘

v=0 te [0,00)

AV PY

F28{”_4mu(t)

Next, we consider

N
N=v Z Ok,
k=1

as a nonlinearity again. By Lemma 2.6, we have

apr s
‘ V(V - 1! (t)‘ L3 =00

Avpr
= 1)!”“)‘

Xm
and

Xm
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It follows from identity QPYu = PP"u + 2itLP"u = PPYu + 2it(P + 2)" N,
Holder’s inequality and the above estimates that

(3.9)
A”P”
o]
m—2
p AP AY(P +2)
e e Rl e vl
AV PY
<C l F27u(t)||
(v —1)! 4
N
pA% An P An (P 4 1y
+ 2|t v(t 2T gt
| | VI/1+ZI/2+V3 V1V2V3! (Vl - 1)‘ ( ); (VQ - 1)‘ k ( ) I
A PY Avs Av1 pv1 Av2 pv2
il o AR |
(v =1 m—4 y=vy +vy4vs vivgus! || (1 = D fIx [ (e = D I,
and
(3.10)
AV PY
ol
) m—4
AVPV AV P 2 AV P 2
'P2 u(t)H + 2[t] H ;NH +2[t] HiJr NH
(v —1)! i
< re =g
(v—1)! 4
N
vAn Anpn AP (P 4 1)
ol |P Y vl o D) Z 1) A (t)
v=v1+v2+v3 -1 md
pA% An P An (P4 1)
+2ft u(t ————0Okv(t
i VV1+ZV2+V3 ! (v —1)! ( )Z (v — 1)! (*) .
AV PY A3 A py AV2 pv2
sl o5 2l e
(l/ - 1)! o A vivu3! (1/1 —1)! X, (1/2 —1)! X,
By (3.6) and (3.8) - (3.10), we obtain
(3.11)
i HQ AY pY (t) 2 +Z HPQ AY pv (t) 2 “c )
sup ] sup < Ce
v=0 tE[OVOO) (V - 1)‘ m—2 V= OtE[O OO V - 1) m—4
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We denote U = (v, Vv, 7, Vo). Hence we obtain
2N +2
QN = ((z- V) +2itA)Updy, N
k=1
IN+22N+2
+ Z Z 21t Za Uka U, 6Uk8UlN).
k=1 I=1

Therefore, by the Holder inequality and Lemma 2.6, we get
AY(P +2)¥
o )
(v—1)!

AN PV1 AVQPVQ
< ¥ dmmr e
v=v1 +v2+v3 1V2V3' (=1t (o —1)! Lo
AV2PV2 AV P”l
HQak T H ] >
A”1 P”1 AVt pvi
+ Cl¢ v(t + |A——v(t
HZ( )L3 H (Vl_l)!()Ls)
AV2 pv2 AV2 pv2
X (|G ——=x70(t —v(t
( 1(1/2—1)! ()Lﬁ ‘ (v — 1)! ()Lﬁ)}
_ vAY3 AV P Av2 pv2
<o Y ' —0(1) —v(t)|| .
v iy V1V2V3! (1, — 1) X, (vg — 1)! X,
We similarly have by the above inequality and (3.10),
AYpY 2
)y~ |Q? Tu(t)
(v—1)! i
AV PY 2 AY(P +2)¥
< -lilpo=—— __ AT 2)”
el frag o] rom|etg T
AV PY
<c|r 25|
(v —1)! 4
V3 vy pr vy pV2
+C Z vA AnP v 714 r v .
v=v1+vatvs v1vavs! (Vl - 1)‘ Xom (V2 — 1)' X
Hence by (3.6) and (3.8) we have
i AYpY 2
3.12 sup t -1 Q2 U t) S C€2
( ) ;)tE[O,oo)< > (V - 1)‘ ( m—4
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By (3.7), (3.8), (3.11) and (3.12), we obtain the inequality
lull%,, , < Ce*

Hence it follows that u = Wv defined by the linearized equation (LE) trans-
forms a set {¢ € Yma; 9]y, , < Ce} into itself. In the same way we are
able to prove

1
[Yv1 — Yoally,, , < 5””1 —vallv,, 4

Therefore, the mapping ¥ is a contraction mapping. This completes the proof
of Theorem 1.1.

84. Analyticity

In this section, we prove the analyticity of solutions for (NLS) constructed in
Theorem 1.1. To show Theorem 1.2, we use the following properties of the
operator P as N. Hayashi and K. Kato [12] and K. Kato and K. Taniguchi
[18]:

| !
PL =26 and (0) =5 Y llfb,(—x-vylplz.
I=ly+ly ~ %

Moreover, K. Kato and K. Taniguchi also use a property
(4.1) tAPYu = —iP" "y +i(z - V)P u 4 2t(P + 2)"N.

It is important to make use of the above properties in order to show Theorem
1.2. To estimate the norm of the term including the operator z - V, K. Kato
and K. Taniguchi make use of C*°-function r(z) with the property r(z) = 1 if
|z| < R, or r(x) =0 if || > R, where R is a positive constant. Instead of it,
we use a(x) = (1 + |z[2)~N/2.

We treat only case of 0 < t < 1. The case of —1 < ¢ < 0 can be proved
similarly. And for |¢| > 1, noting the inequalities (4.6), (4.13) and (4.16), the
analyticity of solutions for (NLS) can be shown in the same way as the case
of t € [-1,1]\{0}.

From Theorem 1.1, we have
(4.2) | P wllm < CLAYV, form > [N/2]+6 and v =0,1,2,....
Lemma 4.1. Let u be the solution of (NLS) constructed in Theorem 1.1.
Then we have positive constants Cy, Ao and Az such that
(43) la(@) o P ull, < ‘fﬁAé’“"AL’“"“um + )L,

for any multi-index p and v = 0,1,2,..., where a(x) = ()™ = (1 +
‘$|2)—N/2.
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We use two propositions to prove this lemma.

Proposition 4.1. Let m > [N/2]+ 1. If f,g € H™, then fg € H™ with

1£gllm < Cl[fllmlgllm;

where C' is a positive constant depending on N.

Proposition 4.2. Let aq,...,ar and o be multi-indices such as a1 + - -+ +
ap = a. For a and an integer 1, let integers ;j > 1 (j = 1,...,k) satisfy
G +-+C =|a|+ 1. Then, we have

5 ﬁ|aj\+z ~ (Ja] +1)!
1! - alll

a1+ top=a,
L1+l =1,
log |+l =Ck

Proof of Lemma 4.1. We prove the lemma only in the case that

N
N = uz Oju,
j=1
We get
(4.4) / ‘(1 - A)m/Qa(x)‘Q dr < C2.
BN

We prove the lemma by induction with respect to |u|. The inequality (4.3)
for |u| = 0 is nothing but the estimate (4.2). First, we prove (4.3) for |u| = 1.
By using (4.4) and Proposition 4.1, we obtain

la(z)0P ullm < [[0(alz) P u)|lm + [|(da(z)) P ullm
< [[0(a(z) P"u)[lm + Ca ATV,

where Cy = C1C3. By Proposition 4.1, Leibniz’s rule, the inequality (4.2) and
10X fllm < 1Afllms for x| =2,
we have

(4.5) 10(a(z) P uw)|lm
<C||A(a(z)P"u)||m-1 + Clla(z) P u||m-1
<C||(Aa(x)) P’ ulm-1 + 2C [|Va(z) - V(P u)]|
+ Clla(x) AP ul|yp—1 + CL ATV

m—1
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The first and second terms of the right hand side of (4.5) is estimated by
C5 AV, where C5 = 3CC1Cs. We consider the third term. From (4.1), we
have

(4.6)
la(z )APVUHm_l

L (@) P s + (@) (@ - V)Pl + 2]a(2) (P + 2 A s,

=T 1
We obtain by Proposition 4.1, inequalities (4.2) and (4.4)
la@) P ullm-1 < fla(@)lm—1| P 1
< ClchT—H(I/ + 1)!.
And the second term of the right hand side of (4.6) becomes

N
la(@)(@ - V)P ullm-1 < Y l(al(z)a;)0; P ullm-1

j=1

N
<C3 Y 0;P uflm

j=1
< Gs||[P"ullm
< C1C3 ATV
By the identity
v V! 1% 1%
(P+2)"(vw) = Z WP (P +1)"w,

v=v1+v2+u3

we obtain

(P+2)"N =(P+2)” uZ@u

= ¥ 7”'”2'”3 (P"'u ZaP”2

v=v1+vo+v3
Hence we have by Proposition 4.1 and the inequality (4.2)

vl

I(P+2)" N1 <C >

v=v1+v2+u3

1% 17]
Vl'l/ 'I/ '”P 1u”m 1”P 'U,”m

A +va !
2 1
<0G Z s

v=v1+va+u3

<Cge M AY (v + 1)),
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where Cg = CC?. Hence, we have
[0(a(z) P u)|lm < n A”“Az('/ +1)!

where C7Ag = max{Cs, Cg, 2, A1}, Az = e!/A1. Therefore we have the case of
||=1 of the lemma.

Next, we prove that (4.3) is valid for |u| = k+1 with k£ > 1, assuming that
(4.3) is valid for |u| < k. Let p = 5+ x with |5] = k—1 and |x| = 2. We have

la(a) 0" PVl <10X(ala) "0 P ) | + || [a(2) ™, 0X]10° P | m

We estimate the second term of the right hand side of the above inequality.
By calculations, we have

Apa(x)H = 1+“”|‘2 pa(z)H

and

Ox0ja(x)H

(k+1){N(k+1)+2} czia(z)¥ .
) —N(k+1) u
—= TW a(z )I |
(k+1){N(k+1)+2}x o)l -
\ TR a@, (G =h)

Since

la(@), 9 = ~9¥a(2) " — (Bha(2)")d; — (Bja(x))0
— —9%a(@)¥ — |ul(Grala))a(x) ¥=19; — |ul(9ja(x))alz) ¥ 0y

and “(k41) (k+1){N(E+1)+2}
(k+v)  NEk+)k+1+v) — '

we obtain

(4.7) [a ( ), 9X10° PV m

1 1+v
< chmc WA AT 18]+ 1 4 0)M (| + v)

O AP AT (18] £ (] — 14 ) (Jul + )
‘t‘lﬁl

< CuCudf AP ()t
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In the same way as the above inequality, we obtain
Il AlBP P N =1 gl =14
(4.8)  |la(z)™, A]J0" P ullm < PIr= ———=C10Cn Ay Ay (Ju] +v).

Hence we have by the inequalities (4.7) and (4.8)
(4.9) |a(z) Mo PV,
<[[0¥a(2) 10" P ullm + |Ha(9«“)'“|73"]<9ﬂp”u|!m

<C||Aa(@) W% PYull,y + ———C1oCri AY T AP (] + 0)!

\t\lul 1
<lla(x)"0° AP |y, + ||[a(z)", A]JOP P ul|,

+ ol AL AL 4

<|la(x)H 0P AP ul|y, + ———Crg AW AT () 401,

HII1

By the assumption of induction, we have

(4.10) lla(z)#8 PrLyll,, < |t HmC:aC 10 AT AP (18] + 1+ 1))
and
(4.11) la(x)M0P (x - V)PV ul|m

<[Bllla(z)"0° P ull, —I—ZHa il 0,0° P
7=1

< W'cgcmA'ﬁ'A'ﬁ'“\mum +v)!

N 1 14v
e e CaCro AT AT () - 14 0)!
N+1

= [t OO A T AT (] — 14 w1,
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Using Propositions 4.1 and 4.2, we obtain
(4.12)

la(2)0° (P +2)" Nl m

" Al
< S
s¢ Z Vl!l/g!l/g! Zﬁ 61!0s!

v1+vo+r3=r

x ||la(z)Bla% Py, Z” )B2l+1952 5, P2,

=C Z V1'V2'V3 Z ﬁ1'ﬁ2

v1t+rvetv3=v

o C10 41611 41Bil+wn Cio 12|41 4|Bal+1+s
‘t‘g A A (|/81‘ +v ) ‘t“m +1A A2 (

CClOA|ﬁ|+1A|ﬁ|+1+V Z 1 V'ﬁ'(’ﬁl‘ + Vl)'(‘ﬁQ‘ +1+ V2)!

A?V)BV?,! Vl!l/g!ﬁl!ﬁg!
vi+re+tr3=v,

B1+0B2=08

|B2| + 1+ 1v)!

\t\lﬁlﬂ

= \t\lﬁlﬂCCloel/A3A|ﬁ|+1A|ﬁl+l+y(|ﬁ\ +1+v)!

1+v
W g CCRe M AP AL (] — 14 w1,

where (31 and (2 are multi-indices. Considering the identity (4.1), we have by
the inequalities (4.9)-(4.12)

(4.13)  la(x)™o’AP U,

1 174 1 174
Smlla(x)'“'aﬂP Tl + ﬂlla(w)'“'aﬁ(ﬂﬁ -V)P"ullm

+2Ha<x>'“'aﬂ<P+2>wum+WC 2 ALY (g + )

—‘t“mC?)C A|ﬁ|+1A|ﬁ|+1+V(|,8‘ +1 —|—V)

N +1

—1 —1+v
W'“' C'3(3'1014?| A|2M| (|l -1+ v)!

_|_

! i 2O A ALY () 14!

-1 —14v

W e Cig AL“'AL“'*”M + ),
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where Cy = maX{Cm,(N + 1)03010 + 1}, Ay = maX{Ag,l} and Az =
max{e!/43, A3}. Therefore, we can have the desired result. O

Lemma 4.2. Let u satisfy the inequality (4.3) in Lemma 4.1. Then there
exist positive constants Chg, A3, Ay and As such that

Cia
\t\lulﬂf

(4.14) |la(x) #+270" (- )7 P ul|, < AZALTT AW (] + v+ o),

for any multi-index p and o,v =0,1,2,....
Proof. In the case of 0 = 0, the inequality (4.14) is shown by Lemma 4.1. We
assume that the inequality (4.14) holds for ¢ = [ and |pu|,v =0,1,2,.... We
have the inequality
la(a)Mla()* TV o (@ - V)T Pl
<[la(z)Ma()* ™V (z - V)0 (@ - V) P ulm
+ H () Wla(z)*H V0", (@ V) (@ - V) P ulln

< Z zja(@) | la() + a ()2 0;0" (2 - V) P ull
+la < Yla(2)? D (0", (2 V)] (2 - V)P ullm
<CzZ la(z) 1+ a(2) 289,00 (2 - V) P ul|

+C3\M\Ha(x)'“'a($)2l3”($ V) PV |y
oG
\t\|u|+1+l
Cia
WIMIH

Cia
= |t Il

Al A|M|+1+V+ZA|M|(|M| F1l4v+0)

+Cs ALAH AN (] 4+ v 1)

Al+1A|M|+V—|—l+1A|M|(|M| Fv+l41),

where Ay = max{A4,1} and A5 = max{C3A43,C3}. Hence the lemma is
completed by induction. O

Lemma 4.3. Let u satisfy the inequality (4.14) in Lemma 4.2. Then we have
positive constants C15, As, As, Ag and A7 such that

(4.15)

”a(x)|M|+20+2n<tat)nau(m . V)au”m < Cis

& Alul+o+E 4o 410l
‘t‘|u|+0+f€A FAG ASAS (|| + o+ K),

for any multi-index p and o,k =0,1,2,....
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Proof. Since P = x -V + 2td,, we have the identity
1) = (P — 2. V)
(t0)! =53 (P~ 9)

1 !
Tl > 11 (e V)P,
Litlo=1 1'%

Let B > 0 satisfy |la(x)?#|,, < B*. Hence we obtain by Lemma 4.2

(4.16) l|a(z)HH20 2L 1 9,) oM (2 - V)|

1 !

= |ul+20+2l g . 7\ l1i+o pl

Sz 2 gl O (x - V) Pl
1 2=

1 ' C3Ca 1y oty 4lul+o+l 4lul
- E 714 A |
<211 l l11!l2! ‘t‘|u|+a+l1B245 1A, s (lp]+o+1D)!
1+le=

Cis . (B+ 45\ o 4lul+o+1

Hence the lemma follows with C15 = C3Chy, Ag = A4 and A; = (B + A45)/2.
O

Lemma 4.4. Let u satisfy the inequality (4.15) in Lemma 4.3. Then there
exist positive constants Crg, As, A7, Ag and Ag such that

(4.17) a(a) T2 TR2) 9 (19, )52 |,
Cie

Y16 pk1 gleltRItR2 ko 41K |
S ilrzn e A0 A8 AP ALl + k1 + m2)l,

(4.18)

for any multi-index p and k1, k0 =0,1,2,....

Proof. We have by Lemma 4.3 as 0 =0

Cis +
la(e) 42200 ullm < TrEm AFALT A (ul + R
where k = 0,1, 2,.... This is the case of k1 = 0 in this lemma. We shall prove

the following estimate by the induction.

(4.19)
Ha(l')|“|+2(k+l)tkﬁf(tat)lﬁguﬂm < Cie

kplulk+l 41 410l
WAQAS A7 Az (p+ k+ 1)L
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We consider the case of k = j+ 1 and [ = 0,1,2,.... From (4.19), we have
the inequalities

Ja(a) T (20,) 0 ul |
<la(a) 2T [t, 0710, (60,)' 0l + Ila(x) HHFTEDE ] (10, 0 ul |
<ljllla(a) 2T O] (60,) 0 + | a(a) FHEHIDE O] (60,) 0% ul |
Cis
=3 Il
Cie
+ \t\|u|+j+l+1

N | |
AL AL AL AL G| (1l + 5+ 1)

j j+1+1 .
AJAYP I A A ) 4 G 414 1)!

C1e TR EAES R .
SWA{;L AP AL AWl 45+ 14 1)1,

where Ag = max{Ag, 1} and Ag = max{Cs, A7}. Hence we have the desired
estimate. O

Corollary 4.1. Let u satisfy the inequality (4.17) in Lemma 4.4. Then we
have positive constants C17, As, Ag, and Ag such that

C
”a(x)lulﬂm L alulu”m < 17

|H| ”/”'1+|,U“ K
S frz As AsT A (el 4 )t

for any multi-index p and k1 =0,1,2,....

Proof. When we consider C17 = Cj¢ and the inequality (4.17) as ka = 0, this
corollary holds. O

The Proof of Theorem 1.2. By Corollary 4.1, we can prove Theorem 1.2. [J

Acknowledgement

The author wishes to express his gratitude to Professor N. Hayashi for giving
the information about this problem, and his useful comments and encourage-
ments through seminars. The author would like to thank Professor K. Kato
for his valuable advises and supports, too.

References

[1] H. Chihara, Global existence of small solutions to semilinear Schrédinger equa-
tions with gauge invariance, Publ. Res. Inst. Math. Sci., 31 (1995), 731-753.



134

2]

[3]

[10]

[11]

[12]

[13]

H. UCHIDA

H. Chihara, Global existence of small solutions to semilinear Schriodinger equa-
tions, Comm. Partial Differential Equations, 21 (1996), 63-78.

H. Chihara, The initial value problem for cubic semilinear Schrédinger equations,
Publ. Res. Inst. Math. Sci., 32 (1996), 445-471.

H. Chihara, Gain of regqularity for semilinear Schrodinger equations, Math. Ann.
315 (1999), 529-567.

H. Chihara, Gain of analyticity for semilinear Schrédinger equations, Proceed-
ings of Sapporo Guest House Minisymposium on Nonlinear Wave Equations,
(1999), 28-29.

S. Doi, On the Cauchy problem for Schrodinger type equations and regularity of
solutions, J. Math. Kyoto Univ. 79 (1994), 319-328.

A. Friedman, Partial Differential Equations, Krieger, (1983).

N. Hayashi, Global existence of small solutions to quadratic monlinear Schro-
dinger equations, Comm. Partial Differential Equations, 18 (1993), 1109-1124.

N. Hayashi, Global and almost global solutions to quadratic nonlinear Schrodinger
equations with small initial data, Dynam. Contin. Discrete Impuls. Systems, 2
(1996), 109-129.

N. Hayashi and H. Hirata, Global ezistence of small solutions to nonlinear Schro-
dinger equations, Nonlinear Anal., 31 (1998), 671-685.

N. Hayashi and E.I. Kaikina, Local ezistence of solutions to the Cauchy problem
for nonlinear Schréodinger equations, SUT J. Math. 34 (1998), 111-137.

N. Hayashi and K. Kato, Regularity in time of solutions to nonlinear Schrodinger
equations, J. Funct. Anal. 128 (1995), 253-277.

N. Hayashi and K. Kato, Global existence of small analytic solutions to nonlinear
Schrodinger equations with quadratic nonlinearity, Comm. Partial Differential
Equations, 22 (1997), 773-798.

N. Hayashi, C. Miao and P.I. Naumkin, Global ezistence of small solutions to

the generalized derivative nonlinear Schrodinger equation, Asymptotic Analysis
21 (1999), 133-147.

N. Hayashi and P.I. Naumkin, On the Davey-Stewartson and Ishimori systems,
Math. Phy., Anal. and Geom. 2 (1999), 53-81.

N. Hayashi, P.I. Naumkin and P.N. Pipolo, Analytical smoothing effects for some
derivative nonlinear Schrédinger equations, Tsukuba J. Math. 24 (2000), 21-34.

N. Hayashi and T. Ozawa, Global, small radially symmetric solutions to non-
linear Schrédinger equations and a gauge transformations, Differential Integral
Equations, 8 (1995), 1067-1072.



ANALYTICITY OF SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS 135

[18] K. Kato and K. Taniguchi, Gevrey regularizing effect for nonlinear Schrédinger
equations, Osaka J. Math. 33 (1996), 863-880.

[19] S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations,
Arch. Rational Mech. Anal., 78 (1982), 73-98.

[20] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear
evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141.

[21] P.N. Pipolo, Smoothing effects for some derivative nonlinear Schridinger equa-
tions without smallness condition, SUT J. Math., 35 (1999), 81-112.

[22] J. Shatah, Global existence of small solutions to nonlinear evolution equations,
J. Differential Equations, 46 (1982), 409-425.

[23] E.M. Stein, Singular Integral and Differentiability Properties of Functions,
Princeton Univ. Press, Princeton Math. Series 30 (1970).

Hidetake Uchida

Department of Applied Mathematics, Science University of Tokyo,
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

E-mail: j11987010@ed.kagu.sut.ac.jp



