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THE GEOMETRIC TORSION CONJECTURE FOR
ABELIAN VARIETIES WITH REAL MULTIPLICATION

Benjamin Bakker & Jacob Tsimerman

Abstract

The geometric torsion conjecture asserts that the torsion part
of the Mordell–Weil group of a family of abelian varieties over
a complex quasi-projective curve is uniformly bounded in terms
of the genus of the curve. We prove the conjecture for abelian
varieties with real multiplication, uniformly in the field of multi-
plication. Fixing the field, we, furthermore, show that the torsion
is bounded in terms of the gonality of the base curve, which is the
closer analog of the arithmetic conjecture. The proof is a hybrid
technique employing both the hyperbolic and algebraic geometry
of the toroidal compactifications of the Hilbert modular varieties
X(1) parameterizing such abelian varieties. We show that only
finitely many torsion covers X1(n) contain d-gonal curves outside
of the boundary for any fixed d; the same is true for entire curves
C → X1(n). We also deduce some results about the birational
geometry of Hilbert modular varieties.

Statement of results

For any elliptic curve E/Q, the group of rational points E(Q) is
finitely generated by Mordell’s theorem. The free part behaves wildly; it
is expected that there are elliptic curves E/Q with arbitrarily large rank
rkE(Q), and the record to date is an elliptic curve E with rkE(Q) ≥ 28
found by Elkies. On the other hand, by a celebrated theorem of Mazur
[MG78] the torsion part E(Q)tor is uniformly bounded:

Theorem (Mazur). For any elliptic curve E/Q, |E(Q)tor| ≤ 16.

Mazur’s theorem was subsequently generalized to arbitrary number
fields K/Q by Merel [Mer96] (building on partial results of [Kam92])
who showed a stronger uniformity: there is an integer N = N(d) such
that for any degree d number field K and any elliptic curve E/K, every
K-rational torsion point has order dividing N , i.e., E(K)tor ⊂ E(K)[N ].

Similarly, it is expected that the torsion part of the Mordell–Weil
group of an abelian variety A/K is uniformly bounded, though there
are few results in this direction. The same question can be asked for
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the function field K = k(C) of a curve C over any field k: k = Fp is

most closely analogous to the number field case, but the k = Q is also
interesting:

Conjecture (Geometric torsion conjecture). Let k be an algebraically
closed field of characteristic 0. There is an integer N = N(g, n) such
that for any quasi-projective genus g curve C/k and any family of n-
dimensional abelian varieties A/C with no isotrivial part, the torsion of
the Mordell–Weil group is uniformly bounded:

A(C)tor ⊂ A(C)[N ].

Here A(C) is the group of rational sections. By the standard argu-
ment, it suffices to consider k = C, and we do so for the remainder. The
geometric conjecture is also largely open, though some recent progress
has been made by Cadoret and Tamagawa [CT11, CT12]. Their tech-
nique, however, only applies over a fixed base C.

The main goal of this paper is to prove the conjecture for abelian
varieties with real multiplication:

Theorem A. There is an integer N = N(g, n) such that for any
quasi-projective genus g complex curve C and any non-isotrivial fam-
ily of n-dimensional abelian varieties A/C with real multiplication, the
torsion part of the Mordell–Weil group is uniformly bounded:

A(C)tor ⊂ A(C)[N ].

An abelian variety with real multiplication is an n-dimensional abelian
variety A together with an injectionOF → End(A) of the ring of integers
OF in a totally real field F/Q of degree n. The constant in Theorem A
only depends on F through the dimension n, and thus, has the same
uniformity as in the conjecture. There are no reduction hypotheses in
Theorem A, so the result is really a statement about abelian varieties
over (characteristic 0) function fields:

Corollary B. For fixed n and g, there are only finitely many (finite)
groups occurring as the rational torsion A(K)tor of a non-isotrivial n-
dimensional abelian variety A/K with real multiplication over the func-
tion field K/k of a genus g curve over k.

Note that with the real multiplication hypothesis, non-isotriviality is
equivalent to having no isotrivial part.

We also prove a version of the conjecture uniformly in the gonal-
ity of the base curve, at the expense of a dependence on the field of
multiplication:

Theorem C. Fix a totally real field F . There is an integer N =
N(d, F ) such that for any quasi-projective d-gonal complex curve C and
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any non-isotrivial family of abelian varieties A/C with real multiplica-
tion by OF , the torsion part of the Mordell–Weil group is uniformly
bounded:

A(C)tor ⊂ A(C)[N ].

Of course, there is a corresponding version of Corollary B. Uniformity
in the gonality of the base curve C is strictly stronger than uniformity
in the genus; gonality is the correct function field analog of the degree
of the number field in Merel’s theorem. Recall that, for a curve C the
gonality gon(C) is the minimum degree of a (dominant) map to P1, and

since the map C(g+1) → Picg+1(C) has relative dimension 1, we at least1

have gon(C) ≤ g(C) + 1. On the other hand, for any d > 0 there are
d-gonal curves of genus g for all g ≥ 2d − 3. Similarly, while there are
infinitely many d-gonal curves C/Fq, there are only finitely many for
any fixed genus. This should be viewed as the function field analog of
the fact that there are infinitely many degree d number fields K/Q but
only finitely many of bounded discriminant.

Our proofs of Theorems A and C are geometric. For a fixed F , there
is a Hilbert modular variety X(1) parameterizing abelian varieties with
real multiplication byOF , and a map C → X(1) is equivalent to a family
of such abelian varieties over C. For any ideal n ⊂ OF , there is a level
cover X1(n) parameterizing abelian varieties A with real multiplication
by OF together with a point x ∈ A whose annihilator is n. To prove
Theorem A, we show that X1(n) uniformly contains no genus g curves
for |Nm(n)| large.

Theorem D. For each n ⊂ OF let X1(n)∗ be the Baily–Borel com-
pactification of the n-torsion level cover of the Hilbert modular variety
X(1). Then for any g, X1(n)∗ contains no genus g curves for all but
finitely many n, uniformly for all F of a fixed degree. For a fixed F , the
same is true of d-gonal curves.

The proof is conceptually similar to that of [HT06], where a version
of Theorem D is shown for full-level covers X(n). However, the bound-
ary of X1(n) does not totally ramify over X(1) and, therefore, a new
technique is required. The core idea is to prove a bound relating the
volume of a curve in a toroidal compactification X1(n) to its multiplic-
ity along the boundary (see Proposition 2.8) using the metric geometry.
For larger arithmetic lattices, intersection with the boundary comes at
the price of more volume, which in turn implies larger genus. The bound
is proven by constructing a positive singular metric on the log canonical
bundle of X1(n) whose singular support is concentrated on the bound-
ary. For the gonality statement, we must generalize the framework to

1In fact, by the Brill–Noether theorem gon(C) ≤ b g(C)+1
2
c with equality for C

generic of genus g(C).
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higher dimensional locally symmetric varieties which contain nontrivial
orbifold loci.

Our method applies more generally to toroidal compactifications X
of any variety uniformized by Hn, and the above construction has many
implications to the birational geometry of these varieties. In particular,
it implies that the slice of the big cone generated by the canonical bundle
KX and the boundary grows with the “size” of the lattice. For instance,
we have the following:

Theorem E. Assume X1(n) has no elliptic points and let X1(n) be
a smooth toroidal compactification with boundary divisor D. Then for
any λ > 0, we have that KX1(n)−(λ−1)D is ample modulo the boundary

provided |Nm(n)| > (2πλ
n )2n.

See Corollary 2.11 for more precise bounds on the ample modulo
D cone of any toroidal compactification X of a finite-volume quotient
of Hn by an irreducible lattice. Recall that we say that a divisor is
ample modulo D if its augmented base locus is contained in D. We
note that X1(n) uniformly has no elliptic points for large |Nm(n)| (see
Lemma 3.1).

For some geometric consequences of Theorem E, see Section 4. In
particular, we immediately have the following:

Corollary F. With the hypotheses of Theorem E, X1(n) is of general
type provided |Nm(n)| > (2π

n )2n.

By essentially taking n = OF , we recover a result of [Tsu85]:

Corollary G. X(1) is of general type provided n > 6.

It is worth noting that the proof of Tsuyumine relies entirely on the
theory of modular forms, whereas our proof only involves the metric
geometry.

Given Corollary F, the Green–Griffiths conjecture then predicts that
all entire curves C → X1(n) have image contained in a strict algebraic
subvariety (called the exceptional locus) for those n. By a theorem of
Nadel [Nad89], Theorem E, indeed, implies this is the case:

Corollary H. Every nontrivial entire curve C → X1(n) has image
contained in the boundary provided |Nm(n)| > (2π)2n.

This provides an explicit bound in the genus 0 or 1 case of Theorem A,
as well as a similar boundedness statement for entire families of abelian
varieties with real multiplication. The Green–Griffiths conjecture for
the base Hilbert modular varieties X(1) has been addressed recently by
[RT15] using modular forms and foliation theory, where the conjecture
is proven for all but finitely many choices of F . This clearly implies the

conjecture for the toroidal compactification X
′
of any cover X ′ → X(1),
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although the exceptional locus is not explicit. Corollary H says that the
exceptional locus is, in fact, (contained in) the boundary sufficiently
high in the torsion tower, uniformly in F .
X1(n) is defined over Q, and the arithmetic torsion conjecture for

abelian varieties with real multiplication can likewise be phrased as the
nonexistence of K-rational points of X1(n) for all but finitely many n,
for any number field K. Theorem D and Corollary H are geometric and
analytic analogs asserting the nonexistence of rational points valued in
the function field of a curve and the field of meromorphic functions on C,
respectively. All three are conjecturally related: in particular, assuming
the Bombieri–Lang conjecture, Corollary H implies X1(n)(K) is finite
for any number field K.

We, finally, note that Theorem A (and Corollary B) can be made
effective. We also expect Theorem C to be true uniformly in X(1), and
that the same idea for the proof should work with some modifications.
The methods investigated here apply more generally to rank one lattices
(see [BT15] for an application to complex ball quotients), and we expect
the torsion conjecture in the case of abelian varieties parametrized by a
rank one Shimura variety to be proven similarly.

Outline. The proof follows the general strategy developed in [BT16] to
prove the geometric analog of another arithmetic uniformity conjecture,
the Frey–Mazur conjecture. In Section 1, we detail the local structure of
cusps of cofinite-volume quotients of Hn and their toroidal compactifi-
cations. We then prove a volume bound on the boundary multiplicity of
curves in the toroidal compactification in Section 2. These bounds are
similar to those proven by [HT02] for interior points. In Section 3, we
show that the torsion covers of Hilbert modular varieties hyperbolically
“expand”, from which it follows that the multiplicity bound of Section 1
improves in the torsion tower. We then deduce some geometric results
in Section 4 including Theorem E and Corollaries F and H. In Section 5,
we assemble the previous results to prove the first part of Theorem D
and conclude Theorem A (and Corollary B). Finally, in Section 6, we
prove a volume bound on the diagonal multiplicity of curves in prod-
ucts of Hilbert modular varieties and use it to prove the second part of
Theorem D, and thus, Theorem C. The presence of degenerations com-
plicates the analysis of the diagonal, and the eventual bound we obtain
in Theorem C is not uniform in the field of multiplication F .

Acknowledgements. The first named author would like to thank G.
van der Geer and A. J. de Jong for enlightening discussions.

1. Lattices in SL2(R)n

Let H = {z ∈ C | Im z > 0} be the upper half-plane. G = SL2(R)n

is the group of holomorphic automorphisms of Hn acting by Möbius
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transformations component-wise. A discrete cofinite-volume subgroup
Γ ⊂ G is nondegenerate if it is not commensurable to a product, and,
in this section, we will only consider such Γ. In this case, Γ has only
isolated parabolic fixed points, called cusps, and there are only finitely
many up to the action by Γ. The Baily–Borel compactification X∗

of the quotient X = Γ\Hn is obtained by adding a point to compactify
each equivalence class of cusps; it is a normal projective variety [BB66].
Note that for n > 1, Γ is commensurable to an arithmetic lattice (up to
conjugation) by a theorem of Margulis [Mar84].

Local models of the cusp. The Siegel model Hn has a preferred cusp
at ∞ := (∞, . . . ,∞) ∈ Hn, whose parabolic stabilizer U∞ is the upper
triangular matrices. For z ∈ Hn, define N(z) :=

∏
i(Im zi). Natural

neighborhoods of the cusp ∞ are given by the sets

U(s) = {z ∈ Hn|N(z) > 1/s},

and we refer to U(s) as the horoball around ∞ of depth s.
Given a cusp ∗ of Γ, we may move it to ∞ by conjugating Γ. This is

only unique up to conjugation by an upper-triangular element

γ =

(
a1 b1
0 a−1

1

)
× · · · ×

(
an bn
0 a−1

n

)
.

Note that this sends the horoball U(s) to γ · U(s) = U(s′) with s′ =
s/
∏
i a

2
i , as N(γ · z) = N(z)

∏
i a

2
i .

The stabilizer Γ∞ = Γ∩U∞ of ∞ has unipotent radical Λ∞ a lattice
of real translations. N yields a norm form Nm on Λ∞, and we can
identify Hn with

H∞ := {ζ ∈ Λ∞ ⊗ C | (Im ζ)i > 0 for all i} ⊂ Λ∞ ⊗ C,

with Λ∞ acting by translations by Λ∞ ⊗ 1. Here (Im ζ)i is the ith
coordinate of Im ζ, which is not defined up to conjugation by γ, as it
scales by a2

i , but its positivity is. The norm on Λ∞ clearly scales by∏
i a

2
i .

Thus, we can scale so that the shortest vector of Λ∞ has length 1,
and we thereby associate to any cusp ∗ of Γ with stabilizer Γ∗ and
unipotent radical Λ∗ a canonically determined norm form Nm∗ on Λ∗
normalized by the condition that the length of the shortest vector is 1.
The coordinates σi∗ : Λ∗ → R for which

Nm∗(λ) =
∏
i

σi∗(λ)

are not well-defined as they scale individually, but as above their pos-
itivity is. We also have a canonically determined function N∗(ζ) =∏
i σ

i
∗(Im ζ) defined on the canonical horoball U∗(s), which has the form

U∗(s) := {ζ ∈ Λ∗ ⊗ C | N∗(ζ) > 1/s}.
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Definition 1.1. For a cusp ∗ of Γ, let W∗(s) := Γ∗\U∗(s). We say
the horoball U∗(s) is precisely invariant if W∗(s) injects into Γ\Hn.
The canonical depth s∗ of ∗ is the largest s such that U∗(s) is precisely
invariant. When there’s no chance of confusion we just refer to s∗ as
the depth.

The following lemma gives us a bound on the canonical depth.

Lemma 1.2. For Γ ⊂ G nondegenerate, suppose s is the minimal
nonzero value of

∏
i |ci| over all group elements

γ =

(
a1 b1
c1 d1

)
× · · · ×

(
an bn
cn dn

)
∈ Γ.

Then U(s) is precisely invariant under Γ.

Proof. We need to show that if γ · z = w for some γ ∈ Γ and z, w ∈
U(s) then γ is upper triangular. We have

N(w) =
∏
i

yi
|cizi + di|2

.

Note that since Γ is nondegenerate, one of the ci is zero only if all of
them are zero. If they are not all zero, then as |cizi +di| ≥ |ci||zi| ≥ |yi|
we get

N(w) ≤ 1∏
i |ci|2N(z)

≤ 1∏
i |ci|

,

which is a contradiction. q.e.d.

Toroidal compactifications. We briefly describe the geometry of the
toroidal compactifications of X constructed by [AMRT10].

For a cusp ∗ of Γ, the partial quotient of Hn by Λ∗ naturally sits in
the torus T∗ = Λ∗\Λ∗ ⊗ C, and there is a log map valued in Λ∗ ⊗ R
defined by taking the imaginary part:

H∗ �
� // Λ∗ ⊗ C // T∗

log // Λ∗ ⊗ R

λ⊗ z � // λ⊗ Im z.

The coordinate ring of T∗ is canonically C[Λ∨∗ ], via the identification
between Λ∨∗ and the character group Hom(T∗,Gm). For an element χ ∈
Λ∨∗ we denote the corresponding character by the symbol qχ, concretely
given by

qχ(λ⊗ z) = e(χ(λ)z),

and for any t ∈ T∗, we have

χ(log(t)) = − 1

2π
log |qχ(t)|.
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The function N∗ descends (and extends) to the torus T∗, and, in fact,
further descends to Λ∗ ⊗ R; it is given by

N∗(t) =

(
−1

2π

)n∏
i

log |qσi
∗(t)| = Nm∗(log t),

where on the right hand side we mean Nm∗ extended to Λ∗ ⊗ R in the
obvious way. The horoballs U∗(s) are likewise stable under the action of
Λ∗ and we let V∗(s) be the image in T∗. Note that log(V∗(s)) lies inside
the positive cone C(Λ∗ ⊗ R) defined by

C(Λ∗ ⊗ R) = {x ∈ Λ∗ ⊗ R | σi∗(x) > 0},
where we extend σi∗ R-linearly. Importantly, C(Λ∗⊗R) is not an integral
cone.

The group ∆∗ := Γ∗/Λ∗ acts on C(Λ∗ ⊗ R). A toroidal compact-
ification at ∗ is specified by a subdivision of C(Λ∗ ⊗ R) into a fan of
integral polyhedral cones Σ∗ = {τ} that is stable under the action of ∆∗.
The compactification is smooth if and only if each full-dimensional τ is
generated by an integral basis of Λ∗, and any fan can by sufficiently sub-
divided to yield a smooth compactification. For each full-dimensional
cone τ , this provides us with a coordinate chart of the compactification
which looks like a neighborhood of 0 ∈ An with coordinates qχ1 , . . . , qχn ,
where the χi are the basis dual to the basis of Λ∗ given by the primitive
generators of the rays of τ , and in this chart the boundary is the union
of the coordinate axes qχi = 0.

Taking s smaller than the depth of ∗, the quotient W∗(s) = ∆∗\V∗(s)
injects into the toroidal compactification, and N∗ descends to W∗(s).
We, therefore, obtain a function N∗ : W∗(s) → [−∞,∞) by declaring
N∗ to be −∞ along the boundary. To compute the Lelong number of

N
1/n
∗ , we use the An neighborhoods of the boundary in the toroidal

compactification. Let a = (a1, . . . , an) ∈ Rn, and for z ∈ Cn denote
|z|a =

∏
i |zi|ai . Then we have:

Lemma 1.3.

lim inf
z→x

∏
i log |z|a(i)

logn |z − x|
=
∏
j

∑
i

xi=0

a
(j)
i .

In the surface case this means for x2 6= 0

lim inf
(z1,z2)→(0,x2)

√
(a1 log |z1|+ a2 log |z2|)(b1 log |z1|+ b2 log |z2|)

log
√
|z1|2 + |z2 − x2|2

=
√
a1b1,

and

lim inf
(z1,z2)→(0,0)

√
(a1 log |z1|+ a2 log |z2|)(b1 log |z1|+ b2 log |z2|)

log
√
|z1|2 + |z2|2

=
√

(a1 + a2)(b1 + b2).
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For any cone τ ∈ Σ∗, let Z(τ) be the corresponding T∗-orbit (not the
orbit closure).

Lemma 1.4. The Lelong number ν(−N1/n
∗ , x) at a point x in the

boundary component compactifying ∗ is constant along Z(τ) and we
have

ν(−N1/n
∗ , x) =

1

2π
Nm∗(λ(τ))1/n, for all x ∈ Z(τ),

where λi ∈ Λ∗ are the primitive generators of the rays of τ and λ(τ) =∑
λi.

In the future we denote ν(−N1/n
∗ , τ) := ν(−N1/n

∗ , x) for x ∈ Z(τ).

Proof. Let τ0 be a full-dimensional cone with associated basis
λ1, . . . , λn of Λ∗, so if χ1, . . . , χn is the dual basis, then the correspond-
ing coordinates are xi = qχi . Faces τ of τ0 are indexed by subsets
S ⊂ {1, . . . , n}, where the corresponding face is generated by the rays
{λs|s ∈ S}, and the associated orbit is locally the coordinate plane given
by the intersection of xs = 0 for all s ∈ S. We have

σi∗ =
∑
j

σi∗(λj)χj ,

and, therefore, in these coordinates

log |qσi
∗(t)| = log

∏
j

|xj |σ
i
∗(λj).

Thus, since ∏
i

∑
s∈S

σi∗(λs) =
∏
i

σi∗(λ) = Nm∗(λ(τ)),

for λ(τ) =
∑

s∈S λs, the result follows from the previous lemma. q.e.d.

2. Curves in quotients of Hn

Metric geometry. Endow H with its hyperbolic hermitian metric ds2
H

of constant sectional curvature −1; explicitly, the associated Kähler
form is

ωH =
1

2
Im ds2

H =
idz ∧ dz

2y2
= i∂∂(−2 log y).

Likewise endow Hn with the invariant metric

ds2
Hn =

∑
i

π∗i ds
2
H,

where πi : Hn → H is the ith projection, and we again denote by
ωHn the associated Kähler form. Note that −2 logN (and, therefore,
also −2 logN∗) is a global potential for ωHn . The distance function
we use on Hn is the Kobayashi distance—namely, the distance between
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z, w ∈ Hn is the maximum of the distances dH(zi, wi) of the coordinate
projections, where dH is the usual hyperbolic distance on H:∣∣∣∣z − wz − w

∣∣∣∣2 = tanh2(dH(z, w)/2).

For Γ ⊂ G a discrete nondegenerate cofinite-volume subgroup and
X = Γ\Hn, let ds2

X be the induced metric with Kähler form ωX . For

X a smooth toroidal compactification of X, a theorem of Mumford
[Mum77] tells us that the current [ωX ] ∈ H1,1(X,R) defined by inte-
gration against ωX on the open part X is represented by a multiple of
the log-canonical bundle:

(1) c1(KX +D) =
1

2π
[ωX ] ∈ H1,1(X,R).

Take f : C → X a map from a smooth proper curve of genus g(C)
whose image is not contained in the boundary, and let U ⊂ C be the
open subset mapping to the interior X.

Lemma 2.1. In the above situation,

1

n
(KX − (n− 1)D).C ≤ 2g(C)− 2.

Proof. U is necessarily uniformized by H, so let ds2
U be it’s uni-

formized metric of constant curvature −1. By Schwarz’s Lemma,

1

n
f∗ds2

X ≤ ds2
U .

Integrating the Kähler forms, we get by Gauss–Bonnet

(2)
1

2πn
volX(U) ≤ −χ(U) = −χ(C) + |C r U |.

The left-hand side is 1
n(KX +D).C, while |CrU | ≤ D.C, and the result

follows. q.e.d.

Remark 2.2. Lemma 2.1 still holds in the form of (2) with the same
proof if Γ has elliptic elements, as long as we treat X and C as orbifolds
and χ(C) as the orbifold Euler characteristic.

Multiplicity bounds. For the rest of this section, we additionally as-
sume Γ is torsion-free. We begin by recalling a theorem of Hwang–To
which says that the volume of a curve in a neighborhood of a point in
the interior of a quotient of Hn (or, in fact, any bounded symmetric
domain) is bounded by its multiplicity at the point.

Theorem 2.3 (See [HT02]). Let x ∈ X and take B(x, r) the
Kobayashi ball around x of radius2 r < ρx. Then for any irreducible

2ρx is the injectivity radius, see Section 3.
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k-dimensional subvariety Y ⊂ X, we have

volX(Y ∩B(x, r)) ≥ (4π)k

k!
sinh2k(r/2) ·multx Y.

By (1) this theorem allows us to estimate the degree of a curve C ⊂ X
not meeting the boundary in terms of its multiplicity at a point x ∈ X:

(3) (KX +D).C = KX .C =
1

2πn
volX(C ∩X) ≥ 2

n
sinh2(ρx) ·multxC.

The main goal of this section is to provide a similar volume bound on
the multiplicity along the boundary, as well as a relative version.

For any cusp ∗ of Γ, denote by W̃∗(s) the interior closure of W∗(s) in
X for s smaller than the canonical depth s∗ of ∗.

Proposition 2.4. Let ∗ be a cusp of Γ. Then for any irreducible k-

dimensional analytic variety Y in W̃∗(s∗) not contained in the boundary,

s−k/n volX(Y ∩W∗(s))
is an increasing function of s for s < s∗.

Before the proof we recall a lemma of Demailly [Dem12]. Let X be a
complex manifold and ϕ : X → [−∞,∞) a continuous plurisubharmonic
function. Define

Bϕ(r) = {x ∈ X | ϕ(x) < r}.
We say ϕ is semi-exhaustive if the balls Bϕ(r) have compact closure
in X. Further, for T a closed positive current of type (k, k), we say ϕ
is semi-exhaustive on SuppT if ϕ 6≡ −∞ on SuppT and each Bϕ(r) ∩
SuppT has compact closure. In this case, the integral∫

Bϕ(r)
T ∧ (i∂∂ϕ)k :=

∫
Bϕ(r)

T ∧ (i∂∂max(ϕ, s))k

is well-defined and independent of s < r [Dem12, §III.5]. We then have
the following:

Lemma 2.5 (Formula III.5.5 of [Dem12]). For any convex increas-
ing function f : R→ R,∫

B(r)
T ∧ (i∂∂f ◦ ϕ)k = f ′(r − 0)k

∫
B(r)

T ∧ (i∂∂ϕ)k,

where f ′(r − 0) is the derivative of f from the left at r.

We also need:

Lemma 2.6. −N1/n is plurisubharmonic on Hn.

Proof. Let In be the identity n×n matrix and Zn be the matrix which
has 0’s along the diagonal, and 1’s elsewhere. Now note that In + tZn
is positive semi-definite exactly when − 1

n−1 ≤ t ≤ 1—this can be seen
by computing its determinant.
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For any function g : R→ R, we compute by the chain rule

i∂∂g(N) = g′′(N) · i∂N ∧ ∂N + g′(N) · i∂∂N

=
1

4
N2g′′(N)(In + Zn) +

1

4
Ng′(N)Zn,

in the renormalized basis (Im zi)
∂
∂z . Setting g(x) = −xt, we get

i∂∂(−N t) = − t(t− 1)N t

4

(
(In + Zn) +

1

t− 1
Zn

)
=
t(1− t)N t

4

(
In −

t

1− t
Zn

)
,

which is positive semi-definite for t = 1/n. q.e.d.

Proof of Proposition 2.4.

volX(Y ∩W∗(s)) =
1

k!

∫
Y ∩W∗(s)

ωkX

=
1

k!

∫
Y ∩W∗(s)

(i∂∂(−2 logN∗))
k

=
1

k!

∫
W∗(s)

[Y ] ∧ (i∂∂(−2 logN∗))
k

=
(2n)ksk/n

k!

∫
W∗(s)

[Y ] ∧ (i∂∂(−N1/n
∗ ))k

=
(2n)ksk/n

k!

∫
Y ∩W∗(s)

(i∂∂(−N1/n
∗ ))k.

As −N1/n
∗ is plurisubharmonic,

s−k/n volX(Y ∩W∗(s)) =
(2n)k

k!

∫
Y ∩W∗(s)

(i∂∂(−N1/n
∗ ))k

is an increasing function of s. q.e.d.

Remark 2.7. Proposition 2.4 is also valid in the orbifold context just
by pulling up to a finite neat cover. It is optimal in the sense that for
Y a the projection of a linear geodesic H ⊂ Hn (no coordinate of which

is constant), s−1/n vol(Y ∩W∗(s)) will be constant. Indeed, in this case

N
1/n
∗ restricts to a multiple of y, which is a potential for (a multiple of)

the current of integration at the cusp.

Taking the limit of Proposition 2.4 as s→ 0 and using the results from
Section 1, we obtain a multiplicity bound in the style of Theorem 2.3.

Proposition 2.8. Let ∗ be a cusp of Γ with canonical depth s∗. Then

for any irreducible analytic curve C in W̃∗(s∗) not contained in the
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boundary and any s < s∗,

1

n
volX(C ∩W∗(s)) ≥

∑
τ∈Σ∗

(s ·Nm∗(λ(τ)))1/n multZ(τ)C.

Proof. From the proof of the previous proposition, we have

1

n
volX(C ∩W∗(s)) ≥ 2s1/n · lim

s→0

∫
C∩W∗(s)

i∂∂(−N1/n
∗ ).

For s sufficiently small, C ∩ W̃∗(s) is a union of pure 1-dimensional
analytic sets, each component of which is normalized by a disk f : ∆→
C∩W̃∗(s). We may assume f(0) ∈ Z(τ) and that f |∆∗ is an isomorphism
onto an open set of C. If χ1, . . . , χs are the dual basis to the generators
λ1, . . . , λs of τ , then write mj = ord f∗qχj . Note that m = min(mj) is
the contribution of the branch f to multZ(τ)C.

Now for sufficiently small s, we have∫
C∩W̃∗(s)

i∂∂(−N1/n
∗ ) =

∑
f

∫
∆
f∗i∂∂(−N1/n

∗ ),

but of course ∫
∆
f∗i∂∂(−N1/n

∗ ) ≥ πν(f∗(−N1/n
∗ ), 0)

≥ πmν(−N1/n
∗ , τ)

=
m

2
Nm∗(λ(τ))1/n,

by Lemma 1.4, and the claim follows. q.e.d.

Remark 2.9. In fact, we can obtain a more precise estimate if we
remember more of the local behavior of C. In the notation of the proof,

for the branch f : ∆ → C ∩ W̃∗(s) let t be a uniformizer in the local
ring of the disk at 0. We have

2πν(f∗(−N1/n
∗ ), 0) = lim

t→0

∏
i log |f∗qσi

∗ |
logn |t|

= lim
t→0

∏
i

∑
j σ

i
∗(mjλj) log |t|
logn |t|

= Nm∗

(∑
mjλj

)
,

which is a version of the multiplicity weighted by the local geometry of
Z(τ).

Remark 2.10. Proposition 2.8 is also optimal in the sense that the
geodesic in Remark 2.7 will realize the equality with the coefficient from
Remark 2.9.
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The Lelong number jumps up along smaller T∗-orbits in the boundary.
Indeed, for any totally positive λi ∈ Λ∗

Nm∗

(∑
λi

)
≥
∑
i

Nm∗(λi).

For the main theorems in Sections 5 and 6, Proposition 2.8 is suf-
ficient, but with a slightly more detailed analysis we can package the
above result into the positivity of a large slope divisor. The main point
is that the proof of Corollary 2.13 can alternatively be seen as explic-
itly constructing a singular hermitian metric on KX − tD as a twist of
the canonical singular metric coming from the uniformized geometry.
Recall that a line bundle M on a smooth variety Y is ample modulo a
subvariety Z ⊂ Y (see, for example, Section 5 of [DCDC15]) if either:
(1) a sufficiently large multiple of M defines a map to PN which is an
embedding on Y \ Z; (2) the augmented base locus of M is contained
in Z.

Proposition 2.11. For a fixed cusp ∗, let ρ run through the (nonequiv-
alent) one-dimensional cones of Σ∗ and let Dρ be the corresponding ir-
reducible boundary divisor. Then

(KX +D)− n

2π

∑
ρ∈Σ∗

(s∗Nm∗(ρ))1/n ·Dρ

is ample modulo the boundary.

Proof. Let L = KX + D. Since L is big and the big cone is the
interior of the pseudo-effective cone, it suffices to show that M = L−E
is pseudo-effective where E =

∑
aρDρ for appropriately chosen aρ ∈ Q.

By [Dem92] its enough for (a multiple of) L−E to possess a singular
hermitian metric h with chern form c1(M,h) ≥ 0 (as a current). Taking
the canonical metric on Dρ given by a section (for which c1(Dρ) = [Dρ]),
this is achieved if we construct such an h on L with c1(L, h) ≥

∑
aρ[Dρ].

To finish, we need the following lemma, which is easily proven along
the lines of [HT02]. Recall that a potential for ωHn is given by −2 logN .

Lemma 2.12. Fix S0 > 0. For any ε > 0, there exists a smooth
function ϕ : R>0 → R such that:

a) ϕ(N) = −2 logN outside of [1/S0 − ε,∞);
b) i∂∂ϕ(N) ≥ 0;

c) ϕ(N) ∼ −S1/n
0 N1/n as N →∞.

By [Mum77], the hyperbolic metric on KX extends to a singular
metric h0 on L whose curvature is −i∂∂ log h0 = [ωX ]. For any partic-
ular cusp of X, the function N∗ is defined in the horoball neighborhood
W (s∗), we define h = e−ϕ(N∗)+2 logN∗h0 on W (s∗), and h = h0 on
the complement of all the cuspidal neighborhoods. By the Lemma and
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the above Lelong number computations, h satisfies the desired
properties. q.e.d.

Provided we have for each cusp ∗ a depth t∗ < s∗ such that the
horoball neighborhoods W∗(t∗) are disjoint, then we can apply the same
argument to each cusp simultaneously:

Corollary 2.13. For t∗ chosen as above,

(4) (KX +D)− n

2π

∑
∗

∑
ρ∈Σ∗

(t∗Nm∗(ρ))1/n ·Dρ

is ample modulo the boundary. In particular,

(KX +D)− n

2π

∑
∗
t
1/n
∗ ·D∗

is ample modulo the boundary.

Proof. By definition, Nm∗ is at least 1 on nonzero integral lattice
points. q.e.d.

As mentioned above, for the main result all we will need is that the
above divisors are nef modulo the boundary—that is, nonnegative on
curves not contained in the boundary.

Remark 2.14. We note here that for quotients with orbifold points
in dimension n > 1, the orbifold points are isolated and, therefore, the
above conclusions are still valid.

3. Hilbert modular varieties

Fix F a totally real field of degree n with ring of integers OF ⊂ F
and denote the real embeddings by σi : F ↪→ R. We will typically
suppress OF , F from the notation as much as possible. For more a
more detailed account of Hilbert modular groups, we refer the reader to
[vdG88, Gor02].

Hilbert modular groups. To any projective rank 2 module3 M over
OF we can associate a Hilbert modular group SL(M) ⊂ G = SL2(R)n

after choosing an isomorphism M ⊗σi R ∼= R2 for each embedding σi.
Any such M is isomorphic to M ∼= OF ⊕ a for an ideal a ⊂ OF , and,
therefore, up to conjugation we need only consider Γ(1) := SL(OF ⊕
a) where the embedding in G is obtained on the ith factor from the
embedding OF ⊕ a→ R2 via σi.

Our eventual goal is to prove Theorem A uniformly in the choice
of F and M for fixed [F : Q], and we will use the phrase “uniformly
in Γ(1)” to mean uniformity in this sense. Note that Hilbert modular

3Strictly speaking M should be endowed with a symplectic pairing as well.
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groups exist for non-maximal orders as well, though we do not pursue
uniformity in this level of generality here.

For any ideal n ⊂ OF , we define the congruence subgroups

Γ0(n) :=

{
A ∈ Γ(1) | A ≡

(
∗ ∗
0 ∗

)
mod n

}
,

Γ1(n) :=

{
A ∈ Γ(1) | A ≡

(
1 ∗
0 ∗

)
mod n

}
,

of elements A ∈ Γ(1) which fix a primitive line or vector mod n, respec-

tively. Concretely, Γ0(n) consists of determinant 1 matrices

(
α β
γ δ

)
for

which α, δ ∈ OF , β ∈ a−1, and γ ∈ an.
The Hilbert modular stack associated to Γ(1) is the quotient X(1) :=

Γ(1)\Hn, and we also have level covers

X0(n) := Γ0(n)\Hn X1(n) := Γ1(n)\Hn.

X(1), X0(n), and X1(n) are a priori analytic Deligne–Mumford stacks.
Let Γ be any of the Hilbert modular groups described above. The

Baily–Borel compactification (Γ\Hn)∗ of the coarse space of Γ\Hn is ob-
tained by adding a finite set of points corresponding to the equivalences
classes of the rational boundary components of Hn under the action of
Γ. The Baily–Borel compactifications are normal projective varieties,
so, in fact, X(1), X0(n), X1(n) are smooth algebraic Deligne–Mumford
stacks. For our purposes the distinction between X1(n) and its coarse
space is unnecessary since for |Nm n| sufficiently large (uniformly in
Γ(1)), X1(n) will have no stabilizers:

Lemma 3.1. For n ⊂ OF with |Nm(n)| > 4n, X1(n) has no elliptic
points.

Proof. Suppose γ ∈ Γ1(n) fixes a point of Hn. Then the eigenvalues
of γ must be roots of unity. However, the characteristic polynomial of
γ is x2 − αx + 1 where α ∈ OF with α − 2 ∈ n. It, thus, follows that
the absolute value of the norm of (α−2), if non-zero, is at least as large
as the norm of n. However, since α is the sum of two roots of unity
it is of absolute value at most 2 in any Archimedean embedding, and
thus, has norm at most 4n. By our assumption on n the norm of (α−2)
must be 0, and thus, α = 2. It follows that γ is unipotent, and for γ to
have fixed points we conclude that γ is the identity element, as desired.

q.e.d.

Moduli of abelian varieties with real multiplication. We briefly
describe the moduli interpretation of the Hilbert modular stacks intro-
duced in the previous subsection.

Definition 3.2. Let S be a scheme. An abelian scheme with real
multiplication by OF over S is an abelian scheme A/S of (relative)
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dimension n together with an injection OF → EndS(A). We simply say
A/S has real multiplication if it has real multiplication by OF for some
totally real field F .

Again, we restrict ourselves to the case of multiplication by the max-
imal order here.

Over C, the Hilbert modular stack X(1) associated to Γ(1) = SL(M)
is naturally identified with the moduli stack of abelian varieties A with
real multiplication by OF such that H1(A,Z) ∼= M as OF -modules4 .
Analytically, the isomorphism is described as follows; for simplicity take
M = OF ⊕ a. To any τ = (τ1, . . . , τn) ∈ Hn we can associate a lattice

L := OF

1
...
1

+ a

τ1
...
τn

 ⊂ Cn,

where OF (and a) acts on the ith factor by multiplication via the em-
bedding σi. The complex torus A = Cn/L evidently has an action
OF → End(A) with H1(A,Z) ∼= OF ⊕ a, and it can be shown that any
n-dimensional complex torus with a (faithful) action by OF admits a
polarization.

Let n ⊂ OF be an ideal. For A an abelian variety with real multiplica-
tion by OF , we define the n-torsion A[n] to be the sub-group scheme an-
nihilated by n. For two such abelian varieties A,A′ a cyclic n-isogeny is
an isogeny f : A→ A′ such that the induced map End(A)Q → End(A′)Q
is a map of OF -modules and the sub-group scheme ker f is cyclic and
contained in A[n]. Over a characteristic 0 algebraically closed field, a
n-isogeny is equivalent to specifying a cyclic OF /n submodule of A[n].
As above, over C we can identify X0(n) (resp. X1(n)) with the stack of
abelian varieties with real multiplication by OF and a cyclic n-isogeny
from A (resp. a point of A[n] with annihilator n).

Canonical depths. The rational boundary components of Γ(1) (and
its subgroups) are naturally identified with P(MF ) ∼= P1(F ), on which
SL2(F ) acts via the standard action. For an ideal n ⊂ OF , we would like
to show that the canonical depths of the cusps of Γ0(n) grow uniformly
in |Nm(n)|. For any fractional ideal b ⊂ F , denote by |b| the smallest
nonzero value of |Nm(x)| for x ∈ b. Clearly we have |b| ≥ |Nm(b)|.

Given two distinct (possibly equivalent) cusps ξ1 = (α : β), ξ2 = (γ :
δ) ∈ P1(F ) of Γ0(n), we may assume by clearing denominators that both
have integral coordinates. Consider the matrix

T =

(
α γ
β δ

)
,

4Again, strictly speaking M should be endowed with a symplectic pairing, in
which case the isomorphism is one of polarized OF -modules.
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and set ∆ = αδ − βγ. By conjugating

T−1Γ0(n)T,

we have moved ξ1 to∞ and ξ2 to 0. Let b1 = αa+(β) and b2 = γa+(δ).

Lemma 3.3. The unipotent stabilizer of ∞ in T−1Γ0(n)T is(
1 ∆a(b−2

1 ∩ β−2n)
1

)
,

and that of 0 is (
1

∆a(b−2
2 ∩ δ−2n) 1

)
.

Proof. We need to know what matrices

(
1 t
0 1

)
∈ G conjugate back

to elements of Γ0(n), and we find

(5) T

(
1 t
0 1

)
T−1 =

(
1− αβ

∆ t α2

∆ t

−β2

∆ t 1 + αβ
∆ t

)
,

which is in Γ(1) if and only if t ∈ ∆ab−2
1 , and additionally in Γ0(n) if

we have t ∈ ∆aβ−2n as well. Similarly, for 0 and elements

(
1 0
t 1

)
∈ G.

q.e.d.

Now the horoball

U(s) = {z ∈ Hn | N(z) > 1/s},

around ∞ is mapped under the inversion

(
0 −1
1 0

)
to the horoball

U−1(s) :=

{
z ∈ Hn |

∏
i

|zi|2 < s ·N(z)

}
,

and, furthermore, that U(s) ∩ U−1(s′) = ∅ if and only if ss′ ≤ 1.
The canonical horoballs at ξ1 and ξ2 are then given in the above

coordinates by

Uξ1(s) = U

(
s

|∆a(b−2
1 ∩ β−2n)|

)
,

and

Uξ2(s) = U−1

(
s

|∆a(b−2
2 ∩ δ−2n)|

)
.

Lemma 3.4. If ξ1 and ξ2 are distinct (possibly equivalent) cusps of

Γ0(n), the canonical horoballs Uξ1(|Nm(n)|1/2) and Uξ2(|Nm(n)|1/2) are
disjoint. In particular, every cusp of Γ0(n) has canonical depth at least

|Nm(n)|1/2.
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Proof. We know the horoballs Uξ1(s1) and Uξ2(s2) are disjoint if

s1s2 ≤ |∆a(b−2
1 ∩ β

−2n)||∆a(b−2
2 ∩ δ

−2n)|,
so it is sufficient to show that the right hand side is at least of size
|Nm(n)|. Now, recall that for two non-zero fractional ideals I, J , we
have (I ∩J)−1 = I−1 +J−1, and also that by factorization we have that
(I + J)2 = I2 + J2. Thus,

(b2
1 + β2n−1) · (b2

2 + δ2n−1) = (α2a2 + β2n−1) · (γ2a2 + δ2n−1),

since we have equality of the two first factors (and the two second fac-
tors). The left hand side contains ∆2a2n−1, and

|∆a(b−2
1 ∩ β

−2n)||∆a(b−2
2 ∩ δ

−2n)|
= |∆a(b2

1 + β2n−1)−1||∆a(b2
2 + δ2n−1)−1|

≥ |Nm(∆a)|2

|Nm(b2
1 + β2n−1)||Nm(b2

2 + δ2n−1)|
≥ |Nm(n)|,

as desired. q.e.d.

Now consider the étale cover X1(n) → X0(n). Disjoint precisely in-
variant horoballs pull back to disjoint precisely invariant horoballs, and
the canonical depth can only increase in covers. Thus, we have the
following:

Corollary 3.5. Each cusp of X1(n) has canonical depth at least

|Nm(n)|1/2. Moreover, the horoball neighborhoods W∗(|Nm(n)|1/2) are
pairwise disjoint.

Remark 3.6. Lemma 3.4 is far from optimal. For example, it is not
difficult to show by a similar analysis that for a prime p the cusps of
X0(p) that ramify over X(1) have canonical depth |Nm(p)|, and, there-
fore, the same is true for all cusps (since an involution interchanges
the ramifying and non-ramifying cusps of X0(p), though possibly cor-
responding to a different choice of M). These horoball neighborhoods
will, however, intersect, albeit at most with multiplicity two. Further-
more, Corollary 3.5 is even less optimal because it is pulled back from
X0(n). For our purposes we only need the uniform growth.

Finally, using Corollary 2.13 we conclude that a divisor of growing
slope on X1(n) is nef modulo the boundary, uniformly in Γ(1):

Proposition 3.7. For n ⊂ OF such that X1(n) has no elliptic points,

a) Each cusp of X1(n) has canonical depth at least |Nm(n)|1/2;
b)

KX1(n) +
(

1− n

2π
|Nm(n)|1/2n

)
D

is ample modulo the boundary.
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Proof. The second statement follows from Corollary 2.13. q.e.d.

Remark 3.8. By a minor modification of the proof of Lemma 3.4,
we see that Proposition 3.7 is true for the principal cover X(n) with

|Nm(n)|1/2 replaced by |Nm(n)|.

Injectivity radii. The final ingredient of the proof of the main theorem
is some uniform estimates on the injectivity radii of Hilbert modular
groups. Recall that for any discrete Γ ⊂ G = SL2(R)n, the injectivity
radius ρ at a point x ∈ X = Γ\Hn is defined as half the length of the
smallest loop through x, where the length is taken with respect to the
Kobayashi distance on X. We can write

ρx =
1

2
inf

16=γ∈Γ
dHn(x̃, γ · x̃),

for x̃ ∈ Hn any lift of x. Equivalently, ρx is the largest radius r such
that the Kobayashi ball B(x, r) ⊂ Hn of radius r around x injects in
the quotient X. The global injectivity radius ρX is the global infimum:

ρX := inf
x∈X

ρx.

For a group Γ with cusps, ρX = 0 because unipotent elements of Γ
correspond to homotopy classes of geodesics wrapping the cusps, and
the length of these clearly go to 0. We, therefore, define the semi-simple
injectivity radii by only considering semi-simple elements Γss ⊂ Γ: for
1 6= γ ∈ Γss, define

ργ :=
1

2
inf
z∈Hn

dHn(z, γ · z),

and then

ρssX := inf
16=γ∈Γss

ργ .

Lemma 3.9. For γ ∈ G a semi-simple element with largest eigen-
value λ,

ργ ≥ log |λ|.

Proof. A semisimple γ ∈ SL2(R) can be conjugated to a scaling by
the square a = |λ|2 of its largest eigenvalue, in which case

inf
z
dH(z, γz) = inf

z
dH(z, az)

= inf
z

arcosh

(
1 +

(a− 1)2|z|2

2a(Im z)2

)
≥ log a.

Since the Kobayashi distance on Hn is the maximum of the coordinate-
wise distances, we are done. q.e.d.

Corollary 3.10. ρssX1(n) ≥
1
n log |Nm(n)| − 1.
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Proof. An element γ ∈ Γ1(n) reduces to

(
1 ∗
0 1

)
mod n; if γ is not

unipotent, neither eigenvalue is 1. If σi(α) is the largest eigenvalue of
σi(γ) over all i, then since α− 1 ∈ n we have

|σi(α)| ≥ |Nm(α− 1)|1/n − 1

≥ |Nm(n)|1/n − 1. q.e.d.

For any cusp ∗ with unipotent stabilizer Λ∗, we also define at each point
x ∈ X

ρ∗x :=
1

2
inf
γ∈Λ∗

dHn(x̃, γ · x̃).

We’d like to continue thinking of 1/N∗ as the “distance” to ∗, but N∗
isn’t defined on all of X. If s∗ is the canonical depth of ∗, we can simply

define N∗ to be 1/s∗ outside of W̃∗(s∗).

Lemma 3.11. ρ∗x ≥ N∗(x)−1/n · (1 +O(N∗(x)−1/n)).

Proof. For a real translation by a in H, we have

dH(z, z + a) = 2 tanh−1

(
a√

a2 + 4(Im z)2

)
,

and so

dH(z, z + a) =
a

Im z
· (1 +O(a/ Im z)),

in a region where Im z is bounded away from 0. Thus, for λ ∈ Λ∗,

dHn(z, z + λ) ≥ Nm∗(λ)1/n

N∗(z)1/n
· (1 +O(Nm∗(λ)1/n/N∗(z)

1/n)).

By definition the smallest nonzero value of Nm∗(λ) is 1, and the result
follows. q.e.d.

4. Geometric consequences

The results of the previous two sections allow us to conclude some
interesting geometric results, including Theorem E and Corollaries F,
G, and H. These results are not necessary for the proof of the main
theorem in the following section.

We choose once and for all smooth toroidal compactifications X1(n)
for all X(1) and n ⊂ OF (for which X1(n) has no elliptic points). Each
of the following results has a strengthening for principal covers X(n)
using Remark 3.8 which for the most part we leave implicit.

The following is an immediate consequence of Proposition 3.7:

Proposition 4.1. Assume X1(n) has no elliptic points. For any λ >
0, KX1(n)− (λ−1)D is ample modulo the boundary provided |Nm(n)| >
(2πλ
n )2n.
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Note that by Lemma 3.1 we may uniformly assume X1(n) has no
elliptic points. By a general result of Tai [AMRT10], an arithmetic
quotient Γ\Ω of a bounded symmetric domain has an étale cover which
is of general type. Proposition 4.1 implies almost all of the torsion covers
of Hilbert modular varieties are of general type:

Corollary 4.2. Assume X1(n) has no elliptic points. Then it is of

general type provided |Nm(n)| >
(

2π
n

)2n
.

In particular, this will be true of every torsion cover without elliptic
points for n ≥ 6 (as in this case 2 > (2π

n )2n). More generally, we need
only assume the singularities are canonical, which they are by [Tsu85]
provided n > 6. By Remark 3.6 the canonical depths of X(1) itself are
at least 1, and, therefore, we conclude:

Corollary 4.3. X(1) is of general type provided n > 6.

There is also an interesting consequence pertaining to the hyperbol-
icity of the torsion covers X1(n). Recall that the Green–Griffiths con-
jecture asserts that for any general type variety X, there is a strict
subvariety Z ⊂ X such that every entire map C → X has image con-
tained in Z.

Corollary 4.4. Every entire map C → X1(n) has image contained
in the boundary provided |Nm(n)| > (2π)2n.

Proof. By a theorem of Nadel [Nad89, Theorem 2.1], an entire map
C→ X into a toroidal compactification of a quotient of a bounded sym-
metric domain must be contained in the boundary as soon as KX +(1−
1/γ)D is big, where the sectional curvature is bounded from above by
−γ (with the normalization Ric(h) = −h). For us γ = 1/n is sufficient,
and by Proposition 3.7 we see that |Nm(n)| > (2π)2n is enough. By
Lemma 3.1, this rules out elliptic points as well. q.e.d.

We can deduce from Corollary 4.4 the genus 0 and 1 case of the geo-
metric torsion conjecture. Our proof in the next section for this special
case will be independent of Corollary 4.4.

Corollary 4.5. Every rational or elliptic curve in X1(n) is contained
in the boundary provided |Nm(n)| > (2π)2n. The same is true of X(n)
provided |Nm(n)| > (2π)n.

This improves a result of Freitag [Fre80] that the statement is true for
sufficiently large principal congruence groups with constant depending
on X(1). In the n = 2 case, a Hilbert modular surface X possesses
a canonical smooth model Y that has no −1 curves in the cuspidal or
elliptic resolutions, but Y is often not minimal. Hirzebruch and Zagier
[HZ77] conjectured that as long as the surface is irrational, the minimal
model is obtained by blowing down “known” curves—that is, modular
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curves or curves arising from the desingularization. Van der Geer proves
that, in fact, the principal congruence covers Y (n) are minimal [vdG79]
for |Nm(n)| larger than a computable constant depending on X(1), and
we obtain a uniform improvement:

Corollary 4.6. For n = 2, Y1(n) is minimal provided |Nm(n)| >
(2π)4. The same is true of Y (n) provided |Nm(n)| > (2π)2.

5. Geometric torsion: uniformity in genus

Let C be a quasi-projective curve over k = C. The generic fiber of
an abelian scheme A/C yields an abelian variety over the function field
A/k(C), and conversely any abelian variety A/k(C) yields an abelian
scheme A/U over an open set U ⊂ C. We define the Mordell–Weil
group to be the group of sections, or equivalently the groups of rational
sections A(C) = A(k(C)), and denote by A(C)tor the torsion subgroup.
An abelian scheme A/C is isotrivial if the fibers Ac are generically iso-
morphic, or equivalently if A/k(C) is the base-change of an abelian
variety over C, and A/C is said to have no isotrivial part if it has no
isotrivial isogeny factor. Note that an abelian scheme A/C with real
multiplication has an isotrivial part only if it is isotrivial. By a folk-
lore result, abelian schemes A/C with no isotrivial part have finitely
generated Mordell–Weil group A(C).

Given our current setup, to prove Theorems A and D it will be enough
to show the following:

Theorem 5.1. Let X1(n) be a smooth toroidal compactification of
X1(n) for any n-dimensional X(1). For any g, every curve C → X1(n)
with (geometric) genus g(C) < g is contained in the boundary for all
but finitely many n, uniformly in X(1).

In the following we’ll use the phrase “uniformly in X(1)” if the state-
ment holds for all X(1) with constant only depending on the dimension
n (and not on the choices of the field F and the module M). For any
λ > 0, define

`(KX − λD) = inf
C 6⊂D

(KX − λD).C,

where the infimum is taken over all integral curves not contained in the
boundary. We show:

Proposition 5.2. For any λ,B > 0, we have

`(KX1(n) − λD) > B,

for all but finitely many n, uniformly in X(1).

Theorem 5.1 then follows from Proposition 5.2 and Lemma 2.1 by
taking λ = n− 1.
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Proof of Proposition 5.2. For curves C → X1(n) not contained in the
boundary we define

d(C) := sup
x∈C

sup
∗

1

N∗(x)
.

We divide such curves into three categories depending on how close to
the boundary they are:

i) Those meeting the boundary: d(C) = 0.
ii) Those not meeting the boundary with a point far from the bound-

ary: d(C) ≥ E, for some E > 0 to be determined.
iii) Those entirely lying close to but not touching the boundary: 0 <

d(C) < E.

We just need to uniformly show that

(∗) (KX1(n) − λD).C > B for |Nm n| � 0,

for all C 6⊂ D.

Case i): In this case D.C > 0, and, therefore, Proposition 3.7 immedi-

ately implies (∗).
Case ii): If d(C) ≥ E, then there is some point x ∈ C with N∗(x) ≤ E
for all cusps ∗. It follows from Corollary 3.10 and Lemma 3.11 that ρx
is large in this region uniformly in |Nm n| if we take E sufficiently large
only depending on B. By (3),

KX .C ≥
2

n
sinh2(ρx/2) multxC ≥

2

n
sinh2(ρx/2),

and this is sufficient for (∗) since D.C = 0.

Case iii): For |Nm(n)| large, E < s∗ for each cusp ∗ and the above

chosen E. Then any curve C in Case iii) is entirely contained in the

horoball neighborhood W̃∗(s) for any E < s < s∗, which is impossible.
Indeed, by Proposition 2.4

vol(C) = vol(C ∩W∗(s∗)) ≥
(s∗
s

)1/n
· volX(C ∩W∗(s))

≥
(s∗
s

)1/n
· vol(C). q.e.d.

The following easy corollary will be useful for proving uniformity in
gonality in the next section. It essentially says that the error term
in Schwarz’s lemma (2) coming from intersections with the boundary
becomes negligible sufficiently high in the torsion level tower:

Corollary 5.3. For any ε > 0 and any curve C → X1(n) not con-
tained in the boundary we have

(1− ε) · 1

2πn
vol(C) ≤ 2g(C)− 2,

for all but finitely many n, uniformly in X(1).
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Proof. Take λ = n
ε − 1. Then by the proposition and Lemma 2.1,

(1− ε) · 1

2πn
vol(C) =

1− ε
n

(
KX +D

)
.C

≤ 1− ε
n

(
KX +D

)
.C +

ε

n
(KX − λD).C

=
1

n

(
KX − (n− 1)D

)
.C

≤ 2g(C)− 2,

for |Nm(n)| � 0. q.e.d.

6. Geometric torsion: uniformity in gonality

Preparations. The idea of the proof of Theorem C is the same as in
Section 5: we show that the torsion level covers X1(n) don’t admit maps
from d-gonal curves C for large |Nm n|. Note that given such a map
C → X1(n)∗, the degree d map C → P1 gives us a map into the d-fold
symmetric product:

P1 → SymdX1(n)∗.

This can be thought of as Weil restriction of the associated (rational)
family of abelian varieties over C down to P1. The main theorem then
obviously follows from the following

Proposition 6.1. Fix X(1). Then every rational curve in
SymdX1(n)∗ is contained in a diagonal for all but finitely many n.

We will again prove the proposition by showing that the only rational
curves in SymdX1(n) are contained in the boundary or a diagonal. By
the boundary of SymdX1(n), we mean the image under the quotient
q : X1(n)d → SymdX1(n) of the locus of points that project to the
boundary in some projection.

Let X be the toroidal compactification of a quotient X = Γ\Hn of
Hn by a rank 1 lattice Γ. The first step is to relate the genus of a
curve C → SymdX to its volume in the same spirit as Lemma 2.1. Of
course, as mentioned in Remark 2.2, the orbifold symmetric product
SymdX is a perfectly valid quotient of Hdn, and if we consider a proper
map U → SymdX from a punctured orbifold curve, then Lemma 2.1
still applies. As every curve C in the coarse space SymdX is the coarse
space of a minimal orbifold curve mapping to SymdX, we obtain a lower
bound to the multiplicity of C along the diagonals and the boundary
in terms of the volume. For clarity we give a second argument only
involving the coarse spaces.
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Consider a map α : P1 → SymdX whose image is not contained in
any diagonal, and let C be the normalization of the fiber product

C

π
��

α′ // X
d

q
��

P1
α
// SymdX

We may assume C is irreducible. Define the total ramification

Ram(π) :=
∑
p∈C

(rp − 1),

where rp is the order of ramification of π at p, so that Riemann–Hurwitz
says

2g(C)− 2 = d!(−2) + Ram(π).

Now π can only ramify at points p on a diagonal, meaning π(p) projects
to the diagonal ∆X via one of the projections to X×X, and the ramifi-

cation order is less than d!. Let Cij = C → X×X be the map obtained
by composing α′ with the ijth projection. Thus, we have

(6)
1

d!
(2g(C)− 2) ≤ max

ij
mult∆X

Cij .

To prove the proposition it is enough to show the following diagonal
multiplicity bound:

Proposition 6.2. Fix X(1). For any M > 0 and any curve C →
X1(n)×X1(n) not contained in the boundary or the diagonal ∆X1(n) we

have
volX1(n)×X1(n)C ≥M ·mult∆X

C,

for all but finitely many n.

Proof of Proposition 6.1 given Proposition 6.2. Continuing with the
above notation, denote by Ci = C → X the composition of α′ with the
projection to the ith factor. Certainly we have

volX×X Cij = volX Ci + volX Cj .

Proposition 6.2 and (6) then clearly contradict the asymptotic Schwarz
lemma in Corollary 5.3. q.e.d.

Diagonal multiplicity estimate. To prove Proposition 6.2, we first
summarize the setup of [HT12] where a diagonal multiplicity estimate
for compact curves is proven. Recall that dH(z, w) is the hyperbolic
distance function on H×H. For any R > 0, denote by

TH(R) = {(z, w) ∈ H×H | dH(z, w) < R},
the radius R tubular neighborhood of the diagonal ∆H ⊂ H×H. Hwang
and To construct a continuous increasing function µ : R → [−∞,∞)
such that, setting f = µ ◦ dH,
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i) µ is supported on [0, R] with µ(0) = −∞ and f is smooth and finite
valued on the complement of ∆H;

ii) i∂∂[f ] ≥ −ωH×H on the complement of ∆H, and for any point
ξ ∈ ∆H,

ν(ωH×H + i∂∂[f ], ξ) = LR;

iii) limR→∞ LR =∞.

By [f ] we mean the distribution associated to f , which is sensible since
a) and b) imply that f+ϕ is plurisubharmonic, where ϕ is a potential for
ωH×H. In general, for any complex manifold X with a (closed) positive
real (1,1) current ω, we say that a continuous locally integrable function
g : X → [−∞,∞) is ω-plurisubharmonic (ω-psh) if i∂∂[g] ≥ −ω. Thus,
f is ωH×H-psh on H×H.
f allows us to prove a diagonal multiplicity estimate for a compact

quotient X = Γ\H. Indeed, for R < ρX , then the quotient of TH(R)
by the diagonal action of Γ embeds as TX(R) in X ×X, and since f is
diagonally invariant it descends to a ωX×X -psh function f on X × X
supported on TX(R). For any curve C ⊂ X × X we then have (cf.
[HT12])

(7) volX×X(C ∩ TX(R)) =

∫
C∩T (R)

ωX×X + i∂∂[f ] ≥ LR ·mult∆X
C.

In fact, Hwang and To construct f so that LR is optimal, but we
only need property iii) above. Since the maximum of plurisubharmonic
functions is plurisubharmonic, and the Kobayashi distance dHn on Hn×
Hn is the maximum of the coordinate-wise distances, properties i)–iii)
continue to hold for f = µ ◦ dHn on Hn ×Hn.

For noncompact quotients X = Γ\Hn, the above approach fails be-
cause ρX = 0. The idea is to uniformly introduce a new metric on X1(n)
so that ρX1(n) is nonzero and growing. The key point is that for a fixed

F the unipotent part of the parabolic stabilizer of a cusp of X1(n) is one
of only finitely many lattices up to scale, corresponding to ideal classes
of F . A new metric in a cuspidal neighborhood can, therefore, be glued
in uniformly in n (for fixed F ), and Proposition 2.4 will show us that
the difference between volumes of curves with respect to the old and the
new metric is negligible sufficiently high in the tower.

Metrics at the cusp. We have seen that each cusp of Γ1(n) can be
conjugated to infinity so that its stabilizer has the form(

u λ
0 u−1

)
for u ∈ H,λ ∈ Λ,

where Λ is some fractional ideal and H is a subgroup of O∗F . By scaling
we can assume N∗ = N . Denote by WΛ,H(s) the quotient of U(s) = {z ∈
Hn | N(z) > 1/s} by this group. If we take {Λi} to be a set of fractional
ideals representing the ideal classes of Cl(F ), then it follows that for each
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cusp ∗ of X1(n) the horoball neighborhood W∗(s) is isomorphic to some
WΛi,H(s). We fix once and for all a smooth toroidal compactification
of each WΛi,O∗F (s). Note that the same fan yields a smooth toroidal

compactification of WΛi,H(s) for any finite index H ⊂ O∗F and the

resulting map q : W̃Λi,H(s) → W̃Λi,O∗F (s) is étale. Using these fixed
cuspidal resolutions, it will, therefore, be the case that for each cusp ∗
of X1(n) we have W̃∗(s) ∼= W̃Λi,H(s) for some i and H.

Fixing Λ, for simplicity we drop the subscript Λ,O∗F from the no-
tation for the moment. Given s0 > 0, there is a continuous func-

tion ψ : W̃ (∞) × W̃ (∞) → [−∞,∞) which is smooth and finite val-
ued on W (∞) × W (∞), −∞ on the boundary, and additionally sat-

isfies the following properties: i) ψ is supported on W̃ (s0); ii) ω′ =
ωW (∞)×W (∞) + i∂∂[ψ] ≥ ω0 for some smooth (complete) Kähler form

ω0 on W̃ (∞) × W̃ (∞). This follows from the fact that the boundary
can be contracted to a point.

Given R > 0, choose sR so that the injectivity radius of every point in

W̃ (∞) r W̃ (sR) is greater than R. Now, there is a continuous function

f ′ : W̃ (∞) × W̃ (∞) → [−∞,∞) which is smooth and finite valued on

W̃ (∞) × W̃ (∞) r ∆
W̃ (∞)

, and satisfies: i) f ′ = f outside of W̃ (sR) ×
W̃ (sR); and ii) f ′ − LR log d

W̃ (∞)
is smooth in some neighborhood of

∆
W̃ (∞)

, where d
W̃ (∞)

is the distance function with respect to ω0. By

compactness and the properties of the function f , there is some constant
B > 0 such that f ′ is Bω′-psh—and, therefore, ψ+f ′ is BωW (∞)×W (∞)-

psh—in W̃ (sR)× W̃ (sR).
We are now in a position to prove the following:

Lemma 6.3. Fix X(1). For each R > 0, there are constants sR, BR >
0 such that for |Nm(n)| � 0, there is a continuous function g : X1(n)×
X1(n)→ [−∞,∞) satisfying:

a) g is supported on

TX1(n)(R) ∪
⋃
∗
W̃∗(sR)× W̃∗(sR),

and smooth and finite valued on the complement of the diagonal and
the boundary;

b) g is BRωX1(n)×X1(n)-psh and for any point ξ ∈ ∆X1(n),

(8) ν(i∂∂[g] +BRωX1(n)×X1(n), ξ) = LR;

c) g is ωX1(n)×X1(n)-psh outside of
⋃
∗ W̃∗(sR) × W̃∗(sR), and for any

point ξ ∈ ∆X1(n) outside of
⋃
∗ W̃∗(sR)× W̃∗(sR),

ν(i∂∂[g] + ωX1(n)×X1(n), ξ) = LR;

d) limR→∞ LR =∞.
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Proof. For each cusp ∗, the pullback g of the function ψ + f ′ con-

structed above to W̃∗(∞) satisfies all four properties, and we may glue
each of these functions into the cusps of X1(n). q.e.d.

Conclusion of the proof. We are now ready to prove the diagonal
multiplicity inequality:

Proof of Proposition 6.2. Given M > 0, choose R such that L(R) >
2M . For simplicity write X = X1(n) and let

W̃R =
⋃
∗
W̃∗(sR)× W̃∗(sR) ⊂ X ×X.

For any curve C → X×X not contained in the diagonal or the boundary,
we have for |Nm(n)| � 0

BR · volX×X C =

∫
C
BR · ωX×X

=

∫
C
i∂∂[g] +BR · ωX×X

≥
∫
C∩XrW̃R

(BR − 1)ωX×X + LR ·mult∆X
C

= (BR − 1) · volX×X(C r W̃R) + LR ·mult∆X
C,

and, therefore,

(9) volX×X(C r W̃R) +BR · volX×X(C ∩ W̃R) ≥ 2M ·mult∆X
C.

Once again letting Ci = C → X be the projection to the ith factor, we
have by Proposition 2.4

volX×X(C ∩ W̃R) ≤
∑
i=1,2

∑
∗

volX(Ci ∩W∗(sR))

≤
∑
1,2

∑
∗

(
sR
s∗

)1/n

volX(Ci ∩W∗(s∗))

≤ 1

BR
· volX×X C,

where in the last line we’ve taken |Nm(n)| large enough so that s∗ >
sR ·Bn

R, using Proposition 3.7. Combining this with (9), we obtain

volX×X C ≥M ·mult∆X
C,

for |Nm(n)| � 0, as desired. q.e.d.
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