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EMBEDDEDNESS OF LEAST AREA MINIMAL
HYPERSURFACES

Antoine Song

Abstract

In [2], E. Calabi and J. Cao showed that a closed geodesic of
least length in a two-sphere with nonnegative curvature is always
simple. Using min-max theory, we prove that for some higher di-
mensions, this result holds without assumptions on the curvature.
More precisely, in a closed (n+1)-manifold with 2 ≤ n ≤ 6, a least
area closed minimal hypersurface exists and any such hypersurface
is embedded.

As an application, we give a short proof of the fact that if a
closed three-manifold M has scalar curvature at least 6 and is not
isometric to the round three-sphere, then M contains an embed-
ded closed minimal surface of area less than 4π. This confirms a
conjecture of F. C. Marques and A. Neves.

Let (Mn+1, g) be a closed (n+ 1)-manifold with 2 ≤ n ≤ 6. Consider
a closed n-manifold Γ and an immersion ψ : Γ → M . If ψ is minimal
then ψ(Γ) = Σ is called a minimal hypersurface and Σ is said to be
a minimal hypersurface of least area if for every minimal hypersurface
Σ′ ⊂M ,

Hn(Σ) ≤ Hn(Σ′).

We will only consider closed minimal hypersurfaces. Minimal hyper-
surfaces which minimize the area among a family of embedded minimal
hypersurfaces have been previously examined in some situations related
to min-max theory. In [12], Marques and Neves initiated the characteri-
zation of the area and the Morse index of surfaces produced by min-max
theory in three-manifolds: among other things, they showed that in a
closed oriented three-manifold with positive Ricci curvature, with Hee-
gaard genus h and which does not contain any embedded non-orientable
surface, there is an index one minimal surface Σ of genus h produced
by the smooth min-max theory (see [3]) such that

H2(Σ) = inf
S∈Eh

H2(S),
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where Eh denotes the collection of all connected embedded minimal sur-
faces of genus not larger than h. This result was later extended to
higher dimensions by Zhou [23] in the following way. Let Mn+1 be a
closed oriented manifold with 2 ≤ n ≤ 6. Let O be the collection of all
embedded orientable closed minimal hypersurfaces in M and U be the
collection of the non-orientable ones. Zhou studied the minimal hyper-
surfaces produced by Almgren–Pitts’ theory applied to the fundamental
class [M ], under the assumption of positive Ricci curvature. It turns
out, in particular, that their area counted with multiplicity is

A1(M) = inf({Hn(Σ); Σ ∈ O} ∪ {2Hn(Σ); Σ ∈ U}).
Recently, Mazet and Rosenberg [15] proved that, without assumptions
on the Ricci curvature, this area A1(M) is realized by a hypersurface
and classified all such hypersurfaces: either they are stable or they are
of index one and produced by min-max constructions. The foremen-
tioned authors defined the quantity A1(M) by separating orientable
and non-orientable minimal hypersurfaces. This is due to technical rea-
sons coming from their use of Almgren–Pitts’ min-max theory. In this
paper we do not need to make this distinction and we are interested
in least area minimal hypersurfaces, where “least area” is taken in the
geometric sense. The aim is to prove by min-max methods that in M ,
any least area minimal hypersurface is actually embedded. It extends a
result of Calabi and Cao [2].

Theorem 1. Let (Mn+1, g) be a closed (n+1)-manifold with 2 ≤ n ≤
6. Then there exists a least area closed minimal hypersurface Σ ⊂ M
and any such Σ is embedded.

We state in Section 2 a more detailed version, which precises that,
similarly to [15], the least area minimal hypersurfaces are either em-
bedded stable hypersurfaces or given by Almgren–Pitts’ min-max the-
ory applied to the fundamental class [M ]. Interestingly, no assumptions
on the curvature are needed here whereas in dimension n = 1 there
are counterexamples if the curvature of the sphere is not nonnegative.
This is related to the fact that min-max theory produces embedded
hypersurfaces for n = 2, . . . , 6 but only immersed geodesics for n = 1.

In [2], Calabi and Cao proved that on a Riemannian sphere S with
nonnegative curvature, any non-trivial closed geodesic of the shortest
length is simple. Their proof is based on the fact that if γ ⊂ S is a closed
geodesic which is not simple, then there is a nontrivial loop {σt}t∈[0,1] in
the space of one-dimensional integral currents without boundary such
that each σt has mass less than the length of γ. Then by the min-max
theory of Almgren and Pitts, there exists a geodesic strictly shorter than
γ. Actually they noted that, in dimension one, the min-max principle
can be shown simply without Geometric Measure Theory. Their con-
struction of the “sweepout” family {σt} relies in an essential way on the
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dimension of the problem: indeed, for curves, there is an adhoc shorten-
ing procedure known as the Birkhoff curve shortening process. It turns
out that there is already no equivalent process for surfaces. The proof
of Theorem 1 will retain the main structure of the proof of Calabi and
Cao, but we have to replace the Birkhoff process by a method developed
by Marques and Neves in [12] when n = 2 and extended to 2 ≤ n ≤ 6
by Zhou in [23]. The restriction on the dimension is a classical one due
to the regularity results of Schoen and Simon [21]. The structure of
an immersed minimal hypersurface (n ≥ 2) is less understood than the
case of geodesics, and it will add some technical issues.

As a corollary of Theorem 1, we can prove the following result con-
jectured by Marques and Neves in [12]: it asserts that a positive lower
bound on the scalar curvature of a closed three-manifold M gives a
rigid upper bound on the area of the smallest embedded closed minimal
surface in M .

Theorem 2. Let M3 be a closed three-manifold with scalar curvature
R at least 6, not isometric to the round unit three-sphere S3. Then there
exists a closed embedded minimal surface Σ of index zero or one such
that

H2(Σ) < 4π.

Marques and Neves already proved this theorem with the additional
assumption that the Ricci curvature is positive. In their proof, they
use the min-max theory of Simon-Smith and Hamilton’s article on the
Ricci flow for three-manifolds with positive Ricci curvature. Our proof
is based on the theory of Almgren–Pitts and only uses the short-time
existence theorem for the Ricci flow.

This paper is organized as follows: in Section 1 are reviewed the
basic notions of Almgren–Pitts’ theory as well as the continuous min-
max theory, then some min-max constructions are presented and an
outline of the principal proof sums up the strategy and the differences
with [2]. The proof of Theorem 1 is given in Section 2 and we explain in
Section 3 how Theorem 2 is a consequence of the main theorem. Some
technical results are proved in the Appendix.

Acknowledgment. I am grateful to my advisor Fernando Codá Mar-
ques for bringing a version of the main question to my attention. I would
like to thank him for his constant support, for stimulating discussions
and for guiding me through the recent literature. I also want to thank
Harold Rosenberg for a meaningful discussion.

1. Preliminaries

In this section, we present a brief overview of the essential notions of
Almgren and Pitts’ theory, the continuous min-max theory and some
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useful results. Afterwards, a heuristic description of the main steps in
the proof of Theorem 1 is given as well.

1.1. Min-max theory in the setting of Almgren and Pitts. For
the convenience of the reader, we give a quick review of the basic defini-
tions from Geometric Measure Theory and some notions of the Almgren
and Pitts’ theory used thereafter. For a complete presentation, one can
refer to the book of Pitts [20] or to Section 2 in [14].

Let M be a closed Riemannian (n+ 1)-manifold, assumed to be iso-
metrically embedded in RP . We will always suppose M connected.
Because we will have to consider non-orientable submanifolds, we will
use flat chains modulo 2 (see [8, 4.2.26]). We will work with the
space Ik(M,Z2) of flat chains modulo 2 in the congruence class of
some k-dimensional integral currents with support contained in M ,
the subspace Zk(M,Z2) ⊂ Ik(M,Z2) whose elements have no bound-
ary, and with the space Vk(M) of the closure, in the weak topology,
of the set of k-dimensional rectifiable varifolds in RP with support
in M .

As in [20], we will suppress the superscript 2 in the notation of [8]. An
integral current T ∈ Ik(M,Z2) determines an integral varifold |T | and
a Radon measure ||T || ([20, Chapter 2, 2.1, (18) (e)]). If V ∈ Vk(M),
denote by ||V || the associated Radon measure on M . Given an open
set U ⊂ M , if the associated rectifiable current is an integral current
in In+1(M,Z2), it will be written as [|U |]. To a rectifiable subset R of
M corresponds an integral varifold called |R|. The support of a current
or a measure is denoted by spt. The notation M stands for the mass
of an element in Ik(M,Z2). On Ik(M,Z2) there is also the flat metric
F(., .) which induces the so-called flat topology. The space Vk(M) is
endowed with the topology of the weak convergence of varifolds. The
notations Zk(M,ν,Z2) and Ik(M,ν,Z2) mean that the respective spaces
of currents are considered with the topology induced by ν, where ν is
either M or F .

We denote [0, 1] by I. For each j ∈ N, I(1, j) stands for the cell
complex on I whose 1-cells and 0-cells are, respectively,

[0, 3−j ], [3−j , 2.3−j ], . . . , [1− 3−j , 1] and [0], [3−j ], . . . , [1− 3−j ], [1].

I(1, j)p denotes the set of all p-cells in I(1, j).
In the theory of Almgren and Pitts, instead of considering continuous

maps from I to Zn(M,Z2), one consider a sequence of mappings from
I(1, ni) to Zn(M,Z2), where ni →∞ and the discrete slices correspond-
ing to adjacent vertices in I(1, nj) are closer and closer. This leads to
the following notions:

Definition 3. Whenever φ : I(1, j)0 → Zn(M,ν,Z2), we define the
fineness of φ to be
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fν(φ) = sup

{
ν(φ(x)− φ(y))

d(x, y)
;x, y ∈ I(1, j)0, x 6= y

}
,

where d(x, y) = 3j |x− y|.

For each x ∈ I(1, j)0, define n(i, j)(x) to be the unique element of
I(1, j)0 such that

d(x,n(i, j)(x)) = inf{d(x, y); y ∈ I(1, j)0}.

Definition 4. 1) Let δ > 0. We say that φ1 and φ2 are homotopic
in (Zn(M,ν,Z2), {0}) with fineness δ if and only if there exist
positive integers k1, k2, k3 and a map

ψ : I(1, k3)0 × I(1, k3)0 → Zn(M,ν,Z2),

such that fν(ψ) < δ and whenever j = 1, 2 and x ∈ I(1, k3)0,

φj : I(1, kj)→ Zn(M,ν,Z2), φj([0]) = φj([1]) = 0,

ψ([j − 1], x) = φj(n(k3, kj)(x)), ψ(x, [0]) = ψ(x, [1]) = 0.

2) A (1, ν)-homotopy sequence of mappings into (Zn(M,ν,Z2), {0})
is a sequence S = {φ1, φ2, . . .} for which there exist positive num-
bers δ1, δ2 . . . such that φi is homotopic to φi+1 in (Zn(M,ν,Z2),
{0}) with fineness δi for each positive integer i, limi δi = 0 and

sup{M(φi(x));x ∈ domain(φi), i > 0} <∞.
3) If S1 = {φ1

i } and S2 = {φ2
i } are (1, ν)-homotopy sequences of

mappings into (Zn(M,ν,Z2), {0}), then S1 is homotopic with S2

if and only if there is a sequence a positive real numbers δ1, δ2,...
such that φ1

i is homotopic to φ2
i in (Zn(M,M), {0}) with fineness

δi for i > 0 and limi δi = 0.
“To be homotopic with” is an equivalence relation on the set

of (1,M)-homotopy sequences of mappings into (Zn(M,Z2), {0}).
An equivalence class of such sequences is a (1, ν)-homotopy class
of mappings into (Zn(M,ν), {0}). The space of these equivalence
classes is denoted by

π]1(Zn(M,Z2), {0}).

Remark 5. By [20, Theorem 4.6],

π]1(Zn(M,M,Z2), {0}), π]1(Zn(M,F ,Z2), {0})
and π1(Zn(M,F ,Z2), {0})

are all naturally isomorphic.

Given Π ∈ π]1(Zn(M,M,Z2), {0}), consider the function L : Π →
[0,∞] defined such that if S = {φi}i∈M ∈ Π and φi : I(1, ni) →
Zn(M,Z2), then

L(S) = lim sup
i→∞

max{M(φi(x)) : x ∈ I(1, ni)}.
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The width of Π is then the following quantity:

L(Π) = inf{L(S);S ∈ Π}.

A sequence S = {φi : I(1, ni) → Zn(M,Z2)}i ∈ Π is said to be critical
for Π if L(S) = L(Π). Define the critical set C(S) ⊂ Vn(M) of S ∈ Π
as

C(S) = {V ; ∃{ij}j ,∃{xj}, ij →∞, xj ∈ I(1, nij ),

V = lim
j→∞

|φij (xj)| and ||V ||(M) = L(S)}.

We recall that one can define the F-metric on Vn(M) ([20, Chapter
2, 2.1, (19)]). The F-metric induces the weak topology on any set of
varifolds whose mass is bounded by a certain constant. We now give
Pitts’ definition of almost minimizing varifolds (see [20, Chapter 3]).
Let U be an open set of RL. Denote by Zn(M,M\U,Z2) the set of
currents T ∈ Zn(M,Z2) such that spt(∂T ) ⊂ M\U . For each pair of
positive numbers ε and δ, we define

an(U, ε, δ,Z2)

to be the set of all currents T ∈ Zn(M,M\U,Z2) with the following
property. If T = T0, T1, . . . , Tm ∈ Zn(M,M\U,Z2),

spt(T − Ti) ⊂ U for i = 1, . . . ,m,

F(Ti, Ti−1) ≤ δ for i = 1, . . . ,m,

M(Ti) ≤M(T ) + δ for i = 1, . . . ,m,

then M(T )−M(Tm) ≤ ε.

Definition 6. We say that V ∈ Vn(M) is Z2 almost minimizing in
U if and only if for each ε > 0, there exist a δ > 0 and a current
T ∈ an(U, ε, δ,Z2) such that F(V, |T |) ≤ ε.

Remark 7. As we deal with flat chains modulo 2, we will use the
“modulo 2” versions of results in [20], [13], [23] (see [14] for a detailed
explanation). We assume that 2 ≤ n ≤ 6. Note that Pitts proved [20,
Theorem 7.12] for 2 ≤ n ≤ 5 but because of the curvature estimates in
[21, (7.2)], it still holds true for n = 6.

1) If V is a stationary n-varifold in Vn(M) and is Z2 almost mini-
mizing in small annuli around each point, then sptV is a smooth
embedded minimal hypersurface ([14, Theorem 2.11]). This is the
“modulo 2” version of Theorem 7.12 in [20].

2) The interpolation results [13, Theorem 13.1], [23, Theorem 5.5]
are true for Z2 (see [14, Theorem 3.9] for a statement in the “mod-
ulo 2” setting).

3) [23, Theorem 5.8] is also still true for Z2.
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Finally, we describe the isomorphism

(1) Hn+1(M,Z2) ' π1(Zn(M,F ,Z2), {0})
constructed in [6, Section 3]. Actually, Almgren treated the case where
the coefficient group is G = Z, but as Pitts noted in [20], all the methods
extend to the case G = Z2. There is a number µ > 0 such that if
T ∈ Ik(M,Z2) has no boundary and F(T ) ≤ µ, then there is an S ∈
Ik+1(M,Z2) such that ∂S = T and

M(S) = F(T ) = inf{M(S′);S′ ∈ Ik+1(M,Z2) and ∂S′ = T}.
Such an S is called an F-isoperimetric choice for T . A chain map

Φ : I(1, j)→ I∗(M)

of degree n is a graded homomorphism Φ of degree n, such that ∂ ◦Φ =
Φ ◦ ∂ and Φ(α) is F-isoperimetric for Φ(∂α) where α ∈ I(1, j)1. Now
let

[f ] ∈ π1(Zn(M,F ,Z2), {0})
be a class whose one of the representative maps is

f : (I, {0, 1})→ (Zn(M,F ,Z2), {0}).
The isomorphism F : π1(Zn(M,F ,Z2), {0}) → Hn+1(M,Z2) is defined
as follows: take any integer m sufficiently large, there is a chain map

Φ : I(1,m)→ I∗(M,Z2),

of degree n, such that

Φ([x]) = f(x) ∀[x] ∈ I(1,m)0.

Then ∑
α∈I(1,m)1

Φ(α)

is a cycle in In+1(M,Z2) which depends neither on m if the latter is
chosen large enough, nor on the representative f . Because the homology
groups of the chain complex I∗(M,Z2) are isomorphic with the singular
homology groups of M with coefficient group Z2, it makes sense to set

F ([f ]) =
[ ∑
α∈I(1,m)1

Φ(α)
]
∈ Hn+1(M,Z2).

1.2. Min-max theory in the continuous setting. The theory of
Almgren and Pitts deals with discrete sweepouts, and this can bring
some technical complications when constructing explicit sweepouts. For
this reason, De Lellis and Tasnady [5] wrote a version of this theory in
the continuous setting, based on ideas in [22] and [3]. In this subsection,
we recall the basic notions in this setting.

Let (Mn+1, g) be a closed Riemannian manifold. In what follows,
the topological boundary of a subset of M will be denoted by ∂. Con-
sider an open subset N ⊂M whose boundary ∂N , when non-trivial, is a
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rectifiable hypersurface of finite n-dimensional Hausdorff measure. Sup-
pose also that if ∂N is non-empty, each of its connected components C
separates M (i.e., M\C has two connected components). The notation
for the m-dimensional Hausdorff measure will be Hm. Take a < b ∈ R,
k ∈ N.

Definition 8. A family of Hn-measurable closed subsets {Γt}t∈[a,b]k

in N ∪∂N with finite Hn-measure is called a generalized smooth family
if

• for each t there is a finite subset Pt ⊂ N such that Γt ∩ N is a
smooth hypersurface in N\Pt,
• t 7→ Hn(Γt) is continuous and t 7→ Γt is continuous in the Haus-

dorff topology,
• Γt → Γt0 smoothly in any compact U ⊂⊂ N\Pt0 as t→ t0.

If ∂N = ∅, a generalized smooth family {Σt}t∈[a,b] is called a continuous
sweepout of N if there exists a family of open subsets {Ωt}t∈[a,b] of N
such that

(i) (Σt\∂Ωt) ⊂ Pt for any t ∈ (a, b],
(ii) Hn+1(Ωt\Ωs) +Hn+1(Ωs\Ωt)→ 0, as s→ t,
(iii) Ωa = ∅, and Ωb = N .

When ∂N 6= ∅, a continuous sweepout is required to satisfy the above
conditions, except that ∂Ωt denotes the boundary of Ωt in N and (iii)
is replaced by

(iii) Ωb = N , Σa = ∂N and Σt ⊂ N for t ∈ (a, b].

Definition 9. When ∂N = ∅, two continuous sweepouts {Σ1
t }t∈[a,b]

and {Σ2
t }t∈[a,b] are homotopic if there is a generalized smooth family

{Γ(s,t)}(s,t)∈[a,b]2 , such that Γ(a,t) = Σ1
t and Γ(b,t) = Σ2

t . When ∂N 6= ∅,
we also require the following condition: Γ(s,t) ⊂ N for t ∈ (a, b] and there
exists a small α > 0 such that Γ(s,t) = Γ(a,t) for (s, t) ∈ [a, b]× [a, a+α].

A family Λ of continuous sweepouts is called homotopically closed if
it contains the homotopy class of each of its element.

Remark 10. 1) Definitions 8 and 9 are adapted from the defini-
tions in [5]. Little modifications are done compared with [5] and
[23] because we have to deal with a non-smooth boundary ∂N .

2) A referee pointed out that Definition 9 (see Definition 2.5 in [5])
may not be the most natural definition of homotopy classes: it
may be more intuitive to impose, for each s0 ∈ [a, b], that the
intermediate family {Γ(s0,t)}t∈[a,b] is a sweepout as well, instead
of just requiring {Γ(s,t)}(s,t)∈[a,b]2 to be a generalized smooth fam-
ily. We decided to keep the original definition, even though the
proofs of existence and regularity in [5] would still work for the
stronger definition because all deformations they used to construct
competitors preserve the homotopy class in the strong sense.
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If Λ is a homotopically closed family of continuous sweepouts, the
width of Λ in N is defined as the min-max quantity

W (N, ∂N,Λ) = inf
{Σt}∈Λ

max
t
Hn(Σt).

A sequence {{Σk
t }t∈[a,b]}k∈N ⊂ Λ is called a minimizing sequence if

max
t
Hn(Σk

t )→W (N, ∂N,Λ) as k →∞.

A sequence of slices {Σk
tk
}k∈N is called a min-max sequence if

Hn(Σk
tk

)→W (N, ∂N,Λ) as k →∞.

1.3. Some min-max constructions. Let (M, g) be a closed (n+ 1)-
manifold with 2 ≤ n ≤ 6. For a two-sided hypersurface Σ, the conven-
tion is that the mean curvature vector is −H(Σ)ν, where ν is a contin-
uous choice of unit normal vector of Σ, called outward unit normal. A
hypersurface with boundary will be said to be generically immersed if
it is the image of an immersion with normal crossings, in other words a
“generic” immersion (see Definition 3.1 in [9]).

Definition 11. Let N be an open subset of M and suppose that ∂N
is a non-empty rectifiable hypersurface. The boundary ∂N is said to be
piecewise smooth mean convex if it satisfies the following property:

(i) there is a generically immersed compact two-sided n-submanifold
F with smooth boundary such that N is a connected component
of M\F and

∂N ∩ ∂F = ∅,
(ii) F has positive mean curvature at every point of ∂N with respect

to any outward unit normal determined by N .

More generally, a rectifiable hypersurface A is said to be piecewise
smooth mean convex if there is an open set N ⊂ M such that A is
an open subset of ∂N , the first point (i) is true and the second point
(ii) is satisfied for every point of A.

We emphasize that (piecewise smooth) mean convexity means that
the mean curvature is strictly positive. The first property of a piece-
wise smooth mean convex boundary is that it acts as a barrier for area
minimizing problems.

Proposition 12. Let (M, g) be a closed (n+ 1)-manifold and N an
open set of M such that the boundary ∂N is non-empty and piecewise
smooth mean convex. Then there is a positive number δ > 0 and a
vector field V in N such that

(i)
∑n

i=1〈∇eiV, ei〉 ≤ 0 for every orthonormal family {e1, ..., en} of
vectors whose base point is in N ,
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(ii) if p ∈ N and d(p, ∂N) = d ≤ δ, then

〈V(p),
∂

∂s

∣∣∣∣
s=d

expq(−sν)〉 > 0,

where q is any point of ∂N such that d(p, q) = d and ν is the
outward unit normal of ∂N at q (which is well defined).

Consequently, if Σ is a hypersurface in N , then there is a diffeomor-
phism Ψ of N such that Hn(Ψ(Σ)) ≤ Hn(Σ) and d(Ψ(Σ), ∂N) ≥ δ/2.

Proof. This proposition is an extension of Lemma 2.2 in [12]. The
idea for the piecewise smooth case is that, starting from the vector field
constructed in [12], we will add some extra vector fields near the non-
smooth parts of ∂N so that the final vector field is always pointing
inward on ∂N . Recall that on smooth pieces of ∂N , the outward unit
normal is well determined. By hypothesis, there is a two-sided hypersur-
face F such that N is a connected component of M\F and has positive
mean curvature at every smooth point of ∂N with respect to the out-
ward unit normal determined by N . By reducing F if necessary, we
can suppose that the mean curvature of F is positive everywhere. Let
us consider an immersed compact hypersurface S ⊂ M with boundary
endowed with a continuous choice of outward unit normal vector νS and
suppose that S has positive mean curvature with respect to νS . We can
associate to S a positive real number a(S) such that

˜exp : [0, 2a(S)]× S →M,

˜exp(r, x) = expx(−rνS)

is a local diffeomorphism, and the surface with boundary Cr = {r} × S
has positive mean curvature. As shown in [12], when S is embedded
there is a vector field on ˜exp([0, 2a(S)] × S), called X(S), such that
for all p = ˜exp(r, x), X(S)p = ψ(r) ∂∂r where ψ is a function positive if
r < a(S) and ψ(p) = 0 if r > a(S). Moreover, for every orthonormal
family {e1, . . . , en} of vectors in ˜exp([0, 2a(S)]× S) ∩N ,

(2)
n∑
i=1

〈∇eiX(S), ei〉 ≤ 0.

Suppose additionally that:

(3) N ∩ S = ∅ and ∂N ∩ ∂S = ∅.

The hypersurface F , for instance, has this property. We will always
suppose a(S) chosen small enough so that

(4) N ∩ ˜exp([0, 2a(S)]× ∂S) = ∅.

Since the construction of X(S) is local in the sense that X(S)p at p =
˜exp(r, x) only depends on r and a neighborhood of x in S, we can

define such a vector field X(S) on ˜exp([0, 2a(S)]× S) when S is merely
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immersed: the domain where this vector field is defined overlaps itself
when S is non-embedded, so here at any given point in ˜exp([0, 2a(S)]×
S), X(S) is the sum of all the local contributions. By linearity, (2)
remains true. We extend X(S) by 0 outside ˜exp([0, 2a(S)]×S) and the
new vector field is called Y (S). Let us check that this extension Y (S)
is well-defined and smooth in N . Note that when Ω is an embedded
domain in S, we can take a(Ω) = a(S) and if we extend X(Ω) by
0 outside ˜exp([0, 2a(S)] × Ω), the new vector field Y (Ω) can be non-
smooth only on ˜exp([0, 2a(S)]×∂Ω)∪Ω. For any p ∈M , there are only
finitely many points {xj}j∈J ⊂ S such that ˜exp(rj , xj) = p for some
rj ∈ [0, 2a(S)] and let Ωj be an embedded neighborhood of xj in S. If,
moreover, p ∈ N , then according to (3) and (4), every rj is positive and
each xj is contained in the interior of S, so Ωj can be chosen relatively
compact in the interior of S. By our definition for all q ∈ N close to p,

Y (S)q = 0 if J = ∅,

=
∑
j∈J

Y (Ωj)q otherwise,

and from this expression it becomes clear that Y (S) is well-defined and
smooth in N . The restriction of this vector field to N is still called
Y (S).

Now, we want to construct a vector field in N similar to the one
constructed in the proof of Theorem 2.1 in [12]. The vector field Y (F )
seems to be a good candidate but the flow associated to this vector
field in M perhaps “leaves” N around the non-smooth parts of ∂N : the
reader can think of the situation where locally at x ∈ ∂N , ∂N is made of
two half-disks intersecting with an interior angle smaller than π/2, then
Y (F ) may not point inside N at x if the contributions of the two half-
disks are very different. Thus, we have to modify Y (F ) near the parts
of ∂N where smooth pieces intersect, so that the flow stays in N . For
0 ≤ k ≤ n− 1, let Pk be the k-dimensional part of F , namely the set of
points p ∈ F locally lying in at least n+1−k distinct hypersurfaces. In
fact, Pk is the image by an immersion ϕk of a k dimensional manifold P̃k,
because F is generically immersed. Denote by UM �Pk

the restriction
of the unit tangent bundle of M to Pk. Note that since F is two-sided,
we can find a constant ε > 0 with this property: for all 0 ≤ k ≤ n there
is a smooth function

ηk : P̃k → UM �Pk
,

such that for all x ∈ ϕ−1
k ((Pk\Pk−1) ∩ ∂N), ηk(x) is a unit vector or-

thogonal to dϕk(TxP̃k) and

(5) 〈ηk(x), ν〉 > ε,

for each outward normal ν of a smooth piece of ∂N touching ϕk(x). Let
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inj(M) be the injectivity radius of M . Consider x ∈ P̃k (0 ≤ k ≤ n−1),
we use momentarily the notation p = ϕk(x). Denote by Dk(x) the
(n+ 1− k)-disk

{expp(rv); r < inj(M) and v ⊥ dϕk(TxP̃k)}.
For r > 0 and 0 ≤ k ≤ n− 1, consider

Sk(r) = {y ∈ Dk(x);x ∈ P̃k, d(y, p) ≤ r2 and d(y, expp(−rηk(x))) = r}.
Define also Sn = F .

We can choose a sequence (r0, . . . , rn−1) of small enough positive
numbers so that the following properties are satisfied:

(i) for each 0 ≤ k ≤ n, Sk = Sk(rk) is a smooth immersed two-sided
hypersurface with boundary verifying (3) and ηk determines an
outward unit normal still denoted by ηk,

(ii) for 0 ≤ k ≤ n− 1, Sk has positive mean curvature with respect to
ηk,

(iii) the ak = a(Sk) (0 ≤ k ≤ n) are chosen so that we can find
positive numbers bk (0 ≤ k ≤ n) satisfying the following condi-
tions. Y (S0) points inwards on ∂N and points strictly inwards
on {y ∈ ∂N ; d(y, P0) < b0}; for 0 ≤ k ≤ n − 1, Y (Sk+1) points
inwards on {y ∈ ∂N ; d(y, Pk) > bk/2} and points strictly inwards
on {y ∈ ∂N ; d(y, Pk) > bk/2, d(y, Pk+1) < bk+1}.

We briefly justify these properties. Observe that Definition 11 implies:

• for 0 ≤ k ≤ n, ϕk(∂P̃k) ∩ (N ∪ ∂N) = ∅,
• at any point q ∈ (Pk\Pk−1) ∩ ∂N , there is a diffeomorphism D :
Rn+1 → B(q, rq) such that

D(
n+1−k⋃
i=1

{xi = 0}) = B(q, rq) ∩ F,

provided rq is small,
• B(q, rq) ∩ N is exactly one of the connected components of
B(q, rq)\F provided rq is small.

Item (i) follows from that observation and from 5. For 0 ≤ k ≤ n − 1
and rk very small, Sk looks like part of a thin “k-tube” pasted along
Pk which has bounded curvature, so Sk has large mean curvature as
claimed in (ii). Since S0 is a finite union of subsets of little n-spheres
lying on the vertices of ∂N and curved toward −η0, if a(S0) is small,
Y (S0), indeed, points inwards on ∂N and strictly inwards in a certain
neighborhood {y ∈ ∂N ; d(y, P0) < b0} of P0. Then, we choose a(S1)
small so that

˜exp([0, 2a(S1)]× S1) ∩ {y ∈ N ; d(y, P0) > b0/2}
does not overlap: the argument becomes local and by reducing a(S1)
if necessary, Y (S1) points inwards on {y ∈ ∂N ; d(y, P0) > b0/2} and
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Figure 1. The pale gray region represents {Y (S0) > 0},
whereas the deeper gray region corresponds to {Y (S1) >
0}. The latter overlaps in {Y (S0) > 0} but not in
N\{Y (S0) > 0}.

strictly inwards on a neighborhood

{y ∈ ∂N ; d(y, P0) > b0/2, d(y, P1) < b1},
of P1 ∩ {y ∈ ∂N ; d(y, P0) > b0/2}. We continue by induction to check
(iii) (see Figure (1)).

For positive constants λ0, . . . , λn−1 chosen later, set

V = Y (Sn) +
n−1∑
j=0

λiY (Sj).

By linearity, this vector field automatically satisfies
∑n

i=1〈∇eiV, ei〉 ≤ 0
for every orthonormal family {e1, . . . , en} of vectors whose base point is
in N . Then we choose λn−1, . . . , λ0 in this order, in the following way:
first take λn−1 very large so that Y (Sn) + λn−1Y (Sn−1) points strictly
inwards at least on {x ∈ ∂N ; d(x, Pn−2) > bn−2/2}. This is possible
because of point (iii) of the previous properties. Then we choose λn−2
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so that Y (Sn) +λn−1Y (Sn−1) +λn−2Y (Sn−2) points strictly inwards at
least on {x ∈ ∂N ; d(x, Pn−3) > bn−3/2}. We continue until λ0, which

can be chosen large enough so that V = Y (Sn) +
∑n−1

j=0 λiY (Sj) points
strictly inwards everywhere on ∂N . In this way, there is a positive
constant δ such that if p ∈ N and d(p, F ) = d ≤ δ, then

〈V(p),
∂

∂s

∣∣∣∣
s=d

expq(−sν)〉 > 0,

where q is any point of F such that d(p, q) = d and ν is the outward
unit normal of F at q. This proves the proposition. q.e.d.

Thanks to the previous proposition, we can check the following ver-
sion of the min-max theorem.

Theorem 13. Let (M, g) be a closed (n+1)-manifold with 2 ≤ n ≤ 6,
and N an open set of M possibly with a non-empty topological boundary.
When ∂N 6= ∅, assume that ∂N is piecewise smooth mean convex. Then
for any homotopically closed family Λ of sweepouts of N , with

W (N, ∂N,Λ) > Hn(∂N),

when ∂N 6= ∅, there exists a min-max sequence {Σk
tk
} of Λ converging

in the varifold sense to an embedded minimal hypersurface Σ (possibly
disconnected), contained in N . Moreover, the n-volume of Σ, if counted
with multiplicities, is equal to W (N, ∂N,Λ).

Proof. In [23], this theorem is proved for a smooth mean convex
boundary ∂N (see Theorem 2.7 in [23]). Here, we can use the previous
proposition to study the piecewise smooth case. Recall that the proof
in [23] uses an idea of [12], where the authors construct a vector field
in N only nonvanishing in a small neighborhood of ∂N and, using the
associated flow, find a > 0 and a minimizing sequence of sweepouts
{{Σk

t }t∈[0,1]}k such that

Hn(Σk
t ) ≥W (N, ∂N,Λ)− δ1 ⇒ d(Σk

t , ∂N) ≥ δ/2,
where δ1 = 1

4(W (N, ∂N,Λ)−Hn(∂N)) > 0 and d is the distance func-
tion in M . Consider the area-decreasing vector field V constructed in
Proposition 12, then the flow Φt associated to V sends N into N for all
times and Φt(N) ⊂ {p ∈ N ; d(p, ∂N) ≥ δ/2} for sufficiently large times.
These properties of V allow us to conclude as in [12, Theorem 2.1] and
[23, Theorem 2.7]. q.e.d.

We will say that a hypersurface Σ is produced by Almgren–Pitts’
theory with the fundamental class of Hn+1(M,Z2) ' Z2 if the vari-
fold |Σ| belongs to the critical set C(S) of a sequence S ∈ Π, where

Π ∈ π]1(Zn(M,M,Z2), {0}) corresponds to the fundamental class of
Hn+1(M,Z2) by the isomorphism (1) and Remark 5. The following
proposition will be useful.
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Proposition 14. Let Σ be an embedded connected unstable minimal
hypersurface in M and suppose that there is no embedded stable min-
imal hypersurface S with Hn(S) < Hn(Σ). Then there is a minimal
hypersurface Γ produced by Almgren–Pitts’ theory with the fundamental
class of Hn+1(M,Z2) such that

Hn(Γ) ≤ Hn(Σ),

and if equality holds, then Σ itself is produced by Almgren–Pitts’ theory
with the fundamental class of Hn+1(M,Z2).

Proof. By intersection theory, if Σ does not separate, we can min-
imize the area in its non-trivial homology class in Hn(M,Z2) and by
the regularity theory for area minimizing flat chains modulo 2 ([17,
Theorem 2.4]) we obtain a stable non-trivial minimal hypersurface S
with Hn(S) < Hn(Σ). So actually Σ is two-sided. The procedure to
produce Γ is then standard ([12], [23]). One constructs a continuous
sweepout {Σt}[0,1] of M as in [23, Proposition 3.6] (whose proof does
not use the orientability of M but only the fact that the hypersurface
Σ is two-sided):

1) Σ1/2 = Σ,
2) Hn(Σt) ≤ Hn(Σ) with equality only if t = 1/2,
3) {Σt}t∈[1/2−ε,1/2+ε] forms a foliation of a neighborhood of Σ.

{Σt} determines by interpolation ([23, Theorem 5.5] and Remark 7) a
homotopy sequence of mappings S = {φi}i∈N where

φi : I(1, ni)0 → Zn(M,M,Z2) with fineness δi,

lim
i→∞

δi = 0, lim
i→∞

ni =∞, and L(S) ≤ Hn(Σ).

Let Π be the homotopy class of mappings of S. By [23, Theorem 5.8,
Claim 3] and Remark 7, Π corresponds to the fundamental class of
Hn+1(M,Z2). By [20, Theorem 4.10, Theorem 7.12] and Remark 6,
there is a smooth minimal hypersurface Γ with

Hn(Γ) = L(Π) ≤ L(S) ≤ Hn(Σ).

Suppose that L(Π) = Hn(Σ), which means that S is a critical sequence.
We can consider a sequence of slices φi(α

i), where αi = [xi] ∈ I(1, ni)0,
such that

M(φi(α
i))→ L(Π).

Because of [23, Theorem 5.5 (1)] and Remark 7, necessarily xi → 1/2
so φi(α

i) converge to Σ1/2 = Σ in the flat topology by [23, Theorem 5.5
(3)]. It is known that if Tj ∈ Zk(M,Z2) converges to T ∈ Zk(M,Z2)
in the flat topology and the sequence of varifolds |Tj | converge to V ∈
Vk(M), then ||V ||(M) = M(T ) implies that V = |T | (see [20, Chapter
2, 2.1, (18), (f)]). It follows that if

lim
i
|φi(αi)| = V and ||V ||(M) = L(Π) = Hn(Σ),
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then V = |Σ|. Thus, the only element of the critical set C(S) is |Σ|.
This shows that Σ itself is produced by Almgren–Pitts’ theory with the
fundamental class of Hn+1(M,Z2). q.e.d.

1.4. Outline of the proof of Theorem 1. M is a closed (n + 1)-
manifold M with 2 ≤ n ≤ 6. The main step of the proof is to show
that if a least area hypersurface exists, then it is necessarily embedded
(Proposition 22). This step is essentially an extension of the idea in
[2] to higher dimensions. Given a minimal hypersurface Σ which is
not embedded and with no stable embedded minimal hypersurface of
less area, we construct an “optimal” non-trivial sweepout corresponding
to Σ in the sense that Σ is the middle slice of a mapping A : I →
Zn(M,Z2) continuous in the flat topology and other slices have area
strictly less than Hn(Σ). This way of thinking Σ as the middle slice of
an optimal sweepout in order to compare it with other sweepouts and
deduce properties about the embeddedness, the index, the area or the
multiplicity of Σ appears in [2], [12], [23] and [15]. We will first show
that there is a partition of the family of connected components of M\Σ
into two classes C1 and C2, such that

Σ =
⋃
c∈Ci

∂c for i ∈ {1, 2}.

Roughly speaking, A is then obtained by retracting Σ to ∅ in two dif-
ferent ways corresponding to C1 and C2. The construction of this 1-
parameter family of currents is based on Theorem 13. Then we use
the interpolation proved by Marques and Neves in [13] for n = 2, later
checked for higher dimensions by Zhou [23]. It enables to obtain, from a
family of currents continuous in the flat topology, a homotopy sequence
of mappings, to which one can apply Pitts’ theory with some precise
control on the obtained discrete slices. This interpolation theorem ap-
plied to A will give the wanted S. The latter belongs to a homotopy
class of mappings into (Zn(M,M,Z2), {0}) called Π such that

0 < L(Π) < H2(Σ).

The theory of Almgren and Pitts then produces an embedded minimal
hypersurface whose area is strictly less thanHn(Σ), which completes the
main step. In these arguments, we use flat chains modulo 2 (see Remark
7) because we work with non necessarily orientable submanifolds.

To illustrate what are the two ways of retracting Σ, let’s consider the
following 1-parameter family of currents ϕ : [−1, 1]→ Zn(Rn+1,Z2):

ϕ(t) =

{
∂{x1 ≤ t, x2 ≤ t} ∪ ∂{x1 ≥ −t, x2 ≥ −t} for t < 0,
∂{x1 ≥ t, x2 ≤ −t} ∪ ∂{x1 ≤ −t, x2 ≥ t} for t ≥ 0,

where x1, x2, . . . , xn+1 are the coordinate functions of Rn+1. Let’s de-
scribe what is happening in the plane generated by x1 and x2. During
the first half [−1, 0[, the boundaries of the South-West and North-East
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corners get closer until they meet along the “edge” {x = 0, y = 0}
and during the second half [0, 1], the boundaries of the North-West and
South-East corners move away one from another. This family of cur-
rents will be the local model for the construction of the deformation
described previously.

When one tries to extend the proof in [2] to n ≥ 2, several technical
issues arise in higher dimension. Firstly, Calabi and Cao only had to deal
with curves which form an eight, whereas here Σ is not a priori so nicely
immersed and we have to understand why there is still a good partition
of the components of M\Σ into two classes (see Lemma 16). Secondly in
order to construct the optimal sweepout, we have to use the technics in
[12] and [23], but they are only developed for the smooth embedded case
and here, we have to work with components of M\Σ whose boundaries
are only rectifiable (see Theorem 13 and Proposition 19).

2. Proof of Theorem 1

All minimal hypersurfaces considered here are closed. Define the
following quantities:

A(M) = inf{Hn(Σ′); Σ′ ⊂M is a minimal hypersurface},

AS(M) = inf{Hn(Σ′); Σ′ ⊂M is minimal, stable and embedded}.
By definition, AS(M) ≥ A(M). In contrast to [23] and [15], we will
not take care of the orientability, thus, here “of least area” is to be
understood in the geometric sense. We will prove the following more
precise version of Theorem 1:

Theorem 15. Let M be a closed (n+ 1)-manifold where 2 ≤ n ≤ 6.
Then there exists a least area minimal hypersurface Σ0, i.e.,

Hn(Σ0) = A(M).

Such a hypersurface is either an embedded stable minimal hypersurface
or a two-sided hypersurface of index one produced by the min-max the-
ory of Almgren–Pitts with the fundamental class of Hn+1(M,Z2). In
particular, it is always embedded.

Let M be a closed (n + 1)-manifold where 2 ≤ n ≤ 6. Let Σ =
ψ(Γ) be a minimal hypersurface, image of a closed n-manifold Γ by
the immersion ψ. The latter will be supposed to be without “double
cover”, i.e., there is not a pair (U1, U2) of disjoint open sets in Γ such
that ψ(U1) = ψ(U2); since Σ is a minimal hypersurface, it is always
possible to choose ψ without double cover. Denote by CΣ the set of
connected components of M\Σ. The complement in M of an immersed
hypersurface may be quite complicated in general but it is well described
if the immersion is a map with normal crossings (see [9, Definition 3.1]),
that is, a “generic” immersion.
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Define the closed set

(6) E = {x ∈ Σ;ψ−1({x}) has at least two distinct elements}
to be the set along which Σ self-intersects. Two minimal hypersurfaces
tangentially intersecting at a point can be locally written as graphs of
two functions whose difference satisfies a homogeneous elliptic equa-
tion. The explicit equation is derived in [4, Chapter 7, §1], for instance,
(the authors do it for n + 1 = 3 but an analogue equation is clearly
true for higher dimensions). By the description of nodal sets for el-
liptic equations in [1] or [10, Theorem 1.10], it is known that E is an
(n − 1)-rectifiable set: more precisely, the set where Σ intersects itself
tangentially is an (n− 2)-rectifiable set.

Lemma 16. Let Σ be a non-embedded minimal hypersurface in M
such that Hn(Σ) ≤ AS(M). Then there is a partition of CΣ into 2 classes
C1 and C2 such that if c1, c2 are in CΣ, if for p ∈ Σ\E and r > 0:

(B(p, r)\Σ) ⊂ (c1 ∪ c2),

then c1 and c2 are not in the same class. In particular, for i ∈ {1, 2},

Hn(Σ) =
∑
c∈Ci

Hn(∂c).

Moreover, such a partition is uniquely determined.

Proof. Let’s suppose that there is no embedded stable minimal hy-
persurface with area strictly less than Hn(Σ). We want to construct a
partition of CΣ satisfying the described property. Take a point p in an
open connected component of M\Σ. For all c ∈ CΣ, choose a smooth
curve γc : [0, 1] such that γc(0) = p, γc(1) is in the interior of c and γ
is generic in the sense that it only intersects Σ at a finite number of
points in Σ\E and it does so transversally (this choice is possible since
E is a closed set whose Hausdorff dimension is n− 1). Define the class
of c as follows: if γc intersects Σ an odd number of times then declare
c to be in C1, otherwise declare it to be in C2. It remains to show that
this method gives the right partition. It suffices to show that the result
of this algorithm does not depend on the choice of the paths γc. Let’s
argue by contradiction and suppose that there are two generic paths
µ1, µ2 : I → M connecting p to a point q in the interior of a compo-
nent c ∈ CΣ, but intersecting Σ\E a different number of times modulo
2. Then we can glue µ1 and µ2 at p and q so that we obtain a cycle
intersecting generically Σ an odd number of time. It means by inter-
section theory that Σ represents a non-trivial class in Hn(M,Z2). One
can minimize the area in this homology class and eventually obtain an
embedded minimal hypersurface Σ′ with Hn(Σ′) ≤ Hn(Σ) by [17, The-
orem 2.4]. But by the assumption at the beginning of the proof, equality
holds. Hence, Σ also minimizes the area in its homology class so should
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be embedded by [17]. This is absurd, consequently, the procedure gives
a good partition. Finally, it remains to check the uniqueness of such a
partition (by renaming the classes if necessary). If pi ∈M\Σ and c(pi)
is its connected component (i = 1, 2), then there is a path γ linking p1

to p2 and only intersecting Σ a finite number of times, transversally,
and away from E. The uniqueness then comes from the fact that the
class of c(p1) determines the class of each component encountered by γ,
in particular, c(p2). q.e.d.

If ψ : Γ → M is a minimal immersion of an n-dimensional manifold
into (M, g) such that ψ(Γ) is two-sided, the Jacobi operator is given by

Lφ = ∆φ+ |A|2φ+ Ricg(ν, ν)φ,

where φ ∈ C∞(Γ), A is the second fundamental form, and ν is a choice of
outward unit normal of ψ(Γ) defined on Γ. We will adopt the convention
that λ is an eigenvalue of L if there exists a non-zero function φ such
that Lφ+ λφ = 0. Moreover, if f ∈ C∞(Γ), define the map

˜expψ,f : Γ→M,

˜expψ,f (x) = expψ(x)(f(x)ν(x)).

When ||f ||∞ is small, ˜expψ,f is an immersion. Besides there is a unique
choice of unit normal on

˜expψ,rf (Γ) r ∈ [0, 1],

which is continuous with respect to r ∈ [0, 1] and coinciding with ν at
r = 0. Thus, ˜expψ,f (Γ) is endowed with a natural choice of outward
unit normal coming from ν and still called ν. It is known that at each
point of Γ:

(7)
∂

∂r

∣∣∣∣
r=0

〈 ~H( ˜expψ,rf (Γ)), ν〉 = L(f),

where ν denote the natural choice of outward unit normal on ˜expψ,rf (Γ)
coming from ν.

Let ψ : Γ→ M be an immersion of a connected n-dimensional man-
ifold Γ into (M, g). If ψ(Γ) is two-sided, then let Γ̃ = Γ1 ∪ Γ2 be two

copies of Γ and define ν : Γ̃→ TM to be a continuous choice of an out-
ward unit normal such that ν restricted to Γ1 gives the opposite choice
of ν restricted to Γ2. If ψ(Γ) is one-sided, then let Γ̃ be a connected
double cover of Γ such that there exists a continuous choice of outward
unit normal ν : Γ̃ → TM . Denote by π : Γ̃ → Γ the canonical projec-
tion. A function φ defined on M (or Γ, or ⊗pTΓ) lifts to a function on Γ̃

(or Γ̃, or ⊗pT Γ̃) still denoted by φ. Consider the immersion ψ̃ = ψ ◦ π.
Usually if one considers a smooth two-sided unstable minimal hyper-

surface, one can push it using the first eigenvalue of the Jacobi operator
to get a mean convex boundary which acts as a barrier for the Plateau
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problem, for instance. Now if Σ is a non-embedded minimal surface,
and c ∈ CΣ, then constructing such a barrier “approximating” ∂c in-
side c is still possible. To make this statement rigorous, we begin with
the following lemma which is a trick showing the existence of a hyper-
surface being “close” to Σ and mean convex except perhaps in a small
ball.

Lemma 17. Consider Γ a compact connected n-dimensional mani-
fold with a possibly non-empty smooth boundary and let ψ : Γ→M be a
minimal immersion into (M, g). Let p ∈ ψ(Γ) be a point such that ψ(Γ)
is an embedded hypersurface in a neighborhood U of p. Then, using the
notations previously defined, there is a metric h equal to g in M\U and
a function

f ∈ C∞(Γ̃ ∪ ∂Γ̃),

positive on Γ̃ and vanishing on ∂Γ̃ such that for all s ∈ (0, 1], ˜expψ̃,sf is

an immersion and the mean curvature of ˜expψ̃,sf (Γ̃), endowed with the

natural choice of outward unit normal, is negative with respect to h.

Proof. Let λ be the lowest eigenvalue of the Jacobi operator L of Γ̃
(with Dirichlet condition at the boundary if ∂Γ̃ 6= ∅) endowed with the
outward unit normal ν. We have

λ = inf

∫
Γ̃
|∇u|2 − (|A|2 + Ric(ν, ν))u2dvolg,

where the infimum is taken among all functions u ∈ H1(Γ̃) (H1
0 (Γ̃) if

∂Γ̃ 6= ∅) of L2-norm one. We argue that by perturbating the metric

in U if necessary, we can make Γ̃ unstable. More precisely, we will
construct a metric h coinciding with g outside U such that ψ is still
minimal and the lowest eigenvalue for the Jacobi operator computed
with h, called λ1, is negative. Define the conformally changed new
metric h = exp(2ϕ)g, where ϕ ∈ C∞(M) will be defined later. Let Ah

denote the second fundamental form with respect to h. One can check
the following formula:

Ah(a, b) = exp(ϕ)(A(a, b) + g(a, b)dϕ(ν)) ∀a, b ∈ T Γ̃.(8)

Since ψ(Γ) is embedded in the neighborhood U of p, it is not difficult
to see that there exist a sequence of radii {ri} converging to zero and
diffeomorphisms Φi : BRn+1(0, 3)→ B(p, ri) ⊂M such that

(9)
1

r2
i

Φ∗i g −−−→
i→∞

1

9
gst,

Φi(Rn ∩BRn+1(0, 3)) = ψ(Γ) ∩B(p, ri) and

(Φ∗i g)x(
∂

∂xk
,

∂

∂xn+1
) = 0 ∀x ∈Rn ∩BRn+1(0, 3), ∀k ∈ {1, . . . , n},

(10)
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in the C2 topology, where Rn denotes the subset {(x1, . . . , xn, 0)} ⊂
Rn+1 and gst is the standard metric on Rn+1. Consider the function

% : BRn+1(0, 3)→ R,

%(x) =
2

1 + |x|2st
,

where |.|st denotes the standard norm on Rn+1. Using the previous
charts, we can define a conformally changed metric hi = exp(2φi)g for
each i by choosing a smooth function φi vanishing outside B(p, ri) and
by imposing:

φi = (Φ−1
i )∗ log(%) on Φi(BRn+1(0, 2)),

dφi(ν) = 0 on ψ(Γ) ∩B(p, ri).

By (10) and (8), the previous two conditions are consistent and ψ re-
mains a minimal immersion into M with respect to hi for all i. Note
that %2gst on BRn+1(0, 2) is the metric of constant curvature one (then
BRn+1(0, 1) corresponds to one hemisphere of the unit (n + 1)-sphere)
and Rn∩BRn+1(0, 2) is an unstable minimal hypersurface with boundary
for this metric. Hence, since by (9)

1

r2
i

Φ∗ihi =
%2

r2
i

Φ∗i g
C2

−−−→
i→∞

%2

9
gst on BRn+1(0, 2),

if we take ϕ = φi for i sufficiently large, then Γ̃ contains an unstable
hypersurface with boundary for h = exp(2ϕ)g, so it is unstable itself
with respect to h and λ1 < 0.

Now using (7), we can take a positive eigenfunction f associated to

λ1 which is in C∞(Γ̃∪ ∂Γ̃) by [19] and with sufficiently small L∞ norm

so that for all s ∈ (0, 1], each hypersurface ˜expψ̃,sf (Γ̃) is immersed and

has negative mean curvature for h. This finishes the proof. q.e.d.

Recall the following definition, introduced in [13]. If Φ : [a, b] →
Zn(M,Z2) is continuous in the flat topology, we define

m(Φ, r) = sup{||Φ(x)||(Br(p));x ∈ [a, b], p ∈M}.
We will say that Φ satisfies the technical condition [∗] if

m(Φ, r)→ 0 as r → 0.

In what follows, we consider an immersed minimal hypersurface Σ =
ψ(Γ), where Γ is a closed n-manifold. Σ will be said to be connected if
Γ is connected. From the earlier description of the set E (see (6)), we
know that the boundary of a component c ∈ CΣ has positive finite n-
dimensional Hausdorff measure and is Hn-almost everywhere locally an
embedded hypersurface. We will restrict our attention to components
c ∈ CΣ verifying the following “local separation” property.

(LS) For any p ∈ ∂c\E and r > 0, B(p, r)\Σ is not included in c.
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Note that if Σ is non-embedded and Hn(Σ) ≤ AS(M), then any c ∈
CΣ automatically satisfies condition (LS) by Lemma 16. For such a
component, the next lemma enables to get rid of a certain subset of
c and decrease the area of ∂c inside c. It is essential that Σ is not
embedded. We say that x ∈ ∂c has a local roof structure if there is a
ball B(x, rx) and a diffeomorphism D : Rn+1 → B(x, rx) such that

D({xi = 0}) ⊂ Σ ∀i ∈ {1, 2},
and D({x1 > 0, x2 > 0}) ⊂ c.

Lemma 18. Suppose that Σ is a non-embedded connected minimal
hypersurface in M . Consider a component c ∈ CΣ satisfying condition
(LS). Then there is a point x ∈ ∂c having a local roof structure.

Moreover, there is a map ξ : [0, 1] → Zn(M,Z2) continuous in the
flat topology such that for all s ∈ [0, 1], ξ(s) = ∂[|Gs|], where Gs are
open sets with the following properties:

(i) G0 = c and ∀s ∈ [0, 1] Gs ⊂ c, M(ξ(s)) = Hn(∂Gs),
(ii) ∂G1 ∩ c separates c and is piecewise smooth mean convex with

respect to the normal pointing outside G1,
(iii) ∀s ∈ (0, 1], Hn(∂Gs) < Hn(∂c),
(iv) ξ satisfies [∗].

Proof. Σ being connected, ∂c is not smooth. One knows that the set
E where Σ self-intersects is a non-empty set of Hausdorff dimension n−
1, whereas the set where Σ intersects itself tangentially is of Hausdorff
dimension n− 2. Thus, there exists a point q ∈ ∂c ∩ E such that in an
open neighborhood B of q, Σ is a finite union of embedded hypersurfaces
H̃1, H̃2 . . . with boundary in ∂B, intersecting two by two transversally.
Consider a point x ∈ B∩E minimizing the number of hypersurfaces H̃j

intersecting at x, among all the points x′ ∈ B ∩E. We can assume that
the hypersurfaces passing through x are H̃1, . . . , H̃L. Let B(x, rx) ⊂ B
be a small ball centered at x such that ∂B(x, rx) intersects the Hj

transversally and Σ ∩ B(x, rx) =
⋃L
j=1Hj , where Hj = H̃j ∩ B̄(x, rx)

are closed n-disks intersecting two by two along (n − 1)-disks. By the
minimality property of x, for all 3 ≤ j ≤ L, Hj ∩H1 ⊂ H1 ∩H2 and so
by symmetry

Hj ∩Hk = H1 ∩H2 ∀1 ≤ j, k ≤ L.
Hence, the Hj are n-disks intersecting along a same (n − 1)-disk and
subdividing B(x, rx) into 2L connected components, one of which at
least is contained in c. This proves the local roof structure at x.

Let Ω be one component of B(x, rx)\
⋃L
j=1Hj contained in c. By

renumbering the Hj , we can assume that it is a connected component
of B(x, rx)\(H1 ∪H2). In what follows, j = 1 or 2, write ιj : Hj → M
for the inclusion map, and νj for the unit normal of Hj pointing toward
Ω. Write Ω̄ = Ω∪∂Ω. We can apply Lemma 17 to each Hj with a point
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yj replacing p, where yj ∈ Hj\Ω̄, and U a neighborhood of yj disjoint
from Ω̄. In this way, we get positive functions fj having small C1 norm
so that for j ∈ {1, 2}:
• ˜expιj ,fj (Hj) ⊂ B(x, rx),

• in Ω, each hypersurface ˜expιj ,fj (Hj) has negative mean curvature,
if endowed with the natural choice of outward unit normal given
by νj ,
• ˜expι1,f1(H1) and ˜expι2,f2(H2) meet transversally.

Define for s ∈ [0, 1]

Fs = {x ∈ ˜expιj ,s′fj (Hj); j ∈ {1, 2}, s′ ∈ [0, s]} ∩ Ω̄,

Gs = c\Fs.
We can use condition (LS) to verify that we are, indeed, “pushing” ∂c
on one side. More precisely, we have for all s ∈ (0, 1]:

M(∂[|Gs|]) = Hn(∂Gs) = Hn(∂c) +Hn(∂Fs)− 2Hn(F0).

The map ξ : s ∈ [0, 1] 7→ ∂[|Gs|] ∈ Zn(M,Z2), thus, satisfies properties
(i) (by condition (LS)) and (ii) of the lemma. Point (iii) is a conse-
quence of the first variation formula: since Hj ∩ Ω̄ are minimal, only the
boundary term appears and because the interior angle between these
two hypersurfaces is less than π, we have

d

ds

∣∣∣∣
s=0

Hn(∂Gs) < 0,

so by taking fj even smaller if necessary, (iii) is verified. Finally, point
(iv) will be checked in the Appendix (see Claim 2). q.e.d.

Equipped with the previous two lemmas, we are now able to prove
the following result: if Σ is connected and non-embedded then for any
c ∈ CΣ satisfying (LS), the boundary ∂c can be approximated by a
piecewise smooth mean convex hypersurface with less area.

Proposition 19. Let Σ be a non-embedded connected minimal hyper-
surface in M . Consider a component c ∈ CΣ satisfying condition (LS).
Then there exists a map θ : [0, 1] → Zn(M,Z2) continuous in the flat
topology such that for all s ∈ [0, 1], θ(s) = ∂[|ρs|], where ρs are open
sets with the following properties:

(i) ρ0 = c, ∀s ρs ⊂ c and M(θ(s)) = Hn(∂ρs),
(ii) ∂ρ1 is piecewise smooth mean convex,

(iii) ∀s ∈ (0, 1], Hn(∂ρs) < Hn(∂c),
(iv) there exists a homotopically closed set of continuous sweepouts of

ρ1, called Λ,
(v) θ satisfies [∗].
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Proof. Suppose that Σ = ψ(Γ) with Γ connected, we will use the
notations previously introduced. Let ξ and {Gs}s∈[0,1] be the map and
open sets constructed in Lemma 18. By the local roof structure at a
point of ∂c (see first part of Lemma 18), there is a point z ∈ ∂c and a
radius r0 so that B(z, r0)∩G1 = ∅ and ∂c is an embedded hypersurface
in B(z, r0). Deform the metric of M inside B(z, r0) and consider the
positive function f constructed in Lemma 17 with z (resp. B(z, r0))

replacing p (resp. U). Then for λ ∈ (0, 1) small enough, G1∩ ˜expψ̃,λf (Γ̃)

is an immersed surface with positive mean curvature (for the original
metric) with respect to the outward unit normal pointing toward the
boundary of c. By [9, Chapter 3, Proposition 3.2], the set of generic
immersions is dense in the space of smooth immersions, thus, we can
find a function f̃ arbitrarily close in the C∞ topology to λf such that
˜expψ̃,f̃ is a generic immersion and also generically meets ∂G1∩ c (which

is already generic by Lemma 18 (ii)). Let us choose λ small and f̃ close
enough to λf so that the mean convexity is preserved and the area does
not increase by much. More precisely, if we define for all s ∈ [0, 1]

Vs = {q ∈ ˜expψ̃,s′f̃ (Γ̃); s′ ∈ [0, s]},

Ws = c\Vs,

ρs =

{
G2s for s < 1/2,

W2s−1 ∩G1 for s ≥ 1/2,

then we can assure the following properties to be true:

(a) ∂ρ1 is piecewise smooth mean convex for the original metric,
(b) ∀s ∈ [1/2, 1], Hn(∂ρs) <

1
2(Hn(∂G1) +Hn(∂c)) < Hn(∂c).

Note that item (b) can be satisfied using (LS) and Lemma 18 (iii):
indeed, outside a set of Hausdorff dimension n − 1, ∂c is an embedded
hypersurface locally separating c from M\c in the sense of (LS), so ∂c
is only pushed on one side into c by ˜expψ̃,sf̃ , where s ∈ [0, 1]. Points

(ii) and (iii) of our proposition follow readily. Setting θ(s) = ∂[|ρs|],
point (i) is a consequence of condition (LS) again. We will check point
(iv), namely that there exists a homotopically closed set Λ of continuous
sweepouts of ρ1, in the Appendix (see Claim 1). We will construct a
continuous sweepout {St}t∈I of ρ1 such that

St = {x ∈ ρ1 ∪ ∂ρ1;u(x) = t} for any t ∈ I,
where u is a Morse function on ρ1 continuous on ρ1 ∪ ∂ρ1 with no
critical points in a neighborhood of ∂ρ1 and is obtained by “mollifying
the distance function”. Finally, the technical point (v) will be also
checked in the Appendix (see Claim 2). q.e.d.

Remark 20. It should be possible to prove that, with the notations
in the proof of Proposition 19, s 7→ Hn(∂Ws) is decreasing if f̃ is suf-
ficiently small. But even if it assumed to be true, we need Lemma 18
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to get rid of a part of c, deform the metric g in this part and get a
hypersurface being mean convex for the original metric g.

The following lemma shows when and how one can retract the bound-
ary of a c ∈ CΣ to 0 and will be crucial for constructing the optimal
sweepout in the proof of Proposition 22.

Lemma 21. Let Σ be a non-embedded connected minimal hypersur-
face in M and suppose that Hn(Σ) ≤ AS(M). For any c ∈ CΣ, there is
a map χc : I → Zn(M,Z2) continuous in the flat topology such that:

(i) χc(0) = ∂[|c|], χc(1) = 0 and sptχc(s) ⊂ c for s ∈ (0, 1],
(ii) ∀s ∈ (0, 1], M(χc(s)) < M(∂[|c|]) = Hn(∂c),

(iii) for j0 large enough and for any special chain map Φ : I(1, j0) →
I∗(M) determined by {χc(s)}s∈I as in [6],∑

α∈I(1,j0)1

Φ(α) = [|c|],

(iv) χc satisfies [∗].

Proof. By Lemma 16, c satisfies condition (LS). According to Propo-
sition 19 (iv), we can define W (ρ1, ∂ρ1,Λ). Suppose that we have

(11) Hn(∂ρ1) < W (ρ1, ∂ρ1,Λ).

By Theorem 13, there is an embedded connected minimal hypersurface
Γ0 ⊂ ρ1. We have now a manifold N whose boundary is the union of
∂ρ1 and a hypersurface isometric either to Γ0 or to the double cover
of Γ0. The homology class of ∂ρ1 in N is non-trivial and by [17] we
can minimize the area to get an embedded stable minimal hypersurface
S. Its area is not larger that Hn(∂ρ1), which is strictly smaller than
Hn(∂c). This is a contradiction with our assumption Hn(Σ) ≤ AS(M).
So (11) is false, i.e., in fact, Hn(∂ρ1) = W (ρ1, ∂ρ1,Λ) and one can find
a family {Tt}t∈[0,1] ∈ Λ with

Hn(Tt) < Hn(∂c) = M(∂[|c|]) ∀t.

Define χc(s) to be θ(2s) if s ∈ [0, 1/2] and the current in Zn(M,Z2)
determined by T2s−1 if s ∈ [1/2, 1].

Let’s check that the continuous map χc : I → Zn(M,Z2) satisfies
the four conditions. Points (i) and (ii) in the conclusion of the theo-
rem are clearly true by construction. Point (iii) is also true. Indeed,
{χc(s)}s∈[0,1] “foliates” the open set c and one can conclude by em-
ploying the methods in [23, Theorem 5.8]. Finally, the last technical
condition (iv) can be proved as follows. Firstly, Lemma 19 (v) shows
that

sup{||χc(x)||(Br(p));x ∈ [0, 1/2], p ∈M} → 0 as r → 0.
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Then take a τ ∈ (0, 1/2], Proposition 5.1 in [23] applies to χc �[1/2+τ,1]

and so

sup{||χc(x)||(Br(p));x ∈ [1/2 + τ, 1], p ∈M} → 0 as r → 0.

In the Appendix (see Claim 2), we will show that if τ is chosen small
enough,

sup{||χc(x)||(Br(p));x ∈ [1/2, 1/2 + τ ], p ∈M} → 0 as r → 0,

which shows that, indeed, m(χc, r)→ 0 as r → 0. This ends the proof.
q.e.d.

We are now ready to show that a least area minimal hypersurface is
necessarily embedded. The regularity result [20] [Theorem 7.12] will be
used in the proof. Even though it is shown by Pitts only for 2 ≤ n ≤ 5,
the result is still true for n = 6 thanks to the curvature estimates of
Schoen and Simon (see [21, Section 7]). Besides each time Theorem
7.12 of [20] and Theorem 5.5 of [23] are invoked, we actually apply
their “modulo 2” versions (see Remark 7).

Proposition 22. Suppose that Σ is a non-embedded connected min-
imal hypersurface and that Hn(Σ) ≤ AS(M), then there exists a con-
nected unstable minimal hypersurface Σ0 such that:

(i) Σ0 is embedded,
(ii) Hn(Σ0) = L(Π) < Hn(Σ), where Π is the homotopy class of map-

pings in (Zn(M,M,Z2), {0}) corresponding to the fundamental
class in Hn+1(M,Z2).

Proof. Let C1, C2 be the classes given by Lemma 16. Define A : I →
Zn(M,Z2) by

A(s) =


∑
c∈C1

χc(1− 2s) for s ∈ [0, 1/2],∑
c∈C2

χc(2s− 1) for s ∈ [1/2, 1],

where χc are the maps constructed in Lemma 21. It is well defined at
1/2 because we are considering currents modulo 2. By lemma 21, this
map A : I → Zn(M,Z2) is continuous in the flat topology and

sup
x∈I

M(A(x)) <∞ and lim
r→0

m(A, r) = 0.

Thus, A determines by interpolation ([23, Theorem 5.5]) a homotopy
sequence of mappings S = {φi}i∈N where

φi : I(1, ni)0 → Zn(M,M,Z2) with fineness δi,

lim
i→∞

δi = 0, lim
i→∞

ni =∞.

We want to show that S belongs to a homotopy class of mappings into
(Zn(M,M,Z2), {0}), called Π, which is non-trivial. Because of [7, The-
orem 13.4] (or [20, Theorem 4.6]) and [6, Theorem 8.2], this will imply
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L(Π) > 0 so the min-max theory will produce non-trivial minimal hy-
persurfaces. For this purpose, recall that by [20, Theorem 4.6],

π]1(Zn(M,M,Z2), {0}), π]1(Zn(M,F ,Z2), {0}),
and π1(Zn(M,F ,Z2), {0})

are all naturally isomorphic. The map A is continuous in the flat topol-
ogy, so by restricting A to I(1, ni) we obtain a (1,F)-homotopy sequence

of mappings into π]1(Zn(M,F ,Z2), {0}), called Ã. Since by [23, Theo-
rem 5.5 (3)],

sup{F(φi(x)−A(x));x ∈ I(1, ni)} ≤ δi,

S determines the same (1,F)-homotopy class of mappings into (Zn(M,

F ,Z2), {0}) as Ã, that is:

[S] = [Ã] ∈ π]1(Zn(M,F ,Z2), {0}).

[Ã] is non-trivial if and only if the class [A] is non-trivial in π1(Zn(M,
F ,Z2), {0}). But by Lemma 21 (iii), the method described in [6] asso-
ciates to [A] the homology class[

−
∑
c∈C1

(−[|c|]) +
∑
c∈C2

[|c|]
]
∈ Hn+1(M,Z2) = Z2,

and this is equal to the non-zero fundamental class [ [|M |] ], for C1 and
C2 form a partition of CΣ. Consequently, S belongs to the homotopy
class of mappings Π which satisfies L(Π) > 0.

By Lemma 16 and Lemma 21 (ii), we have max
s∈I

M(A(s)) ≤ Hn(Σ),

so the interpolation theorem [23, Theorem 5.5 (1)] implies that L(Π) ≤
Hn(Σ). In the case where this inequality is strict then by [20, Theorem
4.10, Theorem 7.12], there is an embedded minimal hypersurface Σ0

(possibly disconnected and with multiplicity) whose area is L(Π) > 0.
Since each connected component of Σ0 is unstable, and by Proposition
14 has area larger than or equal to L(Π), it follows that Σ0 is actually
connected and

Hn(Σ0) = L(Π) < Hn(Σ).

The case of equality is, in fact, impossible. Indeed, suppose L(Π) =
Hn(Σ), then S = {φi} is a critical sequence. Consider a sequence of
slices φi(α

i), where αi = [xi] ∈ I(1, ni)0, such that

M(φi(α
i))→ L(Π).

Because of [23, Theorem 5.5 (1)], necessarily xi → 1/2 so φi(α
i) con-

verge to Σ in the flat topology by [23, Theorem 5.5 (3)]. It is known
that if Tj ∈ Zk(M,Z2) converge to T ∈ Zk(M,Z2) in the flat topol-
ogy and the sequence of varifolds |Tj | converge to V ∈ Vk(M), then
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||V ||(M) = M(T ) implies that V = |T | (see [20, Chapter 2, 2.1, (18),
(f)]). It follows that if

lim
i
|φi(αi)| = V and ||V ||(M) = L(Π) = Hn(Σ),

then V = |Σ|. Thus, the only element of the critical set C(S) is |Σ|.
But by [20, Theorem 4.3 (2), Theorem 4.10], |Σ| should be Z2 almost
minimizing in small annuli around each point, and [20, Theorem 7.12]
again would imply that Σ is embedded, a contradiction. q.e.d.

We can now finish the proof of the main theorem.

Proof of Theorem 1 and Theorem 15. Let’s first check the existence
of a least area minimal hypersurface, using arguments appearing in [15].
By the compactness result in [21], AS(M) is achieved (take a minimizing
sequence and apply the compactness theorem in balls of radius smaller
than the injectivity radius of M). Thus, if

AS(M) = A(M),

the existence of a minimizer is proved. Suppose on the contrary that

AS(M) > A(M),

and take a sequence {Σi}i of connected minimal hypersurfaces such that
Hn(Σi) < AS(M) and lim

i→∞
Hn(Σi) = A(M). By Proposition 14 and

Proposition 22, each hypersurface Σi has an area bigger than or equal
to that of an embedded hypersurface, whose area is L(Π) where Π is
the homotopy class of mappings in (Zn(M,M,Z2), {0}) corresponding
to the fundamental class in Hn+1(M,Z2). Hence, any minimal hyper-
surface produced by Almgren–Pitts’ theory with the fundamental class
of Hn+1(M,Z2) has area A(M) in the case AS(M) > A(M).

Then Proposition 22 implies that any least area minimal hypersur-
face is embedded. Moreover, we can use Proposition 14 to show that
if Σ0 is a least area minimal hypersurface, it is either stable or com-
ing from Almgren–Pitts’ min-max theory with the fundamental class of
Hn+1(M,Z2). Finally, if Σ0 is not stable, we have seen in the proof of
Proposition 14 that Σ0 is two-sided and by reasoning along the lines of
[12, Proposition 3.1] (see also [23], [15]), Σ0 is, indeed, of index one.
This finishes the proof of Theorem 15. q.e.d.

3. Area rigidity of minimal surfaces in three-manifolds of
positive scalar curvature

As an application of Theorem 15, we give a short proof of a conjec-
ture of Marques and Neves (see Theorem 1.3 and below in [12]). Note
that the proof only uses min-max methods and the short-time existence
theorem for Hamilton’s Ricci flow.
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Theorem 23. Let M3 be a closed three-manifold with scalar curva-
ture R at least 6, not isometric to the round unit three-sphere S3. Then
there exists a closed embedded minimal surface Σ of index zero or one
such that

H2(Σ) < 4π.

Moreover, Σ can be chosen so that if it is not stable, then it is two-sided
and has area equal to the width of the fundamental class of M , in the
sense of Almgren–Pitts.

Proof. By [12, Theorem 1.2] and Theorem 15, the theorem is true
for M diffeomorphic to S3. In the general case, it is enough to find a
finite Riemannian covering M̃ of M which contains a minimal surface
Σ̃ of area less than 4π. Indeed, if p denotes the natural projection from
M̃ to M , then p(Σ̃) is an immersed minimal surface of area less than
4π and the result follows readily from Theorem 15. By [18, Corollary
0.5, Chapter 15] and [11, Theorem 7.1, b)], an oriented cover Mor of M
is a connected sum of spherical space forms and finitely many copies of
S2 × S1. When this cover Mor is a quotient of the three-sphere, we can
just take M̃ = S3. Otherwise Mor contains an essential two-sphere S.
From Lemma 1 and Theorem 1 in [16], we can minimize the area of S in
its isotopy class by γ-reduction and get a non-trivial stable embedded
minimal surface diffeomorphic to S2 or RP2. By [12, Proposition A.1,
(i), (ii)], it has area bounded by 4π/3 or 2π. Thus, in this case we can

take M̃ = Mor. q.e.d.

4. Appendix

In this section, we complete the proofs of Lemma 18, Proposition 19
and Lemma 21 by proving two claims. Before stating the claims, recall
the following convention. A subset C of Rn+1 is called graph of a real
function f over a domain D of a hyperplane H if there is an orthonormal
basis {e1, . . . , en+1} of Rn+1 satisfying:

• ∀i ∈ {1, . . . , n}, ei ∈ H,

• f is defined on D̃ := {(x1, . . . , xn);
∑n

i=1 xiei ∈ D},
• C = {

∑n
i=1 xiei + f(x)en+1;x = (x1, . . . , xn) ∈ D̃}.

Claim 1. Let N be an open subset of M such that ∂N is piecewise
smooth mean convex. Then there exists a homotopically closed family Λ
of sweepouts of N .

Proof of Claim 1. Recall that by definition, a piecewise smooth mean
convex hypersurface is two-sided, i.e., it locally separates M .

It suffices to find one continuous sweepout, then we will take the ho-
motopically closed family Λ that it generates. This continuous sweepout
will be determined by the level sets of a function u which will be ob-
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tained by mollifying the distance function to ∂N , called d∂N . Take
d0 > 0 smaller that the injectivity radius inj(M).

Consider a locally finite open cover of {p ∈ N : d(p, ∂N) ≤ d0}. Note
that this set does not intersect ∂N . We can suppose that the cover is
given by B(p1, a1), B(p2, a2),... where

2ai ≤ min{d(pi, ∂N), inj(M)} ∀i ∈ N\{0}.
For any i, exp−1

pi : B(pi, 2ai) → exp−1
pi (B(pi, 2ai)) ⊂ Rn+1 gives a co-

ordinate chart. We want to modify d∂N via those charts. Consider
a mollifier, namely a nonnegative smooth function ϑ : Rn+1 → R
with support in the ball BRn+1(0, 2), positive in BRn+1(0, 1), such that∫
Rn+1 ϑ(ξ)dξ = 1. To each ball B(pi, ai) we associate:

• a small bi> 0 so that {x∈Rn+1;BRn+1(x, 2bi)⊂ exp−1
pi (B(pi, 2ai))}

contains exp−1
pi (B(pi, 3ai/2)),

• the mollifier ϑi(x) = 1/bi
n+1ϑ(x/bi),

• a smooth nonnegative cutoff function αi with support in B(pi,
3ai/2), with values between 0 and 1 and equal to 1 in B(pi, ai).

We now construct by induction a sequence of functions d̃i which ap-
proximate d∂N and are smooth in respectively

⋃i
k=1B(pk, ak). First we

define d̃1 : N ∪ ∂N → R with a slight abuse of notations:

d̃1 = α1

{
(exp−1

p1 )∗(ϑ1 ∗ exp∗p1(d∂N ))
}

+ (1− α1)d∂N ,

where ∗ denotes the convolution product

(exp−1
p1 )∗(ϑ1∗exp∗p1(d∂N ))(p) =

∫
Rn+1

ϑ1(exp−1
p1 (p)−ξ)d∂N (expp1(ξ))dξ.

Then if d̃i is constructed, we, similarly, define

(12) d̃i+1 = αi+1

{
(exp−1

pi+1
)∗(ϑi+1 ∗ exp∗pi+1

(d̃i))
}

+ (1− αi+1)d̃i.

Since our cover is locally finite, d̃i locally simply converges to a function
d̃ : N ∪ ∂N → R, which is smooth and positive on the open set U :=
{p ∈ N : d(p, ∂N) < d0}, equal to 0 on ∂N and continuous on U ∪ ∂N .

At any point p of ∂N , ∂N is locally contained in the union of a finite
number of embedded hypersurfaces intersecting at p. Hence, we could
have taken d0 small enough so that for any point p ∈ U ∪ ∂N , d∂N is
locally the minimum of the distance to a finite number of embedded
hypersurfaces Ω1, . . . ,ΩJ , that is for p′ near p:

(13) d∂N (p′) = min
i=1,...,J

d(p′,Ωi).

We can reduce d0 again if necessary, so that each function d(.,Ωi) is
smooth in a neighborhood of p. Moreover, because ∂N is piecewise
smooth mean convex, we can find a constant κ1 > 0 such that if p ∈ ∂N ,
then there is vp ∈ TpM such that 〈vp, ν〉g ≥ κ1, for any ν ∈ TpM
outward unit normal at p of one of the smooth pieces Ωi. Another
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useful remark is that d∂N is differentiable almost everywhere and if it
is differentiable at p ∈ U , its differential is equal to the differential of
one of the d(.,Ωi) (Ωi being as in (13)). Note that by (12),

∇d̃i+1 = αi+1∇
{

(exp−1
pi+1

)∗(ϑi+1 ∗ exp∗pi+1
(d̃i))

}
+ (1− αi+1)∇d̃i

+∇αi+1(
{

(exp−1
pi+1

)∗(ϑi+1 ∗ exp∗pi+1
(d̃i))

}
− d̃i).

By the usual properties of convolution with a Lipschitz function and the
equality above, if we choose bi successively small enough, then the limit
gradient ∇d̃ will be arbitrarily close to a local average (in a d(p, ∂N)-
neighborhood of p) of the differentials of d(.,Ωi). Summing up all these
facts, one obtains for b1, b2 . . . small enough:

1) ∇d̃ does not vanish in U ,

2) ||∇d̃|| is bounded by 2 in U ,
3) at a point p ∈ ∂N , there is a v(p) ∈ Rn+1 and a small radius

r(p) < inj(M) such that for p′ ∈ U ∩B(p, r(p)),

〈dp′ exp−1
p (∇d̃(p′)), v(p)〉st > κ1/2,

where 〈., .〉st denotes the standard scalar product in Rn+1, and
dp′ exp−1

p is the differential of exp−1
p at p′.

Items (1)–(3) imply that there exist K > 0, r0 > 0 verifying the follow-
ing property:

For all p ∈ ∂N and p′ ∈ B(p, r0) ∩ U ,

exp−1
p (B(p, r0) ∩ d̃−1(d̃(p′))) ⊂ Rn+1

is the graph of a K-Lipschitz smooth function defined

over a domain of a hyperplane independent of p′.

The function and its domain depend smoothly on p′.

(14)

It remains to construct u such that it coincides with d̃ near ∂N and
is a Morse function in N . It is similar to the proof of Claim 1 in [23].
Define

Vs = {p ∈ U ∪ ∂N ; d̃(p) < s}.
For ε > 0 small enough, V2ε ⊂ U∪∂N and there exists a smooth function
h defined on N arbitrarily close to d̃ in V2ε\Vε for the C1 topology, and

such that h(a) > d̃(b) for any a ∈ N\Vε and b ∈ Vε/2. The function h
can be assumed to be Morse because of the density of Morse functions
in Ck(N) for k ≥ 2. Consider a cutoff function ϕ : N → R such that
ϕ ≡ 1 on Vε, ϕ ≡ 0 on N\V2ε and 0 ≤ ϕ ≤ 1. Define

u = ϕd̃ + (1− ϕ)h.

If h was chosen sufficiently close to d̃ in V2ε\Vε for the C1 topology,
then item (1) in the previous list implies that ∇u does not vanish in
V2ε. Reparametrizing the level sets of u, we get a family {Γt}t∈I .
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Note that for any smooth point p of ∂N , there is a neighborhood
B(p, r′) of p inside which d∂N is smooth with non-vanishing gradient

and so the level sets of d̃ become closer and closer (in the C∞-topology)

to the level sets of d∂N near ∂N . Consequently, B(p, r′) ∩ d̃−1(d̃(p′))
converges smoothly to B(p, r′) ∩ ∂N as p′ → p. So adding Property
(14), we readily check that {Γt}t∈I satisfies the conditions of Definition
8 and is the wanted sweepout. q.e.d.

Consider a family of closed subsets {Cs}s∈I of M . Suppose that there
are a finite family of points {pj}Jj=1 and a corresponding family of radii

{rj}Jj=1 such that rj < inj(M), the balls B(pj , rj) cover M and there is

a positive integer K0 such that for all j ∈ {1, . . . , J} and s ∈ I,

exp−1
pj (B(pj , rj) ∩ Cs) ⊂ Rn+1

is included in the union of at most K0 graphs of K0-Lipschitz functions
defined over domains of possibly different hyperplanes. In this case, we
will say that the family {Cs} is uniformly Lipschitz. Then we have the
following easy claim:

Claim 2. If Φ : [a, b]→ Zn(M,Z2) is continuous in the flat topology
and if {spt(Φ(x))}x∈[a,b] is a uniformly Lipschitz family of closed sets
then

m(Φ, r)→ 0 as r → 0.

Proof of Claim 2. It is enough to verify it in each ball B(pj , rj). But
then the lemma follows from the formula for computing the area in Rn+1

of the graph of a real function defined on a domain of Rn and the fact
that there is a uniform constant κ2 > 0 with exp∗pj g ≤ κ2.gst for all j

(g is the metric on M and gst is the standard metric on Rn+1). q.e.d.

The previous claim then suffices to complete the proofs of Lemma 18,
Proposition 19 and Lemma 21. Indeed, in Lemma 18 and Proposition
19, the supports of ξ and θ clearly form a uniformly Lipschitz family.
Secondly, for Lemma 21, we just use Property (14).
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