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AN OPTIMAL L2 EXTENSION THEOREM ON
WEAKLY PSEUDOCONVEX KÄHLER MANIFOLDS

Xiangyu Zhou & Langfeng Zhu

Abstract

In this paper, we prove an L2 extension theorem for holomor-
phic sections of holomorphic line bundles equipped with singular
metrics on weakly pseudoconvex Kähler manifolds. Furthermore,
in our L2 estimate, optimal constants corresponding to variable
denominators are obtained. As applications, we prove an Lq ex-
tension theorem with an optimal estimate on weakly pseudoconvex
Kähler manifolds and the log-plurisubharmonicity of the fiberwise
Bergman kernel in the Kähler case.

1. Introduction and main results

L2 extension theorems with uniform constant L2 estimates on Stein
manifolds are very useful in several complex variables and complex ge-
ometry (see [25], [22], [23], [27], [28], [1], [11], [21], etc). A recent
progress is about the optimal L2 extension and the applications. It turns
out that L2 extension theorems with optimal constant L2 estimates are
also quite interesting. For example, one may find some unexpected ap-
plications of the optimal L2 extension in [16]. To optimize the uniform
constants in the L2 estimates is now an interesting aspect in studying
L2 extension theorems (see [32], [14], [15], [18], [6], [7], [2], [24], etc).

Another interesting aspect in studying L2 extension theorems is to
consider the singular metrics of holomorphic line bundles on weakly
pseudoconvex Kähler manifolds. In this case, a difficulty arose, be-
cause, unlike the case of Stein or projective manifolds, there is a loss
of positivity in the regularization process of singular weights on such
manifolds.

In the present paper, we establish a method to obtain an optimal
L2 extension theorem for holomorphic sections of holomorphic line bun-
dles with singular Hermitian metrics on weakly pseudoconvex Kähler
manifolds.

Key words and phrases. Optimal L2 extension, singular Hermitian metric,
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In order to overcome the difficulty in dealing with singular weights
on such manifolds, not only the error term method of solving ∂̄ equa-
tions (see Lemma 3.2) is needed, but also a limit problem about L2

integrals with singular weights needs to be solved. In this paper, by
replacing a fixed holomorphic function with a family of holomorphic
functions, we solve the limit problem (see Proposition 5.2). Then by
using Proposition 5.1, Proposition 5.2 and the strong openness conjec-
ture (see Lemma 3.8) as the key tools, we construct a family of special
smooth extensions (see Step 1 in Section 6) and overcome the difficulty
in dealing with singular weights.

We began our work several years ago and partial results were an-
nounced at the Abel Symposium in 2013 by the first author (see [31],
where the optimal constant L2 estimate was obtained on weakly pseu-
doconvex Kähler manifolds for the smooth weights) and reported in
several domestic conferences in China by the second author.

Our main theorem is stated below.
Let R be the class of functions defined by{

R ∈ C∞(−∞, 0] : R > 0, R′ ≤ 0,

∫ 0

−∞

1

R(t)
dt < +∞

and etR(t) is bounded above on (−∞, 0]
}
.

We will denote
∫ 0
−∞

1
R(t)dt by CR. The function R(t) is equal to the

function 1
cA(−t)et defined just before the main theorems in [16] when

A = 0.

Theorem 1.1. (main theorem) Let (X,ω) be a weakly pseudoconvex
complex n-dimensional manifold possessing a Kähler metric ω, ψ be a
plurisubharmonic function on X, E be a holomorphic vector bundle of
rank m over X equipped with a smooth Hermitian metric (1 ≤ m ≤ n),
and s be a global holomorphic section of E. Assume that s is transverse
to the zero section, and let

Y := {x ∈ X : s(x) = 0}.
Let L be a holomorphic line bundle over X equipped with a singular
Hermitian metric hL, which is written locally as e−ϕL for some function
ϕL ∈ L1

loc with respect to a local holomorphic frame of L. Assume
that ϕL +ψ is quasi-plurisubharmonic and ϕL is locally bounded above.
Moreover, assume that

(i)
√
−1ΘL +

√
−1∂∂̄ψ +m

√
−1∂∂̄ log |s|2E ≥ 0 holds on X \ Y,

and that there is a continuous function α > 0 on X such that the fol-
lowing two inequalities hold on X \ Y :

(ii)
√
−1ΘL +

√
−1∂∂̄ψ +m

√
−1∂∂̄ log |s|2E ≥

{
√
−1ΘEs, s}E
α|s|2E

,

(iii) ψ +m log |s|2E ≤ −2mα.
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Then for every holomorphic section f on Y with values in the line bundle
KX ⊗ L (restricted to Y ), such that∫

Y

|f |2Le−ψ

| ∧m (ds)|2E
dVY < +∞,

there exists a holomorphic section F on X with values in KX ⊗L, such
that F = f on Y and
(1.1)∫
X

|F |2L
eψ+m log |s|2ER(ψ +m log |s|2E)

dVX ≤ CR
(2π)m

m!

∫
Y

|f |2Le−ψ

| ∧m (ds)|2E
dVY .

Remark 1.1. We will explain some notations. Let {ej}mj=1 be a

local holomorphic frame of E which intersects with {s = 0}. Then s
can be written locally as

∑m
j=1 s

jej , where sj (1 ≤ j ≤ m) are local

holomorphic functions. ∧m(ds) is defined locally by (ds1 ∧ · · · ∧ dsm)⊗
(e1 ∧ · · · ∧ em), which is a local section of ∧mT ∗X ⊗ detE (however, ds
is globally defined only on Y ). The notation {•, •}E will be explained
in Lemma 3.9. The norm | ∧m (ds)|E is computed here with respect to
the metrics on ∧mT ∗X and detE induced by the Kähler metric ω and
the Hermitian metric on E. Similarly, the norms |f |2L and |F |2L are
computed here with respect to the metrics on KX = ∧nT ∗X and L. The
submanifold Y is equipped with the Kähler metric ωY induced from

ω. dVX := ωn

n! and dVY :=
ωn−mY

(n−m)! are the volume forms on X and Y

respectively, where we regard ω and ωY as the associated Kähler forms.
Then we have |F |2LdVX = cn{F, F}L and |f |2LdVY = cn−m{f, f}L, where

cn := (
√
−1)n

2
and cn−m := (

√
−1)(n−m)2 .

Remark 1.2. By slight modifications of our proof, we can, in fact,
replace the curvature assumption (ii) in Theorem 1.1 with the following
weaker one: assume that there exists a nonnegative number α0 such that

(ii)′
√
−1ΘL +

√
−1∂∂̄ψ +m

√
−1∂∂̄ log |s|2E ≥

m{
√
−1ΘEs, s}E

χ̃(−2mα)|s|2E
holds on X \ Y , where

χ̃(t) := α0 +
α0

∫ 0
t

(
1

R(0) −
1

R(t1)

)
dt1 +

∫ 0
t

( ∫ 0
t2

1
R(t1)dt1

)
dt2

α0
R(0) +

∫ 0
t

1
R(t1)dt1

.

Then the constant CR
(2π)m

m! in (1.1) should be replaced by
(
α0
R(0) +

CR
) (2π)m

m! .
It is not hard to see that χ̃ is a smooth strictly decreasing function

from (−∞, 0) to (α0,+∞). It is also not hard to verify that χ̃(t) ≥ − t
2

when α0 = 0. Furthermore, we can prove that
(
α0
R(0) + CR

) (2π)m

m! is the

optimal constant corresponding to the assumption (ii)′.
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Remark 1.3. Theorem 1.1 is a generalization of the L2 extension
theorem on Stein manifolds with a negligible weight (see [22]) to the
weakly pseudoconvex Kähler case with weaker curvature assumptions
and an optimal estimate. In fact, if we take R = e−t, then CR = 1 and
(1.1) becomes∫

X
|F |2LdVX ≤

(2π)m

m!

∫
Y

|f |2L
| ∧m (ds)|2E

e−ψdVY .

Remark 1.4. Theorem 1.1 is also a generalization of Demailly’s result
in [11], where L is equipped with a smooth metric, α ≥ 1 and ψ = 0. In
fact, if we take R = ( t

2m)2 on (−∞,−2m], then (1.1) implies Demailly’s

L2 estimate∫
X

|F |2L
|s|2mE (− log |s|E)2

dVX ≤ C
∫
Y

|f |2L
| ∧m (ds)|2E

dVY ,

where C is a positive constant depending only on m.

Remark 1.5. The idea of considering variable denominators in (1.1)
has been introduced in [21], where the optimal constant problem is not
discussed. Theorem 1.1 gives an optimal version in some sense.

Remark 1.6. In [29] and [30], Yi proved two L2 extension theorems
for holomorphic sections of holomorphic line bundles equipped with sin-
gular metrics on compact Kähler manifolds. Our result is stronger than
hers since some strong additional hypotheses were assumed in her re-
sults.

Remark 1.7. Recently, in [8] Cao also obtains a similar result as ours
with different curvature assumptions and an additional assumption that
there exists a sequence of analytic approximations of the singular metric.
His proof seems also to be different from ours.

In [4] (see also [5]), a local L
2
p extension theorem was obtained by

using a L2 extension theorem and an iterated method, where p is a
positive integer. Using Theorem 1.1 and the similar method as in [4],
we get the following Lq extension theorem (0 < q ≤ 2) with optimal
constants on weakly pseudoconvex Kähler manifolds. Write dVX locally
as cne

−ϕωdz ∧ dz̄ with respect to local coordinates z = (z1, z2, · · · , zn),

where cn := (
√
−1)n

2
. Denote ψ +m log |s|2E by σ.

Theorem 1.2. Let R, (X,ω), ψ, E, s, Y , L, hL and ϕL be the
same as in Theorem 1.1. Assume that q

2ϕL + (1 − q
2)ϕω + ψ is quasi-

plurisubharmonic and ϕL is locally bounded above. Moreover, assume
that

(i)
q

2

√
−1∂∂̄ϕL + (1− q

2
)
√
−1∂∂̄ϕω +

√
−1∂∂̄σ ≥ 0 holds on X \ Y,
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and that there is a continuous function α > 0 on X such that the fol-
lowing two inequalities hold on X \ Y :

(ii)
q

2

√
−1∂∂̄ϕL + (1− q

2
)
√
−1∂∂̄ϕω +

√
−1∂∂̄σ ≥ {

√
−1ΘEs, s}E
α|s|2E

,

(iii) σ ≤ −2mα.

Assume that f is a holomorphic section on Y with values in the line
bundle KX ⊗ L (restricted to Y ), such that

Cf :=

∫
Y

(|f |L)qe−ψ

| ∧m (ds)|2E
dVY < +∞.

Furthermore, assume that there exists a holomorphic section F1 on X
with values in KX ⊗ L such that F1 = f on Y and

CF1 :=

∫
X

(|F1|L)q

eσR(σ)
dVX < +∞.

Then there exists a holomorphic section F on X with values in KX⊗L,
such that F = f on Y and∫

X

(|F |L)q

eσR(σ)
dVX ≤ CR

(2π)m

m!
Cf .

Let p be a positive integer. If we take q = 2
p and replace L by

Kp−1
X ⊗ L, which is equipped with the metric e(p−1)ϕω−ϕL , then we can

get from Theorem 1.2 the following corollary.

Corollary 1.1. Assume that ϕL
p + ψ is quasi-plurisubharmonic and

ϕL is locally bounded above. Moreover, assume that

(i)

√
−1ΘL

p
+
√
−1∂∂̄σ ≥ 0 holds on X \ Y,

and that there is a continuous function α > 0 on X such that the fol-
lowing two inequalities hold on X \ Y :

(ii)

√
−1ΘL

p
+
√
−1∂∂̄σ ≥ {

√
−1ΘEs, s}E
α|s|2E

,

(iii) σ ≤ −2mα.

Assume that f is a holomorphic section on Y with values in the line
bundle Kp

X ⊗ L (restricted to Y ), such that

Cf :=

∫
Y

(|f |L)
2
p e−ψ

| ∧m (ds)|2E
dVY < +∞.

Furthermore, assume that there exists a holomorphic section F1 on X
with values in Kp

X ⊗ L such that F1 = f on Y and

CF1 :=

∫
X

(|F1|L)
2
p

eσR(σ)
dVX < +∞.
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Then there exists a holomorphic section F on X with values in Kp
X⊗L,

such that F = f on Y and∫
X

(|F |L)
2
p

eσR(σ)
dVX ≤ CR

(2π)m

m!
Cf .

The log-plurisubharmonicity of the fiberwise Bergman kernel was
proved in [3] in the projective case (see also [4], [5], [26]). In [16],
Guan and Zhou discovered its relation with the L2 extension theorem
with the optimal constant and gave another proof of it by their optimal
L2 extension theorem. Using Theorem 1.1 and a similar method as in
[16], we can prove the log-plurisubharmonicity of the fiberwise Bergman
kernel in the Kähler case as stated in the following theorem.

Theorem 1.3. Let Π : X → Y be a surjective proper holomorphic
map from a Kähler manifold X of dimension n to a complex manifold Y
of dimension m. Denote by Y 0 the set of points which are not critical
values of Π in Y . Set X0 = Π−1(Y 0). Let L be a holomorphic line
bundle on X equipped with a singular Hermitian metric hL, such that

(i) the curvature current of (L, hL) is semipositive on X,
(ii) H0(Xy0 ,KXy0

⊗ L|Xy0 ⊗ I(hL|Xy0 )) 6= 0 for some point y0 ∈ Y 0.

Then the logarithm of the fiberwise Bergman kernel of the line bundle
(KX/Y ⊗L)|X0 is plurisubharmonic on X0. Hence, it defines a singular
Hermitian metric on (KX/Y ⊗L)|X0 with semipositive curvature current,
which is called the fiberwise Bergman kernel metric. Furthermore, this
metric extends across X\X0 to a metric with semipositive curvature
current on all of X.

The rest sections of this paper are organized as follows. First, Sec-
tion 2 is devoted to explain why the uniform constant in (1.1) is opti-
mal. Next, some results are listed in Section 3, which will be used in the
proof of Theorem 1.1. Then, we will prove a proposition in Section 4,
which is a special case of Theorem 1.1. After that, two key proposi-
tions used to deal with singular metrics of holomorphic line bundles will
be proved in Section 5. Then, we will prove Theorem 1.1 in Section 6
by using the results in Section 3, Section 4 and Section 5. Finally, we
will prove Theorem 1.2 and Theorem 1.3 in Section 7 and Section 8
respectively.

Acknowledgments. The first author was partially supported by the
National Natural Science Foundation of China (No. 11688101 and
No. 11431013). The second author was partially supported by the Na-
tional Natural Science Foundation of China (No. 11201347 and No.
11271291), the China Postdoctoral Science Foundation funded project
(No. 2012M511650) and the Fundamental Research Funds for the Cen-
tral Universities.
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2. The optimal constant

In this section, we will prove the constant CR
(2π)m

m! in (1.1) is optimal
by the following example.

Let (Bm, ω1) be the unit ball in Cm equipped with the Euclidean met-
ric ω1, and (Y, ω2) be an (n−m)-dimensional compact Kähler manifold
equipped with a Kähler metric ω2 such that H0(Y,KY ) 6= 0. Then

X := Bm × Y

is a weakly pseudoconvex Kähler manifold equipped with the natural
Kähler metric ω := ω1 + ω2.

Assume that L and E are trivial Hermitian holomorphic bundles
equipped with trivial metrics. Take ψ = 0 and take

s = z′ := (z1, · · · , zm),

with respect to a global orthonormal holomorphic frame of E, where
z1, · · · , zm are coordinates of Bm and can be regarded as global functions
on X. Let

η1 := dz1 ∧ · · · ∧ dzm,
η2 := dzm+1 ∧ · · · ∧ dzn,

and

z′′ := (zm+1, · · · , zn),

where zm+1, · · · , zn are local coordinates of Y . We will write {0} × Y
as Y for simplicity. Then KY is isomorphic to KX

∣∣
Y

by the operator
∧η1.

It’s obvious that the inequality (i) in Theorem 1.1 holds, and that
there is a continuous function α > 0 on X such that the inequalities (ii)
and (iii) hold.

Write the factor
1

em log |s|2R(m log |s|2)
,

in (1.1) as e−Ψ and denote by A2(X,Ψ) the weighted Bergman space{
u : u ∈ H0(X,KX) and ‖u‖Ψ :=

(∫
X
|u|2e−ΨdVX

) 1
2

< +∞
}
,

where |u|2dVX = cnu∧ ū = cn{u, u} and cn := (
√
−1)n

2
as explained in

Remark 1.1.
Let BX,Ψ(z′, z′′) · cnη1 ∧ η2 ∧ η1 ∧ η2 be the weighted Bergman kernel

form on X with respect to the local coordinates (z′, z′′) of X. Similarly,
we can define A2(Bm,Ψ), A2(Y ), BBm,Ψ(z′) · cmη1 ∧ η1 and BY (z′′) ·
cn−mη2 ∧ η2. Then the product formula for the Bergman kernel form
(see [20]) implies that

BX,Ψ(z′, z′′) = BBm,Ψ(z′) ·BY (z′′).
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Let z′′0 ∈ Y be a point such that BY (z′′0 ) 6= 0. By the extremal
property of the Bergman kernel form, there exists a holomorphic (n−m)-
form f ∈ H0(Y,KY ) such that∫

Y
|f |2dVY = 1,

and

BY (z′′0 ) = |a(z′′0 )|2,

where a(z′′) is a local function defined by f(z′′) = a(z′′)η2.
Let S := {F ∈ A2(X,Ψ) : F = f ∧ η1 on Y }. Then any uniform

constant C for the estimate (1.1) must satisfy

C ≥
(∫

Y
|f |2dVY

)−1

inf
F∈S
‖F‖2Ψ = inf

F∈S
‖F‖2Ψ ≥

|a(z′′0 )|2

BX,Ψ(0, z′′0 )
,

i.e.,

C ≥ BY (z′′0 )

BBm,Ψ(0) ·BY (z′′0 )
=

1

BBm,Ψ(0)
.

Since e−Ψ is a function of the variables r1, · · · , rm, where rk = |zk|
(1 ≤ k ≤ m), it is not hard to prove that{

(z1)i1 · · · (zm)im · η1

‖(z1)i1 · · · (zm)im · η1‖Ψ

}
(i1,··· ,im)∈Nm

,

form an orthonormal basis of A2(Bm,Ψ), where N denotes the set of
nonnegative integers. Hence,

C ≥ 1

BBm,Ψ(0)
= ‖η1‖2Ψ =

∫
z′∈Bm

2m

|z′|2mR(log |z′|2m)
dVm

=

∫
S2m−1

dS

∫ 1

0

2m

rR(log r2m)
dr

=
2πm

(m− 1)!

∫ 0

−∞

2m−1

mR(t)
dt

= CR
(2π)m

m!
,

where dVm denotes the 2m-dimensional Lebesgue measure on Cm, S2m−1

is the unit sphere in Cm and dS is the surface measure on S2m−1.

Therefore, CR
(2π)m

m! is the optimal constant.

3. Some results used in the proof of Theorem 1.1

In this section, we give some results which will be used in the proof
of Theorem 1.1.
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Lemma 3.1. Let Q be a Hermitian vector bundle on a Kähler man-
ifold X of dimension n with a Kähler metric ω. Assume that τ,A > 0
are smooth functions on X. Then for every form v ∈ D(X,∧n,qT ∗X ⊗Q)
with compact support we have∫

X
(τ +A)|D′′∗v|2QdVX +

∫
X
τ |D′′v|2QdVX

≥
∫
X

〈[
τ
√
−1ΘQ −

√
−1∂∂̄τ −

√
−1

∂τ ∧ ∂̄τ
A

, Λ

]
v, v

〉
Q

dVX .

Proof. The proof is almost the same as in [11], where the term∫
X

(τ +A)|D′′∗v|2QdVX ,

in the above inequality is written as∫
X

(
√
τ +
√
A)2|D′′∗v|2QdVX .

With slightly careful calculations, we can get this more precise inequal-
ity. q.e.d.

Lemma 3.2. Let (X,ω) be a complete Kähler manifold equipped with
a (non-necessarily complete) Kähler metric ω, and let Q be a Her-
mitian vector bundle over X. Assume that τ and A are smooth and
bounded positive functions on X and let B := [τ

√
−1ΘQ −

√
−1∂∂̄τ −√

−1A−1∂τ ∧ ∂̄τ,Λ]. Assume that δ ≥ 0 is a number such that B + δI
is semi-positive definite everywhere on ∧n,qT ∗X ⊗ Q for some q ≥ 1.
Then given a form g ∈ L2(X,∧n,qT ∗X ⊗ Q) such that D′′g = 0 and∫
X〈(B + δI)−1g, g〉QdVX < +∞, there exists an approximate solution

u ∈ L2(X,∧n,q−1T ∗X ⊗Q) and a correcting term h ∈ L2(X,∧n,qT ∗X ⊗Q)

such that D′′u+
√
δh = g and∫

X

|u|2Q
τ +A

dVX +

∫
X
|h|2QdVX ≤

∫
X
〈(B + δI)−1g, g〉QdVX .

Proof. By Lemma 3.1, Lemma 3.2 can be obtained by almost the
same arguments as in [11], where the term

∫
X〈(B + δI)−1g, g〉QdVX in

the above inequality is written as 2
∫
X〈(B + δI)−1g, g〉QdVX . q.e.d.

Lemma 3.3. (see [13]) Let X be a Stein manifold and ϕ be a pluri-
subharmonic function on X. Then there exists a decreasing sequence of
smooth strictly plurisubharmonic functions {ϕj}+∞j=1 such that
limj→+∞ ϕj = ϕ.

Lemma 3.4. Let (X,ω) be a complex manifold equipped with a Her-
mitian metric ω, and Ω ⊂⊂ X be an open subset. Assume that T =

T̃ +
√
−1
π ∂∂̄ϕ is a closed (1, 1)-current on X, where T̃ is a smooth real
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(1, 1)-form and ϕ is a quasi-plurisubharmonic function. Let γ be a con-
tinuous real (1, 1)-form such that T ≥ γ. Suppose that the Chern cur-
vature tensor of TX satisfies

(
√
−1ΘTX +$ ⊗ IdTX )(κ1 ⊗ κ2, κ1 ⊗ κ2) ≥ 0,

∀κ1, κ2 ∈ TX with 〈κ1, κ2〉 = 0,

for some continuous nonnegative (1, 1)-form $ on X. Then there is a

family of closed (1, 1)-currents Tς,ρ = T̃+
√
−1
π ∂∂̄ϕς,ρ on X (ς ∈ (0,+∞)

and ρ ∈ (0, ρ1) for some positive number ρ1) independent of γ, such that

(i) ϕς,ρ is quasi-plurisubharmonic on a neighborhood of Ω, smooth on
X \Eς(T ), increasing with respect to ς and ρ on Ω, and converges
to ϕ on Ω as ρ→ 0,

(ii) Tς,ρ ≥ γ − ς$ − δρω on Ω,

where Eς(T ) := {x ∈ X : ν(T, x) ≥ ς} (ς > 0) is the ς-upperlevel set of
Lelong numbers, and {δρ} is an increasing family of positive numbers
such that lim

ρ→0
δρ = 0.

Proof. The reader is referred to Theorem 6.1 in [10], where Lemma 3.4
is stated in the case X is compact. Almost the same proof as in [10]
shows that Lemma 3.4 holds in the noncompact case while uniform es-
timates are obtained only on the relatively compact subset Ω. One of
the key points in our use is that the construction of Tς,ρ is independent
of γ. q.e.d.

Lemma 3.5. (Theorem 1.5 in [9]) Let X be a Kähler manifold, and
Z be an analytic subset of X. Assume that Ω is a relatively compact
open subset of X possessing a complete Kähler metric. Then Ω \ Z
carries a complete Kähler metric.

Lemma 3.6. (Theorem 4.4.2 in [19]) Let Ω be a pseudoconvex open
set in Cn, and ϕ be a plurisubharmonic function on Ω. For every h ∈
L2

(p,q+1)(Ω, ϕ) with ∂̄h = 0 there is a solution v ∈ L2
(p,q)(Ω, loc) of the

equation ∂̄v = h such that∫
Ω

|v|2

(1 + |z|2)2
e−ϕdV ≤

∫
Ω
|h|2e−ϕdV.

Lemma 3.7. (Lemma 6.9 in [9]) Let Ω be an open subset of Cn and
Z be a complex analytic subset of Ω. Assume that v is a (p, q− 1)-form
with L2

loc coefficients and h is a (p, q)-form with L1
loc coefficients such

that ∂̄v = h on Ω\Z (in the sense of distribution theory). Then ∂̄v = h
on Ω.

Lemma 3.8. (strong openness conjecture, see [17]) Let ϕ be a nega-
tive plurisubharmonic function on the unit polydisk ∆n ⊂ Cn. Assume
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that F is a holomorphic function on ∆n satisfying∫
∆n

|F |2e−ϕdVn < +∞,

where dVn is the 2n-dimensional Lebesgue measure on Cn. Then there
exists r ∈ (0, 1) and β ∈ (0,+∞) such that∫

∆n
r

|F |2e−(1+β)ϕdVn < +∞,

where ∆n
r := {(z1, · · · , zn) ∈ Cn : |zk| < r, 1 ≤ k ≤ n}.

Lemma 3.9. (Lagrange’s inequality) Let X be a complex manifold, E
be a Hermitian vector bundle over X of rank m, and {•, •}E : ∧p1,q1T ∗X⊗
E × ∧p2,q2T ∗X ⊗E −→ ∧p1+q2,q1+p2T ∗X be the sesquilinear product which
combines the wedge product (u, v) 7→ u ∧ v̄ on scalar valued forms with
the Hermitian inner product on E. Then for any smooth section s of E
over X and any smooth section w of T ∗X ⊗ E over X,

(3.1)
√
−1{w, s}E ∧ {s, w}E ≤ |s|2E

√
−1{w,w}E .

Proof. Since {•, •}E is a pointwise product, it’s sufficient to prove
(3.1) at every fixed point of X. Hence, we can regard T ∗X and E as
vector spaces. Then s and w are regarded as elements in E and T ∗X ⊗E
respectively.

If s = 0, (3.1) is trivial. If s 6= 0, without loss of generality, we
can assume that |s|E = 1. Then we choose e2, · · · , em ∈ E such that
s, e2, · · · , em form an orthonormal basis of E. Then w can be written
as

w1 ⊗ s+
m∑
j=2

wj ⊗ ej ,

for some wj ∈ T ∗X (1 ≤ j ≤ m). Then
√
−1{w, s}E ∧ {s, w}E =

√
−1w1 ∧ w̄1,

and

|s|2E
√
−1{w,w}E =

√
−1

m∑
j=1

wj ∧ w̄j ≥
√
−1w1 ∧ w̄1.

Hence, (3.1) holds. The lemma is, thus, proved. q.e.d.

4. Proof of a special case of Theorem 1.1

In order to prove Theorem 1.1, we prove the following proposition at
first, which is a special case of Theorem 1.1 and will be used in Section 6.
Although the following proposition can be implied by the main theorems
in [16], we give its proof here for the self-contained purpose, which is
also used in the proof of Theorem 1.1.
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Proposition 4.1. Let R be a function in R. Let (X,ω) be an n-
dimensional Stein manifold possessing a Kähler metric ω, and E =
X × Cm be the trivial Hermitian holomorphic vector bundle of rank m
equipped with the trivial metric (1 ≤ m ≤ n). Assume that s is a global
holomorphic section of E (s = (s1, · · · , sm) with respect to the standard
orthonormal global holomorphic frame of E, where si (1 ≤ i ≤ m) are
global holomorphic functions on X). Assume that s is transverse to the
zero section, and let

Y := {x ∈ X : s(x) = 0}.
Moreover, assume that |s| ≤ 1 on X. Let L = X×C be the trivial holo-
morphic line bundle over X equipped with a singular Hermitian metric
hL = e−ϕ, where ϕ is a plurisubharmonic function on X. Then for ev-
ery holomorphic section f on Y with values in the line bundle KX ⊗ L
(restricted to Y ) satisfying∫

Y

|f |2e−ϕ

| ∧m (ds)|2
dVY < +∞,

there exists a holomorphic section F on X with values in KX ⊗ L sat-
isfying F = f on Y and∫

X

|F |2e−ϕ

em log |s|2R(m log |s|2)
dVX ≤ CR

(2π)m

m!

∫
Y

|f |2e−ϕ

| ∧m (ds)|2
dVY .

Proof. Without loss of generality, we can suppose that CR = 1. Oth-
erwise, we replace R with CRR in the proof.

If f = 0 on Y , then F = 0 satisfies the conclusion of Proposition 4.1.
In the following proof, we assume that f is not 0 identically.

Since X is Stein, there exists a smooth strictly plurisubharmonic
exhaustion function P onX. Instead of working onX itself, we will work
rather on the relatively compact subset Xk \ Y , where Xk = {P < k}
(k = 1, 2, · · · , we choose P such that X1 6= ∅). By Lemma 3.5, Xk \ Y
(k = 1, 2, · · · ) are complete Kähler.

We will discuss for fixed k until the end of the proof.
Since X is Stein, by Cartan’s Theorem B, there exists a holomorphic

section f̃ on X with values in KX ⊗ L such that f̃ = f on Y .
Let ζ : (−∞, 0) −→ (0,+∞) be a smooth strictly increasing function,

and χ : (−∞, 0) −→ (0,+∞) a smooth strictly decreasing function.
Assume that χ(t) ≥ − t

2 for t ∈ (−∞, 0). We will find more assumptions
about ζ and χ in the proof, by which we will get explicit ζ and χ in the
end of this section.

Let a ∈ (0, 1) and put σε = m log(|s|2 +ε2)−a and σ = m log |s|2−a.
Since |s| ≤ 1 on X, there exists a positive number εa ∈ (0, 1) such that
σε ≤ −a

2 on Xk for ε ∈ (0, εa).
By Lemma 3.3, there exists a decreasing sequence of smooth plurisub-

harmonic functions {ϕj}+∞j=1 on X such that limj→+∞ ϕj = ϕ. Let Lj,a,ε
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denote the line bundle L on Xk \ Y equipped with the new metric

hj,a,ε := e−ϕj−σ−ζ(σε).

Set τε = χ(σε) and let Aε be a smooth positive function on Xk, which
will be determined later. Set Bε = [Θε, Λ] on Xk \ Y , where

Θε := τε
√
−1ΘLj,a,ε −

√
−1∂∂̄τε −

√
−1

∂τε ∧ ∂̄τε
Aε

.

Set νε =
∑m
i=1 s̄

idsi

|s|2+ε2
. We want to find suitable ζ, χ and Aε such that

(4.1) Θε

∣∣
Xk\Y

≥ mε2

|s|2
√
−1νε ∧ ν̄ε.

Since χ(σε) > 0,
√
−1∂∂̄ϕj ≥ 0 and

√
−1∂∂̄σ ≥ 0, simple calculations

yield

Θε

∣∣
Xk\Y

= χ(σε)(
√
−1∂∂̄ϕj +

√
−1∂∂̄σ) +

(
χ(σε)ζ

′(σε)− χ′(σε)
)√
−1∂∂̄σε

+

(
χ(σε)ζ

′′(σε)− χ′′(σε)−
(
χ′(σε)

)2
Aε

)√
−1∂σε ∧ ∂̄σε

≥
(
χ(σε)ζ

′(σε)− χ′(σε)
)√
−1∂∂̄σε

+

(
χ(σε)ζ

′′(σε)− χ′′(σε)−
(
χ′(σε)

)2
Aε

)√
−1∂σε ∧ ∂̄σε.

If the equalities

(4.2) χ(σε)ζ
′(σε)− χ′(σε) = 1,

and

(4.3) χ(σε)ζ
′′(σε)− χ′′(σε)−

(
χ′(σε)

)2
Aε

= 0

hold, we obtain that

(4.4) Θε

∣∣
Xk\Y

≥
√
−1∂∂̄σε.

Furthermore, by (4.3) we can assume that Aε = η(σε) for some smooth
function η : (−∞, 0) −→ (0,+∞) such that

(4.5) χζ ′′ − χ′′ − (χ′)2

η
= 0.

Since it follows from Lemma 3.9 that

(4.6) |s|2
√
−1

m∑
i=1

dsi ∧ ds̄i ≥
√
−1(

m∑
i=1

s̄idsi) ∧ (
m∑
i=1

sids̄i),
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we have
√
−1∂∂̄σε

∣∣
Xk\Y

=

m(|s|2 + ε2)
√
−1

m∑
i=1

dsi ∧ ds̄i −m
√
−1(

m∑
i=1

s̄idsi) ∧ (
m∑
i=1

sids̄i)

(|s|2 + ε2)2

≥
mε2
√
−1

m∑
i=1

dsi ∧ ds̄i

(|s|2 + ε2)2

≥
mε2
√
−1(

m∑
i=1

s̄idsi) ∧ (
m∑
i=1

sids̄i)

|s|2(|s|2 + ε2)2

=
mε2

|s|2
√
−1νε ∧ ν̄ε.

Then (4.1) follows from (4.4).
Hence,

(4.7) Bε ≥
[
mε2

|s|2
√
−1νε ∧ ν̄ε, Λ

]
=
mε2

|s|2
Tν̄εT

∗
ν̄ε

on Xk\Y as an operator on (n, 1)-forms, where Tν̄ε denotes the operator
ν̄ε ∧ • and T∗ν̄ε is its Hilbert adjoint operator.

Let c ∈ (0, 1
2) be a positive number. It is easy to construct a smooth

function θ : R −→ [0, 1] such that θ = 0 on (−∞, c2 ], θ = 1 on [1 −
c
2 , +∞) and |θ′| ≤ 1+c

1−c on R.

Define gε = ∂̄
(
θ( ε2

|s|2+ε2
)f̃
)
, where 0 < ε < εa. Then ∂̄gε = 0 and

gε = −θ′
( ε2

|s|2 + ε2

) ε2
m∑
i=1

sids̄i

(|s|2 + ε2)2
∧ f̃

= −ν̄ε ∧ θ′(
ε2

|s|2 + ε2
)

ε2

|s|2 + ε2
f̃ .

Then it follows from (4.7) that

〈B−1
ε gε, gε〉Lj,a,ε

∣∣
Xk\Y

≤ |s|
2

mε2

∣∣∣∣θ′( ε2

|s|2 + ε2

) ε2

|s|2 + ε2
f̃

∣∣∣∣2
Lj,a,ε

.

Hence, ∫
Xk\Y

〈B−1
ε gε, gε〉Lj,a,εdVX

≤ ea(1 + c)2

m(1− c)2

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2|f̃ |2e−ϕjdVX
(|s|2 + ε2)2|s|2m−2

.
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Since si (1 ≤ i ≤ m) can be viewed as transverse coordinates around
Y , it is not hard to prove that

dVX = dVY ·
(
√
−1)m

2
ds1 ∧ · · · ∧ dsm ∧ ds̄1 ∧ · · · ∧ ds̄m

|ds1 ∧ · · · ∧ dsm|2
,

at each point x ∈ Y by a certain orthogonalization process on T ∗X |x.

Since |f̃ |2e−ϕj and | ∧m (ds)|2 are continuous around Xk ∩ Y , using a
partition of unity {ξp}p0p=1 around Xk ∩ Y and the Fubini theorem, we
get

lim
ε→0

∫
Xk\Y

〈B−1
ε gε, gε〉Lj,a,εdVX

≤ ea(1 + c)2

m(1− c)2

p0∑
p=1

lim
ε→0

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2ξp|f̃ |2e−ϕjdVX
(|s|2 + ε2)2|s|2m−2

≤
p0∑
p=1

(
lim
ε→0

∫
{z∈Cm:

√
c

2−c ε<|z|<
√

2−c
c
ε}

ε2(
√
−1)m

2 ∧m (dz) ∧ ∧m(dz̄)

(|z|2 + ε2)2|z|2m−2

×e
a(1 + c)2

m(1− c)2

∫
Y

ξp|f̃ |2e−ϕj
| ∧m (ds)|2

dVY

)
≤ ea(1 + c)2

m(1− c)2

∫
Y

|f |2e−ϕjdVY
| ∧m (ds)|2

lim
ε→0

∫
z∈Cm

ε22mdVm
(|z|2 + ε2)2|z|2m−2

=
2mea(1 + c)2

m(1− c)2

∫
Y

|f |2e−ϕjdVY
| ∧m (ds)|2

∫
S2m−1

dS lim
ε→0

∫ +∞

0

ε2r dr

(r2 + ε2)2

=
ea(1 + c)2

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕj
| ∧m (ds)|2

dVY ,

where z = (z1, · · · , zm), ∧m(dz) = dz1 ∧ · · · ∧ dzm, S2m−1 is the unit
sphere in Cm, dS is the surface measure on S2m−1 and dVm =

2−m(
√
−1)m

2 ∧m (dz) ∧ ∧m(dz̄). Then∫
Xk\Y

〈B−1
ε gε, gε〉Lj,a,εdVX ≤

ea(1 + c)3

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕj
| ∧m (ds)|2

dVY ,

when ε is small enough. Then by Lemma 3.2 with δ = 0, there exists
uk,j,a,c,ε ∈ L2(Xk \ Y, KX ⊗ Lj,a,ε) such that

(4.8) ∂̄uk,j,a,c,ε = gε

on Xk \ Y and
(4.9)∫
Xk\Y

|uk,j,a,c,ε|2e−ϕj−σ−ζ(σε)

τε +Aε
dVX ≤

ea(1 + c)3

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕjdVY
| ∧m (ds)|2

.

Since ϕj , σ, ζ(σε), τε + Aε are all bounded above on Xk for each
fixed ε, (4.9) implies that uk,j,a,c,ε ∈ L2(Xk,KX). Since gε is smooth,
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by Lemma 3.7, we get from (4.8) and (4.9) that

(4.10) ∂̄uk,j,a,c,ε = gε = ∂̄

(
θ
( ε2

|s|2 + ε2

)
f̃

)
holds on Xk and
(4.11)∫

Xk

|uk,j,a,c,ε|2e−ϕj−σ−ζ(σε)

τε +Aε
dVX ≤

ea(1 + c)3

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕjdVY
| ∧m (ds)|2

.

Define Fk,j,a,c,ε = −uk,j,a,c,ε + θ( ε2

|s|2+ε2
)f̃ . Then (4.10) implies that

∂̄Fk,j,a,c,ε = 0 on Xk. Hence, Fk,j,a,c,ε is holomorphic on Xk. Thus,
uk,j,a,c,ε is smooth on Xk. Since ϕj , ζ(σε), τε + Aε are all bounded

above on Xk for each fixed ε, it follows from (4.11) that |uk,j,a,c,ε|2e−σ
is integrable on Xk. The non-integrability of e−σ along Y and the
smoothness of uk,j,a,c,ε on Xk implies that uk,j,a,c,ε = 0 on Xk ∩ Y .
Hence, Fk,j,a,c,ε = f on Xk ∩ Y .

Since

(4.12) 〈κ1 + κ2, κ1 + κ2〉 ≤ 〈κ1, κ1〉+ 〈κ2, κ2〉+ c〈κ1, κ1〉+
1

c
〈κ2, κ2〉,

for any inner product space
(
H, 〈•, •〉

)
, where κ1, κ2 ∈ H, it follows from

R(σε) ≤ R(σ) and (4.11) that∫
Xk

|Fk,j,a,c,ε|2e−ϕj
eσR(σ)

dVX(4.13)

≤ (1 + c)

∫
Xk

1

eσR(σ)
|uk,j,a,c,ε|2e−ϕjdVX

+
1 + c

c

∫
Xk

1

eσR(σ)

∣∣∣∣θ( ε2

|s|2 + ε2

)
f̃

∣∣∣∣2e−ϕjdVX
≤ (1 + c)

(
sup
Xk

(τε +Aε)e
ζ(σε)

R(σε)

)∫
Xk

|uk,j,a,c,ε|2e−ϕj−σ−ζ(σε)

τε +Aε
dVX

+
1 + c

c

∫
Xk∩{|s|<

√
2−c
c
ε}

1

eσR(σ)
|f̃ |2e−ϕjdVX

≤
(

sup
Xk

(τε +Aε)e
ζ(σε)

R(σε)

)
ea(1 + c)4

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕj
| ∧m (ds)|2

dVY

+C1

∫ 2m log ε+C2

−∞

1

R(t)
dt,

when ε is small enough, where C1 and C2 are two positive numbers
independent of ε.
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Since supt≤0

(
etR(t)

)
< +∞, applying Montel’s theorem and extract-

ing weak limits of {Fk,j,a,c,ε}ε>0 as ε → 0, we get from (4.13) a holo-
morphic n-form Fk,j,a,c such that Fk,j,a,c = f on Xk ∩ Y and∫

Xk

|Fk,j,a,c|2e−ϕj
eσR(σ)

dVX(4.14)

≤
(

sup
Xk

(τε +Aε)e
ζ(σε)

R(σε)

)
ea(1 + c)4

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕj
| ∧m (ds)|2

dVY .

In order to get the optimal constant, it’s natural to assume that

(4.15)
(τε +Aε)e

ζ(σε)

R(σε)
= 1

on Xk. Then (4.14) and (4.15) imply that
(4.16)∫

Xk

|Fk,j,a,c|2e−ϕjdVX
em log |s|2R(m log |s|2 − a)

≤ (1 + c)4

(1− c)2

(2π)m

m!

∫
Y

|f |2e−ϕj
| ∧m (ds)|2

dVY .

Since R is a continuous decreasing function on (−∞, 0],
supt≤0

(
etR(t)

)
< +∞ and {ϕj}+∞j=1 is a decreasing sequence such that

limj→+∞ ϕj = ϕ, applying Montel’s theorem and extracting weak limits
of {Fk,j,a,c}k,j,a,c, first as c → 0, next as a → 0, then as j → +∞, and,
finally, as k → +∞, we get from (4.16) a holomorphic section F on X
with values in KX ⊗ L such that F = f on Y and∫

X

|F |2e−ϕ

em log |s|2R(m log |s|2)
dVX ≤

(2π)m

m!

∫
Y

|f |2e−ϕ

| ∧m (ds)|2
dVY .

Proposition 4.1 is, thus, proved.

Final step: solving ordinary differential equations.
We have already proved Proposition 4.1, provided that there exists

suitable ζ, χ and η satisfying some assumptions. Then we will use
those assumptions about ζ, χ and η to get their explicit expressions.
Furthermore, we will check all the assumptions about ζ, χ and η.

(4.2), (4.5) and (4.15) amount to the following system of ordinary
differential equations defined on (−∞, 0):

χ(t)ζ ′(t)− χ′(t) = 1,(4.17) (
χ(t) + η(t)

)
eζ(t) = R(t),(4.18) (

χ′(t)
)2

χ(t)ζ ′′(t)− χ′′(t)
= η(t).(4.19)

Moreover, we have assumed that ζ, χ and η are all smooth on (−∞, 0),
and that ζ > 0, χ > 0, η > 0, ζ ′ > 0, χ′ < 0 and χ(t) ≥ − t

2 on
(−∞, 0). In the proof of Proposition 4.1, we have assumed that CR =∫ 0
−∞

1
R(t)dt = 1.
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By (4.17), (χζ ′ − χ′)′ = 0, i.e., χζ ′′ − χ′′ = −χ′ζ ′. Then by (4.19),

η = −χ′

ζ′ . Hence, χ + η = χζ′−χ′
ζ′ = 1

ζ′ by (4.17). Then by (4.18), eζ =

ζ ′R, i.e., (e−ζ)′ = − 1
R . Hence, ζ = − log

(
b1 −

∫ t
−∞

1
R(t1)dt1

)
for some

positive number b1 ≥ 1 and the assumption ζ ′ > 0 on (−∞, 0) holds.

The assumption ζ > 0 on (−∞, 0) is equivalent to b1−
∫ t
−∞

1
R(t1)dt1 < 1

on (−∞, 0). Hence, b1 ≤ 1 and then

ζ = − log

(
1−

∫ t

−∞

1

R(t1)
dt1

)
.

By (4.17), e−ζχζ ′ − e−ζχ′ = e−ζ , i.e., (−e−ζχ)′ = e−ζ = 1 −∫ t
−∞

1
R(t1)dt1. Hence,

χ =
−t+

∫ t
−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2 − b2

1−
∫ t
−∞

1
R(t1)dt1

,

for some real number b2. Define λ1 = −t +
∫ t
−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2 − b2

on (−∞, 0]. Then λ1 ∈ C∞(−∞, 0], λ′1 = −1 +
∫ t
−∞

1
R(t1)dt1 < 0 on

(−∞, 0), λ′′1 = 1
R > 0, λ′′′1 = − R′

R2 ≥ 0 and χ = −λ1
λ′1

on (−∞, 0).

The assumption χ > 0 on (−∞, 0) is equivalent to λ1 > 0 on (−∞, 0).
Since λ1 ∈ C∞(−∞, 0] and λ′1 < 0 on (−∞, 0), λ1 > 0 on (−∞, 0)

is equivalent to λ1(0) =
∫ 0
−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2 − b2 ≥ 0, i.e., b2 ≤∫ 0

−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2. Since

χ′ =
−(λ′1)2 + λ1λ

′′
1

(λ′1)2
,

the assumption χ′ < 0 on (−∞, 0) is equivalent to λ2 :=
−(λ′1)2 + λ1λ

′′
1 < 0 on (−∞, 0). Since λ2 ∈ C∞(−∞, 0] and

λ′2 = −λ′1λ′′1 + λ1λ
′′′
1 > 0 on (−∞, 0), λ2 < 0 on (−∞, 0) is equiv-

alent to λ2(0) = R(0)−1
( ∫ 0
−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2 − b2

)
≤ 0, i.e., b2 ≥∫ 0

−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2. Hence, b2 =

∫ 0
−1

( ∫ t2
−∞

1
R(t1)dt1

)
dt2 and

χ =
−t−

∫ 0
t

( ∫ t2
−∞

1
R(t1)dt1

)
dt2

1−
∫ t
−∞

1
R(t1)dt1

.

Since η = −χ′

ζ′ , χ
′ < 0 and ζ ′ > 0, we get η > 0 on (−∞, 0) and

η =

(
1−

∫ t

−∞

1

R(t1)
dt1

)
R(t) +

t+
∫ 0
t

( ∫ t2
−∞

1
R(t1)dt1

)
dt2

1−
∫ t
−∞

1
R(t1)dt1

.

The smoothness on (−∞, 0) of ζ, χ and η is obvious. It’s easy to
check that the explicit expressions we have obtained are really solutions
of the ordinary differential equations.
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Define χ(0) = 0. Then it’s easy to check that χ is continuous on
(−∞, 0]. In order to check the assumption χ(t) ≥ − t

2 on (−∞, 0), it is
sufficient to verify

χ′ +
1

2
=
−1

2(λ′1)2 + λ1λ
′′
1

(λ′1)2
≤ 0

on (−∞, 0). Define λ3 = −1
2(λ′1)2 + λ1λ

′′
1. Then λ3 ∈ C∞(−∞, 0],

λ3(0) = 0 and λ′3 = λ1λ
′′′
1 ≥ 0 on (−∞, 0). Hence, λ3 ≤ 0 on (−∞, 0)

and χ′+ 1
2 ≤ 0 on (−∞, 0). Thus, the assumption χ(t) ≥ − t

2 on (−∞, 0)
holds.

In conclusion, all the previous assumptions about ζ, χ and η are
suitable. q.e.d.

5. Two key propositions used to deal with singular metrics

At first, we define some notations in this section as follows.

z := (z1, · · · , zn),
z′ := (z1, · · · , zm),
z′′ := (zm+1, · · · , zn),
Bkr := the open ball in Ck centered at 0 with radius r,
Bk := Bk1,
µ(Bkr ) := the 2k-dimensional Lebesgue measure of Bkr ,
dVk := the 2k-dimensional Lebesgue measure on Ck,

where m and n are the same as in Theorem 1.1, k is a positive integer,
and z′′ will disappear if m = n.

The aim of this section is to prove two key propositions which will
be used to deal with singular metrics of holomorphic line bundles in the
proof of Theorem 1.1. One of them is a variant of a result in [12] con-
cerning L2 extensions for local holomorphic sections or functions, and
the other one is a convergence property for integrals with plurisubhar-
monic weights.

Proposition 5.1. Let R be a function in R, where R is the same
as in Theorem 1.1. Let Ω ⊂ Cn be a pseudoconvex domain, φ be a
plurisubharmonic function on Ω, and w = (w1, · · · , wm) be a family of
holomorphic functions on Ω (1 ≤ m ≤ n). Let

Y := {x ∈ Ω : w(x) = 0} and U := {x ∈ Ω : |w(x)| < 1}.

Assume that ∧m(dw) := dw1 ∧ · · · ∧ dwm is nonvanishing on Y . Then
for every β1 ∈ (0, 1) and every holomorphic n-form f defined on a
neighborhood of U in Ω satisfying∫

U

|f |2e−φ

|w|2mR(m log |w|2)
dVn < +∞,
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there exists a holomorphic n-form F on Ω satisfying F = f on Y ,
(5.1)∫
U

|F |2e−φdVn
|w|2mR(m log |w|2)

≤
(

2 +
2(m+ 1)2βR
R(0)β1

)∫
U

|f |2e−φdVn
|w|2mR(m log |w|2)

,

and
(5.2)∫

Ω

|F |2e−φdVn
(1 + |w|2)m+β1

≤
(
βR +

(m+ 1)2βR
β12β1

)∫
U

|f |2e−φdVn
|w|2mR(m log |w|2)

,

where βR := supt≤0

(
etR(t)

)
.

Proof. The proof is a slight modification of the one in [12], where
R(t) is equal to e−t.

Since Ω is a pseudoconvex domain, there is a sequence of pseudocon-
vex subdomain Ωk ⊂⊂ Ω (k = 1, 2, · · · ) such that ∪+∞

k=1Ωk = Ω. Then
for fixed k, by convolution we can get a decreasing family of smooth
plurisubharmonic functions {φj}+∞j=1 defined on a neighborhood of Ωk

such that limj→+∞ φj = φ.
Fix k and j. Let λ be the continuous n-form on Ωk defined by{

(1− |w|m+1)f on U ∩ Ωk,

0 on Ωk \ U.

Then λ = f on Y ∩ Ωk and it is easy to check that g := ∂̄λ is equal to−m+1
2 |w|

m−1
m∑
i=1

widw̄i ∧ f on U ∩ Ωk,

0 on Ωk \ U,

in the sense of distribution theory. Then g ∈ L∞(Ωk,∧n,1T ∗Ω).
Lemma 3.5 implies that Ωk \ Y is a complete Kähler manifold. Let

Ωk \ Y be endowed with the Euclidean metric and let Q be the trivial
line bundle on Ωk \ Y equipped with the metric

e−φj−m log |w|2−β1 log(1+|w|2).

Then we want to solve a ∂̄ equation on Ωk \ Y by applying Lemma 3.2
to the case τ = 1, A = 0 and δ = 0 (in fact, the case τ = 1 and A = 0
is the non-twisted version of Lemma 3.2). The key step in applying
Lemma 3.2 is to estimate the term∫

Ωk\Y
〈B−1g, g〉QdVn,

where B := [
√
−1ΘQ,Λ].

Set ν =
∑m

i=1 w̄
idwi. Then g = −m+1

2 |w|
m−1ν̄ ∧ f on U ∩ Ωk.
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Since
√
−1ΘQ

∣∣
Ωk\Y

=
√
−1∂∂̄φj +m

√
−1∂∂̄ log |w|2 + β1

√
−1∂∂̄ log(1 + |w|2)

≥
β1(1 + |w|2)

√
−1

m∑
i=1

dwi ∧ dw̄i − β1

√
−1(

m∑
i=1

w̄idwi) ∧ (
m∑
i=1

widw̄i)

(1 + |w|2)2

≥ β1

√
−1ν ∧ ν̄

|w|2(1 + |w|2)2
,

by an inequality similar to (4.6), we get

B ≥ β1

|w|2(1 + |w|2)2
Tν̄T∗ν̄

on Ωk \ Y , where Tν̄ is defined similarly as in (4.7). Then we get
〈B−1g, g〉Q

∣∣
Ωk\U

= 0 and

〈B−1g, g〉Q
∣∣
(U∩Ωk)\Y

=

〈
B−1

(
− m+ 1

2
|w|m−1ν̄ ∧ f

)
,−m+ 1

2
|w|m−1ν̄ ∧ f

〉
Q

≤ |w|2(1 + |w|2)2

β1

∣∣∣∣m+ 1

2
|w|m−1f

∣∣∣∣2e−φj−m log |w|2−β1 log(1+|w|2)

=
(m+ 1)2(1 + |w|2)2−β1

4β1
|f |2e−φj

≤ (m+ 1)2

β12β1
|f |2e−φj .

Hence, it follows from Lemma 3.2 that there exists uk,j ∈ L2(Ωk\Y,KΩ⊗
Q) such that ∂̄uk,j = g = ∂̄λ on Ωk \ Y and∫

Ωk\Y
|uk,j |2QdVn ≤

∫
Ωk\Y

〈B−1g, g〉QdVn.

Thus, ∫
Ωk\Y

|uk,j |2e−φj
|w|2m(1 + |w|2)β1

dVn(5.3)

≤ (m+ 1)2

β12β1

∫
U∩Ωk

|f |2e−φjdVn

≤ (m+ 1)2βR
β12β1

∫
U

|f |2e−φ

|w|2mR(m log |w|2)
dVn.

Hence, we have uk,j ∈ L2(Ωk \ Y,KΩ). Since g ∈ L∞(Ωk,∧n,1T ∗Ω),
Lemma 3.7 implies that ∂̄uk,j = g holds on Ωk.
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Let Fk,j := λ−uk,j . Then ∂̄Fk,j = 0 on Ωk. Thus, Fk,j is holomorphic
on Ωk. Hence, uk,j is continuous on Ωk. Then the non-integrability of
|w|−2m along Y implies that uk,j = 0 on Y ∩ Ωk. Therefore, Fk,j = f
on Y ∩ Ωk.

It follows from (5.3) that∫
U∩Ωk

|uk,j |2e−φj
|w|2mR(m log |w|2)

dVn ≤
2β1

R(0)

∫
U∩Ωk

|uk,j |2e−φj
|w|2m(1 + |w|2)β1

dVn

≤ (m+ 1)2βR
β1R(0)

∫
U

|f |2e−φ

|w|2mR(m log |w|2)
dVn.

Since

|Fk,j |2
∣∣
U∩Ωk

≤ 2|λ|2 + 2|uk,j |2 ≤ 2|f |2 + 2|uk,j |2,

we get ∫
U∩Ωk

|Fk,j |2e−φj
|w|2mR(m log |w|2)

dVn(5.4)

≤ 2

∫
U∩Ωk

(|f |2 + |uk,j |2)e−φj

|w|2mR(m log |w|2)
dVn

≤
(

2 +
2(m+ 1)2βR
β1R(0)

)∫
U

|f |2e−φ

|w|2mR(m log |w|2)
dVn.

Since |Fk,j |2
∣∣
Ωk\U

= |uk,j |2 and

|Fk,j |2
∣∣
U∩Ωk

≤ (|f |+ |uk,j |)2 ≤ (1 + |w|2m)|f |2 + (1 +
1

|w|2m
)|uk,j |2,

by (4.12), we get

|Fk,j |2

(1 + |w|2)m+β1

∣∣∣∣
U∩Ωk

≤
|Fk,j |2

(1 + |w|2m)(1 + |w|2)β1

≤ |f |2 +
|uk,j |2

|w|2m(1 + |w|2)β1
,

and
|Fk,j |2

(1 + |w|2)m+β1

∣∣∣∣
Ωk\U

≤
|uk,j |2

|w|2m(1 + |w|2)β1
.

Hence, it follows from (5.3) that∫
Ωk

|Fk,j |2e−φj
(1 + |w|2)m+β1

dVn(5.5)

≤
∫
U
|f |2e−φdVn +

∫
Ωk

|uk,j |2e−φj
|w|2m(1 + |w|2)β1

dVn

≤
(
βR +

(m+ 1)2βR
β12β1

)∫
U

|f |2e−φ

|w|2mR(m log |w|2)
dVn.
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The desired holomorphic n-form F on Ω and the L2 estimates (5.1)
and (5.2) can be obtained from (5.4) and (5.5) by applying Montel’s
theorem and extracting weak limits of {Fk,j}k,j , first as j → +∞ and
then as k → +∞. q.e.d.

Proposition 5.2. Let φ(z′, z′′) be a plurisubharmonic function on
Bmr × Bn−mr (1 ≤ m ≤ n, r > 0) such that supBmr ×B

n−m
r

φ < +∞. Let

f(z′′) be a holomorphic function on Bn−mr and h(z′, z′′) be a nonnegative
continuous function on Bmr ×Bn−mr . Assume that C, β, β1, c1, c2, r′, r′′

and εr′ are positive numbers such that β1 < 1, c1 < c2, r′ < r′′ < r and
εr′ <

r′

4c2
. Suppose that fε ∈ O(Bmr ×Bn−mr ) (ε ∈ (0, εr′)) are a family of

holomorphic functions satisfying fε(0, z
′′) = f(z′′) (∀z′′ ∈ Bn−mr , ∀ε ∈

(0, εr′)),

(5.6) sup
Bm
r′′×B

n−m
r′′

|fε| ≤ Cε−β1 , ∀ε ∈ (0, εr′),

and
(5.7)

1

ε2m

∫
(z′,z′′)∈Bm2c2ε×B

n−m
r

|fε(z′, z′′)|2e−(1+β)φ(z′,z′′)dVn ≤ C, ∀ε ∈ (0, εr′).

Then

lim
ε→0

1

µ(Bm)

∫
(Bmc2ε\B

m
c1ε

)×Bn−m
r′

ε2h(z′, z′′)|fε(z′, z′′)|2e−φ(z′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn

=

(
1

c2
1 + 1

− 1

c2
2 + 1

)∫
z′′∈Bn−m

r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)dVn−m.

In order to prove Proposition 5.2, we prove the following lemma for
plurisubharmonic functions at first.

Lemma 5.3. Assume that c2, r′, εr′ and p are positive numbers such

that εr′ <
r′

4c2
. Let m be a positive integer. Let φ̂(z′) be a negative

plurisubharmonic function on Bmr′ such that φ̂(0) > −∞. Put

Sp,ε = {w ∈ Bmc2 : φ̂(εw) < (1 + p)φ̂(0)}, ε ∈ (0, εr′).

Then
lim
ε→0

µ(Sp,ε) = 0,

where µ(Sp,ε) denotes the 2m-dimensional Lebesgue measure of Sp,ε.

Proof. Since φ̂(z′) is a negative upper semicontinuous function on

Bmr′ and φ̂(0) > −∞, we have that for every q ∈ (0, 1), there exists
εq ∈ (0, εr′) such that

φ̂(εw) ≤ (1− q)φ̂(0),

for all w ∈ Bmc2 whenever ε ∈ (0, εq).
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Since φ̂(εw) is plurisubharmonic on Bmc2 with respect to w for any
ε ∈ (0, εq), it follows from the mean value inequality that

φ̂(0) ≤ 1

µ(Bmc2)

∫
w∈Bmc2

φ̂(εw)dVm, ∀ε ∈ (0, εq).

Therefore, when ε ∈ (0, εq), we have

φ̂(0) ≤ 1

µ(Bmc2)

(∫
Bmc2\Sp,ε

φ̂(εw)dVm +

∫
Sp,ε

φ̂(εw)dVm

)

≤
(1− q)φ̂(0)(µ(Bmc2)− µ(Sp,ε)) + (1 + p)φ̂(0)µ(Sp,ε)

µ(Bmc2)

= φ̂(0)

(
1− q + (p+ q)

µ(Sp,ε)

µ(Bmc2)

)
.

Since φ̂(0) < 0, we get

µ(Sp,ε) ≤
µ(Bmc2)q

p+ q
≤
µ(Bmc2)q

p
,

whenever ε ∈ (0, εq). Hence, limε→0 µ(Sp,ε) = 0. q.e.d.

Now we begin to prove Proposition 5.2.

Proof. Let βh := supBm
r′×B

n−m
r′

h.

Without loss of generality, we may suppose that φ is negative on
Bmr ×Bn−mr . In fact, φ1 := φ− supBmr ×B

n−m
r

φ− 1 is a negative plurisub-

harmonic function on Bmr ×Bn−mr and the conclusion of Proposition 5.2
will hold for φ if it holds for φ1.

Now we want to estimate the supremum norms of fε and the partial
derivatives of fε.

Since |fε(z′, z′′)|2 is subharmonic with respect to z′ and z′′, applying
the mean value inequality successively to z′′ and z′, we get from (5.7)
that

sup
Bmc2ε×B

n−m
r′

|fε|2(5.8)

≤ 1

µ(Bmc2ε)µ(Bn−mr′′−r′)

∫
z′∈Bm2c2ε

dVm

∫
z′′∈Bn−m

r′′

|fε(z′, z′′)|2dVn−m

≤ C1

ε2m

∫
Bm2c2ε×B

n−m
r

|fε|2e−(1+β)φdVn

≤ C1C,

where C1 is a positive number independent of ε.
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By (5.6) and Cauchy’s estimate for holomorphic functions, we have

(5.9) sup
Bm2c2ε×B

n−m
r′

∣∣∣∣∂fε∂zj

∣∣∣∣ ≤ C2 sup
Bm
r′′×B

n−m
r′′

|fε| ≤ C2Cε
−β1 ,

for any ε ∈ (0, εr′) and any j = 1, · · · , n, where C2 is a positive number
independent of ε.

Let j be a positive integer. Then (5.7) implies that

1

ε2m

∫
{φ≤−j}∩(Bmc2ε×B

n−m
r′ )

|fε|2e−φdVn

≤ 1

ε2m

∫
{φ≤−j}∩(Bmc2ε×B

n−m
r′ )

|fε|2e−(1+β)φ−βjdVn

≤ Ce−βj ,

for all ε ∈ (0, εr′).
Therefore, for every b ∈ (0, 1), there exists a positive integer jb such

that

1

µ(Bm)

∫
{φ≤−jb}∩((Bmc2ε\B

m
c1ε

)×Bn−m
r′ )

ε2h|fε|2e−φ

m(|z′|2 + ε2)2|z′|2m−2
dVn(5.10)

≤ 1

m(c2
1 + 1)2c2m−2

1 µ(Bm)ε2m

∫
{φ≤−jb}∩(Bmc2ε×B

n−m
r′ )

h|fε|2e−φdVn

≤ βhCe
−βjb

m(c2
1 + 1)2c2m−2

1 µ(Bm)

<
b

2
,

for all ε ∈ (0, εr′).
Set φb = max{φ,−jb}. Let

Φ(z′′) :=

(
1

c2
1 + 1

− 1

c2
2 + 1

)
h(0, z′′)|f(z′′)|2e−φb(0,z′′),

and

Φε(z
′′) :=

1

µ(Bm)

∫
z′∈Bmc2ε\B

m
c1ε

ε2h(z′, z′′)|fε(z′, z′′)|2e−φb(z
′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVm,

where z′′ ∈ Bn−mr′ and ε ∈ (0, εr′).
We claim that

(5.11) lim
ε→0

Φε(z
′′) ≤ Φ(z′′), ∀z′′ ∈ Bn−mr′ .

It suffices to prove that (5.11) holds for every fixed z′′0 ∈ Bn−mr′ .

Set φ̂(z′) = φb(z
′, z′′0 ). Let p > 0 be a positive number. Put

Sp,ε = {w ∈ Bmc2 : φ̂(εw) < (1 + p)φ̂(0)}, ε ∈ (0, εr′).
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Then by the change of variables z′ = εw, we get

Φε(z
′′
0 )

=
1

µ(Bm)

∫
w∈Bmc2\B

m
c1

h(εw, z′′0 )|fε(εw, z′′0 )|2e−φ̂(εw)

m(|w|2 + 1)2|w|2m−2
dVm

=
1

µ(Bm)

∫
w∈Sp,ε\Bmc1

h(εw, z′′0 )|fε(εw, z′′0 )|2e−φ̂(εw)

m(|w|2 + 1)2|w|2m−2
dVm

+
1

µ(Bm)

∫
w∈Bmc2\(B

m
c1
∪Sp,ε)

h(εw, z′′0 )|fε(εw, z′′0 )|2e−φ̂(εw)

m(|w|2 + 1)2|w|2m−2
dVm

≤ 1

µ(Bm)

∫
Sp,ε\Bmc1

ejbβh sup
Bmc2ε×B

n−m
r′

|fε|2

m(c2
1 + 1)2c2m−2

1

dVm

+

∫
Bmc2\(B

m
c1
∪Sp,ε)

e−(1+p)φ̂(0) sup
w∈Bmc2

h(εw, z′′0 ) sup
w∈Bmc2

|fε(εw, z′′0 )|2

m(|w|2 + 1)2|w|2m−2µ(Bm)
dVm

≤ ejbµ(Sp,ε)C1Cβh

m(c2
1 + 1)2c2m−2

1 µ(Bm)

+

(
1

c2
1 + 1

− 1

c2
2 + 1

)
e−(1+p)φ̂(0) sup

w∈Bmc2
h(εw, z′′0 ) sup

w∈Bmc2
|fε(εw, z′′0 )|2,

where we use the inequality (5.8) and the equality

(5.12)
1

µ(Bm)

∫
w∈Bmc2\B

m
c1

1

m(|w|2 + 1)2|w|2m−2
dVm =

1

c2
1 + 1

− 1

c2
2 + 1

,

in the last inequality above. We will denote the two terms on the right-
hand side of the last inequality above by γ1,ε and γ2,ε respectively.

Applying the mean value theorem to fε(z
′, z′′) on real lines, using

the Cauchy–Schwarz inequality and then using the Cauchy–Riemann
equation, we obtain from (5.9) that

|fε(εw, z′′)− f(z′′)|2

= |fε(εw, z′′)− fε(0, z′′)|2

≤ |εw|2
(

2
m∑
j=1

sup
Bmc2ε×B

n−m
r′

∣∣∣∣∂fε∂zj

∣∣∣∣2)(5.13)

≤ 2mc2
2C

2
2C

2ε2−2β1 ,

for any (w, z′′) ∈ Bmc2 × Bn−mr′ . Then we have

(5.14) lim
ε→0

sup
(w,z′′)∈Bmc2×B

n−m
r′

|fε(εw, z′′)− f(z′′)| = 0,
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since β1 ∈ (0, 1). Hence,

lim
ε→0

γ2,ε =

(
1

c2
1 + 1

− 1

c2
2 + 1

)
h(0, z′′0 )|f(z′′0 )|2e−(1+p)φ̂(0),

by the continuity of h. Since limε→0 γ1,ε = 0 by Lemma 5.3, we get

lim
ε→0

Φε(z
′′
0 ) ≤

(
1

c2
1 + 1

− 1

c2
2 + 1

)
h(0, z′′0 )|f(z′′0 )|2e−(1+p)φ̂(0).

Then

lim
ε→0

Φε(z
′′
0 ) ≤ Φ(z′′0 ),

since p is an arbitrary positive number. Thus, we have proved (5.11).
Applying the change of variables z′ = εw and (5.12) to the definition

of Φε(z
′′), we get that

Φε(z
′′) =

1

µ(Bm)

∫
w∈Bmc2\B

m
c1

h(εw, z′′)|fε(εw, z′′)|2e−φb(εw,z
′′)

m(|w|2 + 1)2|w|2m−2
dVm

≤ ejbβh sup
Bmc2ε×B

n−m
r′

|fε|2

≤ C1Ce
jbβh,

for all z′′ ∈ Bn−mr′ by (5.8). Moreover, it is easy to see that

Φ(z′′) ≤ ejbβh sup
Bn−m
r′

|f |2,

for all z′′ ∈ Bn−mr′ . Hence, by Fatou’s lemma and (5.11), we obtain that

lim
ε→0

∫
{φ>−jb}∩((Bmc2ε\B

m
c1ε

)×Bn−m
r′ )

ε2h(z′, z′′)|fε(z′, z′′)|2e−φ(z′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn

≤ lim
ε→0

∫
(Bmc2ε\B

m
c1ε

)×Bn−m
r′

ε2h(z′, z′′)|fε(z′, z′′)|2e−φb(z
′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn

= µ(Bm)lim
ε→0

∫
z′′∈Bn−m

r′

Φε(z
′′)dVn−m

≤ µ(Bm)

∫
z′′∈Bn−m

r′

lim
ε→0

Φε(z
′′)dVn−m

≤ µ(Bm)

∫
z′′∈Bn−m

r′

Φ(z′′)dVn−m

≤ µ(Bm)

(
1

c2
1 + 1

− 1

c2
2 + 1

)∫
z′′∈Bn−m

r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)dVn−m.



162 X. ZHOU & L. ZHU

By combining (5.10) and the above inequality, we get that there exists
εb ∈ (0, εr′) such that

1

µ(Bm)

∫
(Bmc2ε\B

m
c1ε

)×Bn−m
r′

ε2h(z′, z′′)|fε(z′, z′′)|2e−φ(z′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn

<

(
1

c2
1 + 1

− 1

c2
2 + 1

)∫
z′′∈Bn−m

r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)dVn−m + b,

for all ε ∈ (0, εb). Hence,

lim
ε→0

1

µ(Bm)

∫
(Bmc2ε\B

m
c1ε

)×Bn−m
r′

ε2h(z′, z′′)|fε(z′, z′′)|2e−φ(z′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn(5.15)

≤
(

1

c2
1 + 1

− 1

c2
2 + 1

)∫
z′′∈Bn−m

r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)dVn−m.

Since φ is plurisubharmonic,

lim
ε→0

φ(εw, z′′) = φ(0, z′′), ∀(w, z′′) ∈ Bmc2 × Bn−mr′ .

Then using (5.12), (5.14), Fatou’s lemma and the change of variables
z′ = εw, we obtain that

µ(Bm)

(
1

c2
1 + 1

− 1

c2
2 + 1

)∫
z′′∈Bn−m

r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)dVn−m

=

∫
(w,z′′)∈(Bmc2\B

m
c1

)×Bn−m
r′

h(0, z′′)|f(z′′)|2e−φ(0,z′′)

m(|w|2 + 1)2|w|2m−2
dVn

=

∫
(w,z′′)∈(Bmc2\B

m
c1

)×Bn−m
r′

lim
ε→0

h(εw, z′′)|fε(εw, z′′)|2e−φ(εw,z′′)

m(|w|2 + 1)2|w|2m−2
dVn

≤ lim
ε→0

∫
(w,z′′)∈(Bmc2\B

m
c1

)×Bn−m
r′

h(εw, z′′)|fε(εw, z′′)|2e−φ(εw,z′′)

m(|w|2 + 1)2|w|2m−2
dVn

= lim
ε→0

∫
(z′,z′′)∈(Bmc2ε\B

m
c1ε

)×Bn−m
r′

ε2h(z′, z′′)|fε(z′, z′′)|2e−φ(z′,z′′)

m(|z′|2 + ε2)2|z′|2m−2
dVn.

Then the conclusion of Proposition 5.2 follows from (5.15) and the in-
equality above. q.e.d.

6. Proof of Theorem 1.1

Without loss of generality, we can suppose that CR = 1. Otherwise,
we replace R with CRR in the proof. If f = 0 on Y , then F = 0 satisfies
the conclusion of Theorem 1.1. In the following proof, we assume that
f is not 0 identically. Moreover, we will denote |s|E and | ∧m (ds)|E
simply by |s| and | ∧m (ds)| respectively.
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Let h0 be any fixed smooth metric of L on X and let L0 denote the
line bundle L equipped with the metric h0. Then hL = h0e

−ϕ for some
global function ϕ on X. Let

φ := ϕ+ ψ.

Then φ is a quasi-plurisubharmonic function on X by the assumption
in the theorem.

Since X is weakly pseudoconvex, there exists a smooth plurisubhar-
monic exhaustion function P on X. Let Xk := {P < k} (k = 1, 2, · · · ,
we choose P such that X1 6= ∅).

Our proof consists of several steps. We will discuss for fixed k until
the end of Step 5.

Step 1: construction of a family of special smooth extensions
f̃ε of f to a neighborhood of Xk ∩ Y in X.

In order to deal with singular metrics of holomorphic line bundles
on weakly pseudoconvex Kähler manifolds, we construct in this step a
family of smooth extensions f̃ε of f satisfying some special estimates by
using the results in Section 5.

Let c ∈ (0, 1
2).

For the sake of clearness, we divide this step into four parts.

Part I: construction of local coordinate charts {Vi}Ni=1, {Ui}Ni=1

and a partition of unity {ξi}N+1
i=1 .

For any point x ∈ Y , we can find a local coordinate system

(V ′x, z
1
x, · · · , znx ),

in X centered at x and a local holomorphic frame {ex,j}mj=1 of E on V ′x,

such that s =
∑m

j=1 z
j
xex,j on V ′x and the frame {ex,j}mj=1 is orthonormal

at x.
Moreover, we assume that there exists a local holomorphic frame of

L on V ′x and that the quasi-plurisubharmonic function φ can be written
as a sum of a smooth function and a plurisubharmonic function on V ′x.

Let εx ∈ (0, 1) be a fixed positive number such that

Vx := {y ∈ V ′x : |z′x(y)| < εx, |z′′x(y)| < εx}
is relatively compact in V ′x and the inequalities

(6.1) (1− c)|z′x|2 ≤ |s|2 ≤ (1 + c)|z′x|2,
and

1− c ≤ |ex,1 ∧ · · · ∧ ex,m|2 ≤ 1 + c

hold on a neighborhood of Vx, where z′x := (z1
x, · · · , zmx ) and z′′x :=

(zm+1
x , · · · , znx ) (z′′x will disappear if m = n).
Since

| ∧m (ds)|2 = |dz1
i ∧ · · · ∧ dzmi |2|ei,1 ∧ · · · ∧ ei,m|2,
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where the norms are explained in Remark 1.1, we have

(6.2) (1− c)| ∧m (dz′x)|2 ≤ | ∧m (ds)|2 ≤ (1 + c)| ∧m (dz′x)|2

holds on a neighborhood of Vx.
Let ε′x ∈ (0, εx) be a fixed positive number and set

Ux = {y ∈ V ′x : |z′x(y)| < ε′x, |z′′x(y)| < ε′x}.

Since Xk ∩ Y is compact, there exist points x1, x2, · · · , xN ∈ Xk ∩ Y
such that Xk ∩ Y ⊂ ∪Ni=1Uxi .

For simplicity, we will denote Vxi , z
j
xi (1 ≤ j ≤ n), exi,j (1 ≤ j ≤ m),

Uxi , εxi , ε
′
xi , z

′
xi and z′′xi by Vi, z

j
i , ei,j , Ui, εi, ε

′
i, z
′
i and z′′i respectively.

Choose an open set UN+1 in X such that Xk ∩ Y ⊂ X \ UN+1 ⊂⊂
∪Ni=1Ui. Set U = X \UN+1. For fixed k and c, we choose a fixed positive

number ε0 ∈ (0,
√

1− cmin1≤i≤N ε
′
i) such that Xk ∩

{
x ∈ X : |s(x)| ≤

ε0

}
⊂⊂ U .

Let {ξi}N+1
i=1 be a partition of unity subordinate to the cover {Ui}N+1

i=1

of X. Then supp ξi ⊂⊂ Ui for i = 1, · · · , N and
∑N

i=1 ξi = 1 on U .

Part II: construction of local holomorphic extensions f̂i,ε (1 ≤
i ≤ N) of f to Vi ∩ {|z′i| < 3c2ε}, where c2 will be defined in this
part.

Since we have assumed that φ can be written as a sum of a smooth
function and a plurisubharmonic function on a neighborhood of Vi (1 ≤
i ≤ N), by Lemma 3.8 and (6.2), there exists a positive number β ∈
(0, 1) such that

(6.3)

∫
Vi∩Y

|f |2L0
e−(1+β)φ

| ∧m (dz′i)|2
dVY < +∞ (1 ≤ i ≤ N).

Let λ̃ : (−∞,+∞)→ [0,+∞) be the function{( ∫ 1
−1 e

1
t2−1dt

)−1
e

1
t2−1 if |t| < 1,

0 if |t| ≥ 1.

Then λ̃ is smooth on (−∞,+∞) with support contained in [−1, 1] and∫ +∞
−∞ λ̃(t)dt = 1.

Set R0(t) = 8m
β e
− βt

8m , t ∈ (−∞,+∞). Then R0 ∈ R and CR0 =

1. Define R(t) = R(0) on (0,+∞) and denote by R1 the convolution

(min{R0, R}) ∗ λ̃. Then it is easy to see that R1 ∈ R and

(6.4) min{R0(t+ 1), R(t+ 1)} ≤ R1(t) ≤ min{R0(t− 1), R(t− 1)}.

Let c1 :=
√

c
(2−c)(1+c) and c2 :=

√
2−c
c(1−c) .
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For each fixed ε ∈ (0, ε04c2
), we apply Proposition 4.1 to the function

R1 and to the holomorphic section f on Vi ∩ Y with the L2 condition
(6.3), and then we obtain L2 extensions of f from Vi ∩ Y to

Vi ∩ {|z′i| < 3c2ε},

where we equip the line bundle L with the singular metric h0e
−(1+β)φ

and take s =
z′i

3c2ε
in Proposition 4.1. More precisely, there exists a uni-

form positive number Ĉ (independent of ε) and holomorphic extensions

f̂i,ε (1 ≤ i ≤ N) of f from Vi ∩ Y to Vi ∩ {|z′i| < 3c2ε} such that∫
Vi∩{|z′i|<3c2ε}

|f̂i,ε|2L0
e−(1+β)φ∣∣ z′i

3c2ε

∣∣2mR1

(
m log

∣∣ z′i
3c2ε

∣∣2)dVX
≤ Ĉ

∫
Vi∩Y

|f |2L0
e−(1+β)φ∣∣ ∧m d
( z′i

3c2ε

)∣∣2dVY
= ε2mĈ(3c2)2m

∫
Vi∩Y

|f |2L0
e−(1+β)φ

| ∧m (dz′i)|2
dVY .

Hence,

(6.5)

∫
Vi∩{|z′i|<2c2ε}

|f̂i,ε|2L0
e−(1+β)φ∣∣ z′i

2c2ε

∣∣2mR1

(
m log

∣∣ z′i
2c2ε

∣∣2 +m log 4
9

)dVX ≤ Ĉ1ε
2m,

for some positive number Ĉ1 independent of ε.

Part III: construction of local holomorphic extensions f̃i,ε (1 ≤
i ≤ N) of f to Vi.

For each fixed ε ∈ (0, ε04c2
), applying Proposition 5.1 to the local

extensions f̂i,ε (1 ≤ i ≤ N) with the weight (1 + β)φ and to the case

w =
z′i

2c2ε
, Ω = Vi and β1 = 1

8 , we obtain from (6.5) holomorphic sections

f̃i,ε (1 ≤ i ≤ N) on Vi satisfying f̃i,ε = f̂i,ε = f on Vi ∩ Y ,

(6.6)

∫
Vi∩{|z′i|<2c2ε}

|f̃i,ε|2L0
e−(1+β)φ∣∣ z′i

2c2ε

∣∣2mR1

(
m log

∣∣ z′i
2c2ε

∣∣2 +m log 4
9

)dVX ≤ Ĉ2ε
2m,

and

(6.7)

∫
Vi

|f̃i,ε|2L0
e−(1+β)φ(

1 + | z
′
i

2c2ε
|2
)m+ 1

8

dVX ≤ Ĉ3ε
2m,

for some positive numbers Ĉ2 and Ĉ3 independent of ε.
Since supt≤0

(
etR1(t)

)
< +∞, it follows from (6.6) that

(6.8)

∫
(z′i,z

′′
i )∈Bm2c2ε×B

n−m
εi

|f̃i,ε(z′i, z′′i )|2L0
e−(1+β)φ(z′i,z

′′
i )dVX ≤ Ĉ4ε

2m,
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for all ε ∈ (0, ε04c2
), where Ĉ4 is a positive number independent of ε.

Since |z′i| ≤ εi on Vi, it follows from (6.7) that

(6.9)

∫
(z′i,z

′′
i )∈Bmεi×B

n−m
εi

|f̃i,ε(z′i, z′′i )|2L0
e−(1+β)φ(z′i,z

′′
i )dVX ≤ Ĉ5ε

− 1
4 ,

for all ε ∈ (0, ε04c2
), where Ĉ5 is a positive number independent of ε.

Let ε′′i :=
ε′i+εi

2 . Then by similar calculation as in (5.8), we get from
(6.9) that

(6.10) sup
Bm
ε′′
i
×Bn−m

ε′′
i

|f̃i,ε(z′i, z′′i )|2L0
≤ Ĉ6ε

− 1
4 ,

for all ε ∈ (0, ε04c2
), where Ĉ6 is a positive number independent of ε.

(6.8) and (6.10) imply that the assumptions in Proposition 5.2 hold

for f̃i,ε. Since it is not hard to prove that

dVX = dVY ·
(
√
−1)m

2
dz1
i ∧ · · · ∧ dzmi ∧ dz̄1

i ∧ · · · ∧ dz̄mi
|dz1

i ∧ · · · ∧ dzmi |2
,

at each point x ∈ Ui∩Y by a certain orthogonalization process on T ∗X |x,

we apply Proposition 5.2 to f̃i,ε (1 ≤ i ≤ N) and get

lim
ε→0

1

Vol(Bm)

∫
Ui∩{c1ε<|z′i|<c2ε}

ε2ξi|f̃i,ε|2L0
e−φ

m(|z′i|2 + ε2)2|z′i|2m−2
dVX(6.11)

= 2m
(

1

c2
1 + 1

− 1

c2
2 + 1

)∫
Ui∩Y

ξi|f |2L0
e−φ

| ∧m dz′i|2
dVY ,

where Vol(Bm) is the volume of the unit ball in Cm and the equality
(6.11) will be used in Step 4.

Part IV: construction of a family of smooth extensions f̃ε of f
to a neighborhood of Xk ∩ Y in X.

Define f̃ε =
∑N

i=1 ξif̃i,ε for all ε ∈ (0, ε04c2
).

Since for any j = 1, · · · , N , f̃ε|Uj =
∑N

i=1 ξif̃j,ε+
∑N

i=1 ξi(f̃i,ε− f̃j,ε) =

f̃j,ε +
∑N

i=1 ξi(f̃i,ε − f̃j,ε), we have

(6.12) |D′′f̃ε|L0

∣∣
Uj

= |
N∑
i=1

∂̄ξi ∧ (f̃i,ε − f̃j,ε)|L0 , ∀ε ∈ (0,
ε0

4c2
).

For similar reasons as in (5.9) and (5.13), we get from (6.10) and (6.1)
that

|∂̄ξi ∧ (f̃i,ε − f̃j,ε)|2L0

∣∣
Ui∩Uj

(6.13)

=
∣∣∂̄ξi ∧ (f̃i,ε(z′j , z′′j )− f̃i,ε(0, z′′j ) + f̃j,ε(0, z

′′
j )− f̃j,ε(z′j , z′′j )

)∣∣2
L0
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≤ Ĉ7|z′j |2(sup
Ui

|f̃i,ε|2L0
+ sup

Uj

|f̃j,ε|2L0
)

≤ Ĉ8|s|2ε−
1
4 ,

for all ε ∈ (0, ε04c2
), where Ĉ7 and Ĉ8 are positive numbers independent

of ε.

Step 2: the singularity attenuation process for the currents√
−1∂∂̄φ and

√
−1∂∂̄ψ.

Part I: the process for the closed almost positive current√
−1∂∂̄φ.

Since the singularities of
√
−1∂∂̄ log |s|2 and {

√
−1ΘEs,s}
|s|2 obstruct the

application of Lemma 3.4, we will work on the blow-up of X at first
and then go back to X. The idea of using Lemma 3.4 and a blow-up to
regularize curvature currents comes from [30].

Let X̃ together with µ : X̃ → X be the blow-up of X with center Y .

Then µ is a proper holomorphic map and X̃ is also weakly pseudoconvex.

Let X̃k+1 := µ−1(Xk+1), X̃k := µ−1(Xk) and Ỹ := µ−1(Y ). It is not
hard to prove the following lemma and we won’t give its proof.

Lemma 6.1. There exists a positive number ñk such that

ω̃k+1 := ñkµ
∗ω +

√
−1∂∂̄ log |s ◦ µ|2 − 2π[Ỹ ]

is a Kähler metric on X̃k+1.

It is not hard to see that
√
−1∂∂̄ log |s ◦ µ|2 − 2π[Ỹ ]

is a smooth real (1, 1)-form on X̃ and µ∗
(√−1{ΘEs,s}

|s|2
∣∣
X\Y

)
is, in fact,

smooth on X̃ (not just smooth on X̃ \ Ỹ ). Hence, there exists a smooth

real (1, 1)-form γ1 on X̃ such that

γ1

∣∣
X̃\Ỹ = µ∗

(√
−1{ΘEs, s}
|s|2

∣∣∣∣
X\Y

)
.

Since µ : X̃ \ Ỹ → X \ Y is biholomorphic and [Ỹ ]
∣∣
X̃\Ỹ = 0, the

curvature inequalities (i) and (ii) in Theorem 1.1 implies that
√
−1∂∂̄(φ ◦ µ)

∣∣
X̃\Ỹ + γ2

∣∣
X̃\Ỹ ≥ 0,

and √
−1∂∂̄(φ ◦ µ)

∣∣
X̃\Ỹ + γ3

∣∣
X̃\Ỹ ≥ 0

hold on X̃ \ Ỹ , where

γ2 :=
√
−1µ∗ΘL0 +m

√
−1∂∂̄ log |s ◦ µ|2 − 2mπ[Ỹ ], γ3 := γ2 −

γ1

α ◦ µ
.
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Since γ2 and γ3 are continuous real (1, 1)-forms on X̃, and φ ◦ µ is

quasi-plurisubharmonic on X̃, we get that

(6.14)
√
−1∂∂̄(φ ◦ µ) + γ2 ≥ 0,

and

(6.15)
√
−1∂∂̄(φ ◦ µ) + γ3 ≥ 0

hold on X̃. Since there must exist a continuous nonnegative (1, 1)-form

$k+1 on the Kähler manifold (X̃k+1, ω̃k+1) such that

(
√
−1ΘT

X̃k+1
+$k+1⊗IdT

X̃k+1
)(κ1⊗κ2, κ1⊗κ2) ≥ 0 (∀κ1, κ2 ∈ TX̃k+1

)

holds on X̃k+1, by Lemma 3.4, we obtain from (6.14) and (6.15) a family

of functions {φ̃ς,ρ}ς>0,ρ∈(0,ρ1) on X̃k+1 such that

(i) φ̃ς,ρ is quasi-plurisubharmonic on a neighborhood of the closure of

X̃k, smooth on X̃k+1 \Eς(φ ◦ µ), increasing with respect to ς and

ρ on X̃k, and converges to φ ◦ µ on X̃k as ρ→ 0,

(ii)
√
−1
π ∂∂̄φ̃ς,ρ ≥ −γ2

π − ς$k+1 − δρω̃k+1 on X̃k,

(iii)
√
−1
π ∂∂̄φ̃ς,ρ ≥ −γ3

π − ς$k+1 − δρω̃k+1 on X̃k,

where Eς(φ ◦ µ) := {x ∈ X̃ : ν(φ ◦ µ, x) ≥ ς} (ς > 0) is the ς-upperlevel
set of Lelong numbers of φ◦µ, and {δρ} is an increasing family of positive
numbers such that limρ→0 δρ = 0.

Since ω̃k+1 is a Kähler metric on X̃k+1 by Lemma 6.1 and X̃k is

relatively compact in X̃k+1, there exists a positive number nk > 1 such

that nkω̃k+1 ≥ $k+1 holds on X̃k. Take ς = δρ and denote φ̃δρ,ρ simply

by φ̃ρ. Then φ̃ρ is quasi-plurisubharmonic on a neighborhood of the

closure of X̃k, smooth on X̃k+1 \ Eδρ(φ ◦ µ), increasing with respect to

ρ on X̃k, and converges to φ ◦ µ on X̃k as ρ→ 0. Furthermore,
√
−1∂∂̄φ̃ρ + γ2 + 2πnkδρω̃k+1 ≥ 0,

and √
−1∂∂̄φ̃ρ + γ3 + 2πnkδρω̃k+1 ≥ 0

hold on X̃k. Since µ : X̃k \ Ỹ → Xk \ Y is biholomorphic, we get that
√
−1∂∂̄(φ̃ρ ◦ µ−1) + (µ−1)∗γ2 + 2πnkδρ(µ

−1)∗ω̃k+1 ≥ 0,

and √
−1∂∂̄(φ̃ρ ◦ µ−1) + (µ−1)∗γ3 + 2πnkδρ(µ

−1)∗ω̃k+1 ≥ 0

hold on Xk \ Y . Then, replacing γ2, γ3 and ω̃k+1 with their definitions,
we obtain that

√
−1∂∂̄(φ̃ρ ◦ µ−1) +

√
−1ΘL0 + (m+ 2πnkδρ)

√
−1∂∂̄ log |s|2(6.16)

≥ −2πnkñkδρω,
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and
√
−1∂∂̄(φ̃ρ ◦ µ−1) +

√
−1ΘL0 + (m+ 2πnkδρ)

√
−1∂∂̄ log |s|2(6.17)

≥
√
−1{ΘEs, s}
α|s|2

− 2πnkñkδρω

hold on Xk \ Y .

Since Eδρ(φ ◦ µ) is an analytic set in X̃, Remmert’s proper mapping
theorem implies that

Σρ := µ
(
Eδρ(φ ◦ µ)

)
is an analytic set in X. By Lemma 3.5, Xk \ (Y ∪ Σρ) is a complete
Kähler manifold.

It follows from the properties of φ̃ρ that φ̃ρ ◦µ−1 is smooth on Xk+1 \
(Y ∪ Σρ), increasing with respect to ρ on Xk \ Y , uniformly bounded
above on Xk \ Y with respect to ρ, and converges to φ on Xk \ Y as
ρ→ 0.

In Step 3, we will use φ̃ρ ◦ µ−1 to construct a smooth metric of L on
Xk \ (Y ∪ Σρ).

Part II: the process for the closed positive current
√
−1∂∂̄ψ.

Let l be a positive integer such that l > 2m supXk+1
α +

m supXk+1
log |s|2 and −l < supXk+1

ψ. Set ψl = max{ψ,−l}. Then
ψl is plurisubharmonic on X and

(6.18) ψl +m log |s|2 ≤ −2mα

on Xk+1 by the inequality (iii) in Theorem 1.1. Since ψl is a locally
bounded function on X, the Lelong numbers of ψl on X are all 0. Since
there must exist a continuous nonnegative (1, 1)-form $ on the Kähler
manifold (X,ω) such that

(
√
−1ΘTX +$ ⊗ IdTX )(κ1 ⊗ κ2, κ1 ⊗ κ2) ≥ 0 (∀κ1, κ2 ∈ TX)

holds on X, Lemma 3.4 implies that there is a family of functions
{ψl,ς,ρ}ς>0,ρ∈(0,ρ2) on X such that

(i) ψl,ς,ρ is quasi-plurisubharmonic on Xk+1, smooth on X, increasing
with respect to ς and ρ on Xk+1, and converges to ψl on Xk+1 as
ρ→ 0,

(ii)
√
−1
π ∂∂̄ψl,ς,ρ ≥ −ς$ − δ′ρω on Xk+1,

where {δ′ρ} is an increasing family of positive numbers such that
limρ→0 δ

′
ρ = 0. We can assume that δ′ρ = δρ since we can replace them

by max{δ′ρ, δρ}.
Since Xk+1 is relatively compact in X, there exists a positive number

n′k > 1 such that n′kω ≥ $ holds on Xk+1. Take ς = δρ and denote
ψl,δρ,ρ simply by ψl,ρ. Then ψl,ρ is quasi-plurisubharmonic on Xk+1,
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smooth on X, increasing with respect to ρ on Xk+1 and converges to ψl
on Xk+1 as ρ→ 0. Furthermore,

(6.19)
√
−1∂∂̄ψl,ρ ≥ −2πn′kδρω

holds on Xk+1.

Step 3: construction of special weights and twist factors.
Let ζ, χ and η be the same functions as in Section 4, whose explicit

expressions are given in the final step there.
Let a ∈ (0, 1] and put σρ,ε = ψl,ρ + m log(|s|2 + ε2) − a. Then by

the inequality (6.18), there exists a positive number εa ∈ (0, ε0) and a
positive number ρa ∈ (0,min{ρ1, ρ2}) such that σρ,ε ≤ −2mα − a

2 on

Xk for any ε ∈ (0, εa) and any ρ ∈ (0, ρa), where ε0, ρ1 and ρ2 are the
same as in Step 1 and Step 2 respectively.

Let Lρ,ε denote the line bundle L on Xk \ (Y ∪Σρ) equipped with the
new metric

hρ,ε := h0e
−φ̃ρ◦µ−1−(m+2πnkδρ) log |s|2−ζ(σρ,ε).

Let τε := χ(σρ,ε) and Aε := η(σρ,ε). Set Bρ,ε = [Θρ,ε, Λ] on Xk \ (Y ∪
Σρ), where

Θρ,ε := τε
√
−1ΘLρ,ε −

√
−1∂∂̄τε −

√
−1

∂τε ∧ ∂̄τε
Aε

.

Set νε = {D′s,s}
|s|2+ε2

. We want to prove

(6.20)

Θρ,ε

∣∣
Xk\(Y ∪Σρ)

≥ mε2

|s|2
√
−1νε ∧ ν̄ε −

(
2πnkñkχ(σρ,ε)δρ + 2πn′kδρ

)
ω.

It follows from (4.17) and (4.19) that

Θρ,ε

∣∣
Xk\(Y ∪Σρ)

(6.21)

= χ(σρ,ε)
(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2

)
+
(
χ(σρ,ε)ζ

′(σρ,ε)− χ′(σρ,ε)
)√
−1∂∂̄σρ,ε

+

(
χ(σρ,ε)ζ

′′(σρ,ε)− χ′′(σρ,ε)−
(
χ′(σρ,ε)

)2
η(σρ,ε)

)√
−1∂σρ,ε ∧ ∂̄σρ,ε

= χ(σρ,ε)
(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2

)
+
√
−1∂∂̄σρ,ε.

By Lemma 3.9, we have

|s|2
√
−1{D′s,D′s} ≥

√
−1{D′s, s} ∧ {s,D′s}.
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Hence, (6.19) implies that
√
−1∂∂̄σρ,ε

∣∣
Xk\(Y ∪Σρ)

=
m
√
−1{D′s,D′s}
|s|2 + ε2

− m
√
−1{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
− m
√
−1{ΘEs, s}
|s|2 + ε2

+
√
−1∂∂̄ψl,ρ

≥ mε2

|s|2

√
−1{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
− m
√
−1{ΘEs, s}
|s|2 + ε2

− 2πn′kδρω

=
mε2

|s|2
√
−1νε ∧ ν̄ε −

m
√
−1{ΘEs, s}
|s|2 + ε2

− 2πn′kδρω.

Then it follows from (6.21) that

Θρ,ε

∣∣
Xk\(Y ∪Σρ)

≥ χ(σρ,ε)
(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2

)
− m
√
−1{ΘEs, s}
|s|2 + ε2

+
mε2

|s|2
√
−1νε ∧ ν̄ε − 2πn′kδρω.

Since χ(σρ,ε) ≥ −σρ,ε
2 ≥ mα by the assumption χ(t) ≥ − t

2 , it follows
from (6.16) and (6.17) that

χ(σρ,ε)
(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2

)
− m
√
−1{ΘEs, s}
|s|2 + ε2

= χ(σρ,ε)
(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2 + 2πnkñkδρω

)
−2πnkñkχ(σρ,ε)δρω −

mα|s|2

|s|2 + ε2

√
−1{ΘEs, s}
α|s|2

≥ mα|s|2

|s|2 + ε2

(√
−1ΘL0 +

√
−1∂∂̄(φ̃ρ ◦ µ−1)

+(m+ 2πnkδρ)
√
−1∂∂̄ log |s|2 + 2πnkñkδρω −

√
−1{ΘEs, s}
α|s|2

)
−2πnkñkχ(σρ,ε)δρω

≥ −2πnkñkχ(σρ,ε)δρω

on Xk \ (Y ∪ Σρ). Hence, we get (6.20) as desired.

Let β and c be as in Step 1. Define β0 = β
2(1+β) . Inspired by an

idea of Yi (see [29] or [30]), we choose an increasing family of positive
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numbers {ρε}ε∈(0,εa) such that limε→0 ρε = 0, ρε < ρa (∀ε ∈ (0, εa)),

2πnkñkχ(2m log ε− l − 1)δρε + 2πn′kδρε < εβ0 , ∀ε ∈ (0, εa),(6.22)

4πnkδρε < β0, ∀ε ∈ (0, εa),(6.23)

and

(6.24)

(√
c

2− c
ε

)4πnkδρε

>
1

1 + c
, ∀ε ∈ (0, εa).

Since σρ,ε ≥ 2m log ε − l − 1 on Xk and χ is decreasing, we have
χ(σρ,ε) ≤ χ(2m log ε − l − 1) on Xk. Then it follows from (6.20) and
(6.22) that

Θρε,ε

∣∣
Xk\(Y ∪Σρε )

≥ mε2

|s|2
√
−1νε ∧ ν̄ε − εβ0ω.

Hence,

(6.25) Bρε,ε + εβ0I ≥
[
mε2

|s|2
√
−1νε ∧ ν̄ε, Λ

]
=
mε2

|s|2
Tν̄εT

∗
ν̄ε ≥ 0

on Xk \ (Y ∪Σρε) as an operator on (n, 1)-forms, where Tν̄ε denotes the
operator ν̄ε ∧ • and T∗ν̄ε is its Hilbert adjoint operator.

Step 4: construction of suitably truncated forms and solving
∂̄ globally with L2 estimates.

In this step and Step 5, we will denote Bρε,ε, Lρε,ε and σρε,ε simply
by Bε, Lε and σε respectively.

Let c be as in Step 1. It is easy to construct a smooth function
θ : R −→ [0, 1] such that θ = 0 on (−∞, c2 ], θ = 1 on [1− c

2 , +∞) and

|θ′| ≤ 1+c
1−c on R.

Define gε = D′′
(
θ( ε2

|s|2+ε2
)f̃ε
)
, where f̃ε is constructed in Step 1 and

0 < ε < min
{√

c
2−cε0, εa

}
(ε0 and εa are the same as in Step 1 and

Step 3 respectively). Then D′′gε = 0 and

gε = −θ′
( ε2

|s|2 + ε2

) ε2{s,D′s}
(|s|2 + ε2)2

∧ f̃ε + θ
( ε2

|s|2 + ε2

)
D′′f̃ε

= g1,ε + g2,ε,

where g1,ε denotes−ν̄ε∧θ′( ε2

|s|2+ε2
) ε2f̃ε
|s|2+ε2

and g2,ε denotes θ( ε2

|s|2+ε2
)D′′f̃ε.

It follows from (4.12) and (6.25) that

〈(Bε + 2εβ0I)−1gε, gε〉Lε
∣∣
Xk\(Y ∪Σρε )

(6.26)

≤ (1 + c)〈(Bε + 2εβ0I)−1g1,ε, g1,ε〉Lε

+
1 + c

c
〈(Bε + 2εβ0I)−1g2,ε, g2,ε〉Lε

≤ (1 + c)〈(Bε + εβ0I)−1g1,ε, g1,ε〉Lε +
1 + c

c
〈 1

εβ0
g2,ε, g2,ε〉Lε .
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By (6.25), we have

〈(Bε + εβ0I)−1g1,ε, g1,ε〉Lε
∣∣
Xk\(Y ∪Σρε )

≤ |s|2

mε2

∣∣∣∣θ′( ε2

|s|2 + ε2

) ε2

|s|2 + ε2
f̃ε

∣∣∣∣2
Lε

.

Then ζ > 0 implies that

I1,ε

:=

∫
Xk\(Y ∪Σρε )

〈(Bε + εβ0I)−1g1,ε, g1,ε〉LεdVX

≤ (1 + c)2

(1− c)2

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2|f̃ε|2L0
e−φ̃ρε◦µ

−1
dVX

m(|s|2 + ε2)2|s|2m−2+4πnkδρε
.

Since φ̃ρε ◦ µ−1 ≥ φ on Xk \ Y , it follows from (6.24) that

I1,ε

≤ (1 + c)2

(1− c)2

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

(√
c

2−cε
)−4πnkδρεε2|f̃ε|2L0

e−φdVX

m(|s|2 + ε2)2|s|2m−2

≤ (1 + c)3

(1− c)2

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2|f̃ε|2L0
e−φdVX

m(|s|2 + ε2)2|s|2m−2
.

Since

|f̃ε|2L0

∣∣
U

= |
N∑
i=1

√
ξi ·
√
ξif̃i,ε|2L0

≤ (
N∑
i=1

ξi)(
N∑
i=1

ξi|f̃i,ε|2L0
) =

N∑
i=1

ξi|f̃i,ε|2L0
,

by the Cauchy–Schwarz inequality, we have

I1,ε ≤
(1 + c)3

(1− c)2

N∑
i=1

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2ξi|f̃i,ε|2L0
e−φdVX

m(|s|2 + ε2)2|s|2m−2
.

Then it follows from (6.1), (6.11) and (6.2) that

lim
ε→0

I1,ε

≤
N∑
i=1

lim
ε→0

(
(1 + c)3

(1− c)2

∫
Xk∩{
√

c
2−c ε<|s|<

√
2−c
c
ε}

ε2ξi|f̃i,ε|2L0
e−φdVX

m(|s|2 + ε2)2|s|2m−2

)

≤
N∑
i=1

lim
ε→0

∫
Ui∩{c1ε≤|z′i|≤c2ε}

(1+c)3

(1−c)2 · ε
2ξi|f̃i,ε|2L0

e−φdVX

m
(
(1− c)|z′i|2 + ε2

)2(
(1− c)|z′i|2

)m−1

≤
N∑
i=1

lim
ε→0

∫
Ui∩{c1ε≤|z′i|≤c2ε}

(1+c)3

(1−c)m+3 · ε2ξi|f̃i,ε|2L0
e−φdVX

m(|z′i|2 + ε2)2|z′i|2m−2
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=
2m(1 + c)3Vol(Bm)

(1− c)m+3

(
1

c2
1 + 1

− 1

c2
2 + 1

) N∑
i=1

∫
Ui∩Y

ξi|f |2L0
e−φdVY

| ∧m (dz′i)|2

≤ (1 + c)4

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−φ

| ∧m (ds)|2
dVY ,

where c1 and c2 are defined as in Step 1. Then

(6.27) I1,ε ≤
(1 + c)5

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−φ

| ∧m (ds)|2
dVY ,

when ε is small enough.

Since ζ(σε) > 0 and φ̃ρε ◦ µ−1 ≥ φ on Xk \ Y , by (6.23), we have

I2,ε :=

∫
Xk\(Y ∪Σρε )

〈 1

εβ0
g2,ε, g2,ε〉LεdVX

≤ 1

εβ0

∫
Xk∩{|s|<

√
2−c
c
ε}

|D′′f̃ε|2L0
e−φ̃ρε◦µ

−1

|s|2m+4πnkδρε
dVX

≤ 1

εβ0

∫
Xk∩{|s|<

√
2−c
c
ε}

|D′′f̃ε|2L0
e−φ

|s|2m+β0
dVX .

Then it follows from (6.12) that I2,ε is bounded by the sum of the terms

N

εβ0

∫
Ui,j,ε

|∂̄ξi ∧ (f̃i,ε − f̃j,ε)|2L0
e−φ

|s|2m+β0
dVX (1 ≤ i, j ≤ N),

by the Cauchy–Schwarz inequality, where Ui,j,ε := Ui ∩ Uj ∩ {|s| <√
2−c
c ε}.

Since R1 is a positive decreasing function, (6.1) and (6.6) imply that
for i = 1, · · · , N ,

∫
Vi∩{|s|<

√
2−c
c
ε}

|f̃i,ε|2L0
e−(1+β)φ

|s|2mR1(m log |s|2)
dVX(6.28)

≤
∫
Vi∩{|z′i|<2c2ε}

|f̃i,ε|2L0
e−(1+β)φ

(1− c)m|z′i|2mR1(m log |z′i|2 +m log(1 + c))
dVX

≤ Ĉ9Ĉ2,

for some positive number Ĉ9 independent of ε when ε is small enough.
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By the Hölder inequality, (6.28), (6.13) and (6.4), we get (note that

β0 := β
2(1+β))∫

Ui,j,ε

|∂̄ξi ∧ (f̃i,ε − f̃j,ε)|2L0
e−φ

|s|2m+β0
dVX

≤
(∫

Ui,j,ε

|∂̄ξi ∧ (f̃i,ε − f̃j,ε)|2L0
e−(1+β)φ

|s|2mR1(m log |s|2)
dVX

) 1
1+β

×
(∫

Ui,j,ε

|∂̄ξi ∧ (f̃i,ε − f̃j,ε)|2L0

(
R1(m log |s|2)

) 1
β

|s|2m+β0· 1+ββ
dVX

) β
1+β

≤ Ĉ ′ij

(∫
Ui,j,ε

ε−
1
4

(
R0(m log |s|2 − 1)

) 1
β

|s|2m−
3
2

dVX

)2β0

≤ Ĉ ′′ij

(∫
Ui,j,ε

ε−
1
4

|s|2m−
5
4

dVX

)2β0

≤ Ĉ ′′′ij ε
2β0 ,

when ε is small enough, where Ĉ ′ij , Ĉ
′′
ij and Ĉ ′′′ij are positive numbers

independent of ε. Hence,

(6.29) I2,ε ≤ C1ε
β0 ,

where C1 is a positive number independent of ε.
Therefore, it follows from (6.26), (6.27) and (6.29) that∫

Xk\(Y ∪Σρε )
〈(Bε + 2εβ0I)−1gε, gε〉LεdVX

≤ (1 + c)I1,ε +
1 + c

c
I2,ε

≤ (1 + c)6

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−φ

| ∧m (ds)|2
dVY +

1 + c

c
C1ε

β0 .

Then by Lemma 3.2, there exists uk,a,c,l,ε ∈ L2(Xk \(Y ∪Σρε), KX⊗Lε)
and hk,a,c,l,ε ∈ L2(Xk \ (Y ∪ Σρε), ∧n,1T ∗X ⊗ Lε) such that

(6.30) D′′uk,a,c,l,ε +
√

2εβ0hk,a,c,l,ε = gε

on Xk \ (Y ∪ Σρε) and∫
Xk\(Y ∪Σρε )

|uk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1−(m+2πnkδρε ) log |s|2−ζ(σε)

τε +Aε
dVX(6.31)

+

∫
Xk\(Y ∪Σρε )

|hk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1−(m+2πnkδρε ) log |s|2−ζ(σε)dVX

≤ C(ε),
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where

C(ε) :=
(1 + c)6

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−φ

| ∧m (ds)|2
dVY +

1 + c

c
C1ε

β0 .

Since {φ̃ρε ◦µ−1}ε∈(0,εa) are uniformly bounded above on Xk \Y with
respect to ε as obtained in Step 2, we have

(6.32) e−φ̃ρε◦µ
−1 ≥ C2

on Xk \Y for any ε ∈ (0, εa), where C2 is a positive number independent
of ε. Since 2m log ε − l − a ≤ σε ≤ −a

2 on Xk and log |s|2 is upper

semicontinuous on X, we have that log |s|2, ζ(σε) and τε + Aε are all
bounded above on Xk for each fixed ε. Then it follows from (6.31) that
uk,a,c,l,ε ∈ L2(Xk,KX⊗L0) and hk,a,c,l,ε ∈ L2(Xk,∧n,1T ∗X⊗L0). Hence,
it follows from (6.30) and Lemma 3.7 that

(6.33) D′′uk,a,c,l,ε +
√

2εβ0hk,a,c,l,ε = D′′
(
θ
( ε2

|s|2 + ε2

)
f̃ε

)
holds on Xk. Furthermore, (6.31) and (4.18) imply that∫

Xk

|uk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1−2πnkδρελs

|s|2mR(σε)
dVX(6.34)

+

∫
Xk

|hk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1−m log |s|2−2πnkδρελs−ζ(σε)dVX

≤ C(ε),

where λs := supXk log |s|2.

Define Fk,a,c,l,ε = −uk,a,c,l,ε + θ( ε2

|s|2+ε2
)f̃ε. Then (6.33) implies that

D′′Fk,a,c,l,ε =
√

2εβ0hk,a,c,l,ε on Xk. Since R(σε) ≤ R(ψl +m log |s|2−a)

and φ̃ρε ◦ µ−1 ≥ φ on Xk \ Y , it follows from (4.12) and (6.34) that∫
Xk

|Fk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1

|s|2mR(ψl +m log |s|2 − a)
dVX(6.35)

≤ (1 + c)

∫
Xk

|uk,a,c,l,ε|2L0
e−φ̃ρε◦µ

−1

|s|2mR(σε)
dVX

+
1 + c

c

∫
Xk

∣∣θ( ε2

|s|2+ε2

)
f̃ε
∣∣2
L0
e−φ̃ρε◦µ

−1

|s|2mR(ψl +m log |s|2 − a)
dVX

≤ (1 + c)e2πnkδρελsC(ε) + C̃(ε),

when ε is small enough, where

C̃(ε) :=
1 + c

c

∫
Xk∩{|s|<

√
2−c
c
ε}

|f̃ε|2L0
e−φ

|s|2mR(ψl +m log |s|2 − a)
dVX .
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Now we want to prove

lim
ε→0

C̃(ε) = 0.

As in (6.28), we have

(6.36)

∫
Vi∩{|s|<

√
2−c
c
ε}

|f̃i,ε|2L0
e−(1+β)φ

|s|2mR1(m log |s|2 − a+ 1 + λψ)
dVX ≤ Ĉ10,

for some positive number Ĉ10 independent of ε when ε is small enough,
where λψ := supXk+1

ψ.

For similar reasons as in (5.8), we get from (6.8) that

(6.37) sup

Ui∩{|s|<
√

2−c
c
ε}

|f̃i,ε|2L0
≤ Ĉ11,

for some positive number Ĉ11 independent of ε when ε is small enough.
By (6.4), (6.36), (6.37) and the Hölder inequality, for i = 1, · · · , N ,

we have that∫
Ui∩Xk∩{|s|<

√
2−c
c
ε}

|f̃i,ε|2L0
e−φ

|s|2mR(ψl +m log |s|2 − a)
dVX(6.38)

≤
∫
Ui∩{|s|<

√
2−c
c
ε}

|f̃i,ε|2L0
e−φ

|s|2mR1(λψ +m log |s|2 − a+ 1)
dVX

≤
(∫

Ui∩{|s|<
√

2−c
c
ε}

|f̃i,ε|2L0
e−(1+β)φ

|s|2mR1(m log |s|2 − a+ 1 + λψ)
dVX

) 1
1+β

×
(∫

Ui∩{|s|<
√

2−c
c
ε}

|f̃i,ε|2L0

|s|2mR1(m log |s|2 − a+ 1 + λψ)
dVX

) β
1+β

≤ Ĉ12

(∫
Ui∩{|s|<

√
2−c
c
ε}

1

|s|2mR1(m log |s|2 − a+ 1 + λψ)
dVX

) β
1+β

≤ Ĉ13

(∫ 2m log ε+Ĉ14

−∞

1

R1(t)
dt

) β
1+β

,

when ε is small enough, where Ĉ12, Ĉ13 and Ĉ14 are positive numbers
independent of ε.

Since f̃ε :=
∑N

i=1 ξif̃i,ε and supp ξi ⊂⊂ Ui, we get from (6.38) that

lim
ε→0

C̃(ε) = 0.

Since

|s|2mR(ψl +m log |s|2 − a) ≤ em log |s|2R(m log |s|2 − l − a)

≤ el+a sup
t≤0

(
etR(t)

)
,
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it follows from (6.32) and (6.35) that

(6.39)

∫
Xk

|Fk,a,c,l,ε|2L0
dVX ≤ Ĉ15,

for some positive number Ĉ15 independent of ε when ε is small enough.

Since φ̃ρε ◦ µ−1 is increasing with respect to ε and converges to φ
on Xk \ Y as ε → 0, by extracting weak limits of {Fk,a,c,l,ε}ε>0 as

ε → 0, we get from (6.39) and (6.35) a sequence {εj}+∞j=1 and Fk,a,c,l ∈
L2(Xk, KX ⊗L0) such that limj→+∞ εj = 0, Fk,a,c,l,εj ⇀ Fk,a,c,l weakly

in L2(Xk, KX ⊗ L0) as j → +∞ and∫
Xk

|Fk,a,c,l|2L0
e−φdVX

|s|2mR(ψl +m log |s|2 − a)
≤ (1 + c)7

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−φdVY

| ∧m (ds)|2
.

Since ψl ≥ ψ and R is decreasing, we get∫
Xk

|Fk,a,c,l|2L0
e−ϕ

eψ+m log |s|2R(ψ +m log |s|2 − a)
dVX(6.40)

≤ (1 + c)7

(1− c)m+3

(2π)m

m!

∫
Y

|f |2L0
e−ϕ−ψ

| ∧m (ds)|2
dVY .

Since σε ≤ −a
2 on Xk and ζ is increasing, we get

(6.41) e−ζ(σε) ≥ e−ζ(−
a
2

)

on Xk. Then (6.34), (6.32) and (6.41) imply that∫
Xk

|hk,a,c,l,ε|2L0
dVX ≤ eζ(−

a
2

)+(m+2πnkδρε )λsC−1
2 C(ε).

Hence,
√

2εβ0j hk,a,c,l,εj → 0 in L2(Xk, ∧n,1T ∗X ⊗ L0) as j → +∞. Since

D′′Fk,a,c,l,ε =
√

2εβ0hk,a,c,l,ε on Xk, we get D′′Fk,a,c,l = 0 on Xk. Then
Fk,a,c,l is a holomorphic section of KX ⊗ L on Xk. In Step 5, we will
prove that Fk,a,c,l = f on Y ∩Xk by solving ∂̄ locally.

Step 5: solving ∂̄ locally with L2 estimates and the end of the
proof.

For any x ∈ Y ∩Xk, let (Vx, z
1
x, · · · , znx ), z′x, z′′x and εx ∈ (0, 1) be as

in Step 1. Assume that ε̃x ∈ (0, εx) is a positive number such that

Wx := {y ∈ Vx : |z′x(y)| < ε̃x, |z′′x(y)| < ε̃x} ⊂⊂ Xk.

Since the bundle L is trivial on Vx, uk,a,c,l,ε and hk,a,c,l,ε can be regarded
as forms on Vx with values in C and the metric of L0 on Vx can be
regarded as a positive smooth function. Obviously, the Kähler metric
ω on Wx is bounded below and above by C−1

3 ω′ and C3ω
′ respectively,

where ω′ is the Euclidean metric on Wx and C3 > 1 is some positive
number independent of ε. In the following, we will denote the 2n-
dimensional Lebesgue measure on Wx by dVn.
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It is easy to see that C(ε) ≤ C0 for some positive number C0 inde-
pendent of ε when ε is small enough. Then it follows from (6.34), (6.1),
(6.41) and (6.32) that

(6.42)

∫
Wx

|hk,a,c,l,ε|2e−m log |z′x|2dVn ≤ C4C0,

for some positive number C4 independent of ε when ε is small enough.
Since ∂̄hk,a,c,l,ε = 0 on Wx by (6.33), applying Lemma 3.6 to the

(n, 1)-form
√

2εβ0hk,a,c,l,ε ∈ L2
(n,1)(Wx, m log |z′x|2),

we get an (n, 0)-form vk,a,c,l,ε ∈ L2
(n,0)(Wx, m log |z′x|2) such that

∂̄vk,a,c,l,ε =
√

2εβ0hk,a,c,l,ε

on Wx and∫
Wx

|vk,a,c,l,ε|2e−m log |z′x|2

(1 + |z′x|2 + |z′′x|2)2
dVn ≤

∫
Wx

|
√

2εβ0hk,a,c,l,ε|2e−m log |z′x|2dVn.

Since |z′x|2 + |z′′x|2 < 2 on Wx, by (6.42), we get

(6.43)

∫
Wx

|vk,a,c,l,ε|2e−m log |z′x|2dVn ≤ 18C4C0ε
β0 .

Since e−m log |z′x|2 > 1 on Wx, (6.43) implies that

(6.44)

∫
Wx

|vk,a,c,l,ε|2dVn ≤ 18C4C0ε
β0 .

Now define Gk,a,c,l,ε = −uk,a,c,l,ε−vk,a,c,l,ε+θ( ε2

|s|2+ε2
)f̃ε on Wx. Then

Gk,a,c,l,ε = Fk,a,c,l,ε − vk,a,c,l,ε and ∂̄Gk,a,c,l,ε = 0. Hence, Gk,a,c,l,ε is
holomorphic in Wx. Therefore, uk,a,c,l,ε + vk,a,c,l,ε is smooth in Wx.
Furthermore, we get from (6.39) and (6.44) that
(6.45)∫

Wx

|Gk,a,c,l,ε|2dVn ≤ 2

∫
Wx

|Fk,a,c,l,ε|2dVn + 2

∫
Wx

|vk,a,c,l,ε|2dVn ≤ C5,

for some positive number C5 independent of ε when ε is small enough.
By (6.1) and (6.32), we get from (6.34) that∫

Wx

|uk,a,c,l,ε|2e−m log |z′x|2

R(σε)
dVn ≤ C6C(ε) ≤ C6C0,

for some positive number C6 independent of ε when ε is small enough.
Since R(σε) ≤ R(2m log ε− l − a) on Wx, we have∫

Wx

|uk,a,c,l,ε|2e−m log |z′x|2dVn ≤ C6C0R(2m log ε− l − a).

Therefore, combining the last inequality and (6.43), we obtain that∫
Wx

|uk,a,c,l,ε + vk,a,c,l,ε|2

|z′x|2m
dVn ≤ 2C6C0R(2m log ε− l − a) + 36C4C0ε

β0 .
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Then the non-integrability of |z′x|−2m along Wx∩Y and the smoothness
of uk,a,c,l,ε + vk,a,c,l,ε in Wx show that uk,a,c,l,ε + vk,a,c,l,ε = 0 on Wx ∩ Y .
Hence, Gk,a,c,l,ε = f on Wx ∩ Y .

Since vk,a,c,l,εj → 0 in L2
(n,0)(Wx) by (6.44) and Fk,a,c,l,εj ⇀ Fk,a,c,l

weakly in L2
(n,0)(Wx) as j → +∞, we get Gk,a,c,l,εj ⇀ Fk,a,c,l weakly

in L2
(n,0)(Wx) as j → +∞. Hence, it follows from (6.45) and rou-

tine arguments with applying Montel’s theorem that a subsequence of
{Gk,a,c,l,εj}

+∞
j=1 converges to Fk,a,c,l uniformly on compact subsets of Wx.

Then Fk,a,c,l = f on Wx ∩ Y and thereby on Y ∩Xk.
Since R is a continuous decreasing function on (−∞, 0], ϕ is locally

bounded above and supt≤0

(
etR(t)

)
< +∞, applying Montel’s theorem

and extracting weak limits of {Fk,a,c,l}k,a,c,l, first as l → +∞, next as
c → 0, then as a → 0, and, finally, as k → +∞, we get from (6.40) a
holomorphic section F on X with values in KX ⊗L such that F = f on
Y and∫

X

|F |2L
eψ+m log |s|2R(ψ +m log |s|2)

dVX ≤
(2π)m

m!

∫
Y

|f |2Le−ψ

| ∧m (ds)|2
dVY .

Theorem 1.1 is, thus, proved.

7. Proof of Theorem 1.2

KX is naturally equipped with the smooth metric eϕω with respect
to the dual frame of dz. Let L′ be the line bundle L equipped with
the new metric e−ϕL′ , where ϕL′ := (2 − q) log |F1|L + ϕL. Then the
assumptions in the theorem imply that

(i)
√
−1ΘL′ +

√
−1∂∂̄σ ≥ 0,

(ii)
√
−1ΘL′ +

√
−1∂∂̄σ ≥ {

√
−1ΘEs, s}E
α|s|2E

.

Since the holomorphic section f ∈ H0(Y,KX |Y ⊗ L|Y ) satisfies∫
Y

|f |2L′e−ψ

| ∧m (ds)|2E
dVY = Cf < +∞,

by Theorem 1.1, there exists a holomorphic section F2 on X with values
in KX ⊗ L, such that F2 = f on Y and∫

X

|F2|2L
(|F1|L)2−qeσR(σ)

dVX =

∫
X

|F2|2L′
eσR(σ)

dVX

≤ CR
(2π)m

m!

∫
Y

|f |2L′e−ψ

| ∧m (ds)|2E
dVY

= CR
(2π)m

m!
Cf .
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Then Hölder’s inequality gives that

CF2 :=

∫
X

(|F2|L)q

eσR(σ)
dVX

≤
(∫

X

|F2|2L
(|F1|L)2−qeσR(σ)

dVX

) q
2
(∫

X

(|F1|L)q

eσR(σ)
dVX

)1− q
2

≤
(
CR

(2π)m

m!
Cf

) q
2

(CF1)1− q
2 .

We can then repeat the same argument with F1 replaced by F2, etc, and
get a sequence of holomorphic extensions {Fk}+∞k=1 of f and a sequence

{CFk}
+∞
k=1 such that

(7.1) CFk+1
≤
(
CR

(2π)m

m!
Cf

) q
2

(CFk)1− q
2 , k = 1, 2, · · · .

If CFk ≤ CR
(2π)m

m! Cf for some CFk , then we finish the proof since Fk
can be regarded as the desired holomorphic extension F in the conclu-
sion.

If CFk > CR
(2π)m

m! Cf for any k, then CFk+1
< CFk for any k. Since

ϕL is locally bounded above and eσR(σ) is bounded above, applying
Montel’s theorem and extracting weak limits of {Fk}+∞k=1, we can get
from (7.1) a holomorphic section F on X with values in KX ⊗ L, such
that F = f on Y and∫

X

(|F |L)q

eσR(σ)
dVX ≤ CR

(2π)m

m!
Cf .

Theorem 1.2 is, thus, proved.

8. Proof of Theorem 1.3

The fiberwise Bergman kernel B(x) of (KX/Y ⊗ L)|X0 at a point

x ∈ X0 is defined by

B(x) =
∑
uy

uy(x)⊗ uy(x),

for any choice of orthonormal basis {uy} of the Hilbert space

H0(Xy,KXy ⊗ L|Xy ⊗ I(hL|Xy)),

with the norm

‖uy‖Xy :=

(∫
Xy

cn−m{uy, uy}L
) 1

2

,

where y := Π(x), Xy := Π−1(y), (KX/Y ⊗L)|Xy ' KXy⊗L|Xy , cn−m :=

(
√
−1)(n−m)2 and {•, •}L is defined as in Lemma 3.9.
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The assumption (ii) in Theorem 1.3 implies that B is not equal to
zero identically on X0. If logB is proved to be plurisubharmonic on
X0, then logB ∈ L1

loc(X
0) and the fiberwise Bergman kernel metric of

(KX/Y ⊗ L)|X0 is defined to be B−1.
We will divide the proof into two parts.

Part I. We will prove that logB is plurisubharmonic on X0. Then
the fiberwise Bergman kernel metric of the bundle (KX/Y ⊗ L)|X0 has

semipositive curvature current on X0.
Since it is not hard to prove the upper semicontinuity of logB by

using global regularization results of the singular metric of L, we will
only prove that for a coordinate chart U ⊂⊂ X0 which is small enough,
logB satisfies the mean value inequality on every complex line contained
in U .

Without loss of generality, we can assume that m = 1, U ' Bn−1×∆
and Π|U is the projection from Bn−1×∆ to ∆, where ∆ is the unit disc
in C. For any t ∈ ∆, denote the compact fiber Π−1(t) by Xt. Let η be a
local frame of L on U and let (z, t) be the coordinates on U ' Bn−1×∆.
We will write the Bergman kernel of KXt ⊗L|Xt(' KX/Y |Xt ⊗L|Xt) as
Bt(z)dz ⊗ η ⊗ dz̄ ⊗ η̄ on Xt ∩ U .

Since logBt(z) is always plurisubharmonic with respect to z, we need
only check that logBt(z) satisfies the mean value inequality with respect
to t for fixed z.

Fix z = z0. For any given t0 ∈ ∆, if Bt0(z0) = 0, then logBt(z0)
satisfies the mean value inequality at t0. If Bt0(z0) 6= 0, by the extremal
property of the Bergman kernel, there exists a holomorphic section vt0 ∈
H0(Xt0 ,KXt0

⊗ L|Xt0 ⊗ I(hL|Xt0 )) such that

(8.1) Bt0(z0) =
|v′t0(z0)|2∫

Xt0
cn−1{vt0 , vt0}L

,

where vt0 |U = v′t0(z)dz ⊗ η.
Applying Theorem 1.1 to the holomorphic section vt0 in the case

R(t1) = e−t1 , m = 1, s = t − t0 and ψ = − log r2, we can obtain a
holomorphic section ṽ ∈ H0(Π−1(∆r(t0)),KX ⊗ L ⊗ I(hL)) such that
ṽ|Xt0 = vt0 ∧ dt and

(8.2)

∫
Π−1(∆r(t0))

cn{ṽ, ṽ}L ≤ 2πr2

∫
Xt0

cn−1{vt0 , vt0}L,

where ∆r(t0) := {t ∈ C : |t − t0| < r} and r is an arbitrary positive
number which is small enough.

Since
∫
Xt
cn−1{ ṽdt

∣∣
Xt
, ṽdt
∣∣
Xt
}L 6= 0 for a.e. t ∈ ∆r(t0), the extremal

property of the Bergman kernel implies that

Bt(z0) ≥ |ṽ′(t, z0)|2∫
Xt
cn−1{ ṽdt

∣∣
Xt
, ṽdt
∣∣
Xt
}L
,
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for a.e. t ∈ ∆r(t0), where ṽ|U = ṽ′(t, z)dz ∧ dt⊗ η. Then we have

1

πr2

∫
∆r(t0)

logBt(z0)

√
−1dt ∧ dt̄

2
(8.3)

≥ 1

πr2

∫
∆r(t0)

log |ṽ′(t, z0)|2
√
−1dt ∧ dt̄

2

− 1

πr2

∫
∆r(t0)

(
log

∫
Xt

cn−1

{
ṽ

dt

∣∣∣∣
Xt

,
ṽ

dt

∣∣∣∣
Xt

}
L

)√
−1dt ∧ dt̄

2
.

Since the mean value inequality for subharmonic functions and Jensen’s
inequality for the convex function − log imply that

1

πr2

∫
∆r(t0)

log |ṽ′(t, z0)|2
√
−1dt ∧ dt̄

2
≥ log |ṽ′(t0, z0)|2 = log |v′t0(z0)|2,

and

− 1

πr2

∫
∆r(t0)

(
log

∫
Xt

cn−1

{
ṽ

dt

∣∣∣∣
Xt

,
ṽ

dt

∣∣∣∣
Xt

}
L

)√
−1dt ∧ dt̄

2

≥ − log

(
1

πr2

∫
∆r(t0)

∫
Xt

cn−1

{
ṽ

dt

∣∣∣∣
Xt

,
ṽ

dt

∣∣∣∣
Xt

}
L

√
−1dt ∧ dt̄

2

)
= − log

(
1

πr2

∫
Π−1(∆r(t0))

cn
2
{ṽ, ṽ}L

)
≥ − log

∫
Xt0

cn−1{vt0 , vt0}L,

by Fubini’s theorem and (8.2), we obtain from (8.3) and (8.1) that

1

πr2

∫
∆r(t0)

logBt(z0)

√
−1dt ∧ dt̄

2

≥ log |v′t0(z0)|2 − log

∫
Xt0

cn−1{vt0 , vt0}L

= logBt0(z0).

Hence, logBt(z0) satisfies the mean value inequality with respect to t.
Thus, we finish the proof of Part I.

Part II. Let Ω1 ⊂⊂ Ω2 be two small coordinate balls in X such that
Π(Ω2) is contained in a coordinate ball in Y , whose coordinates will
be still denoted by t = (t1, t2, · · · , tm). Let Σ := X\X0. We will prove
that the fiberwise Bergman kernel is uniformly bounded on Ω1\Σ. Then
the fiberwise Bergman kernel metric on X0 extends across X\X0 to a
metric with semipositive curvature current on all of X. We will use
similar arguments as in [5] in this part.

Let x be a point in Ω1\Σ and y := Π(x). Denote Π−1(y) by Xy. Let
u ∈ H0(Xy,KXy ⊗ L|Xy ⊗ I(hL|Xy)). Then u ∧ dt ∈ H0(Xy,KX |Xy ⊗
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L|Xy⊗I(hL|Xy)). Denote the coordinates on Ω2 by w = (w1, w2, · · · , wn)
and denote the local holomorphic frame of L on Ω2 by η. Then we can
write u ∧ dt as u′dw ⊗ η on Ω2 ∩Xy. Hence, with respect to the local
coordinates w and the local frame η, the fiberwise Bergman kernel at
x is given by the supremum of |u′(x)|2 when u is normalized by the
condition ∫

Xy

cn−m{u, u}L ≤ 1.

By Theorem 1.1, we can obtain a holomorphic section

ũ ∈ H0(Ω2,KX ⊗ L⊗ I(hL)),

such that ũ|Ω2∩Xy = u ∧ dt = u′dw ⊗ η and

(8.4)

∫
Ω2

cn{ũ, ũ}L ≤ C1

∫
Ω2∩Xy

cn−m{u, u}L ≤ C1,

where C1 is a positive number depending only on m and the diameter
of Ω2.

The mean value inequality applied to (8.4) shows that

|u′(x)|2 ≤ C2,

where C2 is a positive number depending only on n, m, the diameter of
Ω1, the diameter of Ω2 and the upper bound on Ω2 of the local weight
of hL.

Since x is an arbitrary point in Ω1\Σ, the fiberwise Bergman kernel is
uniformly bounded on Ω1\Σ. Therefore, we finish the proof of Part II.

Theorem 1.3 is, thus, proved.
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[4] B. Berndtsson and M. Păun, A Bergman kernel proof of the Kawamata subad-
junction theorem, arXiv:0804.3884v2.
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