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HEAT FLOWS ON HYPERBOLIC SPACES

Marius Lemm & Vladimir Markovic

Abstract

In this paper we develop new methods for studying the conver-
gence problem for the heat flow on negatively curved spaces and
prove that any quasiconformal map of the sphere S

n−1, n ≥ 3,
can be extended to the n-dimensional hyperbolic space such that
the heat flow starting with this extension converges to a quasi-
isometric harmonic map. This implies the Schoen–Li–Wang con-
jecture that every quasiconformal map of S

n−1, n ≥ 3, can be
extended to a harmonic quasi-isometry of the n-dimensional hy-
perbolic space.

1. Introduction and main result

1.1. Harmonic maps via heat flows. A central question in the the-
ory of harmonic maps is under what assumptions a map φ : M → N
between two negatively curved Riemannian manifolds can be deformed
into a harmonic map.

In the pioneering work of Eells and Sampson [8], it was proved that
any C1 map φ : M → N can be deformed into a harmonic map when M
and N are compact without boundary and N has negative curvature.
Their seminal idea was to obtain the harmonic map as the large time
limit of a solution to the heat equation

(1)
τ(u)(x, t) = ∂tu(x, t), on M × [0,∞),

u(x, 0) = φ(x), on M.

Here τ denotes the tension field of a map. The convergence of the heat
flow as t → ∞ is based on the fact that there is a monotone decreas-
ing energy functional. Importantly, this energy is finite for all initial
C1 maps in the compact setting. Hamilton [10] proved an analogous
statement for compact manifolds with boundary. When M,N are non-
compact, convergence of the heat flow was established by Liao and Tam
[16] under the assumption that φ has finite energy (see also [29]). Li
and Tam [18] proved convergence to a harmonic map assuming that
τ(φ) ∈ Lp for some 2 < p < ∞, see also [17]. Wang [34] showed that it
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is enough to assume that |τ(φ)| tends to zero uniformly near the bound-
ary to make sure that the heat flow converges. We refer the reader to
[18, 22, 34] for further background on the heat equation on Riemannian
manifolds. We note that the existence of harmonic maps can also be
proved without using the heat equation, see, e.g., [29].

1.2. The Schoen–Li–Wang conjecture. Of particular interest is the
case where M = N = H

n is the n-dimensional hyperbolic space. The
homotopy class of a map φ : Hn → H

n corresponds to its action on the
“boundary”, which we identify as usual with S

n−1. The main conjecture
is that any quasiconformal boundary map gives rise to a harmonic map
of hyperbolic space.

Conjecture 1.1 (Schoen, Li and Wang). Let n ≥ 2. For every
quasiconformal map f : Sn−1 → S

n−1, there exists a unique harmonic
and quasi-isometric extension H(f) : Hn → H

n.

The precise definitions will be given later. Schoen [28] conjectured
this for n = 2 and the generalization to all n ≥ 2 is due to Li and Wang
[21]. The uniqueness part of the conjecture was established by Li and
Tam [20] for n = 2 and by Li and Wang [21] for all n. The existence
part remained an open problem for all n ≥ 2, with several partial and
related results [19, 33, 11, 34, 4]. Recently, existence was proved in
n = 3 [24] (without using the heat flow). The proof of existence in the
n = 2 case was recently published in [25].

Many of the convergence results for the heat equation that we dis-
cussed above were motivated by versions of Conjecture 1.1. The idea is
that starting from a quasiconformal boundary map f : Sn−1 → S

n−1,
one defines an appropriate extension to hyperbolic space H

n. If the
extension is sufficiently regular (e.g., it has tension field in Lp for some
2 < p < ∞), one can run a heat flow with it as the initial map, which
then converges to a harmonic map. Since the heat flow will be a quasi-
isometry with uniformly bounded distance from the initial map, it is also
an extension of f . This yields the existence of a harmonic extension if
one has a sufficiently regular extension of the quasiconformal boundary
map.

The limitations of previous works with regards to the general Con-
jecture 1.1 lie in the fact that in order to get sufficient regularity of
the extension, one needs much stronger regularity of the boundary map
f : Sn−1 → S

n−1 than just quasiconformality (it is required that f is
C1). For this reason, the heat flow method has not been successful in
proving Conjecture 1.1 so far.

1.3. Main result. In this paper, we prove that any quasiconformal
map has a “good extension” such that the heat flow starting with this
extension converges to a harmonic quasi-isometry. Moreover, the reg-
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ularity of the harmonic map depends only on the distortion K of the
quasiconformal map.

Theorem 1.2. Let n ≥ 3 and K ≥ 1. Let f : Sn−1 → S
n−1 be a

K-quasiconformal map. Then, there exists a quasi-isometric extension
of f , E(f) : Hn → H

n, such that the solution u to (1) with the choice
φ ≡ E(f) converges to a harmonic quasi-isometry H(f) as t → ∞. The
convergence holds pointwise in H

n and is uniform on compacts.
Moreover, there exist L = L(K) > 0 and A = A(K) ≥ 0 such that

E(f) and H(f) are (L,A)-quasi-isometries.

Remark 1.3. Throughout the paper we write C = C(K1,K2, . . .)
to say that the constant C depends only on K1,K2, . . . The constant C
may also implicitly depend on the dimension n.

The extension E is a higher-dimensional generalization of the “good
extension” constructed recently in [24], see Section 5 for the details. We
note

Corollary 1.4. Let n ≥ 3. For every quasiconformal map f :
S
n−1 → S

n−1, there exists a harmonic and quasi-isometric extension
H(f) : Hn → H

n.

Together with the uniqueness result of [21], this proves Conjecture
1.1 when n ≥ 3.

1.4. A sketch of the proof. Let a ∈ S
n−1 and write Ga(f) for the

good extension of a K-quasiconformal map f : Sn−1 → S
n−1 for which

f(a) = a (see Section 5 for details). Most importantly, the construction
is such that |τ(Ga(f))| is small at a “random” point in hyperbolic space
(i.e., the fraction of points on any geodesic sphere where the tension
field is greater than ε goes to zero as the geodesic distance increases, for
every ε > 0).

We write ua,f (x, t) for the solution to the heat Equation (1) with
initial map φ ≡ Ga(f). (It follows from standard results about the heat
equation that ua,f (x, t) exists for all times and is unique, see Proposition
2.2.) The proof of Theorem 1.2 is based on the following two key
results.

For a function g defined on H
n, we write

‖g‖ = sup
x∈Hn

|g(x)|.

(I) In Theorem 3.1, we prove limt→∞ ‖τ(ua,f )(·, t)‖ = 0.
(II) In Theorem 3.2, we show that there exist ε0 = ε0(K) > 0 and

D0 = D0(K, a) such that

‖dHn (Ga(f), ψ) ‖ ≤ D0

holds for all C2 maps ψ : Hn → H
n which extend f and satisfy

‖τ(ψ)‖ < ε0.
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Together, Theorems 3.1 and 3.2 readily imply Corollary 1.4. We will
give the complete proof in the next section. Here we just note that by
combining them one gets

sup
t>0

‖dHn (ua,f (·, t),Ga(f)) ‖ < ∞,

which by Arzela–Ascoli and Theorem 3.1 implies that ua,f converges to
a harmonic map along a subsequence of times ti → ∞. The limit is
still an extension of f because it is a quasi-isometry which is at finite
distance from the quasi-isometry Ga(f) extending f . Uniqueness of the
limit then gives convergence for all t → ∞.

While Theorem 3.2, will follow by essentially a straightforward gener-
alization of the arguments in [24], Theorem 3.1 requires more work. It
is based on three ingredients: (a) Hamilton’s parabolic maximum prin-
ciple (6) for subsolutions of the heat equation, (b) the diffusion of heat
in hyperbolic space (see Appendix A) and (c) the new Sector Lemma
4.3 for the good extension.

1.5. Discussion. The theory of good extensions of quasiconformal
maps was initiated in [24]. The most important property of any good
extension is that it is “almost harmonic” (i.e., it has small tension field
at “most” points). However, in this paper we have to develop a broader
and more detailed theory of the good extension than the one defined
in [24]. We introduce a family of good extensions {Ga}a indexed by
boundary points at which they are “anchored”, see Definition 5.4. We
extend the theory of good extensions by the new notion of “partial
conformal naturality”. It is important to relate different members of
the family {Ga}a. Indeed, it says that for two points a, b ∈ S

n−1 and
I, J ∈ Isom(Hn) with I(b) = J(b) = a, the good extension “anchored”
at a and b are related by

I ◦ Gb(f) ◦ J−1 = Ga(I ◦ f ◦ J−1),
for every f ∈ QCb(S

n−1). In particular, this implies that the good
extension Ga is continuous in a. We refer to Section 5 for a detailed
discussion of the good extension.

We conclude the introduction with some remarks.
The recent work [24], which proves the existence part of Conjecture

1.1 when n = 3, does not use the heat flow method and instead follows
a different approach. There, the main work lies in establishing that the
set of K-quasiconformal maps which admit a harmonic quasi-isometric
extension is closed under pointwise convergence. The claim then follows
from the existence result of [19] for diffeomorphisms and the fact that
every quasiconformal map of S2 is a limit of uniformly quasiconformal
diffeomorphisms. However, the analogue of the latter statement is not
known for any higher-dimensional unit sphere and so we cannot use the
same approach when n ≥ 4. Nonetheless, there is some overlap with
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the methods used in [24]. First and foremost, the good extension from
Section 5 is a higher-dimensional analogue of the good extension from
[24]. Second, as already mentioned, Theorem 3.2 follows essentially
from ideas in that paper.

What drives our proof behind the scenes is the quasiconformal Mos-
tow rigidity which holds in the hyperbolic space of dimension ≥ 3. More
precisely, in order to prove that the good extension is almost harmonic
at most points, see Proposition 5.3, we heavily use the fact that every
quasiconformal map of Sn−1 with n ≥ 3 is differentiable almost every-
where (and the derivative has maximal rank). It is known that Mostow
rigidity fails for n = 2 and, consequently, the existence proof in that
case [25] is very different from the ones in [24] and here.

After our preprint had appeared, Benoist and Hulin [2] showed that
the methods from [25] can be generalized to give a proof of Conjecture
1.1 for all n ≥ 2. They do not prove the convergence of the heat flow,
however.

2. Preliminaries

We recall the following definitions.

2.1. Quasi-isometries and quasiconformal maps. Let F : X → Y
be a map between two metric spaces (X, dX) and (Y, dY ).

We say that F is an (L,A)-quasi-isometry if there are constants L > 0
and A ≥ 0, such that

1

L
dY (F (x), F (y))−A ≤ dX(x, y) ≤ LdY (F (x), F (y)) +A,

for every x, y ∈ X. An (L, 0)-quasi-isometry is also called an L-Bi-
Lipschitz map.

We define the distortion function as

K(F )(x) = lim sup
t→0

max
dX(x,y)=t

dY (F (x), F (y))

min
dX(x,y)=t

dY (F (x), F (y))
.

If K(F )(x) ≤ K on some set U ⊂ X, we say that F is locally K-
quasiconformal on U . If F is a global homeomorphism and K(F )(x) ≤
K for every x ∈ X, then we say that F is K-quasiconformal (or K-qc
for short).

We recall that every quasi-isometry F : Hn → H
n extends continu-

ously to a quasiconformal map on ∂Hn ≡ S
n−1. Two quasi-isometries

F,G have the same qc extension if their distance dHn(F (x), G(x)) is
uniformly bounded on H

n, see Proposition 1.6 in [21].

Definition 2.1. Let a ∈ X. We write QCa(X) for the set of quasi-
conformal maps F : X → X which fix a, i.e., for which F (a) = a.
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For further background on quasi-isometries and qc maps, see
[21, 33, 26].

2.2. Energy, tension field and harmonic maps. Let (M, g), (N, h)
be Riemannian manifolds and let F : M → N be a C2 map. The energy
density of F at a point x ∈ M is defined as

e(F ) =
1

2
|dF |2,

where |dF |2 is the squared norm of the differential of F , taken with
respect to the induced metric on the bundle T ∗M × F−1TN . Equiva-
lently,

e(F ) =
1

2
tracegF

∗h,

and, therefore, in local coordinates

e(F ) =
1

2
gijhαβ

∂Fα

∂xi
∂F β

∂xj
.

The tension field of F is given by

τ(F ) = traceg∇dF,

where ∇ is the connection on the vector bundle T ∗M×F−1TN induced
by the Levi-Civita connections on M and N.

F is called harmonic if τ(F ) ≡ 0. For background on harmonic maps
see [31, 22].

2.3. The heat equation. Recall the heat equation with initial map
φ : Hn → H

n,

(2)
τ(u)(x, t) = ∂tu(x, t), on H

n × [0,∞),

u(x, 0) = φ(x), on H
n.

We quote a result which guarantees global in time existence and unique-
ness of solutions to the heat equation for sufficiently nice initial maps
φ. It follows by combining Corollary 3.5 and Lemma 2.6 in [34].

Proposition 2.2 (Global in time existence and uniqueness). Let φ :
H

n → H
n be a C2-map with ‖τ(φ)‖ ≤ T for some T > 0. Then, there

exists a unique solution u : Hn × [0,∞) → H
n to the heat equation (1)

with initial map φ.

3. Statement of two key results and proof of main result

3.1. Uniform convergence of the tension. For f ∈ QCa(S
n−1), let

Ga(f) be the good extension defined in Section 5. Since Ga(f) is a C2

map with uniformly bounded tension (see Definition 5.7 (ii)), Proposi-
tion 2.2 implies that the heat equation with initial map φ ≡ Ga(f) has
a unique solution for all times, call it ua,f (x, t).
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The following theorem is the first key result. It says that the tension
field of ua,f (x, t) converges to zero, uniformly in space, as time goes to
infinity.

Theorem 3.1. Let n ≥ 3. For every ε > 0, there exists t0 = t0(K, ε)
such that for all t ≥ t0, we have

(3) ‖τ(ua,f )(·, t)‖ < ε,

for every a ∈ S
n−1 and every K-qc map f ∈ QCa(S

n−1).

The proof of Theorem 3.1 is based on Hamilton’s parabolic maximum
principle and the new Sector Lemma 4.3. Here is a brief discussion of
the ideas in the proof.

• By Hamilton’s parabolic maximum principle [10], we have

|τ(ua,f )(x, t)|2 ≤
∫
Hn

H(x, y, t)|τ(Ga(f))(y)|2dλ(y),

where dλ denotes the volume measure for the hyperbolic metric
and H(x, y, t) is the standard heat kernel of hyperbolic space.

• We evaluate the integral in geodesic polar coordinates centered at
x. We then use the diffusion of heat in hyperbolic space. Namely,
we use that the heat kernel times the hyperbolic volume measure
is effectively supported on a certain “main annulus” which travels
to infinity as t → ∞. (We derive the main annulus in Appendix
A, see Figure 3 for a picture.)

• Since the tension field of the good extension Ga(f) is small at a
random point, we expect that |τ(Ga(f))| becomes small on average
on the main annulus. To prove the claim (3), though, we need this
convergence to be uniform in x (or, equivalently, uniform in f).
This creates a problem since the heat dissipates in the hyperbolic
space as the time goes to infinity.

• The solution to this is to cover the main annulus by “good” sec-
tors on which |τ(Ga(f))| is small on average by the crucial Sector
Lemma 4.3. Importantly, the good sectors have sizes which are
bounded uniformly in x. As usual, uniformity is proved by ap-
pealing to the compactness of subsets of K-qc maps fixing certain
points via Arzela–Ascoli.

• To prove the Sector Lemma 4.3, it is helpful to work in a certain
upper half space model of hyperbolic space. When choosing the
upper half space model, other restrictions prevent us from also
choosing which boundary point is mapped to infinity. Therefore,
it is important for us that the good extensions at different bound-
ary points are related via the partial conformal naturality already
mentioned in the introduction (see also Definition 5.5).
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3.2. Every almost harmonic extension is close to the good ex-
tension. The second key result is

Theorem 3.2. Let K ≥ 1 and a ∈ S
n−1. There exists ε0 = ε0(K) > 0

and D0 = D0(K, a) such that for all K-qc maps f ∈ QCa(S
n−1),

‖dHn (Ga(f), ψ) ‖ ≤ D0

holds for all C2 quasi-isometries ψ : H
n → H

n which extend f and
satisfy ‖τ(ψ)‖ < ε0.

The statement of Theorem 3.2 with ε0 = 0 was proved in [24]. The
proof of Theorem 3.2 is word by word the same as the proof of the
corresponding statement from [24], modulo their obvious generalization
to higher dimensions and the observation that they provide sufficient
“wiggle room” to allow for the presence of the ε0. There are two places
where very minor changes have to be made to the argument from [24]
and we will describe these below.

Here is a very brief description of the proof of Theorem 3.2. One uses
the Green identity on a punctured ball to lower bound the maximum
of

d2 ≡ dHn (Ga(f), ψ)
2 ,

by the integral of its Laplacian times the Green’s function. Then, one
applies the usual lower bound on the Laplacian of the distance [30, 13]
to get a lower bound on this integral in terms of the maximum of d2

times a constant which depends on the radius of the ball. This constant
can be made large by increasing the radius of the ball and one concludes
that d2 is bounded.

Remark 3.3. In fact, with a little extra work the constant D0 in
Theorem 3.2 can be chosen independently of a ∈ S

n−1. To see this,
one follows the same proof except that one replaces the compactness
argument of Lemma 3.2 in [24] with the slightly more elaborate one
used in the proof of the Sector Lemma 4.3 (i.e., essentially compactness
of Sn−1 and continuity of the good extension Ga in a).

3.3. Proof of main result.

Proof of Theorem 1.2 and Corollary 1.4. We assume Theorems 3.1
and 3.2 hold. By conjugation with appropriate isometries and the con-
formal naturality of harmonic maps, it suffices to prove the claim for all
K-qc f ∈ QCa(S

n−1) with a ∈ S
n−1 and K ≥ 1 fixed.

By Proposition 5.8, the good extension Ga(f) is admissible in the
sense of Definition 5.7. First, it is an (L,A)-quasi-isometry for some
L = L(K) and A = A(K). Second, its tension is uniformly bounded,
‖τ(Ga(f))‖ ≤ T = T (K). From Hamilton’s parabolic maximum prin-



HEAT FLOWS ON HYPERBOLIC SPACES 503

ciple (see (6) below and recall that the integral of the heat kernel is
normalized to one) we find that

‖τ(ua,f )(·, t)‖ ≤ T,

for all t ≥ 0. Since ua,f solves the heat equation, this implies that
‖dHn (Ga(f), ua,f (·, t)) ‖ is bounded for every finite time t (with a bound
depending only on t and K). By combining Theorems 3.1 and 3.2, the
distance is also bounded for all t ≥ t0(K). This proves the important
intermediate result

(4) sup
t>0

‖dHn (Ga(f), ua,f (·, t)) ‖ ≤ C,

for some constant C = C(K) > 0. By a standard application of Cheng’s
Lemma [5] (see also [17, 34]), this gives a bound on the energy density
of ua,f (·, t) which is uniform in t. Together with regularity results for
the heat equation, this implies that there exists a sequence ti → ∞ such
that ua,f (·, ti) and its derivatives converge pointwise (and uniformly on
compacts) to a smooth map

H(f) : Hn → H
n,

which is then harmonic by Theorem 3.1. Recall that Ga(f) is an (L,A)-
quasi-isometry and that by (4), its distance to H(f) is bounded by
C = C(K). From this, we conclude that there exist L1 = L1(K) > 0 and
A1 = A1(K) ≥ 0 such that H(f) is an (L1, A1)-quasi-isometry, see, e.g.,
[14]. Finally, any two quasi-isometries which are at finite distance from
each other have the same quasiconformal boundary map and, therefore,
H(f) is an extension of f as well. This proves Corollary 1.4. Finally, by
the uniqueness of the harmonic extension of a quasiconformal map [21],
we can lift the subsequential convergence to convergence for all t → ∞.
This proves Theorem 1.2. q.e.d.

4. Proof of Theorem 3.1

The proof is based on Hamilton’s parabolic maximum principle, the
ballistic diffusion of heat discussed in hyperbolic space (see Appendix
A) and the Sector Lemma 4.3. The first two facts are relatively well
known. The Sector Lemma is at the heart of our argument, its proof is
deferred to the next section.

4.1. Hamilton’s parabolic maximum principle and geodesic po-
lar coordinates. Fix a ∈ S

n−1. Since Hn has negative curvature, it was
observed by Hamilton [10] that

(5) (Δ− ∂t)|τ(ua,f )(x, t)|2 ≥ 0,

for all (x, t) ∈ H
n × [0,∞). Hence, the parabolic maximum principle in

the form of Theorem 3.1 in [34] implies
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(6)

|τ(ua,f )(x, t)|2 ≤
∫
Hn

H(x, y, t)|τ(ua,f )(y, 0)|2dλ(y)

=

∫
Hn

H(x, y, t)|τ(Ga(f))(y)|2dλ(y),

for all (x, t) ∈ H
n×[0,∞). We recall thatH(x, y, t) denotes the standard

heat kernel of hyperbolic space.
The geodesic polar coordinates on H

n, centered at x ∈ H
n, are given

as follows. For y ∈ H
n, we write

y = (ρ, ζ) with ρ = dHn(x, y), ζ ∈ S
n−1,

where ζ is the unit vector at x that is tangent to the geodesic ray that
starts at x and contains y. Using the standard identification between
the unit tangent space at x and the sphere S

n−1, we write ζ ∈ S
n−1.

For a given x ∈ H
n, we will compute the integral on the right-hand

side of (6) in the geodesic polar coordinates centered at x. The volume
element in the geodesic polar coordinates is

sinhn−1(ρ)dρ dζ,

with dζ the Lebesgue measure on S
n−1. Since the heat kernel is a radial

function (which we denote by H(ρ, t)), we have∫
Hn

H(x, y, t)|τ(Ga(f))(y)|2dλ(y)

=

∞∫
0

H(ρ, t) sinhn−1(ρ)

⎛
⎝ ∫

Sn−1

|τ(Ga(f))(ρ, ζ)|2dζ
⎞
⎠ dρ.(7)

Next we will use the fact that heat travels approximately ballistically
in the hyperbolic space (see Appendix A) to conclude that the radial
integral in (7) can be effectively restricted to a certain (t-dependent)
“main annulus”.

4.2. Reduction to the main annulus. Let a ∈ S
n−1 and let f ∈

QCa(S
n−1) be a K-qc map. For all x ∈ H

n, define the radial function

(8) Φ(ρ) :=

∫
Sn−1

|τ(Ga(f))(ρ, ζ)|2dζ,

and recall that ρ denotes hyperbolic distance from x. By Proposition
5.8, {Ga}a is an admissible family of extensions in the sense of Defi-
nition 5.7. In particular, ‖τ(Ga(f))‖ ≤ T (K) ≡ T . This implies that
Φ is bounded and, therefore, it satisfies the assumption in Proposi-
tion A.1 (iii).

We combine (6), (7) and Proposition A.1 (iii), which quantifies the
extent to which the heat flow (more precisely the function
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H(ρ, t) sinhn−1(ρ)) is concentrated on the main annulus. We express
this as follows. Let ε′ > 0. We find

(9) |τ(ua,f )(x, t)|2 ≤ C ′n√
t

Rout∫
Rin

Φ(ρ)dρ+ ε′,

for all x ∈ H
n and for all t ≥ t0 = t0(K, ε′). Here C ′n is a universal

(dimension dependent) constant and we introduced the inner and the
outer radius of the main annulus

(10) Rin := (n− 1)t− l(ε′)
√
t, Rout := (n− 1)t+ l(ε′)

√
t.

(We have l(ε′) =
√
8 log

(
Cn
ε′
)
where Cn > 0 is another universal con-

stant, but we will only need this formula in the final step of the proof.)

4.3. Admissible sectors, good sectors and the Sector Lemma.
Recall that we write (ρ, ζ) for geodesic polar coordinates which are cen-
tered at x ∈ H

n. By a sector we mean a set of the form

(11) S(x, ρmin, r,Ω) := {(ρ, ζ) ∈ H
n : ρmin ≤ ρ ≤ ρmin + r, ζ ∈ Ω} ,

where ρmin, r > 0 and Ω ⊂ S
n−1 (whenever we can, we write S ≡

S(x, ρmin, r,Ω)).
We will only consider the following class of admissible sectors. Intu-

itively, a sector is admissible if the set Ω (of its “angles”) has “bounded
geometry”, and if the diameter of Ω is comparable to e−ρmin (in particu-
lar, note that admissibility is independent of the choices of x ∈ H

n and
r > 0 in the above definition (11) of a sector).

Definition 4.1 (Admissible sectors). Let α ≥ 1. We say that a sector
S = S(x, ρmin, r,Ω) is α-admissible if there exists a disk Din ⊂ S

n−1 of
radius at least α−1e−ρmin and a disk Dout ⊂ S

n−1 of radius at most
αe−ρmin (both in S

n−1 distance) such that

(12) Din ⊂ Ω ⊂ Dout.

In this case, it will be convenient to call Ω an (α, ρmin)-admissible subset
of Sn−1.

The only example of a 1-admissible sector is when the corresponding
set Ω ⊂ S

n−1 is a disk of radius e−ρmin in S
n−1 distance (i.e., a small

spherical cap). Generalizing this example to α-admissible sectors will
give us extra flexibility when we apply the Sector Lemma in the next
section (it is easier to “stack” admissible sectors if the Ω do not have to
be exactly disks).

The Sector Lemma 4.3 below is at the heart of our proof. It says that
for a given α ≥ 1, and when ρmin is sufficiently large, there exists r1 > 0
such that every α-admissible sector S = S(x, ρmin, r1,Ω) is “good” in the
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sense that the tension field (of the good extension) is small on average
on S. We first define a good sector.

Definition 4.2 (Good sectors). Let δ > 0, a ∈ S
n−1 and let f ∈

QCa(S
n−1) be a K-qc map. We say that a sector S (as defined by (11))

is δ-good (or just good if δ is understood), if

(13)

∫
S

|τ(Ga(f))(ρ, ζ)|2dρdζ < δ

∫
S

1 dρdζ.

Next, we state the Sector Lemma. But before we do that, recall that
the notion of admissibility of a sector S(x, ρmin, r,Ω) does not depend
on the choice of r > 0 (it also does not depend on the choice of x ∈ H

n

but we will not use this here). In other words, given r, r′ > 0, we have
that the sector S(x, ρmin, r,Ω) is α-admissible if and only if the sector
S(x, ρmin, r

′,Ω) is α-admissible. By {S(x, ρmin, r,Ω)}r we denote the
family of sectors when r varies over (0,∞), and we say that this family
of sectors is α-admissible if all of the sectors (or equivalently one of
them) are α-admissible.

Lemma 4.3 (Sector Lemma). Let α,K ≥ 1 and δ > 0. There
exist constants r0 = r0(K,α, δ) > 1 and ρ0 = ρ0(K,α, δ) > 0 such
that for all x ∈ H

n, a ∈ S
n−1 and for all K-qc maps f ∈ QCa(S

n−1)
the following holds. Every α-admissible family {S(x, ρmin, r,Ω)}r which
satisfies ρmin > ρ0, contains a δ-good sector S(x, ρmin, r1,Ω), where
1 ≤ r1 ≤ r0.

The Sector Lemma will be proved later, see Section 6. For now, we
continue with the proof of Theorem 3.1.

Before we go on with this, we remark why the factor e−ρmin appears
in Definition 4.1 of an admissible sector.

Remark 4.4. The factor e−ρmin in Definition 4.1 is important in
the proof of the Sector Lemma 4.3, which is given in Section 6. The
proof seeks to get a contradiction to the existence of a sequence of “bad”
sectors which will have to “run off” to the boundary of hyperbolic space
(i.e., ρmin → ∞). Going to appropriate boundary coordinates leads to
the angular variable being rescaled by a factor proportional to eρmin .
To get a contradiction, we need the sequence of bad sectors to yield a
limiting set which has diameter of order one and this is only possible if
we initially scale down the angular variable by e−ρmin .

4.4. Covering the main annulus with good sectors. Recall that
ε′ is a fixed positive quantity, which we will eventually let go to zero.
Our goal is to estimate the right hand side in (9), i.e., the average of
|τ(Ga(f))|2 over the main annulus, by the small quantity ε′.

We will achieve this by covering the main annulus with ε′-good sectors
(i.e., sectors on which |τ(Ga(f))| is small on average, see Definition 4.2).
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Such ε′-good sectors exist by the Sector Lemma 4.3 (in the following we
will just speak of “good” sectors, ε′ is understood).

We cover the main annulus with good sectors in two steps. In step 1,
we cover the main annulus by cylinders (in geodesic polar coordinates)
which do not overlap too much. In step 2, we partition each cylinder
(up to a small region near its top) into good sectors. This partitioning
is most conveniently performed when the cylinders are mapped to Eu-
clidean cuboids and our notion of an admissible sector is flexible enough
to allow for this.

4.5. Step 1: Covering the main annulus by cylinders. We first
note that one can of course cover the sphere efficiently by small disks.

Proposition 4.5. There exists a universal constant βn > 0 (the
universal constant from the Besicovitch covering theorem in R

n) such
that the following holds. For every R > 0, there is a finite covering
{Di}1≤i≤M (M is some finite integer) of Sn−1 by disks Di ⊂ S

n−1 of
radius e−R/2 (in S

n−1 distance) such that every point of Sn−1 is con-
tained in at most βn of the disks.

Proof. We cover S
n−1 by taking a disk of radius e−R/2 (in S

n−1-
distance) around every point. By compactness, we can pass to a finite
subcover. By the Besicovitch covering theorem, there exists a universal
constant βn and yet another finite subcover, call it {Di}1≤i≤M such that
every point on the sphere is contained in at most βn of the Di. (For-
mally, one first takes the finite subcover which exists by compactness
and extends the disks to get a finite covering of Sn−1 by n dimensional
balls, with centers on S

n−1. One then applies the Besicovitch covering
theorem in R

n to these balls and replaces them by the corresponding
disks again.) q.e.d.

We recall that the main annulus from Proposition A.1 is of the form
(in geodesic polar coordinates)

(14) [Rin, Rout]× S
n−1,

where the inner and the outer radius are given by (10).
We now apply Proposition 4.5 with the choice R = Rin. This yields

a covering of Sn−1 by disks

{Di}1≤i≤M ,

of radius e−Rin/2 (in S
n−1 distance) such that every point in S

n−1 is
contained in at most βn of the disks. For every 1 ≤ i ≤ M , we define
the cylinder (in geodesic polar coordinates)

(15) Ci := [Rin, Rout]×Di.

Each cylinder Ci covers the portion of the main annulus which has “an-
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gle” ζ ∈ Di. Notice that each point in the main annulus lies in at most
βn of the cylinders Ci (because the same holds true for the disks Di).

4.6. Step 2: Partitioning the cylinders into good sectors. In
step 2, we shall partition each cylinder Ci into good sectors (excluding
a small region near the top of the cylinder). Good sectors exist by the
Sector Lemma 4.3.

The idea is to apply the Sector Lemma 4.3 iteratively. That is, start-
ing at ρmin = Rin, we stack good sectors on top of each other until we
(almost) reach Rout. The process is as follows. Once we have added a
good sector to the partition of Ci, we then partition the top of this sector
into admissible domains (the last sentence in Definition 4.1), and then
erect a good sector above each admissible domains. We then partition
the top of each new sector and so on. We stop adding good sectors when
the total height of a stack gets close to Rout, so as not to overshoot.

It is important that each new admissible sector is α-admissible, where
α is some universal constant. Therefore, at each inductive step we are
required to partition an admissible domain into admissible domains of an
appropriate (smaller) diameter so that the new domains have uniformly
bounded geometry. This is easily achievable when the domain we want
to partition is a Euclidean cube, see Figure 1.

Thus, it is most convenient to stack the good sectors on top of each
other when their base (originally a subset of the sphere) can be viewed
as a Euclidean cube in R

n−1. We achieve this by mapping each cylin-
der Ci = [Rin, Rout] × Di using a uniformly Bi-Lipschitz map onto the
Euclidean cuboid [Rin, Rout]×E(Rin), where E(Rin) ⊂ R

n−1 is the Eu-
clidean cube of diameter e−Rin and centered at the origin. We then
perform the partition in the cuboid model and return it back to Ci with
the Bi-Lipschitz map.

The upshot is (recall that ε′ > 0 is fixed)

Lemma 4.6. Let 1 ≤ i ≤ M and x ∈ H
n. There exists t0 = t0(K, ε′)

such that for all t ≥ t0, there exists a finite collection {S(i)
j }1≤j≤J of

disjoint sectors (a sector is a set of the form (11)) that is contained in
Ci and almost covers Ci, i.e.,

(16)

∫
Ci\

⊔

1≤j≤J

S
(i)
j

1 dρdζ < r0(K, ε′)
∫
Di

1 dζ,

where r0 is defined by the Sector Lemma 4.3. Moreover, the sectors are
ε′-good in the sense of Definition 4.2, i.e.,

(17)

∫
S
(i)
j

|τ(Ga)(f)(ρ, ζ)|2dρdζ < ε′
∫

S
(i)
j

1 dρdζ.
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Remark 4.7. In fact, we will see in the proof below that the sectors

{S(i)
j }1≤j≤J are α-admissible for some universal constant α > 1, and this

is why we drop the dependence of r0 on the constant α characterizing
the admissibility of the good sector from Sector Lemma 4.3.

We now give formal proofs following the ideas sketched above.

Proof of Lemma 4.6. Fix 1 ≤ i ≤ M and x ∈ H
n. For simplicity

we let Ci = C and Di = D. Let E(Rin) ⊂ R
n−1 denote the Euclidean

cube of sidelength e−Rin centered at the origin of Rn−1. There exists a
Bi-Lipschitz map

B : E(Rin) → D,

with a Bi-Lipschitz constant bounded by a universal (dimension depen-
dent) constant L0 > 1. (This holds because the disk and the cube both
have diameters which are proportional to e−Rin up to a universal dimen-
sion dependent factor. Note also that this diameter is small, so that the
disk D ⊂ S

n−1 is almost flat.)
We now define the partition of the cylinder C into good sectors by

apply the Sector Lemma 4.3 inductively. In every application of the
Sector Lemma, we shall choose δ = ε′ (which was fixed before) and
α =

√
nL0 > 1. Since L0 is a universal constant, the quantities

r0(K,L0, ε
′) > 1 and ρ0(K,L0, ε

′) > 0 provided by the Sector Lemma
only depend on K, ε′. By choosing t ≥ t0 with t0 = t0(K, ε′) sufficiently
large, we can ensure that

Rin := (n− 1)t− l(ε′)
√
t ≥ ρ0(K, ε′)

holds for all t ≥ t0 (this is important because we want to choose ρmin =
Rin next).

The inductive base case is the following. We apply the Sector Lemma
4.3 with ρmin = Rin and Ω = D, which we note is (1, Rin)-admissible in
the sense of Definition 4.1 because D ⊂ S

n−1 is a disk of radius e−Rin .
The Sector Lemma then says that the sector S1 ≡ S(x,Rin, r1, D) is
ε′-good for some 1 ≤ r1 ≤ r0(K, ε′) (here we use that Ω = D is, in
particular, (

√
nL0, Rin)-admissible in the sense of Definition 4.1 so that

we can apply the Sector Lemma with the corresponding r0 = r0(K, ε′)
defined above). The sector S1 is ε′-good in the sense of Definition
4.2 and thus it satisfies (17). Equivalently, this sector can be writ-
ten as

S1 = [Rin, Rin + r1]×D,

which is the first layer of the required partition of the cylinder C. But
most importantly from the point of view of our induction process, we
note that one can also write

S1 = [Rin, Rin + r1]×B
(
E(Rin)

)
,

where we recall that E(Rin) is the cube whose side length is e−Rin .
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Figure 1. This picture shows one step in our inductive
partitioning of the cylinder Ci into good sectors. We
partition the top face of a given cuboid [R,R + r] × Q
and erect a new cuboid on top of each subface Qj . The
new cuboid has the height r1(j) determined by the Sector
Lemma. To obtain the new good sectors, each Euclidean
cubeQj is mapped to some B(Qj) ⊂ S

n−1 by a uniformly
Bi-Lipschitz map B. Notice that each B(Qj) will be
admissible (see Definition 4.1) in the right way, because
it is the Bi-Lipschitz image of a cube Qj with the correct

sidelength ≈ e−(R+r) (here ≈ means equality up to a
factor of two).

For what follows, the reader may find it helpful to consider Fig-
ure 1. The inductive hypothesis is the following. Suppose that an
ε′-good sector S ≡ S(x,R, r,Ω) is included in the partition of the cylin-
der C. Here we assume that Rin ≤ R and 1 < r ≤ Rout − R, and
that

S = [R,R+ r]×B(Q),

where Q ⊂ E(Rin) is a cube of side length between e−R and 2e−R (note
that it follows from these induction hypotheses that such a sector is√
nL0-admissible since B is L0 Bi-Lipschitz and since the sidelength of

Q belongs to the interval [e−R, 2e−R]).
The inductive step is as follows. If R+ r > Rout − r0(K, ε′) we stop.

If not, we partition Q into Euclidean cubes Q1, Q2, ..., QN , which all
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have the same sidelength that lives in the interval [e−(R+r), 2e−(R+r)]
(it is elementary to see that such a partition of Q always exists when
r ≥ 1).

We include the following new sectors into the partition of C. For
1 ≤ j ≤ N , we let Sj ≡ S(x,R + r, r1(j), B(Qj)), where 1 ≤ r1(j) ≤
r0(K, ε′) is given by the Sector Lemma so that Sj is an ε′-good sector.
Note that Sj is

√
nL0-admissible since B is L0 Bi-Lipschitz and since

the sidelength of Qj belongs to the interval [e−(R+r), 2e−(R+r)], and so
we can apply the Sector Lemma with the corresponding r0 = r0(K, ε′)
defined above.

The new sectors Sj satisfy the inductive hypothesis and we continue
the induction until we have that R + r > Rout − r0(K, ε′) for a sector
S ≡ S(x,R, r,Ω) that is in the partition. Since each time when we
add a new sector we increase the height by at least 1 (recall that r1
from the Sector Lemma is at least 1), we will stop adding new sectors
after finitely many steps. Since the sectors that partition C were all
chosen to be ε′-good in the sense of Definition 4.2 the relation (17) is
immediate. q.e.d.

4.7. Conclusion. We will now use the covering of the main annulus by
good sectors to estimate (9), i.e., the integral of the tension field of the
good extension over the main annulus. This is the last step in proving
Theorem 3.1.

Proof of Theorem 3.1. Recall (9), i.e.,

(18) |τ(ua,f )(x, t)|2 ≤ C ′n√
t

Rout∫
Rin

Φ(ρ)dρ+ ε′,

where we used the notation defined in (10). Recall that Φ(ρ) is defined
in (8) as the spherical average of the function |τ(Ga(f))|2. Since this
function is non-negative, we can estimate the integral over the main
annulus by the integral over its covering ∪M

i=1Ci, where the cylinders Ci
are defined in (15). This gives

(19)
1√
t

Rout∫
Rin

Φ(ρ)dρ ≤ 1√
t

M∑
i=1

∫
Ci

|τ(Ga(f))(ρ, ζ)|2dρdζ.

We now estimate this using Lemma 4.6. We first apply (16), i.e., we
estimate the integral over each cylinder Ci by the integral over the finite

disjoint union of good sectors
⊔

1≤j≤J
S
(i)
j , up to a small region on which

we bound the tension field by T . Then, we use that the sectors are
ε′-good, i.e., the average of the tension field is small on them, see (17).



512 M. LEMM & V. MARKOVIC

We get

(20)

1√
t

M∑
i=1

∫
Ci

|τ(Ga(f))(ρ, ζ)|2dρdζ

≤ 1√
t

M∑
i=1

⎛
⎜⎜⎜⎜⎝

∫
⊔

1≤j≤J

S
(i)
j

|τ(Ga(f))(ρ, ζ)|2dρdζ + r0T
2

∫
Di

1 dζ

⎞
⎟⎟⎟⎟⎠

≤ 1√
t

M∑
i=1

⎛
⎜⎜⎝ ε′

∑
1≤j≤J

∫
S
(i)
j

1 dρdζ + r0T
2

∫
Di

1 dζ

⎞
⎟⎟⎠ .

Recall from Proposition 4.5 that the disks do not overlap too much: For
every point in S

n−1 is contained in at most βn of the disks Di (and βn
is a universal constant). First, this gives

r0T
2

√
t

M∑
i=1

∫
Di

1 dζ ≤ r0T
2

√
t
βn|Sn−1|,

where | · | denotes the Lebesgue measure. Moreover, we recall that the
good sectors are contained in the cylinder⊔

1≤j≤J
S
(i)
j ⊂ Ci ≡ [Rin, Rout]×Di,

and then we use that every point in S
n−1 is also contained in at most

βn of the cylinders Ci to get

ε′√
t

M∑
i=1

∑
1≤j≤J

∫
S
(i)
j

1 dρdζ =
ε′√
t

M∑
i=1

∫
⊔

1≤j≤J

S
(i)
j

1 dρdζ

≤ ε′√
t

M∑
i=1

∫
Ci

1 dρdζ ≤ ε′√
t
βn|Sn−1|

Rout∫
Rin

1 dρ

=2ε′l(ε′)βn|Sn−1|.
In the last step, we used that Rout−Rin = 2l(ε′)

√
t, see their Definition

10. Recall that l(ε′) =
√

8 log
(
Cn
ε′
)
where Cn > 0 is a universal constant.

Combining (18)–(20) and the estimates following them, we have shown
that

(21) |τ(ua,f )(x, t)|2 ≤ 2ε′l(ε′)C ′nβn|Sn−1|+
C ′nr0T 2βn|Sn−1|√

t
+ ε′.
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We can now take the supx∈Hn on both sides (the right hand side no
longer depends on x). The second term on the right hand side can
be made less than ε′ for all t ≥ t0 and t0 = t0(K, ε′) sufficiently large
(recall that r0 = r0(K, ε′), T = T (K) and C ′n, βn are universal con-
stants).

Finally, observe that because l(ε′) =
√

8 log
(
Cn
ε′
)
with Cn a universal

constant, the first term on the right hand side in (21) vanishes as ε′ → 0.
This proves Theorem 3.1. q.e.d.

5. The good extension of a quasiconformal map

In this section, we discuss the good extension and its properties in
some detail. First, we define the good extension G∞(f) as in [24] for
quasiconformal boundary maps f : Rn−1 → R

n−1 which fix ∞ (in the
upper half-space model of hyperbolic space). We observe some of its
important properties, in particular, that G∞ is partially conformally
natural with respect to isometries which fix ∞, see Proposition 5.2 (i).
Then we extend the definition of the good extension to quasiconfor-
mal boundary maps f : S

n−1 → S
n−1 which fix an arbitrary point

a ∈ S
n−1. Importantly, the resulting family of good extensions {Ga}a

satisfies partial conformal naturality (see Definition 5.5) and it is ad-
missible in the sense of Definition 5.7 (in particular, it is continuous
in a).

5.1. Preliminaries. First we work in the upper half space model of
hyperbolic space in Euclidean coordinates

Hn =
{
(x, s) : x ∈ R

n−1, s > 0
}
.

We identify ∂Hn ≡ Rn−1 in the natural way. Recall that we write
QC∞(Rn−1) for the set of quasiconformal maps Rn−1 → Rn−1 which fix
∞. By the quasiconformalMostow rigidity, every such f is differentiable
almost everywhere (with the derivative of maximal rank). The energy

density of f ∈ QC∞(Rn−1) with respect to the Euclidean metric is then
defined almost everywhere and reads

e(f)(x) =

n−1∑
i,j=1

n−1∑
α,β=1

∂fi
∂xj

∂fα
∂xβ

,

where we wrote f = (f1, . . . , fn−1). We now define the good extension

of all maps f ∈ QC∞(Rn−1). We use the higher-dimensional analogue
of the definition in [24], compare also [3], [15].

Definition 5.1. For f ∈ QC∞(Rn−1), define its good extension
G∞(f) : Hn → Hn by
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(22)

G∞(f)(x, s) :=

⎛
⎝ ∫

Rn−1

f(x+ sy)φ(y)dy ,

s√
n− 1

√√√√ ∫
Rn−1

e(f)(x+ sy)φ(y)dy

⎞
⎟⎠ ,

where φ is the standard Gaussian

(23) φ(y) := (2π)
1−n
2 e−

|y|2
2 .

We write Isom∞(Hn) for the subset of isometries which fix∞ ∈ Rn−1.
Note that

(24)
Isom∞(Hn) = {(x, s) �→ (aO(x) + b, as) :

a > 0, b ∈ R
n−1, O ∈ SO(n− 1)}.

As in [24], the good extension G∞ has the following properties. Unlike
in [24], the partial conformal naturality from (ii) will be very important
for us.

Proposition 5.2. For all f ∈ QC∞(Rn−1), the integrals in (22) are
well-defined and G∞(f) ∈ C∞(Hn).

(i) G∞ is partially conformally natural under isometries fixing infin-
ity, i.e.,

G∞(I ◦ f ◦ J) = I ◦ G∞(f) ◦ J,
for any I, J ∈ Isom∞(Hn).

(ii) Let L(Rn−1) denote the set of invertible, orientation preserving
linear maps from R

n−1 to itself. For every L ∈ L(Rn−1), G∞(L) :
Hn → Hn is harmonic and satisfies

(25) e(G∞(L))(x, s) > 1, K(G∞(L))(x, s) = K(L)(x),

for all (x, s) ∈ Hn.

Proof. The fact that the good extension is well defined and smooth
follows by analogous arguments as in [24].

Statement (i) can be checked explicitly from (22) and (24) as well as
normalization and rotational invariance of the Gaussian.

For statement (ii), we use a result of [19] (see also [33]), namely that
every L ∈ L(Rn−1) has a harmonic quasi-isometric extension which is
given by (

L(x),

√
e(L)

n− 1
s

)
.

It is elementary to check that G∞(L)(x, s) defined by (22) takes precisely
this form when f ≡ L is linear. Therefore, G∞(L) is harmonic. The
properties (25) follow as in [24]. q.e.d.
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The next statement is a slight (and straightforward) strengthening of
Theorem 3.1 in [24] to cones (extending into Hn starting from a tip in

Rn−1). In particular, it shows that eventually (as one moves towards
the boundary of hyperbolic space) G∞(f) is almost harmonic for any

f ∈ QC∞(Rn−1).

Proposition 5.3. For ε > 0 and a K-qc map f ∈ QC∞(Sn−1),
define the “good set” by

Xf (ε) := {(x, s) ∈ Hn : e(G∞(f))(x, s) > 1, K(G∞(f))(x, s) < 2K,

|τ(G∞(f))(x, s)| < ε} .
Then, for almost every x ∈ R

n−1,

lim
s→0

(
min

x′:|x−x′|≤s
�Xf (ε)(x

′, s)
)

= 1,

where � denotes the characteristic function of a set.

This proposition says that for almost every x ∈ R
n−1, the geodesic

(together with the cone around it) starting at ∞ and ending at x will
eventually be contained in the good set Xf . More precisely, for almost
every x there exists a vertical (in the Euclidean sense) geodesic ray end-
ing at x that together with the equidistant cone around it is contained
in the good set Xf .

We will use this proposition on two occasions: (a) At the end of the
proof of the Sector Lemma 4.3, we use that the tension field becomes
small on the whole cone. (b) When following the arguments in [24] to
prove Theorem 3.2 (there we do not need the cone version but we do
need the estimates on the energy and on the distortion).

Proof. The argument is essentially the same as in the proof of Lemma
5.1. in [24]. q.e.d.

5.2. Partial conformal naturality and families of good exten-
sions. We can now define the family of good extensions that we use to
get the initial map in Theorem 3.1. Recall that QCa(S

n−1) denotes the
set of quasiconformal maps Sn−1 → S

n−1 that fix the point a ∈ S
n−1.

Definition 5.4. Let a ∈ S
n−1 and f ∈ QCa(S

n−1). We identify

H
n ≡ Hn and S

n−1 ≡ Rn−1 such that a ≡ ∞. The extension Ga(f) :
H

n → H
n is then defined as G∞(f) with G∞ given by (22).

There is more than one way of identifying H
n ≡ Hn and S

n−1 ≡ Rn−1
such that a ≡ ∞. An obvious question is whether the definition of Ga(f)
depends on the choice of identification. But we have seen in Proposition
5.2 (i) that G∞ is partially conformally natural under isometries fixing
infinity, and this yields that Ga(f) is well defined.

The following notion of partial conformal naturality generalizes the
classical notion of conformal naturality.
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Definition 5.5. Let {Ea}a∈Sn−1 be a family of extensions
QCa(S

n−1) → C2(Hn). The family satisfies the partial conformal
naturality, if for any two points a, b ∈ S

n−1 and any two isometries
I, J ∈ Isom(Hn) with I(b) = J(b) = a,

(26) I ◦ Eb(f) ◦ J−1 = Ea(I ◦ f ◦ J−1)
holds for all f ∈ QCb(S

n−1).

Proposition 5.6. The family {Ga}a∈Sn−1 from Definition 5.4 satis-
fies partial conformal naturality.

Proof. This follows directly from the partial conformal naturality of
G∞ under Isom∞(Hn) that was noted in Proposition 5.2 (i). q.e.d.

5.3. Admissibility. Next, we formulate what it means for a family
of extensions (indexed by boundary points) to be admissible, compare
Definition 3.1 in [24].

Definition 5.7 (Admissible family). We say a family of extensions
{Ea}a∈Sn−1 with Ea : QCa(S

n−1) → C2(Hn) is admissible if it satisfies
the following properties.

(i) Uniform quasi-isometry: There exist constants L = L(K) and
A = A(K) such that for every a ∈ S

n−1 and every K-qc f ∈
QCa(S

n−1), Ea(f) is an (L,A)-quasi-isometry.
(ii) Uniformly bounded tension: There exists a constant T =

T (K) > 0 such that for every a ∈ S
n−1 and every K-qc f ∈

QCa(S
n−1),

‖τ(Ea(f))‖ ≤ T.

(iii) Continuity in f and a: Assume the sequence of K-qc maps fk ∈
QCak

(Sn−1) converges pointwise to some K-qc map f : Sn−1 →
S
n−1 and ak → a. Then, f(a) = a and Gak(fk) → Ga(f) in C2-

sense (i.e., first and second derivatives converge to those of Ga(f),
uniformly on compacts).

We have

Proposition 5.8. The family {Ga}a∈Sn−1 from Definition 5.4 is ad-
missible in the sense of Definition 5.7.

Remark 5.9. Definition 5.7 is the analogue of Definition 3.1 in [24]
of an admissible extension. Notice, however, that the continuity of the
entire family in f and a as stated in (iii) above is a stronger statement
than the continuity of each individual Ga in f . We will use this stronger
version in the proof of the Sector Lemma 4.3.

Proof. The proofs of (i) and (ii) are essentially the same as for G∞
[24]. We emphasize that the constants L,A, T do not depend on a ∈
S
n−1 because all the Ga satisfy partial conformal naturality (in par-

ticular, they are related by isometries). Moreover, note that we can
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normalize any sequence of K-qc maps (to get compactness) by com-
posing with appropriate isometries and again using partial conformal
naturality.

We come to the proof of (iii). The first part, f(a) = a, follows easily
from the uniform Hölder continuity of K-qc maps. Indeed, |a− f(a)| ≤
|a− ak|+ |fk(ak)− fk(a)|+ |fk(a)− f(a)| → 0, where the middle term
vanishes by uniform Hölder continuity and the convergence ak → a.
For the second part, take Ik ∈ Isom(Hn) with Ik(ak) = a and such that
Ik → Id in C2 sense, uniformly on compacts, as k → ∞ (such Ik because
ak → a). By partial conformal naturality, we have

(27) Gak(fk)− Ga(f) = J−1k ◦ Ga(Jk ◦ fk ◦ J−1k ) ◦ Jk − Ga(f).

Since each Ga is continuous in f uniformly on compacts (see Definition
3.1 in [24] and recall that Ga is related to G∞ via isometries), we conclude
that

Ga(Jk ◦ fk ◦ J−1k ) → Ga(f)

holds in C2-sense, uniformly on compacts, as k → ∞. This convergence
is preserved under composition and so we find that (27) and its deriva-
tives converge to zero, uniformly on compacts. This finishes the proof
of admissibility. q.e.d.

6. Proof of the Sector Lemma

The proof will be by contradiction. Assuming that there exists a
“bad” admissible sector for large enough ρmin, one can bring it into a
nice shape by using appropriate isometries (this is possible because of
the scaling factor e−ρmin in Definition 4.1 of admissible sectors). From
compactness of the set of uniform quasi-isometries fixing a point (a
version of the Arzela–Ascoli theorem), partial conformal naturality of
the good extension (see Definition 5.5) and the fact that the tension field
of the good extension is small at a “random” point (see Proposition 5.3),
one then gets a contradiction.

6.1. The contradiction assumption. Suppose the claim is false.
That is, suppose there exist α0 > 1, δ0 > 0 and sequences of points
ak ∈ S

n−1, of K-qc maps fk ∈ QCak
(Sn−1), of numbers ρk ≥ k of

(α0, ρk)-admissible sets Ωk ⊂ S
n−1 (in the sense of Definition 4.1) and

of points xk ∈ H
n such that

(28)

ρk+r1∫
ρk

∫
Ωk

|τ(Gak(fk))(ρ, ζ)|2dζ dρ
ρk+r1∫
ρk

∫
Ωk

1 dζ dρ

≥ δ0

holds for all 1 ≤ r1 ≤ k. Here (ρ, ζ) denotes the geodesic polar coordi-
nates centered at xk. We will eventually get a contradiction to (28) by
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proving that the left hand side can be made arbitrarily small as k → ∞
and r1 → ∞. To take the limit in k we need two things: convergence
of the tension field (via compactness) and convergence of the geodesic
polar coordinates (to the horocyclic coordinates).

6.2. The upper half space model of hyperbolic space. We work in
the upper half space model of hyperbolic spaceHn. We callDin,k, Dout,k

the disks which exist by Definition 4.1 since Ωk is (α0, ρk)-admissible.
Without loss of generality, we may assume that the disks have the same
center, call it ck ∈ S

n−1 (otherwise this can be achieved by changing α0

to 2α0). We identify H
n ≡ Hn such that

xk ≡ (0, . . . , 0, sk), (ρk, ck) ≡ z = (0, . . . , 0, 1)

(such an identification is not unique). See Figure 2 for a picture of the
situation. Here sk > 0 is determined by the condition

dHn((0, . . . , 0, sk), (0, . . . , 0, 1)) = ρk.

It is helpful in the following to keep in mind that sk ∼ 4eρk → ∞ as
ρk → ∞ (the notation ∼ means that limk→∞ sk

4eρk = 1).
We identify ak, fk with their realizations in the upper half space

model, ak ∈ Rn−1 and fk ∈ QCak
(Rn−1). (The reader may be sur-

prised that we do not require ak = ∞ in the upper half space model
and instead choose an upper half space model that gives xk, (ρk, ck)
the nice coordinates above. The reason is that this chart is well fitting
to see the convergence of the geodesic polar coordinates to horocyclic
coordinates as ρk → ∞.)

We post-compose fk by a sequence of isometries such that the result-
ing sequence fixes a point inside Hn. That is, we find Ik ∈ Isomak(H

n)
such that

Ik(Gak(fk)(z)) = z,

and define
gk := Ik ◦ fk,

which then satisfies gk(z) = z. Note also that gk ∈ QCak
(Rn−1) and so

by the partial conformal naturality of the good extension (in the sense
of Definition 5.5)

Gak(gk) = Ik ◦ Gak(fk),

and, in particular,

(29) |τ(Gak(fk))| = |τ(Gak(gk))|.
6.3. Convergence of the tension from compactness. Since Rn−1
is compact, up to passing to a subsequence, there exists a ∈ Rn−1 such
that ak → a.

Moreover, by using standard arguments about quasiconformal maps
and quasi-isometries (in particular, an extension of the Arzela–Ascoli
theorem for uniform quasi-isometries which all fix the same point) one
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Figure 2. This picture shows how the geodesic polar
coordinates centered at xk = (0, sk) converge to horo-
cyclic coordinates as k → ∞. We see a cross cut of the
upper half space model, all Euclidean coordinates (b, s)
should be read as (0, . . . , 0, b, s) ∈ Hn. It is intuitively
clear that, as sk → ∞, the cross cut of the sector Sk(r1)
will “flatten out” and converge to the shaded region (our
proof only uses the containments expressed as (34)). No-
tice that the geodesic which makes an initial “angle” with
the (0, 1) axis of order e−ρk ends at a boundary point
which is of order one as k → ∞.

proves that, up to passing to a subsequence, there exists a quasiconfor-
mal map g : Rn−1 → Rn−1 such that gk → g pointwise.

Together, these facts enable us to apply the continuity of the good
extension in the sense of Definition 5.7 (iii). First, this implies g(a) = a

and so g ∈ QCa(R
n−1). Second, it implies that Gak(gk) → Ga(g) in

C2-sense, uniformly on compacts. The upshot of this first part of the
proof is that we have

(30) |τ(Gak(gk))| → |τ(Ga(g))|,
pointwise, uniformly on compacts.

6.4. Convergence of geodesic polar coordinates to horocyclic
coordinates. For this part, it is helpful to consider Figure 2. Let
(b, h) ∈ R

n−1 × R denote horocyclic coordinates on the upper half-
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space Hn. Recall that a point in Hn with coordinates (b, h) lies above
b ∈ R

n−1 and the horosphere through this point has the signed hyper-
bolic height h (with the normalization that the horosphere through the
point z = (0, . . . , 1) has the height 0). Note that the point in Hn with
horocyclic coordinates (b, h) has the Euclidean coordinates (b, e−h).

Given a point in geodesic polar coordinates (ρ, ζ), we identify ζ ∈
S
n−1 with the “endpoint” of the corresponding geodesic in Rn−1. (More

precisely, we recall that ζ is identified with an element of the unit tan-
gent space at the point where the geodesic polar coordinates are cen-
tered, here xk. Then, we find the endpoint of the geodesic with this unit
tangent vector as the initial direction and call this endpoint ζ.) With
this identification, we have ζ → b and (ρ− ρk) → h, when k → ∞.

Recall that the integration in (28) takes place over the sector

Sk(r1) ≡ Sk(xk, ρk, r1,Ωk) = {(ρ, ζ) : ρk ≤ ρ ≤ ρk + r1, ζ ∈ Ωk} .
Using (29), we may rewrite (28) as

(31) δ0 ≤

∫
Sk(r1)

|τ(Gak(gk))(ρ, ζ)|2dρ dζ∫
Sk(r1)

1 dρ dζ
,

where dζ is the measure on Rn−1 induced by the spherical measure.
We now discuss the limiting properties, as k → ∞, of Sk(r1) where Ωk

is identified with an appropriate subset of Rn−1 in the way discussed
above. To this end, we define the cylinders (in horocyclic coordinates)

(32)
Cylin(r1) : =

{
(b, h) ∈ R

n−1 × R : |b| ≤ 2α−10 , 0 ≤ h ≤ r1
}
,

Cylout(r1) : =
{
(b, h) ∈ R

n−1 × R : |b| ≤ 2α0, 0 ≤ h ≤ r1
}
.

We recall that Ωk viewed as a subset of Sn−1 is (α0, ρk)-admissible in the
sense of Definition 4.1. That is, there exist disks Din,k, Dout,k ⊂ S

n−1
such that

(33) Din,k ⊂ Ωk ⊂ Dout,k,

and the radius of Din,k is at least α−10 e−ρk , while the radius of Dout,k

is at most α0e
−ρk . We also recall that we assumed that Din,k, Dout,k

are centered at the same point ck ∈ S
n−1 which is identified with the

downward pointing normal in our upper half space model of hyperbolic
space.

When we identify Ωk with a subset of Rn−1 as discussed above, (33)
yields

(34) lim sup
k→∞

�Sk(r1) ≤ �Cylout(r1)
, lim inf

k→∞
�Sk(r1) ≥ �Cylin(r1)

,

for all 1 ≤ r < ∞. Here � denotes the characteristic function of a
subset of hyperbolic space. The reader may find it helpful to consider



HEAT FLOWS ON HYPERBOLIC SPACES 521

Figure 2. (The relations (34) together with the fact that the bounds
on the b variable in (32) are independent of k are the manifestations
of admissible sectors having “bounded geometry” near the boundary.
Note that the factor e−ρk in Definition 4.1 of an (α0, ρk)-admissible Ωk

is important for this.)
For a fixed r1 ≥ 1, we take k → ∞ in (31), more precisely we take the

lim supk→∞ of the numerator and the lim infk→∞ of the denominator in
(31). It is elementary to check that dρ → dh, when k → ∞, and

(35) lim
ρk→∞

2eρkdζ = db,

where db is the standard Lebesgue measure on R
n−1. Recall also (30)

which says that |τ(Gak(gk))| → |τ(Ga(g))| pointwise as k → ∞. We
can then use dominated convergence together with the relations (34) to
conclude from (31) that

(36)

δ0 ≤

∫
Cylout(r1)

|τ(Ga(g))(b, h)|2db dζ∫
Cylin(r1)

1 db dh

=
C(α0)

r1

∫
Cylout(r1)

|τ(Ga(g))(b, h)|2db dh

=
C(α0)

r1

r1∫
0

∫
|b|≤2α0

|τ(Ga(g))(b, h)|2db dh

holds for all 1 ≤ r1 < ∞. Here C(α0) > 0 is an appropriate constant.

6.5. Getting a contradiction.

Lemma 6.1. For almost every b ∈ R
n−1, we have

(37) lim
r1→∞

1

r1

r1∫
0

|τ(Ga(g))(b, h)|2dh = 0.

By dominated convergence, Lemma 6.1 gives a contradiction to (36).
To prove the Sector Lemma, it, therefore, remains to give the

Proof of Lemma 6.1. Let δ′ > 0. The lemma will follow easily once
we prove the following claim: For almost every b ∈ R

n−1, there exists
r2 = r2(f, b, δ

′) such that for all h ≥ r2,

(38) |τ(Ga(g))(b, h)|2 < δ′.

Indeed, by Proposition 5.3, we know that |τ(Ga(g))(w)|2 < δ′, when
w → b and w belongs to the cone around the geodesic connecting a and
b (the cone contains all the points that are within some fixed distance
from the geodesic connecting a and b). But any geodesic converging to
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b will eventually enter this cone, and so will the geodesic starting at ∞
and ending at b. This proves the claim.

We let r1 > r2. We can now cut the integral from (37) into a bad
part (where we use that ‖τ(Ga(g))‖ ≤ T ) and a good part (where (38)
holds):

1

r1

r1∫
0

|τ(Ga(g))(b, h)|2dh

=
1

r1

r2∫
0

|τ(Ga(g))(b, h)|2dh+
1

r1

r1∫
r2

|τ(Ga(g))(b, h)|2dh

≤ T 2 r2
r1

+ δ′.

The first term vanishes as r1 → ∞. Since δ′ > 0 was arbitrary, this
proves (37). q.e.d.

7. Proof of Theorem 3.2

As mentioned before, the proof is a straightforward generalization of
the arguments in [24] to higher dimensions and the observation that the
estimates have enough “wiggle room” to allow for a sufficiently small
ε0. Consequently, we only give a sketch of the argument here and refer
the reader to [24] for a more thorough discussion.

We work in the unit ball model of hyperbolic space which we denote
by B

n. Let f ∈ QCa(S
n−1) be a K-qc map and let ψ : Bn → B

n be a
C2 quasi-isometry with the boundary map f . Then

‖dHn (Ga(f), ψ) ‖ < ∞,

since both maps are quasi-isometries which extend f . As in [24], we
may assume without loss of generality that

(39) d(f)(0) ≥ ‖d(f)‖ −D − 1,

where D = D(K) and

d(f)(x) ≡ dHn (Ga(f)(x), ψ(x)) .

As in [24], combining (39) and Green’s identity for d2(f) we obtain
the crucial estimate

(40)

∫
Bn

gr(x)Δd2(f)(x)dλ ≤ D′‖d(f)‖+D′′.

Here D′ = 2(D − 1) and D′′ = (D + 1)2 depend only on K and dλ is
the hyperbolic volume measure in the unit ball model. In this section
only, x = (ρ, ζ) stands for Euclidean polar coordinates, i.e., ρ ∈ [0, 1),
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and not for the geodesic polar coordinates (we do this for the sake of
comparability with [24]).

(41) dλ(x) =
nρn−1

(1− ρ2)n
dρ dσ(ζ),

where dσ is the Lebesgue measure on S
n−1, normalized to σ(Sn−1) = 1.

Finally, gr is the Green’s function of −Δ on rBn, 0 ≤ r < 1. Explic-
itly [1],

gr(x) =
1

n

r∫
|x|

(1− s2)n−2

sn−1
ds, |x| ≤ r,

and gr(x) = 0, r < |x| < 1. Note that gr is a radial function. We often
abuse notation and write gr(ρ) for ρ > 0. We have the lower bound

(42) gr(ρ) ≥ Cg
(1− ρ2)n−1

ρn−2
,

where Cg is a universal constant. Moreover, gr → g1 uniformly on
compacts as r → 1.

Consider (40). Note that the claim that ‖d‖ is bounded by a constant
would follow if we had a lower bound on the left hand side of the form
(D′+1)‖d(f)‖. This is what is done in [24], and the same proof can be
repeated word by word modulo two minor modifications (one in Lemma
3.2 and one in Lemma 4.2 from [24]) which we describe below.

The next step in [24] is to estimate the set where d2(f) is small,
see Lemma 4.1, and the proof generalizes directly to higher dimensions.
An important tool in the proof of the main Lemma 4.2 in [24] are the
following estimates from [33], originally from [30, 13]. They say that
for any F,G ∈ C2(Hn)

(43) Δd2 ≥ −2d (‖τ(F )‖+ ‖τ(G)‖) , on H
n,

where d ≡ dHn(F,G). Moreover, for allK1 ≥ 1 there exists q = q(K1) >
0 such that

(44) Δd2 ≥ −2d (τ(F ) + τ(G)) + 2q de(F ) tanh

(
d

2

)

holds for all x ∈ H
n with K(F )(x) ≤ K1. One follows the proof of

Lemma 4.2 in [24] and applies these estimates. The only difference is
that one takes

(45) ε0(K) :=
q(2K)

8
tanh(1/4),

which has a relative factor of 1/2 compared to the definition of ε0(K)
on page 19 of [24]. This is exactly the place where we use that we have
some “wiggle room”.
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The second place where justification is required is to show that
Lemma 3.2 from [24] holds in n dimensions. The argument from [24]
applies provided that

(46) lim
r→1

∫
Bn

gr(x)dλ(x) = ∞.

To see this, we express the previous integral in the Euclidean polar
coordinates and use (41) and (42) to get

r∫
0

nρn−1gr(ρ)
(1− ρ2)n−1

dρ ≥ nCg

2
log

(
1

1− r2

)
→ ∞, r → 1.

The analogue of Lemma 3.2 then follows by the usual compactness ar-
gument (we can pre- and postcompose by appropriate isometries to
normalize the K-qc maps thanks to the partial conformal naturality of
the good extension).

Appendix A. Heat travels ballistically in hyperbolic space

In this appendix, we discuss the diffusion of heat in hyperbolic space.
It is known that heat travels approximately ballistically in the hyper-
bolic space. By this we mean that, for large t, the measure whose den-
sity is given by the heat kernel H(x, y, t) times the hyperbolic volume
measure dλ(y) is effectively supported on a certain “main annulus”(in
geodesic polar coordinates), which is centered at x and has inner and
outer radii of order t (see, e.g., Corollary 5.7.3. in [6]). (In Euclidean
space, such an annulus would have radii of order

√
t.)

Here we prove a more precise version. It says that the main annulus
has ρ-values of the form (n−1)t±r

√
t with r = O(1) distributed accord-

ing to the standard Gaussian measure e−r2/4dr on the main annulus,
see Figure 3 for a picture.

While these facts are presumably known to experts, we could not find
a reference. Therefore, we discuss this topic here in some detail. The
proof only uses the heat kernel bounds in [7].

Proposition A.1. (i) There exists a universal (dimension depen-
dent) constant Cn > 0, such that for all ε > 0 and all t ≥ 1,

(47)

∫
|ρ−(n−1)t|>l(ε)

√
t

H(ρ, t) sinhn−1(ρ)dρ < ε,

where l(ε) :=
√

8 log
(
Cn
ε

)
.

(ii) Let Φ : R+ → R+ be a bounded measurable function. Let l ≥ 1.
Then, for all t ≥ 2l2,
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Figure 3. This plot of the heat kernel times hyperbolic
volume measure as a function of the radial coordinate ρ
shows how heat is transported in hyperbolic space (for
large t). The function is centered at (n− 1)t and decays
around that center on scale

√
t like the standard Gauss-

ian. The choice l = l(ε) from Proposition A.1 (i) is such
that the shaded region has area ε. Thus, the function
H(ρ, t) sinhn−1(ρ) is mainly supported on the region in
between and this defines the “main annulus”.

(48)

∫
|ρ−(n−1)t|≤l√t

Φ(ρ)H(ρ, t) sinhn−1(ρ)dρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≥ 1

C′n

l∫
−l

Φ((n− 1)t+ r
√
t) e−

r2

4 dr,

≤ C ′n
l∫
−l

Φ((n− 1)t+ r
√
t) e−

r2

4 dr,

where C ′n > 1 is a universal (dimension dependent) constant.
(iii) Let Φ : R+ → R+ be a bounded measurable function. Let l(ε) be

as in (i) and let C ′n be the universal constant from (ii). Then, for
all ε > 0 and all t ≥ 2l(ε)2,

(49)

∞∫
0

Φ(ρ)H(ρ, t) sinhn−1(ρ)dρ ≤ C ′n√
t

(n−1)t+l(ε)
√
t∫

(n−1)t−l(ε)√t

Φ(ρ)dρ+ ε.
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Remark A.2. This proposition is used to prove Theorem 3.1. That
proof would hold under weaker assumptions on the form of heat diffusion
(for instance, it would be enough to know that the effective support of
H(x, y, t)dλ(y) is an annulus centered at x which has inner radius going
to infinity and diverging width as t → ∞). Nonetheless, we give a precise
description of the heat diffusion because this may be of independent
interest and because the proof is straightforward.

Statement (iii) follows directly from (i) and the upper bound in (ii).
In the main text, we apply statement (iii) to Φ being the spherical
average of |τ(Ga(f))|2, see (7). We will not use the lower bound in (ii),
it is only stated here for the sake of completeness.

Proof. Throughout the proof, we write C > 0 for a universal (dimen-
sion dependent) constant; the numerical value of C may change even in
the same line. We first prove statement (i). By Theorem 3.1 in [7],

H(ρ, t) ≤ Ct−n/2(1+ρ+t)
n−3
2 (1+ρ) exp

(
−ρ2

4t
− (n− 1)2

4
t− n− 1

2
ρ

)
.

Since sinh(ρ) < exp(ρ)
2 for ρ > 0, we get

(50)

sinhn−1(ρ)H(ρ, t) <

Ct−n/2(1 + ρ+ t)
n−3
2 (1 + ρ) exp

(
−1

4

(
ρ√
t
− (n− 1)

√
t

)2
)
.

We change variables to r = ρ√
t
− (n − 1)

√
t and find, for all t ≥ 1 and

l > 0 to be determined,∫
|ρ−(n−1)t|>l

√
t

sinhn−1(ρ)H(ρ, t)dρ ≤

C

∫
|r|≥l

(
n+ 1 +

r√
t

)n−1
2

e−
r2

4 dr.

Notice that for all t ≥ 1

C

∫
|r|≥l

(
n+ 1 +

r√
t

)n−1
2

e−
r2

4 dr ≤ Ce−
l2

8

∫
R

(n+ 1 + r)
n−1
2 e−

r2

8 dr

≡ Cne
− l2

8 ,

where Cn is defined by the last equality. Let ε > 0. Setting l = l(ε) =√
8 log

(
Cn
ε

)
, yields∫

|ρ−(n−1)t|>l(ε)
√
t

sinhn−1(ρ)H(ρ, t)dρ < Cne
− l(ε)2

8 = ε.
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This proves (i).
We come to statement (ii). Fix l ≥ 1. Recall (50) and integrate it

over the interior of the main annulus now. Changing variables again to
r = ρ√

t
− (n− 1)

√
t gives

(51)

∫
|ρ−(n−1)t|≤l√t

Φ(ρ)H(ρ, t) sinhn−1(ρ)dρ ≤

C

l∫
−l

Φ((n− 1)t+ r
√
t)

(
n+ 1 +

r√
t

)n−1
2

e−
r2

4 dr.

When t ≥ 2l2, we can bound n+1+ r√
t
≤ n+2. This implies the upper

bound in (48) for an appropriate universal constant C ′n.
For the lower bound in (48), we use that Theorem 3.1 in [7] also gives

H(ρ, t) ≥ Ct−n/2(1+ρ+t)
n−3
2 (1+ρ) exp

(
−ρ2

4t
− (n− 1)2

4
t− n− 1

2
ρ

)
.

One can check that sinh(ρ) > 1
4e

ρ holds for all ρ with |ρ−(n−1)t| ≥ l
√
t

and all t ≥ 2l2, l ≥ 1. After integration and the change of variables
r = ρ√

t
− (n− 1)

√
t, this yields the following analogue to (51)

(52)

∫
|ρ−(n−1)t|≤l√t

Φ(ρ)H(ρ, t) sinhn−1(ρ)dρ ≥

C

l∫
−l

Φ((n− 1)t+ r
√
t)

(
n− 1 +

r√
t

)n−1
2

e−
r2

4 dr.

Again, n − 1 + r√
t
can be bounded below by a uniform constant. This

implies the lower bound in (48) for an appropriate C ′n.
Finally, (iii) follows directly from (i) and (ii) by dropping the Gauss-

ian and undoing the change of variables in (48). q.e.d.
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