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ON THE BJÖRLING PROBLEM FOR WILLMORE
SURFACES

David Brander & Peng Wang

Abstract

We solve the analogue of Björling’s problem for Willmore sur-
faces via a harmonic map representation. For the umbilic-free case
the problem and solution are as follows: given a real analytic curve
y0 in S

3, together with the prescription of the values of the surface
normal and the dual Willmore surface along the curve, lifted to
the light cone in Minkowski 5-space R

5
1, we prove, using isotropic

harmonic maps, that there exists a unique pair of dual Willmore
surfaces y and ŷ satisfying the given values along the curve. We
give explicit formulae for the generalized Weierstrass data for the
surface pair. For the three dimensional target, we use the solution
to explicitly describe the Weierstrass data, in terms of geomet-
ric quantities, for all equivariant Willmore surfaces. For the case
that the surface has umbilic points, we apply the more general
half-isotropic harmonic maps introduced by Hélein to derive a so-
lution: in this case the map ŷ is not necessarily the dual surface,
and the additional data of a derivative of ŷ must be prescribed.
This solution is generalized to higher codimensions.

1. Introduction

A Willmore surface in Euclidean 3-space R
3 is an immersion S that

is locally critical for the Willmore functional

W(S) =

∫
S
H2dA,

where H is the mean curvature of the surface. As such, these surfaces
are generalizations of minimal surfaces, and also, from another point
of view, of elastic curves. Hence, the interest in Willmore surfaces,
which have attracted a lot of attention in recent decades. The governing
equations are a fourth order nonlinear PDE, and they are, therefore, a
challenging class of surfaces to get information about: for example, the
Willmore conjecture, that the Clifford torus is the global minimizer of
the Willmore energy among tori, proposed in the 1960’s, took more than
half a century to resolve [26].
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The property of being a Willmore surface is invariant under conformal
transformations of the ambient space. Hence, from a theoretical point of
view, the choice of conformally congruent target space is unimportant.
In fact, the natural choice is the 3-sphere S3, because this case includes,
up to Möbius equivalence, both R

3 and the hyperbolic space H
3 as

proper subspaces. In this article, we generally regard the surfaces as
living in S

3, and more generally S
n, n ≥ 3. For further introduction and

background on Willmore surfaces, especially relevant to this article, see
Hélein [16].

Being one kind of generalization of minimal surfaces, it is natural
to consider the extension of Björling’s classical problem to Willmore
surfaces. Björling’s problem is to find the unique minimal surface that
contains a given curve with surface normal prescribed along the curve.
The solution can be found, in terms of the Weierstrass–Enneper repre-
sentation, via analytic extension of the prescribed data. It is a useful
tool in the study of minimal surfaces and has been generalized recently,
through various means, to several other surface classes. An approach
that can be expected to be fruitful among surfaces associated to har-
monic maps can be found in the solution for non-minimal constant
mean curvature surfaces given in [4]. Here one uses an infinite dimen-
sional version of the Weierstrass–Enneper formula, the DPW method of
Dorfmeister/Pedit/Wu [11], to again obtain the solution by holomor-
phic extension.

For Willmore surfaces, there are more than one type of harmonic
maps one might consider employing. For example, it has long been
known that the conformal Gauss map into the Grassmannian Gr3,1(R

5
1)

of Lorentzian 4-planes in R
5
1 is harmonic. This is a certain lift of the

surface normal into R
5
1, and the harmonicity of this map has been used

in [12] to study Willmore surfaces via the DPW method. The related
flat connections also form the basis for some of the recent works on
constrained Willmore surfaces: see, e.g., [9, 2, 14, 18].

On the other hand, a different (“roughly”) harmonic map, this time
into SO(1, 4)/(SO(1, 1)× SO(3)) was found by Hélein in [16] (See also
[17]). In our distillation of Hélein’s work, the basic object is the map

Y ∧ Ŷ , where Y and Ŷ are the surface and its dual, lifted to the light
cone. Essentially, the projections of Y and Ŷ are Willmore if and only
if Y ∧ Ŷ is what we call an isotropic harmonic map. The DPW method
also works for isotropic harmonic maps, and this is the approach we will
use.

1.1. Results of this article. If only the surface and surface normal
are prescribed along a curve, then there is no hope of obtaining a unique
solution for the Björling problem for Willmore surfaces (see Figures 1
and 6). One needs to prescribe something more, and it turns out that

the value along the curve of the dual surface Ŷ is enough. Hence, the
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Figure 1. Three solutions to the Björling problem for
Willmore surfaces in S

3, all with the same initial curve
(a circle) and the same normal along the curve. The pre-

scribed dual surface data Ŷ0 is different in each case. The
surfaces are all given the same stereographic projection
to R

3.

representation in terms of Y ∧Ŷ seems canonical for this problem, rather
than the conformal Gauss map representation.

In Section 2, we outline the projective light cone model for conformal
surface theory, the basic theory of Willmore surfaces in this setting, and
the relation with isotropic harmonic maps into SO(1, 4)/(SO(1, 1) ×
SO(3)). In Section 3, we derive the DPW construction for isotropic
harmonic maps. The DPW construction for harmonic maps f : Σ →
G/K makes use of a holomorphic frame F λ− for the extended frame

F λ : Σ → ΩG ∼= ΛGC/Λ+GC, a lift of f into the group of based loops
in G. The Maurer–Cartan form η of F λ− is known as a potential, and
this is the Weierstrass data for the problem. Given a potential η, which
essentially consists of a series of arbitrary holomorphic functions, the
equation dF λ− = F λ−η can be solved, and a frame F λ : Σ → ΛG is
obtained via the Iwasawa decomposition. If G is non-compact, all of
this happens only on a large open set (the big cell) of the loop group,
but otherwise the theory is the same. We need to verify that the theory
restricts to isotropic harmonic maps (see Definition 2.10), and this is
indeed the case because the isotropic condition is preserved by the loop
group decompositions.

In Section 4, we present, in Theorems 4.1 and 4.3, a solution to the
Björling problem for Willmore surfaces: given a real analytic sphere
congruence ψ0 (a lift of the surface normal) along a curve I, with two

enveloping curves Y0 and Ŷ0, there exists a unique dual pair of Willmore
surfaces Y and Ŷ that restrict, along I, to Y0 and Ŷ0 (Figure 2). We
also give an explicit formula for a holomorphic potential for the surface,
in terms of the prescribed geometric data.

In Section 5, we apply this result to describe all SO(4)-equivariant
Willmore surfaces in S

3, that is surfaces invariant under the action of a
1-parameter subgroup of the isometry group. Our approach is to solve
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Figure 2. Dual solutions of Björling’s problem for Will-
more surfaces. The prescribed data is the pair of curves
(one red, one blue) together with a family of 2-spheres
tangent to both curves at the touching points. One 2-
sphere is shown.

the Björling problem along a parallel. One can describe all SO(1, 3)-
equivariant Willmore surfaces in H

3 in an analogous way, and we give
the details for some of these, including hyperbolic rotational surfaces
and the hyperbolic analogue of Hopf surfaces in Section 6. We remark
that it is known [6, 22] that Willmore surfaces of revolution in R

3 can
be obtained by revolving about the x-axis an elastic curve in H

2, rep-
resented by the upper half plane model above the x-axis. General equi-
variant surfaces have not been described so explicitly, however, Ferus
and Pedit [15] gave a description of all non-rotational SO(4)-equivariant
Willmore tori.

Figure 3. An SO(1, 3)-equivariant Willmore surface
not congruent to a minimal surface in any space form
(Section 6.1.2).

In Section 7, we extend the loop group representation to the case
of isotropic and half -isotropic harmonic maps for general n. The half-
isotropic case is a generalization of the isotropic case where Ŷ is no
longer required to be the dual (or geometric adjoint transform) of Y .
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This section is partly motivated by the desire to give a uniform treat-
ment of results of Hélein [16], Xia/Shen [34] and Ma [24], but it also
allows us to deal with umbilics, which are ruled out in the isotropic case.

We end this paper in Section 8 with an application of the harmonic
maps in Section 7 to the solution of the Björling problem for Willmore
surfaces in S

n+2. The half-isotropic setting is needed for Willmore sur-
faces in S

n+2 with umbilics since at umbilics the isotropic harmonic map
may have singularities. Since Ŷ is no longer required to be the dual of
Y in the half-isotropic setting or in the isotropic setting with higher
codimension, there is now more freedom, and so an additional condition
is needed to define a unique solution. The v derivative, Ŷv turns out to
be sufficient.

1.2. Concluding remarks. All the images in this article were pro-
duced by numerically implementing the DPW method for the problem
at hand (available at: http://davidbrander.org/software.html at time
of publication). In our examples, mainly working in the isotropic set-
ting, the surfaces appear smooth when the boundary of the Iwasawa big
cell is approached. One expects that these are points where the surface
and its dual coincide, such as can happen at umbilics (see Lemma 2.7
below). Babich and Bobenko [1], constructed Willmore surfaces which
contain lines of umbilics. For such solutions, one needs to use the general
construction of Section 8.

Recently, Jensen, Musso and Nicolodi have provided a solution of
the geometric Cauchy problem for the more general membrane shape
equation [20]. This equation includes Willmore surfaces as a special
case. Their solution, which needs an umbilic-free assumption, is quite
different: the framework is differential systems, the problem is posed in
principal coordinates, the Cauchy data are the curve y, the mean cur-
vature h and the transverse derivative hv along the curve y(u), plus the
value of the normal at a single point. Because of these major differences,
the range of applications of their solution is fundamentally different –
for example, the description of all equivariant surfaces we provide here
does not seem feasible with their formulation.

Acknowledgments. We would like to thank the referee for helpful sug-
gestions that improved the results of this paper. We are grateful to
Prof. Franz Pedit and Prof. Xiang Ma for the discussion of Corollary
8.8. The second named author was supported by the NSFC Project No.
11571255.

2. Willmore surfaces in S
n+2

2.1. Conformal surface theory in the projective light cone
model. We will review first the projective light cone model of the con-
formal geometry of Sn+2 and derive the surface theory in this model.
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Then we formulate it at the Lie algebra level. Our treatment here fol-
lows the surface theory in [8, 25].

We denote by R
n+4
1 the space Rn+4 equipped with a Lorentzian metric

〈x, y〉 = −x0y0 +

n+3∑
j=1

xjyj = xtI1,n+3y, I1,n+3 = diag(−1, 1, · · · , 1).

Let Cn+3
+ be the forward light cone of R

n+4
1 , i.e., for any x ∈ Cn+3

+ ,
x0 > 0. One can see that the projective light cone

Qn+2 = { [x] ∈ RPn+3 | x ∈ Cn+3
+ },

with the induced conformal metric, is conformally equivalent to S
n+2,

and the conformal group of Qn+2 is exactly the orthogonal group
O(1, n + 3)/{±1} of R

n+4
1 , acting on Qn+2 by T ([x]) = [Tx], T ∈

O(1, n + 3). We denote by SO+(1, n + 3) the connected component of
O(1, n + 3) containing I, that is for any T ∈ SO+(1, n + 3), detT = 1
and T preserves the signature of the first coordinate of any x ∈ R

n+4
1

(i.e., it preserves the time direction).
Let y : M2 → S

n+2 be a conformal immersion from a Riemann surface
M . Let U ⊂ M be an open subset. A local lift of y is a map Y : U →
Cn+3
+ such that π ◦Y = y. Two different local lifts differ by a scaling, so

with conformal induced metrics. Here we call y a conformal immersion,
if 〈Yz, Yz〉 = 0 and 〈Yz, Yz̄〉 > 0 for any local lift Y and any complex
coordinate z on M . Then there is a decomposition M×R

n+4
1 = V ⊕V ⊥,

where

V = Span{Y,ReYz, ImYz, Yzz̄}
is a Lorentzian rank-4 sub-bundle independent of the choice of Y and
z. Their complexifications are denoted separately as VC and V ⊥

C
.

Fix a local coordinate z. There is a local lift Y satisfying |dY |2 =
|dz|2, called the canonical lift (with respect to z). Choose a frame
{Y, Yz, Yz̄, N} of VC, where N ∈ Γ(V ) is uniquely determined by

(2.1) 〈N,Yz〉 = 〈N,Yz̄〉 = 〈N,N〉 = 0, 〈N,Y 〉 = −1.

Now we define the conformal Gauss map of y as follows. See also
[5, 8, 13, 25].

Definition 2.1. For a conformally immersed surface y : M → S
n+2

with canonical lift Y (with respect to a local coordinate z), we define

G := Y ∧ Yu ∧ Yv ∧N = −2i · Y ∧ Yz ∧ Yz̄ ∧N, z = u+ iv,

where N ≡ 2Yzz̄( mod Y ) is the frame vector determined in (2.1). It is
direct to see that G is well defined. We call G : M → Gr3,1(R

n+4
1 ) the

conformal Gauss map of y.



THE BJÖRLING PROBLEM FOR WILLMORE SURFACES 417

Given frames as above, and noting that Yzz is orthogonal to Y , Yz
and Yz̄, there exists a complex function s and a section κ ∈ Γ(V ⊥

C
) such

that
Yzz = −s

2
Y + κ.

This defines two basic invariants κ and s depending on coordinates
z, the conformal Hopf differential and the Schwarzian of y (for more
discussion, see [8, 25]). Let D denote the normal connection and ψ ∈
Γ(V ⊥

C
) any section of the normal bundle. The structure equations can

be given as follows:⎧⎪⎪⎨⎪⎪⎩
Yzz = − s

2Y + κ,
Yzz̄ = −〈κ, κ̄〉Y + 1

2N,
Nz = −2〈κ, κ̄〉Yz − sYz̄ + 2Dz̄κ,
ψz = Dzψ + 2〈ψ,Dz̄κ〉Y − 2〈ψ, κ〉Yz̄.

The conformal Gauss, Codazzi and Ricci equations as integrable condi-
tions are:

(2.2)

⎧⎨⎩
1
2sz̄ = 3〈κ,Dzκ̄〉+ 〈Dzκ, κ̄〉,
Im(Dz̄Dz̄κ+ s̄

2κ) = 0,
RD

z̄z = Dz̄Dzψ −DzDz̄ψ = 2〈ψ, κ〉κ̄− 2〈ψ, κ̄〉κ.
The conformal Hopf differential plays an important role in the study

of Willmore surfaces. To see this, we first give the transformation for-
mula of κ. For another complex coordinate w, Y1 = Y · |dwdz | is the
canonical lift with respect to w. So the corresponding Hopf differential
κ1 with respect to (Y1, w) is

(2.3) κ1 = κ ·
(
dz

dw

)2

/| dz
dw

|.

Direct computation using the structure equations above shows that
G induces a conformal-invariant metric

g :=
1

4
〈dG, dG〉 = 〈κ, κ̄〉|dz|2,

on M. Note this metric degenerates at umibilic points of y. We define
the Willmore functional and Willmore surfaces by use of this metric.

Definition 2.2. The Willmore functional of y is defined as the area
of M with respect to the metric above:

W (y) := 2i

∫
M
〈κ, κ̄〉dz ∧ dz̄.

An immersed surface y : M → S
n+2 is called a Willmore surface if it is a

critical surface of the Willmore functional with respect to any variation
of the map y : M → S

n+2.

It is direct to verify that W (y) is well-defined from the formula (2.3).
Willmore surfaces can be characterized as follows [5, 8, 13, 31]:
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Theorem 2.3. For a conformal immersion y : M → S
n+2, the fol-

lowing three conditions are equivalent:

(i) The immersion y is Willmore.
(ii) The conformal Gauss map G is a harmonic map into G3,1(R

n+3
1 ).

(iii) The conformal Hopf differential κ of y satisfies the following Will-
more condition, which is stronger than the conformal Codazzi equa-
tion (2.2):

Dz̄Dz̄κ+
s̄

2
κ = 0.

In the seminal paper [5], Bryant showed that every Willmore surface

Y in S
3 admits a dual Willmore surface Ŷ , i.e., another map Ŷ , which

may have branch points or degenerate to a point, but, if immersed, has
the same complex coordinate and the same conformal Gauss map as
Y . This duality theorem, however, does not hold in general when the
codimension is bigger than 1 ([13], [8], [24]). To characterize Willmore
surfaces with dual surfaces, in [13] Ejiri introduced the notion of S-
Willmore surfaces. Here we define it slightly differently to include all
Willmore surfaces with dual surfaces:

Definition 2.4. A Willmore immersion y : M2 → S
n+2 is called an

S-Willlmore surface if its conformal Hopf differential satisfies

Dz̄κ||κ,
i.e., there exists some function μ on M such that Dz̄κ+ μ

2κ = 0.

A basic result of [13] states that a Willmore surface admits a dual
surface if and only if it is S-Willmore. Moreover, the dual surface is also
Willmore, when it is non-degenerate.

Example 2.5. 1. It is well known that minimal surfaces in Riemann-
ian space forms are Willmore surfaces (see [5, 21], for example). These
surfaces give the basic examples of Willmore surfaces. Moreover, they
are, in any codimension, S-Willmore surfaces, i.e., Willmore surfaces
with a dual surface, see [13, 25].

2. Using the Hopf bundle, Pinkall [28] obtained a family of non-
minimal Willmore surfaces in S

3 via the elastic curves.

2.2. Harmonic maps into SO+(1, 4)/ (SO+(1, 1)× SO(3)) related
to Willmore surfaces. In the classic paper [16], Hélein showed that
there exists another family of flat connections associated with an umbilic
free Willmore surface in S

3, besides the one related to the conformal
Gauss map. Hélein’s connections yield many “roughly harmonic” maps
Y ∧ Ŷ , that take values in SO+(1, 4)/ (SO+(1, 1)× SO(3)). Here Ŷ is
an arbitrary lightlike vector other than Y in the mean curvature sphere
V of Y . Moreover, he found that if Ŷ is chosen suitably (which yields

a Riccati equation), the roughly harmonic map Y ∧ Ŷ will be truly
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harmonic [16]. A special choice is to set Ŷ to be the dual surface of Y
([16], [17]). These results are generalized for Willmore surfaces in S

n+2

in [34].
In a different approach Ma [24] proved that a Willmore surface in

S
n+2 locally always admits an adjoint transform (which in general may

be non-unique). This is the generalization of the duality theorem of
Willmore surfaces in S

3. Furthermore, he found that a Willmore surface
together with an adjoint transform, derives a new kind of harmonic map
into SO+(1, n+3)/ (SO+(1, 1)× SO(n+ 2)), which turns out to be one
of the harmonic maps found by Hélein [16] and Qiaoling Xia, Yibing
Shen [34].

To avoid burdening the reader who may be primarily concerned with
the S

3 case with unnecessary information, we will restrict ourselves,
in this subsection and the sections immediately following, to Willmore
surfaces in S

3. The general case of S
n+2 includes more possibilities,

which we discuss in Section 7.
Let y : U → S

3 be an umbilic free Willmore surface with canonical
lift Y with respect to z as above. We introduce Ŷ as

(2.4) Ŷ = N + μ̄Yz + μYz̄ +
1

2
|μ|2Y,

with μdz = 2〈Ŷ , Yz〉dz a complex connection 1-form. Direct computa-
tion yields

Ŷz =
μ

2
Ŷ + θ

(
Yz̄ +

μ̄

2
Y
)
+ ρ

(
Yz +

μ

2
Y
)
+ 2ζ,

with

θ := μz − μ2

2
− s, ρ := μ̄z − 2〈κ, κ̄〉, ζ := Dz̄κ+

μ̄

2
κ.

Then Ŷ is the dual surface of Y if and only if Dz̄κ+ μ̄
2κ = 0 ([5], [13],

[25], [24]). Note now the Willmore equation is equivalent to the Riccati
equation

(2.5) μz − μ2

2
− s = 0.

Theorem 2.6. [16], [34], [24] (Harmonicity of another map) Let Y

be an umbilic free Willmore surface in S
3 with Ŷ its dual surface. Set

fh : U → SO+(1, n+ 3)/ (SO+(1, 1)× SO(n+ 2)) ,

p ∈ U → Y (p) ∧ Ŷ (p).

Then fh is a conformally harmonic map.

At umbilic points it is possible that there exists a limit of μ such that
(2.5) holds. Due to the following lemma, the harmonic map fh has no
definition when μ tends to ∞.
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Lemma 2.7. [12] At the umbilic points of Y , the limit of μ goes to

a finite number or infinity. When μ goes to infinity, [Ŷ ] tends to [Y ],

and at the point in question we have [Ŷ ] = [Y ].

In order to use the machinery of loop groups, we need to examine the
structure of the Maurer–Cartan form of a frame for Y ∧ Ŷ :

Proposition 2.8. Let fh = Y ∧ Ŷ be a harmonic map, where Y and
Ŷ are a Willmore surface and its dual, as above. Chose a frame

F =

(
1√
2
(Y + Ŷ ),

1√
2
(−Y + Ŷ ), P1, P2, ψ

)
: U → SO+(1, 4),

with Yz +
μ
2Y = 1

2(P1 − iP2), and ψ a unit vector in the normal bundle

V ⊥. Set κ = kψ. Then the Maurer–Cartan form α = F−1dF = α′+α′′
of F is

α′ =
(

A1 B1

−Bt
1I1,1 A2

)
dz,

with

A1 =

(
0 μ

2
μ
2 0

)
, B1 =

(
1+ρ

2
√
2

−i−iρ
2
√
2

0
1−ρ
2
√
2

−i+iρ

2
√
2

0

)
=

(
bt1
bt2

)
.

So
B1B

t
1 = 0.

It is straightforward to see that this last condition on B1 is indepen-
dent of the choice of frame F for the harmonic map fh. Conversely, this
condition is also sufficient to characterize Willmore surfaces:

Theorem 2.9. [16], [17], [34], [24]. Let f be a non-constant har-
monic map M → SO+(1, 4)/(SO+(1, 1)×SO(3)), satisfying B1B

t
1 = 0.

Then Y and Ŷ are a pair of dual (possibly degenerate) Willmore sur-
faces. Moreover, set

B1 = (b1 b2)
t with b1, b2 ∈ C

3.

Then Y is immersed at the points (bt1 + bt2)(b̄1 + b̄2) > 0 and Ŷ is
immersed at the points (bt1 − bt2)(b̄1 − b̄2) > 0.

Note that Y or Ŷ may degenerate to a point, and in this case the
dual (Ŷ or Y ) is Möbius equivalent to a minimal surface in R

3.
Since B1B

t
1 = 0 serves as some isotropic condition, we define:

Definition 2.10. Let f : M → SO+(1, 4)/(SO+(1, 1) × SO(3)) be
a non-constant harmonic map. Then f is called an isotropic harmonic
map if the Maurer–Cartan form of any frame of f , with the above
notation, satisfies B1B

t
1 = 0.

This characterization of Willmore surfaces in terms of isotropic har-
monic maps essentially follows from the work of Hélein [16, 17], al-
though the name “isotropic” is not used there.
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3. Isotropic harmonic maps into SO+(1, 4)/(SO+(1, 1)× SO(3))

3.1. Harmonic maps into a Symmetric space. Let N = G/K be a
symmetric space with involution σ : G → G such that Gσ ⊃ K ⊃ (Gσ)0.
Let g and k denote the Lie algebras of G andK respectively. The Cartan
decomposition shows that

g = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

Denote π : G → G/K the projection of G into G/K.
Let f : M → G/K be a conformal harmonic map from a connected

Riemann surface M . Let U ⊂ M be an open, simply connected subset.
Then there exists a frame F : U → G such that f |U = π ◦ F . So we
have the Maurer–Cartan form and Maurer–Cartan equation

F−1dF = α, dα+
1

2
[α ∧ α] = 0.

Decomposing these with respect to g = k⊕ p amounts to:

α = α0 + α1, α0 ∈ Γ(k⊗ T ∗M), α1 ∈ Γ(p⊗ T ∗M),{
dα0 +

1
2 [α0 ∧ α0] +

1
2 [α1 ∧ α1] = 0,

dα1 + [α0 ∧ α1] = 0.

Decomposing α1 further into the (1, 0)-part α′1 and the (0, 1)-part α′′1,
we then set

αλ = λ−1α′1 + α0 + λα′′1, λ ∈ S
1.

We have the famous characterization in terms of one-parameter families:

Lemma 3.1. ([11]) The map f : M → G/K is harmonic if and only
if

dαλ +
1

2
[αλ ∧ αλ] = 0 for all λ ∈ S

1.

Definition 3.2. The frame F (z, λ), solving from the equation

dF (z, λ) = F (z, λ)αλ,

with the initial condition F (0, λ) = F (0), is called an extended frame
of the harmonic map f . Note that it satisfies F (z, 1) = F (z).

3.2. The DPW construction of harmonic maps.

3.2.1. Two decomposition theorems. We denote by SO+(1, n+ 3)
the connected component of the identity of the linear isometry group of
R
n+4
1 , with the metric introduced in Section 2. Then

so(1, n+ 3) = g = {X ∈ gl(n+ 4,R)|XtI1,n+3 + I1,n+3X = 0}.
Consider the involution

σ : SO+(1, n+ 3) → SO+(1, n+ 3)
A → DAD−1, where D =

( −I2 0
0 In+2

)
.
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We have SO+(1, n+3)σ ⊃ SO+(1, 1)×SO(n+2) = (SO+(1, n+3)σ)0.
We also have

g =

{(
A1 B1

−Bt
1I1,1 A2

)
|At

1I1,1 + I1,1A1 = 0, A2 +At
2 = 0

}
= k⊕ p,

with

k =

{(
A1 0
0 A2

)
|At

1I1,1 + I1,1A1 = 0, A2 +At
2 = 0

}
,

p =

{(
0 B1

−Bt
1I1,1 0

)}
.

Let GC = SO+(1, n+3,C) := {X ∈ SL(n+4,C) |XtI1,n+3X = I1,n+3},
which has Lie algebra so(1, n + 3,C). Extend σ to an inner involution
of SO+(1, n+3,C) with fixed point group KC = S(O+(1, 1,C)×O(n+
2,C)).

Let ΛGC
σ denote the group of loops in GC = SO+(1, n+3,C) with the

twisting by σ. Let Λ+GC
σ denote the subgroup of loops which extend

holomorphically to the unit disk |λ| ≤ 1. We also use the subgroup

Λ+
BG

C
σ := {γ ∈ Λ+GC

σ | γ|λ=0 ∈ B}.

Here B ⊂ KC is defined from the Iwasawa decomposition

KC = K ·B.

In this case,

B =

{(
b1 0
0 b2

)
| b1 =

(
cos θ i sin θ
i sin θ cos θ

)
, θ ∈ R

2πZ
, and b2 ∈ B2

}
.

Here B2 is the solvable subgroup of SO(n+2,C). For more details, see
Lemma 4 of [16]. Then we have:

Theorem 3.3. Theorem 5 of [16], see also [34], [11], [29], [3] (Iwa-
sawa decomposition): The multiplication ΛGσ×Λ+

BG
C → ΛGC

σ is a real

analytic diffeomorphism onto the open dense subset ΛGσ ·Λ+
BG

C ⊂ ΛGC
σ .

Let Λ−∗ GC
σ denote the loops that extend holomorphically into ∞ and

take the value I at infinity.

Theorem 3.4. Theorem 7 of [16], see also [34, 11, 29, 3] (Birkhoff
decomposition): The multiplication Λ−∗ GC

σ × Λ+GC → ΛGC
σ is a real

analytic diffeomorphism onto the open subset Λ−∗ GC
σ · Λ+GC (the big

cell) of ΛGC
σ .
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3.2.2. The DPW construction and Wu’s formula. Here we recall
the DPW construction for harmonic maps. Let D ⊂ C be a disk or C

itself, with complex coordinate z.

Theorem 3.5. [11]

(i) Let f : D → G/K be a harmonic map with an extended frame
F (z, z̄, λ) ∈ ΛGσ and F (0, 0, λ) = I. Then there exists a Birkhoff
decomposition

F−(z, λ) = F (z, z̄, λ)F+(z, z̄, λ), with F+ ∈ Λ+GC
σ ,

such that F−(z, λ) : D → Λ−∗ GC
σ is meromorphic. Moreover, the

Maurer–Cartan form of F− is of the form

η = F−1− dF− = λ−1η−1(z)dz,

with η−1 independent of λ. The 1-form η is called the normalized
potential of f .

(ii) Let η be a λ−1 · p-valued meromorphic 1-form on D. Let F−(z, λ)
be a solution to F−1− dF− = η, F−(0, λ) = I. Then on an open
subset DI of D one has

F−(0, λ) = F̃ (z, z̄, λ) · F̃+(z, z̄, λ), with F̃ ∈ ΛGσ, F̃ ∈ Λ+
BG

C
σ .

This way, one obtains an extended frame F̃ (z, z̄, λ) of some har-

monic map from DI to G/K with F̃ (0, λ) = I. Moreover, all
harmonic maps can be obtained in this way, since these two proce-
dures are inverse to each other if the normalization at some base
point is used.

The normalized potential can be determined in the following way. Let
f and F be as above. Let αλ = F−1dF . Let δ1 and δ0 denote the sum
of the holomorphic terms of z around z = 0 in the Taylor expansion of
α′1(

∂
∂z ) and α′0(

∂
∂z ).

Theorem 3.6. [33] (Wu’s formula) We retain the notations of The-
orem 3.5. Then the normalized potential of f with respect to the base
point 0 is given by

η = λ−1Δ0δ1Δ
−1
0 dz,

where Δ0 : D → GC is the solution to Δ−10 dΔ0 = δ0dz, Δ0(0) = I.

For many applications, normalized potentials are too specific. An-
other type of holomorphic potential was also introduced in [11]:

Theorem 3.7. [11] We retain the notations of f and F (z, z̄, λ) in
Theorem 3.5. Then there exists some V+ : D → Λ+GC

σ such that

C(z, λ) = F (z, z̄, λ)V+(z, z̄, λ)

is holomorphic in z and in λ ∈ C
∗. Moreover, the Maurer–Cartan form

Ξ = C−1dC is a holomorphic 1-form on D with λη holomorphic in λ
for all λ ∈ C. The 1-form Ξ is called a holomorphic potential of f .
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Conversely, let Ξ be a ΛgCσ -valued holomorphic 1-form on D such that
λΞ is holomorphic in λ for all λ ∈ C. Let C be a solution to C−1dC = Ξ,
C(0, λ) = I. Then on an open subset DI of D, one obtains

C(z, λ) = F̂ (z, z̄, λ) · V̂+(z, z̄, λ), with F̃ ∈ ΛGσ, V̂+ ∈ Λ+
BG

C
σ .

Hence, one obtains an extended frame F̂ (z, z̄, λ) of some harmonic map

from DI to G/K with F̂ (0, λ) = I. Moreover, all harmonic maps can
be obtained in this way.

Note that there exist many different holomorphic potentials for a
harmonic map.

3.3. Potentials of isotropic harmonic maps. Let D denote the unit
disk of C or C itself.

Theorem 3.8. [16], [17]

(i) Let f : D → SO+(1, 4)/(SO+(1, 1) × SO(3)) be an isotropic har-
monic map with complex coordinate z. Then its normalized poten-
tial satisfies

η = λ−1
(

0 B̂1

−B̂t
1I1,1 0

)
dz, with B̂1B̂

t
1 = 0.

Conversely, let f be the harmonic map derived from a normalized
potential η satisfying the above condition. Then f = Y ∧ Ŷ is an
isotropic harmonic map associated with the dual Willmore surfaces
Y and Ŷ .

(ii) Let f : D → SO+(1, 4)/(SO+(1, 1) × SO(3)) be an isotropic har-
monic map with complex coordinate z. Then any holomorphic
potential of f satisfies

Ξ =

∞∑
j=−1

λjξjdz, with ξ−1 =
(

0 B̃1

−B̃t
1I1,1 0

)
and B̃1B̃

t
1 = 0.

Conversely, let f be the harmonic map derived from a holomorphic
potential Ξ satisfying the condition above. Then f = Y ∧ Ŷ is an
isotropic harmonic map associated with the dual Willmore surfaces
Y and Ŷ .

The proof comes directly from the decompositions F = F− · F+ and
F = C · V+, and the fact that conjugation by some T ∈ SO+(1, 1,C)×
SO(3,C) does not change the isotropic condition B1B

t
1 = 0.

In [16], there is an interesting description of Willmore surfaces Möbius
equivalent to minimal surfaces in space forms. Here we restate it as:

Theorem 3.9. ([16]) Let fh = Y ∧ Ŷ be a non-constant isotropic
harmonic map.



THE BJÖRLING PROBLEM FOR WILLMORE SURFACES 425

(i) The map [Y ] is Möbius equivalent to a minimal surface in R
3 if

Ŷ reduces to a point. In this case

B1 =
(
b1 b1

)t
.

(ii) The map [Y ] is Möbius equivalent to a minimal surface in S
3 if fh

reduces to a harmonic map into SO(4)/SO(3). In this case

B1 =
(
0 b1

)t
.

(iii) The map [Y ] is Möbius equivalent to a minimal surface in H3 if
fh reduces to a harmonic map into SO+(1, 3)/SO+(1, 2). In this
case

B1 =
(
b1 0

)t
.

Here b1 ∈ C
3 and bt1b1 = 0.

The converse of the above results also hold. That is, if B1 is (up to
conjugation) of the form stated above, then [Y ] is Möbius equivalent to
the corresponding minimal surface, wherever it is immersed.

3.4. Examples. By implementing the Iwasawa decomposition numer-
ically, one can compute solutions and plot the images of Willmore sur-
faces with the aid of a computer. Here are some simple examples, with
images shown at Figure 4.

Example 3.10. Let

η = λ−1
(

0 B̂1

−B̂t
1I1,1 0

)
dz, with B̂1 =

(
b1 b2

)t
.

It is shown in [16], that if one chooses

bt1 = 0, bt2 =

√
2

4

(
1− z2

8
, −i(1 +

z2

8
)

√
2z

2

)
,

one will obtain the Clifford torus in S
3. Note that b2 is exactly the

Weierstrass-representation data of the Enneper surface.

Figure 4. Willmore surfaces computed with a numeri-
cal implementation of DPW. Left: Example 3.10. Mid-
dle: Example 3.11. Right: Example 3.12.
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Example 3.11. If we choose

bt1=
i

4

(
8− z2

8
, −i

8 + z2

8
,

√
2z

2

)
, bt2=

√
3

4

(
8− z2

8
, −i

8 + z2

8
,

√
2z

2

)
,

we obtain the second image in Figure 4. Note that this Willmore surface
is not Möbius equivalent to a minimal surface in any space form, by
Theorem 3.9.

Example 3.12. Replacing z with 1/z in the Clifford torus potential:

bt1 = 0, bt2 =

(
1− 1

z2
, −i(1 +

1

z2
),

1

z

)
,

and integrating with initial condition F (1) = I, we obtain the third
image in the figure. This Willmore surface is Möbius equivalent to a
minimal surface in S

3 by Theorem 3.9.

4. Björling’s problem for Willmore surfaces in S
3

We state the Björling problem for Willmore surfaces in S
3 as: Given

a sphere congruence together with two enveloping curves on an interval
I of S3, does there exist a unique pair of dual Willmore surfaces such
that their restrictions to the interval I coincide with the two enveloping
curves separately and their mean curvature sphere coincides with the
sphere congruence?

Concretely, we have the following result:

Theorem 4.1. Let ψ0 = ψ0(u) : I → S
4
1 denote a non-constant real

analytic sphere congruence from I to S
3, with enveloping curves [Y0]

and [Ŷ0] such that 〈Y0, Y0〉 = 〈Ŷ0, Ŷ0〉 = 0, 〈Y0, Ŷ0〉 = −1, and u is the
arc-parameter of Y0 : I → C4

+. Then there exists a unique pair of dual
Willmore surfaces y, ŷ : Σ → S

3, with Σ some simply connected open
subset containing I, such that the lifts Y, Ŷ of y, ŷ satisfy

Y |I = Y0, Ŷ |I = Ŷ0.

Moreover, let ψ : Σ → S
4
1 be the conformal Gauss map of Y , we have

ψ|I = ψ0.

For minimal surfaces in space forms, the mean curvature 2-sphere is
the same as their tangent planes. For a minimal surface in R

n, the dual
surface Ŷ is a point at infinity. For a minimal surface y in S

n or H
n,

the dual surface is exactly −y. So the Björling problem for minimal
surfaces in space forms is a corollary of Theorem 4.1:

Corollary 4.2. Let y0(u) be a real analytic curve in a space form
defined on I and let n0(u) be a real analytic unit vector normal to y0.
Then there exists a unique minimal surface y(u, v) in the space form
such that y(u, 0)|I = y0(u) and n(u, 0)|I = n0(u). Here n is the unit
normal of y.
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Theorem 4.1 is a straightforward corollary of the following:

Theorem 4.3. We retain the assumptions and notations in Theo-
rem 4.1. Choose two real analytic unit vector fields P1 and P2 on I such
that

Y0u=P1 mod Y0, P2⊥{ψ0, Y0, Ŷ0, P1} and det(Y0, Ŷ0, P1, P2, ψ0) = 1.

There exist real analytical functions μ1 = μ1(u), ρ1 = ρ1(u), ρ2 = ρ2(u),
k1 = k1(u), k2 = k2(u) on I such that

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y0u = −μ1Y0 + P1,

Ŷ0u = μ1Ŷ0 + ρ1P1 + ρ2P2,

P1u = μ2P2 + 2k1ψ0 + Ŷ0 + ρ1Y0,
P2u = −μ2P1 − 2k2ψ0 + ρ2Y0,
ψ0u = −2k1P1 + 2k2P2

holds. Set μ = μ1 + iμ2, k = k1 + ik2 and ρ = ρ1 + iρ2. For a real
analytic function x(u) on I, denote its analytic extension to a simply
connected open subset containing I by x(z). Consider the holomorphic
potential

Ξ =
(
λ−1A1 +A0 + λA−1

)
dz,

with

A0 =

(
A1 0
0 A2

)
, A1 =

(
0 B1

−Bt
1I1,1 0

)
, A−1(z) = A1(z̄),

A1(z) =

(
0 μ1(z)

μ1(z) 0

)
, A2(z) =

⎛⎝ 0 −μ2(z) −2k1(z)
μ2(z) 0 2k2(z)
2k1(z) −2k2(z) 0

⎞⎠ ,

B1(z) =
1

2
√
2

(
1 + ρ(z) −i− iρ(z) 0
1− ρ(z) −i+ iρ(z) 0

)
.

By DPW, Theorem 3.7, the potential Ξ provides an isotropic har-
monic map, together with a unique pair of dual Willmore surfaces y, ŷ :
Σ → S

3, with Σ some open subset containing I, such that the lifts Y, Ŷ
of y, ŷ satisfy

Y |I = Y0, Ŷ |I = Ŷ0.

Moreover, let ψ : Σ → S
4
1 be the conformal Gauss map of Y . Then

ψ|I = ψ0.

Proof. Set

F0 =

(
Y0 + Ŷ0√

2
,
−Y0 + Ŷ0√

2
, P1, P2, ψ0

)
.

Rewriting (4.1), we obtain

F−10 dF0 = (α̂1 + α̂0 + α̂−1)du,
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with

α̂0(u) = A0(u), α̂1(u) = A1(u),

and Aj are as in the statement of the theorem. Introducing λ, we set

α̂λ = (λ−1α̂1 + α̂0 + λα̂−1)du.

Let F0(u, λ) be the solution to dF0(u, λ) = F0(u, λ)α̂λ, F0(u, λ)|λ=1 =
F0.

Let z = u + iv be the complex coordinate such that u + i0 param-
eterizes I. As a consequence, the holomorphic 1-form Ξ coincides with
α̂λ when restricted to I, since on I z = u + i0 = u. Assume that F is
the solution to

F−1dF = Ξ, F(u0 + i0, λ) = F0(u0 + i0, λ) for some u0 ∈ I.

Then

F(z = u, λ) = F0(u, λ), ∀u ∈ I.

Since F0(u, λ) ∈ ΛGσ for all u ∈ I, F(z) is in the big cell for z in some
open subset D0 containing I. Performing the Iwasawa decomposition of
Theorem 3.3, pointwise on D0, we obtain

F = F̌ (z, λ) · F̌+(z, λ),

with F̌ (z, λ) = F̌ (z, λ) on D0 and F̌+(z, λ) ∈ Λ+
BG

C
σ . By the initial

condition we have

F̌ (z = u, λ) = F0(u, λ), ∀u ∈ I.

By Theorem 3.5, F̌ is an extended frame of some harmonic map. It
is straightforward to compute B̂1B̂

t
1 ≡ 0. By Theorem 3.8, F̌ is an

isotropic harmonic map. Now set F̌ = (e−1, e0, e1, e2, ψ), then Y =
1√
2
(e−1 − e0), Ŷ = 1√

2
(e−1 + e0) and ψ are the desired dual Willmore

surfaces and their conformal Gauss map, which are unique and coincide,
by construction, with Y0, Ŷ0 and ψ0 on I. q.e.d.

The potential Ξ defined in the above theorem is a special type of
holomorphic potential one can generally define by taking the Maurer–
Cartan form of the extended frame F for a harmonic map, restricting
to some curve in the domain, and then extending holomorphically. We
call it the boundary potential.

4.1. Examples. In the following examples we let E0 = (1, 0, 0, 0, 0), . . .
E4 = (0, 0, 0, 0, 1) denote an orthonormal basis for R5

1, with 〈E0 , E0〉 =
−1. For convenience, we write X ′ for Xu, and we abuse notation by
dropping the subscripts on Y0, Ŷ0 and ψ0.

Example 4.4. Let us consider a Willmore surface in S
3 containing

the circle (cosu, sinu, 0, 0). A lift is Y = (1, cosu, sinu, 0, 0). The sim-

plest case is where the plane spanned by Y and Ŷ is constant: without



THE BJÖRLING PROBLEM FOR WILLMORE SURFACES 429

loss of generality we can take Ŷ = (1/2)(1,− cosu,− sinu, 0, 0). From
Equations (4.1), we have

P1 = Y ′ + μ1Y = (0,− sinu, cosu, 0, 0) + μ1(1, cosu, sinu, 0, 0).

The requirement that 〈Ŷ , P1〉 = 0 gives us:

μ1 = 0, P1 = (0,− sinu, cosu, 0, 0).

The equation Ŷ ′ = μ1Ŷ + ρ1P1 + ρ2P2 gives us

ρ1 = −1/2, ρ2 = 0.

The third equation from (4.1) is

(0,− cosu,− sinu, 0, 0) = P ′1 = μ2P2 + 2k1ψ + Ŷ + ρ1Y.

Since ψ and P2 necessarily take values in Span{E3, E4}, we conclude
that μ2 = k1 = 0. The only remaining parameter for the potential is k2,
and this is determined by our choice of ψ, which could be any vector
field taking values in Span{E3, E4}. For example, k2 = 0 corresponds
to ψ and P2 being constant along the curve. The Willmore surface
obtained is a round sphere. More generally, we must have

ψ = − sin(θ)E3 + cos(θ)E4, P2 = − cos(θ)E3 − sin(θ)E4,

where θ is any real analytic map R → R. The last equation at (4.1),
becomes θ′P2 = ψ′ = 2k2P2, and so we conclude that k2 = θ′/2. There
are no further constraints, so we can say that all solutions corresponding
to the pair Y and Ŷ above are obtained from a choice of angle function
θ with the boundary potential given by the data:

(μ, k, ρ) = (0, iθ′/2,−1/2).

Example 4.5. A special case of the previous example is when θ′ is
constant, and for this we can write down the solution explicitly: consider
the immersion

y(u, ṽ) = (cosu cos ṽ, sinu cos ṽ, cos ru sin ṽ, sin ru sin ṽ),

where r is a non-zero real number. Note that the case that r = �/m
is rational corresponds to Lawson’s minimal tori and Klein bottles τm,�

(see equation (7.1) of [23]). The surfaces τm,� are all distinct compact
genus one surfaces for distinct relatively prime pairs of positive integers
(m, �). They are non-orientable if and only if 2 divides m or �.

Conformal coordinates (u, v) for y are defined by setting u = u and

v =
∫ ṽ
0 (cos

2w + r2 sin2w)−1/2dw. Setting R =
√
cos2 ṽ + r2 sin2 ṽ, a
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r = 1 r = 2 r = 2 r = 3

Figure 5. Conformally immersed Lawson surfaces.
Left: Clifford torus. Middle: Klein bottle. Right: Torus.

canonical lift and frame are given by:

Y = (1, y), Ŷ =
1

2
(1,−y),

P1 =
1

R
(0,− sinu cos ṽ, cosu cos ṽ,−r sin ru sin ṽ, r cos ru sin ṽ) ,

P2 = (0,− cosu sin ṽ,− sinu sin ṽ, cos ru cos ṽ, sin ru cos ṽ),

ψ =
1

R
(0,−r sinu sin ṽ, r cosu sin ṽ, sin ru cos ṽ,− cos ru cos ṽ) .

The restriction of this frame to v = ṽ = 0 is precisely the frame given
in Example 4.4, with θ′ = r. In particular, the boundary potentials for
Lawson’s minimal surfaces τm,� are given by

(μ, k, ρ) = (0, i�/(2m),−1/2).

For the case that r is not rational, one obtains an immersed cylinder.
Figure 5 shows three examples computed from these potentials.

5. Equivariant surfaces

The Lawson-type surfaces of the previous example are special cases
of Willmore surfaces invariant under the action of a 1-parameter sub-
group of SO(4). More generally, by an equivariant surface we mean
one that is invariant under the action of a 1-parameter subgroup of
the Möbius group SO+(1, 4). Such a subgroup necessarily sits inside
either a copy of SO(4) or of SO+(1, 3), the isometry groups of S3 and
H

3 respectively. We will consider the SO(4) case first, which we will
call SO(4)-equivariant surfaces. Up to conjugation in SO(4), such a
subgroup acts on (z, w) ∈ S

3 ⊂ C
2 by (z, w) → (eitz, eirtw), where

r ∈ R. The case r = 0 corresponds to surfaces of revolution, and r = 1
corresponds to Hopf cylinders.

5.1. Criteria for minimality in space forms. We are interested to
distinguish those Willmore surfaces that are “non-minimal” in the sense
that they are not Möbius equivalent to a minimal surface in some space
form. For equivariant surfaces, the criteria is given in the lemma below.
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We first remark that a standard argument [7] shows that a surface is
equivariant, with the curve v = 0 an equivariant curve, if and only if the
corresponding holomorphic potential depends only on v. This means
that the Björling potentials corresponding to equivariant surfaces are
exactly those with μ, k and ρ constant. See also the direct argument
below in Section 5.2.

First we recall a well-known characterization of minimality in space
forms for Willmore surfaces (see, for example, Page 377 of [16]):

Lemma 5.1. Let y be a Willmore surface in S
n with Y and Ŷ a lift

of itself and its dual surface. Then y is Möbius equivalent to a minimal
surface in some n-dimensional space form if and only if there exist two
real functions a and b such that aY + bŶ �= 0 is constant. Moreover,
the space form is

(i) S
n(r) if and only if 〈aY + bŶ , aY + bŶ 〉 = −r2;

(ii) R
n if and only if 〈aY +bŶ , aY +bŶ 〉 = 0 if only if [Ŷ ] is constant;

(iii) H
n(r) if and only if 〈aY + bŶ , aY + bŶ 〉 = r2.

Applying this to equivariant Willmore surfaces in S
3, we have

Lemma 5.2. Let y be an equivariant Willmore surface generated by
the boundary potential corresponding to constants (μ1, μ2, k1, k2, ρ1, ρ2).
Then

(i) The surface y is Möbius equivalent to a minimal surface in R
3 if

and only if ρ1 = ρ2 = 0;
(ii) The surface y is Möbius equivalent to a minimal surface in S

3 if
and only if μ1 = ρ2 = 0 and ρ1 < 0;

(iii) The surface y is Möbius equivalent to a minimal surface in H
3 if

and only if μ1 = ρ2 = 0 and ρ1 > 0.

Proof. (i) By Lemma 5.1 if y is Möbius equivalent to a minimal

surface in R
3, then [Ŷ ] is constant. Hence, by (4.1), ρ1 = ρ2 = 0.

Conversely, if ρ1 = ρ2 = 0, then

A1 =

(
0 B̂1

−B̂t
1I1,1 0

)
with B̂1 =

(
b̂t1
b̂t1

)
.

By simple computation one will see that B̂1 being of the above form
is conjugation invariant. So let F = (e0, e1, e2, e3, e4) be the extended
frame derived from Ξ. Then the B1 part of the Maurer–Cartan form
of F has the same form, which means that Ŷz = 1√

2
(e−1 + e0)z = 0

mod Ŷ . By Lemma 5.1, y is Möbius equivalent to a minimal surface in
R
3.
(ii) By Lemma 5.1, if y is Möbius equivalent to a minimal surface

in S
3, then there exist two real functions a and b such that

(aY + bŶ )u = 0, and 〈aY + bŶ , aY + bŶ 〉 = −2ab = −r2.
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By (4.1), μ1 = ρ2 = 0, and a+ bρ1 = 0. Since ab = r2 > 0, ρ1 < 0.
Conversely, if μ1 = ρ2 = 0 and ρ1 < 0, there exists a unique θ0 ∈ R

such that (1 + ρ1) cosh θ0 + (1− ρ1) sinh θ0 = 0. Let

T = diag(T1, I3), with T1 =

(
cosh θ0 sinh θ0
sinh θ0 cosh θ0

)
.

Then the first row and column of Ξ̃ = TΞT−1 are both zero. That is,
Ξ̃ induces a conformal harmonic map into SO(4)/SO(3) = S

3, which

means that the surfaces induced by Ξ̃ are Möbius equivalent to some
minimal surfaces in S

3. Let F be the extended frame of Ξ. So F̃ =
TFT−1 is the extended frame of Ξ̃ and hence y is Möbius equivalent to
some minimal surface in S

3.
The proof of (iii) is the same as (ii), and is left to the interested

reader. q.e.d.

5.2. Surfaces of revolution in S
3. A rotational surface in S

3 is an
equivariant surface where the 1-parameter subgroup fixes a geodesic in
S
3, or, equivalently fixes a plane in R

4. Without loss of generality, we
can take the geodesic to be the unit circle in the plane E3 ∧E4, so that
the action is Rt(z, w) = (eitz, w). A point on the surface that is not a
fixed point of the action is (after a rotation in the fixed plane E3 ∧E4)
of the form (a cos θ, a sin θ, b, 0), where a2+b2 = 1, and a �= 0. Applying
Rt, the surface thus contains the curve γ(t) = (a cos t, a sin t, b, 0), and
we write our initial curve as

y(u) = af(u) + bE3, f(u) = cosuE1 + sinuE2, a2 + b2 = 1, a �= 0.

The surface normal along this curve must be of the form

n(u) = −bcf + acE3 + dE4,

where c2+d2=1, and the assumption that the surface is invariant under
Ru means that c and d are constant. The starting point for the con-
struction is the canonical lift Y of y and a general Ru-invariant lift ψ of
n:

Y =
1

a
E0 + f +

b

a
E3, ψ = (0, n) + hY,(5.1)

with

f(u) = cos tE1 + sin tE2, a2 + b2 = 1, c2 + d2 = 1, a �= 0, h ∈ R,

where a, b, c, d and are constant, and the constant h will be the value of
the mean curvature along the curve. We expect another parameter to
appear because we have not yet chosen Ŷ , but we begin by finding all
possible solutions to (5.1), and then identify those that are equivariant.

The last equation of (4.1) becomes:

(h− bc)f ′ = ψ′ = −2k1P1 + 2k2P2.
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If h − bc = 0 then we must have k1 = k2 = 0 along the whole curve,
and hence the curve is a line of umbilics. If the surface is not totally
umbilic, we can choose a different parallel curve as our initial curve for
the Björling problem. Hence, we assume that h �= bc. In this case,
ψ′ �= 0, and we necessarily have span(P1, P2, ψ) = span(ψ,ψ′, V ), where

V depends on the choice of Ŷ . We can, therefore, choose P1 = ψ′/|ψ′|,
that is:

P1 = f ′, k1 =
β

2
, k2 = 0, μ1 = 0, β := bc− h.

From the second and third equation of (4.1), one obtains

Ŷ ′ = ρ1P1 + ρ2P2,

P ′1 = −f = μ2P2 + βψ + Ŷ + ρ1Y.

Differentiating the expression Ŷ = −μ2P2 − f − βψ − ρ1Y , we have

ρ1P1 + ρ2P2 = Ŷ ′ = −μ′2P2 − μ2P
′
2 − f ′ + β2f ′ − ρ′1Y − ρ1P1.

The fourth equation of (4.1) is P ′2 = −μ2P1+ρ2Y . Inserting this above,
we end up with

P1(2ρ1 − μ2
2 + 1− β2) + P2(ρ2 + μ′2) + Y (ρ′1 + μ2ρ2) = 0.

The vanishing of the coefficients of P1, P2 and Y above implies that

ρ1 =
1

2

(
μ2
2 + β2 − 1

)
, ρ2 = −μ′2.

The third equation, ρ′1 = −μ2ρ2, gives nothing new, and so we retain
the function μ2 as a parameter m.

In summary, all possible Willmore surfaces containing the curve and
surface normal specified at (5.1) are given by the boundary potential
data

(μ, k, ρ) =

(
im(u),

β

2
,
1

2
(m(u)2 + β2 − 1)− im′(u)

)
,

where m(u) is an arbitrary function of u. Three examples are computed
numerically and displayed in Figure 1. All have the same value for β, but
with respectively m(u) = eu−π/2, m(u) = 2 cos2(2u) and m(u) = −1.
An interesting result of Palmer [27] shows that such a Willmore surface,
i.e., containing a circle and intersecting the plane of the circle with
constant contact angle, cannot enclose a topological disc, unless it is
part of a sphere or a plane.

Only the last of our examples is a surface of revolution, because we
have not yet taken into account that all the geometry of the surface
should be invariant under the action of T (u). In that case, the dual

surface Ŷ , which is unique, must also be invariant. This, combined
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with the invariance of P1 and ψ implies that the vector P2 is invariant
too. Noting that 〈P2, P1〉 = 〈P2, f

′〉 = 0, this means we can write

P2 = AE0 +Bf + CE3 +DE4,

where A, B, C and E are all constants. Differentiating this, the fourth
equation from (4.1) is

BP1 = Bf ′ = P ′2 = −mP1 + ρ2Y,

from which we conclude that m = −B is constant and ρ2 = 0. Hence,
we have the characterization:

Theorem 5.3. All Willmore surfaces of revolution in S
3 are given

by the boundary potentials with data:

(μ, k, ρ) =

(
im,

β

2
,
1

2
(m2 + β2 − 1)

)
, β ∈ R, m ∈ R,

where β = bc− h if b and c are chosen as described above, and h is the
value of the mean curvature along the initial parallel.

Proof. We have already shown this for the case β �= 0 and non-totally
umbilic surfaces. If β = 0 then the last row and column of the potential
are zero, and so the surface is an immersion into a totally geodesic sphere
S
2 ⊂ S

3. Conversely, The only totally umbilic surface of revolution in
S
3 is the totally geodesic 2-sphere. q.e.d.

β = 0 β = 1/4 β = 1/
√
2 β = 7/8

β = 1 β = 1.5 β = 3 β = 15

Figure 6. Examples of Willmore surfaces of revolution.
All are computed with m = 0. Surfaces are stereograph-
ically projected from the point (0, 0, 0, 1). The first four
are congruent to minimal surfaces in S

3, the fifth to a
catenoid, and the last three to minimal surfaces in H

3

(Theorem 5.6).
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Remark 5.4. If one is only interested in rotational surfaces up to
Möbius equivalent then all solutions are obtained by integrating the
above potential with the identity as initial condition. To plot the
surface with a suitable projection that shows the relevant symmetry,
we then premultiply the solution by the initial condition F0(u0) =(
(Y0 + Ŷ0)/

√
2, (−Y0 + Ŷ0)/

√
2, P1, P2, ψ0

) ∣∣
u=u0

corresponding to a def-

inite choice of b and c. For the case β = 0 one only obtains totally
geodesic spheres, so the initial condition is not important. Hence, all
possible real values of β are covered by taking b = c = 0, a = 1, d = −1
and h arbitrary. The examples shown in Figures 6 and 7 are computed
numerically, applying this initial condition, and then stereographically
projected from the point (0, 0, 0, 1).

(0.5, 0.25) (0.5,
√
3/4) (0.5,

√
3/2) (5, 1)

Figure 7. Surfaces of revolution with various values of
(m,β). The non-zero value of m means the surface nor-
mal along the initial curve is not perpendicular to the
axis of revolution.

Remark 5.5. On the other hand, one can obtain all solutions up
to isometric equivalence in S

3, if one considers all possible values of b
and c in the construction and uses the correct initial condition. To see
that this is needed for isometric equivalence, consider that if b = c = 0
we necessarily have β = h. But then, for non-totally umbilic solutions
(i.e., β �= 0) we would need to have h �= 0. Thus, the non-trivial
solutions computed with this initial condition cannot be minimal in S

3,
only Möbius equivalent to a minimal surface.

5.2.1. Minimal surface representations for rotational surfaces.
It has long been known that a Willmore surface of revolution is neces-
sarily Möbius equivalent to a minimal surface in one of the three space
forms ([30]). Applying Lemma 5.2, we immediately recover that result
and characterize the corresponding potentials as follows:

Theorem 5.6. The Willmore surface of revolution corresponding to
the point (m,β) ∈ R

2, with β �= 0, is Möbius equivalent to a minimal
surface in:
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(i) Hyperbolic 3-space H
3 if and only if m2 + β2 > 1,

(ii) Euclidean 3-space if and only if m2 + β2 = 1,
(iii) The 3-sphere S

3 if and only if m2 + β2 < 1.

Note that if β �= 0, then the corresponding Willmore surface is not
totally umbilic.

5.3. Non-rotational SO(4)-equivariant surfaces. We now consider
SO(4)-equivariant surfaces that are not surfaces of revolution, namely
the isometries (z, w) → (eitz, eirtw) where r �= 0. Let p = (z, w) ⊂ C

2,
with |z|2+|w|2 = 1 be an arbitrary point on the surface. After a rotation
of S3, we can assume that z = (a, 0) and w = (b, 0), where a2 + b2 = 1.
We can, therefore, take the initial curve as y = (aeit, beirt), with r �= 0.
An SO(1, 4) frame for R5

1 = R×C
2 along the curve, invariant under the

action of the subgroup, is given by

f0 = (1, 0, 0), f1 = (0, eit, 0), f2 = (0, ieit, 0),

f3 = (0, 0, eirt), f4 = (0, 0, ieirt),

where, for computations, we note that f2 = f ′1 and f4 = f ′3/r. Writing
all vectors as coordinate vectors in this frame, we have the canonical lift
for y as

Y =
1

R
(1, a, 0, b, 0), R =

√
a2 + b2r2, a2 + b2 = 1, r �= 0.

The most general unit normal for the surface along y give us, in the
frame fi,

n =

(
−bc,−bdr

R
, ac,

ad

R

)
, ψ = (0, n) + hY, c2 + d2 = 1, h ∈ R,

where h, c and d are constant. As with rotational surfaces, all of the
vector fields, Ŷ , P1 and P2 can be chosen to be invariant, and thus have
constant coefficients in the basis fi. Hence, all possible solutions are
obtained using linear algebra. We can write

P1 = Y ′ + μ1Y =
1

R
(�, �, a, �b, rb) ,

where μ1 = � is constant. As in the rotational case, we assume that the
surface is not totally umbilic, implying that ψ′ �= 0 and span(P1, P2, ψ) =
span(P1, ψ

′, ψ). To find P2, we extend the orthonormal pair (ψ, P1) to
an orthonormal basis (ψ, P1, P2) for span(P1, ψ, ψ

′), and find:

P2 = (0, bd,−bcR

r
,−ad, acR) +

abc(1− r2)

rR
(�, a�, a, b�, br)

−h�

r
(1, a, 0, b, 0).

It is also straightforward algebra to find the unique null vector field Ŷ
that is orthogonal to P1, P2 and ψ and satisfies 〈Ŷ , Y 〉 = −1. Substi-
tuting these expressions into (4.1), we, finally, obtain:
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Theorem 5.7. All non-rotational equivariant Willmore surfaces in
S
3 are obtained from the boundary potential Ξr,θ,φ,�,h, with

r ∈ R \ {0}, �, h ∈ R, and θ, φ ∈ R mod 2πZ, defined as follows:
write

a := cos θ, b = sin θ, c = cosφ, d = sinφ, R =
√

a2 + r2b2.

The potential Ξr,θ,φ,�,h is the boundary potential with the following data:

μ1 = �, μ2 =
ab

(
r2 − 1

)
(c�R+ dr)

rR
+

R�

r
h,

k1 =
abc

(
1− r2

)
2R

− 1

2
h, k2 =

r

2R
,

ρ1 = − R2

2
+

a2b2cd�
(
r2 − 1

)2
rR

+
�2

(
a2b2c2

(
r2 − 1

)2 − r2
)

2r2

+hab
(
r2 − 1

)(Rc�2

r2
+

d�

r
+

c

R

)
+

h2

2

(
R2�2

r2
+ 1

)
,

ρ2 =
abd�

(
r2 − 1

)
R

+
abc�2

(
r2 − 1

)
r

+ h

(
�2R

r
+

r

R

)
.

� = 0, h = 1 � = 1, h = 1 � = 1, h = 0

Figure 8. Examples of Willmore Hopf cylinders.

5.4. Special classes of non-rotational surfaces.

5.4.1. Willmore Hopf cylinders, Case r = 1: Here the data simpli-
fies to

(μ1, μ2, k1, k2, ρ1, ρ2)=

(
�, h�, −h

2
,
1

2
,
h2(�2 + 1)− �2 − 1

2
, h

(
�2 + 1

))
,

which only depends on h and �. Hence, there is a two parameter family
of Willmore Hopf cylinders. According to Lemma 5.2, the surface is
Möbius equivalent to a minimal surface in some space form if and only
if � = h = 0, in which case the data is of the form (0, 0, 0, 1/2,−1/2, 0),
a Clifford torus in S

3. Otherwise, the surface is not minimal. This
re-derives Proposition 2 of [28].
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r = 3
2 r = 2 r = 3

Figure 9. Equivariant Willmore cylinders containing an
equator (Section 5.4.2). All have � = h = 1. The value of
r is the number of times that the normal rotates around
the circle in one revolution. The surface is a cylinder if
r is rational.

(�, h) = (1, 1) (�, h) = (1, 0) (�, h) = (0, 1)

Figure 10. The effect of changing the value of h and �.
All have r = 6.

5.4.2. Equivariant surfaces containing an equator, Case a = 1,
b = 0: In this case, the data (μ1, μ2, k1, k2, ρ1, ρ2) are equal to(

�,
�Rh

r
,−h

2
,
r

2R
,
h2

(
�2 + r2

)− r2(1 + �2)

2R2r2
,

(
�2 + r2

)
h

Rr

)
.

The surface is minimal if and only if h = � = 0, and then the data re-
duces to (0, 0, 0, r/2,−1/2, 0), the Lawson-type surfaces of Example 4.5.
Non-minimal examples are shown in Figures 9 and 10.

5.5. SO(4)-equivariant minimal surfaces.

Theorem 5.8. If a non-rotational SO(4)equivariant Willmore sur-
face in S

3 is Möbius equivalent to a minimal surface in some space form,
that space form is necessarily S

3. The boundary potential is given by the
following data, where a, b, c, d, r and R are as in Theorem 5.7:

(μ1, μ2, k1, k2, ρ1, ρ2)=

(
0,

abd
(
r2 − 1

)
R

, − abc
(
r2 − 1

)
2R

,
r

2R
, − R2

2
, 0

)
.
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Proof. Considering Lemma 5.2, note that if the surface is minimal
in R

3, so that [Ŷ ] is constant, we can assume, at least locally, that Ŷ
is constant, so that μ1 is zero, as it is also for minimal surfaces in the
other two space forms. Inserting � = μ1 = 0 into the potential given at
Theorem 5.7, we obtain the potential data:(
0,

abd
(
r2− 1

)
R

,
abc(1− r2)

2R
− H

2
,
r

2R
,
Habc(r2− 1)

R
+

H2−R2

2
,
rH

R

)
,

in particular, ρ2 = rH/R, and this is zero if and only if H = 0. With
� = H = 0, the data reduce to that given in the statement of the
theorem. Since r �= 0, we have ρ1 < 0 and so the surface can only be
minimal in S

3. q.e.d.

6. SO(1, 3)-Equivariant surfaces

Given a lift Y of a Willmore surface y in S
3 to the light cone in R

5
1,

any of the projections to H
3 ⊂ R

4
1, for example,

(Y0, Y1, ..., Y4) → (Y0, Y1, Y2, Y3)/Y4

gives a Willmore surface (possibly with singularities) in H
3, Möbius

equivalent to y. Each choice of subgroup SO(1, 3) in SO(1, 4) corre-
sponds to one of these projections. For definiteness, we choose the pro-
jection above, which corresponds to the subgroup SO(1, 3)×{1}. Since
we have already considered the subgroup S

1, the only 1-parameter sub-
groups left are of the form

exp

{
diag

((
0 t
t 0

)
,

(
0 rt

−rt 0

)
, 0

)}
, r ∈ R.

After an action of SO(1, 1)×SO(2), and a rescaling so that 〈Y ′, Y ′〉 = 1,
we can assume the initial curve T (u)Y (0) = is of the form⎛⎜⎜⎜⎜⎝

coshu sinhu 0 0 0
sinhu coshu 0 0 0

0 0 cos ru − sin ru 0
0 0 sin ru cos ru 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a
0
b
0
c

⎞⎟⎟⎟⎟⎠ ,
a2 + r2b2 = 1,
c2 = a2 − b2.

The general solution can be found as in the SO(4) case. To simplify
matters, we discuss two interesting cases: one case which includes the
hyperbolic analogue of rotational surfaces in the next subsection, and
then the case r = 1 in the following subsection.

6.1. Case a = 1, b = 0, c = 1: This case includes, but is not restricted
to, the case r = 0, because if r is zero then a = ±1, and the lower
right part of T (u) is the 3× 3 identity matrix I3. In this case, there are
many possible hyperbolic spaces on which T (u) acts isometrically, and
we can freely rotate among the last three coordinates without losing any
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generality. Hence, we can assume that our initial point is (1, 0, 0, 0, 1),
that is, a = c = 1 and b = 0. A suitable invariant frame along the curve
is given by ξi := T (u)(Ei), namely:

ξ0 = (coshu, sinhu, 0, 0, 0), ξ1 = (sinhu, coshu, 0, 0, 0),

ξ2 = (0, 0, cos ru, sin ru, 0), ξ3 = (0, 0,− sin ru, cos ru, 0),

ξ4 = (0, 0, 0, 0, 1).

Writing vectors as coordinate vectors in the frame ξi, we find, for a = 1,
b = 0, the frame:

Y = (1, 0, 0, 0, 1), Ŷ =

(
h2 + 1

2
, 0, h cos θ, h sin θ,

h2 − 1

2

)
,

P1 = (0, 1, 0, 0, 0), P2 = (0, 0, sin θ,− cos θ, 0),

ψ = (h, 0, cos θ, sin θ, h),

(6.1)

where h and θ are arbitrary real constants. Using equations (4.1), we
find the potential data:

(μ1, μ2, k1, k2, ρ1, ρ2) =

(
0, 0, −h

2
, −r

2
,
h2 + 1

2
, −hr

)
.

Note that these surfaces are congruent to minimal surfaces in H
3 if and

only if hr = 0. If hr �= 0 then they are not congruent to a minimal
surface in any space form.

6.1.1. The minimal case, hr = 0. Note that a discussion of rotational
minimal surfaces inH

3 can be found in [10]. If both h and r are zero then
the surface is a totally umbilic sphere. Other than this there are two
types: surfaces with r = 0, which are a hyperbolic version of surfaces
of revolution, and surfaces with h = 0, a hyperbolic analogue of the
Lawson-type surfaces in Example 4.5.

Note that in the case r = 0, the action is by SO(1, 1)×{I3}, so the sur-
faces (Y0, Y1, Y2, Y4)/Y3, and (Y0, Y1, Y3, Y4)/Y2 will also be rotationally
invariant in H

3. Some examples from the case r = 0 are displayed in Fig-
ure 11. The initial curve is Y (u, 0) = (cosh(u), sinh(u), 0, 0, 1). We have
plotted the projection (Y0, Y1, Y2, Y3, Y4) → (Y1, Y2, Y4)/(Y0−Y3), which
can be regarded either as the stereographic projection from (0, 0, 1, 0)
of the surface (Y1, Y2, Y3, Y4)/Y0 in S

3, or a Poincaré ball image of the
surface (Y0, Y1, Y2, Y4)/Y3 in H

3. As surfaces in H
3 they have several

pieces, as they pass through the boundary of the Poincaré ball. A
different projection of the same surfaces in S

3 is also shown. This corre-
sponds to a different Willmore surface in H

3, which is not isometrically
equivalent, only Möbius equivalent. For certain values of h (the middle
two surfaces), the numerics indicate that the surface closes up in the v
direction.
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h = 0.1 h = 0.6221 h = 1.065 h = 3

Figure 11. Top: hyperbolic Willmore surfaces of revo-
lution in H

3 (case r = 0), projected to the Poincaré ball.
Bottom: Möbius equivalent surfaces in S

3 projected from
the point (−1, 0, 0, 0). The latter are cones.

The other type of minimal surfaces in H
3 here are those with h = 0,

r �= 0. The potential data is:

(μ, k, ρ) =

(
0,−i

r

2
,
1

2

)
,

differing from the Lawson-type potentials of Example 4.5 only in the
sign of ρ. Again we have an explicit form for the solutions: consider the
surface in H

3 ⊂ R
3
1 ⊂ R

4
1 given by:

(6.2)
f(u, ṽ) = (cosh ṽ coshu, cosh ṽ sinhu, sinh ṽ cos ru, sinh ṽ sin ru) .

This is an analogue in H
3 of the Lawson type surfaces, and a geodesically

ruled minimal surface, that appears in [10]. Consider now the lift to the

light cone and associated frame given by, for R =
√

cosh2 ṽ + r2 sinh2 ṽ:

Y (u, ṽ) = (f(u, ṽ), 1) , Ŷ (u, ṽ) =
1

2
(f(u, ṽ), −1) ,

P1 =
1

R
(cosh ṽ sinhu, cosh ṽ coshu,−r sinh ṽ sin ru, r sinh ṽ cos ru, 0) ,

P2 = (sinh ṽ coshu, sinh ṽ sinhu, cosh ṽ cos ru, cosh ṽ sin ru, 0) ,

ψ = − 1

R
(r sinh ṽ sinhu, r sinh ṽ coshu, cosh ṽ sin ru,− cosh ṽ cos ru, 0) .

With respect to the coordinates (u, v), where v is given by

v(ṽ) =

∫ ṽ

0

(
cosh2 ν + r2 sinh2 ν

)−1/2
dν,

the maps Y and Ŷ are conformally immersed, and canonical lifts of f , by
which we mean that 〈Y, Ŷ 〉 = −1, and |dY |2 = |dz|2. Additionally, ψz

is orthogonal to both Y and Ŷ , and the frame is orthonormal. Finally,
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(0, 0, 0, 1) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 0)

Figure 12. Top: the hyperbolic Lawson surface (6.3)
with r = 2, projected from the point (0, 0, 1, 0). The
v-curves are circles. Bottom: two different projections
of the case r = 5. The projection from (0, 0, 0, 1) is the
Poincare ball image of a minimal surface in H3. The
projection from (0, 0, 1, 0) is a topological cylinder.

along the curve v = 0, this frame is nothing other than the frame given
above at (6.1), for the case h = 0, with θ = π/2. The value of θ is
not relevant, since it does not appear in the potential. Hence, the maps
Y (u, v), for r �= 0, give all the solutions for this case.

Note that the ṽ coordinate in (6.2) only gives a part of the surface,
namely that part that lies in one copy of H3. The map ṽ → v takes the
whole real line to a bounded open interval in R. Computing the rest
of the surface with the coordinate v, we find that the surface continues
smoothly through the boundary. In fact, the curves u = constant are
closed curves, and the surface
(6.3)

y(u, v) =
1

cosh ṽ coshu
(cosh ṽ sinhu, sinh ṽ cos ru, sinh ṽ sin ru, 1) ,

in S
3 is apparently a topological cylinder.

6.1.2. The non-minimal case, hr �= 0. Examples that are not con-
gruent to minimal surfaces are shown in Figure 13, where we used the
projection (Y0, Y1, Y2, Y3, Y4) → (Y1, Y2, Y3)/(Y0 + Y4). The initial curve
in this projection is the straight line segment {(x, 0, 0) | − 1 < x < 1}.
A different projection, (Y1, Y2, Y4)/(Y0 − Y3) of the case r = 2 is also
shown in Figure 3.
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r = 0.5 r = 2 r = 5

Figure 13. Nonminimal SO(1, 3)-equivariant surfaces
in H

3. All have b = 0 and h = 2.

6.2. Hyperbolic Hopf surface analogues: Case r = 1: We again
write vectors as coordinate vectors in the frame ξi. The initial curve is
thus:

Y = (a, 0, b, 0, c), a2 + b2 = 1, c2 = a2 − b2.

After suitable isometries of the ambient space, we can assume that a, b
and c are all non-negative, so that there is a unique constant θ satisfying:

a = cos θ, b = sin θ, c =
√
cos 2θ, 0 ≤ θ ≤ π

4
.

The most general choice for ψ and P1 = ψ′+μ1ψ, invariant along the
curve are, in the basis ξi:

ψ =

(
0, −b2q, − c

a

√
1− b2q2, abq,

b

a

√
1− b2q2

)
+ hY,

P1 = (0, a, 0, b, 0) +mY, h, m ∈ R, |q| ≤ 1

|b| ,

where m, q and h are all constant. We extend these using linear algebra
to find the most general form for

P2 =
(
−cq, −b

√
1− b2q2, 0, a

√
1− b2q2, −aq

)
+ pY, p ∈ R,

and, finally, find the unique null vector Ŷ orthogonal to P1, P2, ψ and
ψ′ satisfying 〈Ŷ , Y 〉 = −1. The condition 〈Ŷ , ψ′〉 = 0 gives a further
constraint on the parameters:

(6.4) amh+ a2q − bcm
√

1− b2q2 − acp = 0.

Substituting Y , Ŷ , ψ, P1 and P2 into (4.1), we obtain the boundary
potential data:

(μ1, μ2, k1, k2) =

(
m, acq − p,

bc
√

1− b2q2

2a
− h

2
, − c

2

)
,(6.5)

ρ1 =
h2 + p2 − 2 acpq −m2

2
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+
−2 abch

√
1− q2b2 + c4q2 + c2

2a2
,

ρ2 =
a2cmq − ach− amp− b

√
1− q2b2

a
.

Figure 14. Several partial plots of a hyperbolic Hopf-
type surface. Here c = 0 and h = m = p = 1. The
third images shows one of the pieces outside the Poincaré
sphere, the fourth image one of the inside pieces. When
c = 0, the initial curve lies on the sphere itself.

If c is non-zero, we can eliminate p by solving the constraint (6.4)
for p, while if c is zero, all the data simplifies and we can eliminate q
instead. We summarize this as

Theorem 6.1. All SO(1, 3)-equivariant surfaces with r = 1 are de-
termined by the boundary potentials with data as follows:

(i) If c �= 0, then the boundary potential data is (6.5), where a = cos θ,

b = sin θ, c =
√
cos 2θ, and

p =
amh+ a2q − bcm

√
1− b2q2

ac
.

The real parameters θ, m, q and h are arbitrary, subject to the
conditions:

0 ≤ θ <
π

4
, |q| ≤ 1

| sin θ| .
(ii) If c = 0, the boundary potential (μ1, μ2, k1, k2, ρ1, ρ2) is equal to(

m, −p, −h

2
, 0,

h2 + p2 −m2

2
, −pm−

√
1− h2m2

)
,

for h, m and p arbitrary real numbers subject to the condition
|hm| ≤ 1.

7. Isotropic and half-isotropic harmonic maps associated to
Willmore surfaces in S

n+2

Hélein’s treatment [16] of Willmore surfaces has been generalized
in [34] to S

n+2. However, the geometry inside was unclear prior to
the introduction of adjoint transforms by Xiang Ma [24]. One aim, in
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this section, is to clarify this interesting relationship between Willmore
surfaces and isotropic harmonic maps using the language of [8] and
[24]. In Section 8, we will use half-isotropic maps to solve the Björling
problem for all Willmore surfaces in any codimension, with or without
umbilics.

7.1. Adjoint transforms and harmonic maps associated to Will-
more surfaces. Let Y be a Willmore surface as in Section 2.2. As be-
fore, consider another lightlike vector Ŷ in the mean curvature sphere
of Y , given by

Ŷ = N + μ̄Yz + μYz̄ +
1

2
|μ|2Y,

satisfying 〈Ŷ , Y 〉 = −1.

Definition 7.1. [24] The map into S
n+2 determined by Ŷ , defined

as above, is called an adjoint transform of the Willmore surface Y if the
following two equations hold for μ:

(7.1) μz − μ2

2
− s = 0,

(7.2) 〈Dz̄κ+
μ̄

2
κ,Dz̄κ+

μ̄

2
κ〉 =

∑
j

γ2j = 0.

Theorem 7.2. [24] Willmore property and existence of adjoint trans-

form: The adjoint transform Ŷ of a Willmore surface y is also a Will-
more surface (may degenerate). Moreover,

(i) When 〈κ, κ〉 ≡ 0, any solution to equation (7.1) is a solution to
both (7.1) and (7.2).

(ii) When 〈κ, κ〉 �=0 and Ωdz6 :=
(〈Dz̄κ, κ〉2−〈κ, κ〉〈Dz̄κ,Dz̄κ〉

)
dz6 �=

0, there are exactly two different solutions to equation (7.2), which
also solve (7.1), that is, exactly two adjoint surfaces of [Y ].

(iii) When 〈κ, κ〉 �= 0 and 〈Dz̄κ, κ〉2−〈κ, κ〉〈Dz̄κ,Dz̄κ〉 ≡ 0, there exists
a unique solution to (7.2), which also solves (7.1), that is, a unique
adjoint surface of [Y ].

Theorem 7.3. Let [Y ] be a Willmore surface. Let μ be a solution

to the Riccati equation (7.1) on U , defining Ŷ as above. Let fh : U →
SO+(1, n+ 3)/(SO+(1, 1)× SO(n+ 2)) be the map taking p to Y (p) ∧
Ŷ (p). Then:

(i) ([16], [34]) The map fh is harmonic, and is called a half-isotropic
harmonic map with respect to Y .

(ii) ([24]) If μ also solves (7.2), fh is conformally harmonic, and is
called an isotropic harmonic map with respect to Y .
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Proposition 7.4. Let fh = Y ∧ Ŷ be a half-isotropic harmonic map.
Choose e1, e2 with Yz+

μ
2Y = 1

2(e1−ie2), and a frame {ψj , j = 1, · · · , n}
of the normal bundle V ⊥, so that

κ =

n∑
j=1

kjψj , ζ =

n∑
j=1

γjψj , Dzψj =

n∑
l=1

bjlψl, bjl + blj = 0.

Set

F =

(
1√
2
(Y + Ŷ ),

1√
2
(−Y + Ŷ ), e1, e2, ψ1, · · · , ψn

)
.

Then the Maurer–Cartan form α = F−1dF = α′ + α′′ of F has the
structure:

(7.3) α′ =
(

A1 B1

−Bt
1I1,1 A2

)
dz,

with

A1 =

(
0 μ

2
μ
2 0

)
, B1 =

(
1+ρ

2
√
2

−i−iρ
2
√
2

√
2γ1 · · · √

2γn
1−ρ
2
√
2

−i+iρ

2
√
2

−√
2γ1 · · · −√

2γn

)
,

and

(7.4) B1B
t
1 = 2

⎛⎝ n∑
j=1

γ2j

⎞⎠ ·E, with E :=

(
1 −1
−1 1

)
.

Moreover, fh is an isotropic harmonic map, and hence Ŷ an adjoint
transform of Y , if and only if fh is a conformally harmonic map, if and
only if

(7.5) B1B
t
1 = 0.

Lemma 7.5. The maps [Y ] and [Ŷ ] associated to a half-isotropic
harmonic map are a pair of dual (S-)Willmore surfaces if and only if
rank(B1) = 1.

For any Ψ1 ∈ SO(1, 1) there exists some a ∈ R
+ such that

(7.6) Ψ1EΨt
1 = a2 ·

(
1 −1
−1 1

)
= a2E.

It follows that the condition (7.4) on B1 is independent of the choice of
frame F for fh. The following theorem shows that Equation (7.4) is a
good condition to characterize half-isotropic harmonic maps. We refer
to [16], [34] for a proof (Lemma 3 of [16] and Proposition 2.1 of [34]).

Theorem 7.6. Let f : M → SO+(1, n+3)/(SO+(1, 1)×SO(n+2))

be a harmonic map satisfying (7.4). Then either f = Y ∧ Ŷ is a half-
isotropic harmonic map associated with the Willmore surface Y , or B1

is of the form

(7.7)
(
b1 −b1

)t
,

for some b1. In the latter case [Y ] is a constant point in S
n+2.
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Note that the condition (7.7) is invariant under conjugation.

7.2. Harmonic maps into SO+(1, n + 3)/(SO+(1, 1) × SO(n + 2)).
Let f : M → SO+(1, n+3)/(SO+(1, 1)×SO(n+2)) be a harmonic map
with a (local) lift frame F : M → SO+(1, n+3) and the Maurer–Cartan
form α = F−1dF . Let z be a local complex coordinate of M . Then

α′0 =
(

A1 0
0 A2

)
dz, α′1 =

(
0 B1

−Bt
1I1,1 0

)
dz.

To have a detailed discussion of half-isotropic and isotropic harmonic
maps, we first take a look at their normalized potentials.

Theorem 7.7. ([16], [17], [34]) The normalized potential of a half-

isotropic harmonic map f = Y ∧ Ŷ is of the form

η = λ−1
(

0 B̂1

−B̂t
1I1,1 0

)
dz,

with

(7.8) B̂1B̂
t
1 = γ̂E.

And f is an isotropic harmonic map if and only if

(7.9) B̂1B̂
t
1 = 0.

Moreover, [Y ] and [Ŷ ] forms a pair of dual (S-)Willmore surfaces if and

only if rank(B̂1) = 1 and f is an isotropic harmonic map.

Proof. Let Ã1, Ã2 and B̃1 be the holomorphic part of A1, A2 and B1

respectively, with respect to some base point z0 such that F (z0, λ) = I.

So B̃1 has the same form as B1 and hence B̃1B̃
t
1 = γ̃E for some γ̂. Let

Ψ = diag{Ψ1,Ψ2} be a solution to

Ψ−1dΨ =

(
Ã1 0

0 Ã2

)
dz, Ψ(z0) = I.

By Wu’s formula in Theorem 3.6,

η = λ−1Ψ
(

0 B̃1

B̃t
1I1,1 0

)
Ψ−1dz = λ−1

(
0 B̂1

B̂t
1I1,1 0

)
dz,

with B̂1=Ψ1B̃1Ψ
−1
2 =Ψ1B̃1Ψ

t
2. So we have B̂1B̂

t
1=Ψ1B̃1Ψ

t
2Ψ2B̃1Ψ

t
1 =

γ̂Ψ1EΨt
1. Then (7.9) follows directly. And (7.8) follows from (7.6).

q.e.d.

Note that the isotropic condition B1B
t
1 = 0 is equivalent to the pair

of equations 〈Yz, Yz〉 = 〈Ŷz, Ŷz〉 = 0. So if a non-constant harmonic map

f is isotropic, by Theorem 4.8 of [24], Y and Ŷ form a pair of adjoint
Willmore surfaces. Then one has (compare also [16], [17] and [34]):
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Theorem 7.8. [24], [17] Let fh = Y ∧ Ŷ be an isotropic harmonic

map. Then Y and Ŷ form a pair of adjoint Willmore surfaces. More-
over, set

B1 = (b1 b2)
t with b1, b2 ∈ C

n+2.

Then Y is immersed at the points (bt1 + bt2)(b̄1 + b̄2) > 0 and Ŷ is
immersed at the points (bt1 − bt2)(b̄1 − b̄2) > 0. Especially, when [Y ] and

[Ŷ ] are in S
3, they are a pair of dual Willmore surfaces.

Theorem 7.9. ([16], [17], [34]) Let f = Y ∧ Ŷ be a harmonic map
with normalized potential

η = λ−1
(

0 B̂1

−B̂t
1I1,1 0

)
dz

satisfying B̂1B̂
t
1 = γ̂E. Then either f is a half-isotropic harmonic map

(and Y is a Willmore surface), or

B̂1 =
(
b̂1 −b̂1

)t
.

Proof. By the DPW construction, an extended frame F of f is derived
from the decomposition F = F− ·F+, for some F− such that F−1− dF− =

η, F−(0, λ) = I. Assume that F+ =
∑

j=0 λ
jF+j is the Taylor expansion

of F+ with respect to λ ∈ C. So F+0 = diag (F+01, F+02) , with F+01 ∈
SO(1, 1,C), F+02 ∈ SO(n+ 2,C). Then let

F−1dF = λ−1α1 + α0 + λα−1 with α1 =

(
0 B1

Bt
1I1,1 0

)
dz.

We have (
0 B1

B̂t
1I1,1 0

)
= F−1+0

(
0 B̂1

B̂t
1I1,1 0

)
F+0.

So B1 = F−1+01B̂1F+02. By (7.6), B1 satisfies (7.8). The rest follows from
Theorem 7.6. q.e.d.

Concerning holomorphic potentials, by similar methods, we have

Theorem 7.10. Let f : D → SO+(1, n+3)/(SO+(1, 1)×SO(n+2))
be a non-constant harmonic map, with an extended frame F (z, z̄, λ). Let

Ξ = C−1dC =
+∞∑
j=−1

λjξjdz

be a holomorphic potential of f given by a holomorphic frame C = F ·V+.
Assume that

ξ−1 =
(

0 B̂1

−B̂t
1I1,1 0

)
.
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Then

(i) f = Y ∧ Ŷ is an isotropic harmonic map if and only if

(7.10) B̂1B̂
t
1 = 0.

Moreover, [Y ] and [Ŷ ] forms a pair of dual (S-)Willmore surfaces

if and only if rank(B̂1) = 1.

(ii) If f is a half-isotropic harmonic map, then B̂1 satisfies B̂1B̂
t
1 =

γ̂E. Conversely, if B̂1 satisfies B̂1B̂
t
1 = γ̂E, then either f is a

half-isotropic harmonic map, or

B̂1 =
(
b̂1 −b̂1

)t
.

In the latter case, f is not a half-isotropic harmonic map. But if
γ̂ ≡ 0, then Ŷ is Möbius equivalent to a minimal surface in R

n+2

and f̃ := Ŷ ∧ Y is the isotropic harmonic map given by Ŷ and its
dual surface Y .

8. Generalized Björling problem for Willmore surfaces in
S
n+2

We are now in a position to solve a generalization of the Björling prob-
lem for all Willmore surfaces in S

n+2, with or without umbilic points.

8.1. The S
3 case. To address Willmore surfaces with umbilic points

in S
3, one needs to consider half-isotropic harmonic maps instead of

the isotropic ones, because, at umbilic points, [Y ] and [Ŷ ] may coincide

and then Y ∧ Ŷ is not well-defined. In the half-isotropic case, if we
only prescribe Y , Ŷ and ψ, we will not have enough information on
the tangent plane of Ŷ to generate a unique solution. A solution is to
additionally prescribe the v derivative Ŷv along the curve.

Theorem 8.1. Let ψ0 = ψ0(u) : I → S
4
1 denote a non-constant real

analytic sphere congruence from I to S
3, with a real analytic enveloping

curve [Y0] and u being the arc-parameter of Y0 : I → C4
+ ⊂ R

5
1. Let Ŷ0 :

I → C4
+ be a real analytic map such that 〈ψ0, Ŷ0〉 = 0 and 〈Y0, Ŷ0〉 = −1.

Let γ12 : I → R be a real analytic function.
Then there exists a unique Willmore surface y : Σ → S

3, with con-
formal Gauss map ψ, Σ some simply connected open subset containing
I and z = u+ iv a complex coordinate of Σ, such that:

(i) The canonical lift Y of y satisfies Y |I = Y0;

(ii) The conformal Gauss map ψ satisfies ψ|I = ψ0 and 〈ψv|I, Ŷ0〉 =
−γ12.

Theorem 8.1 is a straightforward corollary of the following:
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Theorem 8.2. We retain the assumptions and notations in Theo-
rem 8.1. Choose two real analytic unit vector fields P1 and P2 on I such
that

Y0u=P1 mod Y0, P2⊥{ψ0, Y0, Ŷ0, P1} and det(Y0, Ŷ0, P1, P2, ψ0) = 1.

There exist real analytical functions μ1 = μ1(u), μ2 = μ2(u), ρ1 = ρ1(u),
ρ2 = ρ2(u), k1 = k1(u), k2 = k2(u) and γ11 = γ11(u) on I such that

(8.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y0u = −μ1Y0 + P1,

Ŷ0u = μ1Ŷ0 + ρ1P1 + ρ2P2 + 4γ11ψ0,

P1u = μ2P2 + 2k1ψ0 + Ŷ0 + ρ1Y0,
P2u = −μ2P1 − 2k2ψ0 + ρ2Y0,

ψ0u = −2k1P1 + 2k2P2 + 4γ11Ŷ0

holds. Set μ = μ1 + iμ2, k = k1 + ik2, ρ = ρ1 + iρ2 and γ1 = γ11 + iγ12.
For a real analytic function x(u) on I, denote its analytic extension
to a simply connected open subset containing I by x(z). Consider the
holomorphic potential

Ξ =
(
λ−1A1 +A0 + λA−1

)
dz,

with

A0 =

(
A1 0
0 A2

)
, A1 =

(
0 B1

−Bt
1I1,1 0

)
, A−1(z) = A1(z̄),

A1(z) =

(
0 μ1(z)

μ1(z) 0

)
, A2(z) =

⎛⎝ 0 −μ2(z) −2k1(z)
μ2(z) 0 2k2(z)
2k1(z) −2k2(z) 0

⎞⎠ ,

B1(z) =
1

2
√
2

(
1 + ρ(z) −i− iρ(z) 4γ1
1− ρ(z) −i+ iρ(z) −4γ1

)
.

By DPW, Theorem 7.10, the potential Ξ provides a half-isotropic har-
monic map, together with a unique Willmore surface y : Σ → S

3, with
conformal Gauss map ψ, Σ some simply connected open subset contain-
ing I and z = u+ iv a complex coordinate of Σ, such that the canonical
lift Y of y satisfy Y |I = Y0. Then ψ|I = ψ0 and 〈ψv|I, Ŷ0〉 = −γ12.

Proof. The proof can be taken verbatim from the proof of Theo-
rem 4.3, with the only difference being that here the function γ1 in the
matrix B1(z) is allowed to be non-zero. The real part of γ1(u) can be
read off from (8.1). But the imaginary part of γ1(u) stays unknown,
and we prescribe this as γ12(u). The rest is the same as the proof of

Theorem 4.3. The equality 〈ψv|I, Ŷ0〉 = −γ12(u) follows from the fact

that for a Willmore surface Y with a half-isotropic harmonic map Y ∧Ŷ ,
γ1 =

1
2〈Ŷz, ψ〉. q.e.d.

The potential Ξ defined in the above theorem is also called the bound-
ary potential of the harmonic map.
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Remark 8.3. (i) In contrast to the fully isotropic framework, here
one can, for any Willmore surface y, locally choose a solution μ

to the equation μz − μ2

2 − s = 0 with μ finite. Then one obtains

a half-isotropic harmonic map Y ∧ Ŷ . Thus, the above theorem
holds locally for any Willmore surface in S3.

(ii) Choose Ŷ0 to be an enveloping curve of ψ0, pointwisely different
from Y0, and set γ12 ≡ 0. Then we re-obtain Theorem 4.3.

(iii) An extremal case is that Y0(I) is an umbilic curve of Y . For
example, the Willmore tori constructed by Babich and Bobenko
[1] contain an umbilic curve at the intersection of the upper and
lower hemisphere models of H3. We can construct any Willmore
surface with a line of umbilics with the following characterization
(see Figure 15):

Corollary 8.4. We retain the assumptions and notations of Theo-
rems 8.1 and 8.2. Then Y0(I) is an umbilic curve of Y if and only if
k1 = k2 ≡ 0 on I.

Figure 15. Willmore surfaces with umbilic lines (Example 8.5).

Example 8.5. Three examples with lines of umbilics are computed
and displayed in Figure 15. From left to right, the Björling data are:
(μ, k, ρ, γ1) = (1+i, 0, 1+i, 1), (μ, k, ρ, γ1) = (0, 0, 0, i) and (μ, k, ρ, γ1) =
(sinu + e0.1u + i(−1 + 0.5u + sinu), 0, cos 3u + i(1 + 0.3u), 1 + 0.2u +
2i(sinu+ 0.6u)).

Example 8.6. Similar to Example 4.4, let us consider a Willmore
surface in S

3 containing the circle (cosu, sinu, 0, 0), with a lift Y =

(1, cosu, sinu, 0, 0), Ŷ = (1/2)(1,− cosu,− sinu, 0, 0) and a free func-
tion γ12. Then similar to discussions in Example 4.4, we have

P1 = (0,− sinu, cosu, 0, 0), P2 = −E3 cos θ − E4 sin θ,

ψ = −E3 sin θ + E4 cos θ,

where θ is any real analytic map R → R. We also have ρ1 = −1/2,
k2 = θ′/2 and ρ2 = γ11 = μ2 = k1 = 0. So we can say that all solutions

corresponding to the pair Y and Ŷ above are obtained from a choice of
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two functions θ and γ12 with the boundary potential given by the data:

(μ, k, ρ, γ1) = (0, iθ′/2,−1/2, iγ12).

Three examples are shown at Figure 16, the first with no umbilics on
the circle, the second with two umbilics on the circle, and the last
with a line of umbilics. The Björling data are, in order, (μ, k, ρ, γ1) =
(0, i/2,−1/2, i sin 4u), (μ, k, ρ, γ1) = (0, i sinu,−1/2, i), (μ, k, ρ, γ1) =
(0, 0,−1/2, i cosu).

Figure 16. Willmore surfaces containing a circle (Example 8.6).

8.2. Generalized Björling problem for Willmore surfaces in
S
n+2. The above result can be generalized to Willmore surfaces in S

n+2.
We write down the solution to the generalized Björling problem for
the half-isotropic harmonic maps associated to a Willmore surface in
S
n+2 as follows. In higher codimension, it will be convenient to use

Y0∧ Ŷ0∧P01∧P02 to represent sphere congruences. We refer to [19] for
the representation of sphere congruences in S

n+2 (See also [8], [24] for
a discussion of mean curvature spheres).

Theorem 8.7. Let Φ0 = Y0 ∧ Ŷ0 ∧ P1 ∧ P2 : I → SO+(1, n +
3)/(SO+(1, 3) × SO(n)) denote a real analytic sphere congruence from
I to S

n+2 such that:

(i) Y0 : I → Cn+3
+ ⊂ R

n+4
1 is a real analytic curve with arc-parameter

u and [Y0] is an enveloping curve of Φ0;

(ii) The real analytic map Ŷ0 : I → Cn+3
+ satisfies 〈Y0, Ŷ0〉 = −1;

(iii) There is given a real analytic map ζ : I → R
n+4
1 , perpendicular to

{Y0, Ŷ0, P1, P2}.
Then there exists a unique half-isotropic harmonic map Y ∧ Ŷ : Σ →

SO+(1, n+3)/(SO+(1, 1)×SO(n+2)) and a unique Willmore surface
y = [Y ] : Σ → S

n+2, with conformal Gauss map Φ, Σ some simply
connected open subset containing I and z = u+ iv a complex coordinate
of Σ, such that:

(i) The canonical lift Y of y satisfies Y |I = Y0;

(ii) The map Ŷ satisfies Ŷ |I = Ŷ0, Ŷv|I = ζ mod {Y0, Ŷ0, P1, P2};
(iii) The conformal Gauss map Φ of y satisfies Φ|I = Φ0.
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Proof. Assume that the real analytic maps P1, P2 : I → Sn+3
1 satisfies

P1 = Y0u mod Y0, {P1, P2} ⊥ {Y0, Ŷ0} and P1 ⊥ P2,

and {ψ01, . . . ψ0n} is a real analytic orthonormal basis of the orthogonal

complement of {P1, P2, Y0, Ŷ0}. The proof follows from the higher co-
dimensional analogue of Theorem 8.2, the statement and proof of which
generalize, replacing ψ0 of Theorem 8.2 with ψ01, . . . ψ0n, substituting
the equations

(8.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y0u = −μ1Y0 + P1,

Ŷ0u = μ1Ŷ0 + ρ1P1 + ρ2P2 + 4
∑

j γj1ψ0j ,

P1u = μ2P2 + 2
∑n

j=1 kj1ψ0j + Ŷ0 + ρ1Y0,

P2u = −μ2P1 − 2
∑n

j=1 kj2ψ0j + ρ2Y0,

ψ0ju =
∑n

l=1 bjl1ψ0l − 2kj1P1 + 2kj2P2 + 4γj1Y, 1 ≤ j ≤ n,

for equations (8.1), and writing down the corresponding Maurer–Cartan
form for the associated frame, which has the same form as (7.3). Note
in this case γj2 is given by ζ, i.e., γj2 =

1
4〈ζ, ψ0j〉. We leave these details

to the interested reader. q.e.d.

An interesting result is about the case Y0(I) being an umbilic curve.

Corollary 8.8. We retain the assumptions and notations of Theo-
rem 8.7. Then Y0(I) is an umbilic curve of Y if and only if kj1 = kj2 ≡ 0
on I for all j = 1, · · · , n. Moreover, in this case Y must be an S-
Willmore surface.

Proof. It only remains to prove that Y is S-Willmore if Y0(I) is an
umbilic curve. This comes from the discussion of the conformal Gauss
map Φ of Y . First since Y0(I) is an umbilic curve, we have that κ|I ≡ 0,
i.e., kj1 = kj2 ≡ 0 for all j = 1, · · · , n on I. Then we note that from
(8.2) one will also obtain a boundary potential of Φ which is of the form
(See [12] for details)

ΞΦ =
(
λ−1A1,Φ +A0,Φ + λA−1,Φ

)
dz,

with

A1,Φ =

(
0 B1,Φ

−Bt
1,ΦI1,3 0

)
.

In this case we obtain that (here γj = γj1 + iγj2)

B1,Φ =
√
2

⎛⎜⎜⎝
γ1 · · · γn
−γ1 · · · −γn
0 · · · 0
0 · · · 0

⎞⎟⎟⎠ .

So the rank of B1,Φ is 1, which means that Y is S-Willmore by [12].
q.e.d.
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Remark 8.9. In fact, s surface that is Willmore, but not S-Willmore,
must have isolated umbilic points. The proof is straightforward. If Y is
not S-Willmore, then by the Willmore equation κ ∧Dz̄κdz

3 is a global
holomorphic 3-form (See also Theorem 1.2 of [13]). So it has only
isolated zeros and, in particular, Y cannot admit an umbilic curve.

To adapt Theorem 8.7 to the isotropic case, we need only add the
assumption that ζ has the same length as

∑
j γj1ψ0j in (8.2), which is

to ensure that Ŷ is also conformal in z. This is equivalent to prescribing
the mean curvature sphere of Ŷ (in addition to that of Y ). See the proof
of the following theorem for the details. Note that in general these
two mean curvature spheres are different, which is also the geometric
reason why two mean curvature spheres are needed to solve the Björling
problem in the general case.

Theorem 8.10. Let Φ0 = Y0 ∧ Ŷ0 ∧P1 ∧P2, Φ̂0 = Ŷ0 ∧Y0 ∧ P̂1 ∧ P̂2 :
I → SO+(1, n+3)/(SO+(1, 3)×SO(n)) denote two real analytic sphere
congruences from I to S

n+2 such that:

(i) Y0 : I → Cn+3
+ ⊂ R

n+4
1 is a real analytic curve with arc-parameter

u and [Y0] is an enveloping curve of Φ0;

(ii) The real analytic map Ŷ0 : I → Cn+3
+ satisfies 〈Y0, Ŷ0〉 = −1. And

it is an enveloping curve of Φ̂0 at the points it is immersed.

Then there exists a unique isotropic harmonic map Y ∧ Ŷ : Σ →
SO+(1, n+3)/(SO+(1, 1)×SO(n+2)) and a unique Willmore surface

y = [Y ] : Σ → S
n+2, with an adjoint transform ŷ = [Ŷ ], Σ some simply

connected open subset containing I and z = u+ iv a complex coordinate
of Σ, such that:

(i) The canonical lift Y of y satisfies Y |I = Y0;

(ii) The map Ŷ satisfies Ŷ |I = Ŷ0;

(iii) The conformal Gauss map Φ, Φ̂ of y and ŷ satisfies Φ|I = Φ0,

Φ̂|I = Φ̂0.

Proof. Since Ŷ0 is an enveloping curve of Φ̂0,

Ŷ0u ∈ Span{Ŷ0, Y0, P̂1, P̂2}.
So we can assume that Ŷ0u = aP̂1 and ζ = aP̂2 mod {Y0, Ŷ0, P1, P2}.
Applying Theorem 8.7, we finish the proof. q.e.d.

Restricting to the case of a pair of dual S-Willmore surfaces in S
n+2,

we obtain the following:

Theorem 8.11. Let Φ0 : I → SO+(1, n + 3)/(SO+(1, 3) × SO(n))
denote a non-constant real analytic sphere congruence from I to S

n+2,
with enveloping curves [Y0] and [Ŷ0] such that 〈Y0, Y0〉 = 〈Ŷ0, Ŷ0〉 = 0,

〈Y0, Ŷ0〉 = −1, and u is the arc-length parameter of Y0. Then there exists
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a unique pair of dual (S-Willmore) Willmore surfaces y, ŷ : Σ → S
n+2,

with Σ some open subset containing I, such that:

(i) There exist lifts Y , Ŷ of y, ŷ such that Y |I = Y0, Ŷ |I = Ŷ0;
(ii) The conformal Gauss map Φ of y satisfies Φ|I = Φ0.

Note: applying this theorem to minimal surfaces in space forms gives
a higher codimensional analogue of Corollary 4.2.
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