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RESOLUTION OF THE CANONICAL FIBER METRICS

FOR A LEFSCHETZ FIBRATION

Richard Melrose & Xuwen Zhu

Abstract

We consider the family of constant curvature fiber metrics for
a Lefschetz fibration with regular fibers of genus greater than one.
A result of Obitsu and Wolpert is refined by showing that on an
appropriate resolution of the total space, constructed by iterated
blow-up, this family is log-smooth, i.e., polyhomogeneous with
integral powers but possible multiplicities, at the preimage of the
singular fibers in terms of parameters of size comparable to the
logarithm of the length of the shrinking geodesic.

Introduction

In the setting of complex surfaces, a Lefschetz fibration is a holo-
morphic map to a curve, generalizing an elliptic fibration in that it
has only a finite number of singular points near which it is holomor-
phically reducible to normal crossing. Donaldson [1] showed that a
four-dimensional simply-connected compact symplectic manifold, pos-
sibly after stabilization by a finite number of blow-ups, admits a Lef-
schetz fibration, in an appropriately generalized sense, over the sphere;
Gompf [3] showed the converse. The reader is referred to the book of
Gompf and Stipsicz [4] for a description of the important role played by
Lefschetz fibrations in the general theory of 4-manifolds.

To cover these cases we go beyond the holomorphic case and consider
a compact connected almost-complex 4-manifold M and a smooth map,
with complex fibers, to a Riemann surface Z

(1) M
ψ

�� Z.

We then require that this map be pseudo-holomorphic, have surjective
differential outside a finite set F ⊂ M , on which ψ is injective, so
ψ : F ←→ S ⊂ Z. Near each of these singular points we require that
the map be reducible to the normal crossing, or plumbing variety, model
(2) below.

A curve of genus g with b punctures is stable if its automorphism
group is finite, which is the case when 3g − 3 + b > 0. In this paper we
discuss Lefschetz fibrations with regular fibers having genus g > 1 and,
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hence, stable; it is straightforward to extend the results below to the
punctured case when 3g−3+b > 0 provided the singular points are away
from the punctures. All fibers carry a unique metric of curvature −1,
for the singular fibers with cusp points replacing the nodes. In view of
uniqueness and stability, these metrics necessarily vary smoothly near a
regular fiber. We discuss here the precise uniform behavior of this family
of metrics near the singular fibers, showing that in terms of appropri-
ate (logarithmic) resolutions, of both the total and parameter spaces,
to manifolds with corners the resulting fiber metric is log-smooth, i.e.,
essentially smooth except for the appearance of logarithmic terms in the
expansions at boundary surfaces, as a Hermitian metric on an appro-
priate complex line bundle (reducing to the fiber tangent bundle away
from the singular variety).

This refines a result of Obitsu and Wolpert [10] who gave a two-term
expansion with remainder estimate. A weaker form (i.e., identification
of the uniform quasi-isometry class) of this result was already implicit in
the work of Masur [6] on the asymptotic behavior of the Weil–Petersson
metric on the moduli space of Riemann surfaces. We refer the reader
to [10] for a discussion of the earlier results in this area. In [8] the uni-
versal case of the Knudsen–Deligne–Mumford compactification of the
moduli spaces of pointed Riemann surfaces is discussed. Again Obitsu
and Wolpert have given a similar second order expansion in this general
case; we use the full expansion to give a corresponding regularity result
for both the Weil–Petersson and Takhtajan–Zograf metrics. The es-
sential analytic difficulties are already present in the case of a Lefschetz
fibration (in the general case more singularities occur but still essentially
of the same type). Moreover, as indicated above, the Lefschetz case is
of independent interest in view of the possible extensions of results from
holomorphic fibrations (see, e.g., Fine [2]) to these ‘minimally singular’
fibrations.

The local model for degeneration for the complex structure on a Rie-
mann surface to a surface with a node is the ‘plumbing variety’ with its
projection to the parameter space. We add boundaries, away from the
singularity at the origin, to make this into a manifold with corners:

(2)
P = {(z, w) ∈ C

2; ∃ t ∈ C, zw = t, |z| ≤ 3

4
, |w| ≤ 3

4
, |t| ≤ 1

2
},

P
φ−→ D 1

2

= {t ∈ C; |t| ≤ 1

2
}.

Thus, near each point of F we require that ψ can be reduced to φ in
(almost) holomorphic coordinates in M and Z.

The fibers of the model Lefschetz fibration P carry an explicit family
of metrics of constant curvature −1, the ‘plumbing metric’:

(3) gP = (
π log |z|
log |t| csc

π log |z|
log |t| )

2g0, g0 = (
|dz|

|z| log |z| )
2.
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We follow Obitsu and Wolpert in using this as a model for the de-
generation of the global fiber metrics; indeed, our main result is that
the global metric is conformal to this model with a log-smooth strictly
positive conformal factor.

A (real) manifold with corners M has a principal ideal IF ⊂ C∞(M)
corresponding to each boundary hypersurface (by assumption embed-
ded and connected) generated by a boundary defining function ρF ≥ 0
with F = {ρF = 0} and dρF 	= 0 on F . A smooth map between man-
ifolds with corners f : M −→ Y is an interior b-map if each of these
ideals on Y pulls back to non-trivial finite products of the correspond-
ing ideals on M , it is b-normal if there is no common factor in these
product decompositions – this is always the case here since the range
space is a manifold with boundary. Such a map is a b-fibration if, in
addition, every smooth vector field tangent to all boundaries on Y is
locally (and, hence, globally) f -related to such a vector field on M ; it
is then surjective. There is a slightly weaker notion than a manifold
with corners, a tied manifold, which has the same local structure but
in which the boundary hypersurfaces need not be embedded, meaning
that transversal self-intersection is allowed. This arises below, although
not in any essential way. There is still a principal ideal associated to
each boundary hypersurface and the notions above carry over.

The assumptions above mean that each singular fiber of ψ has one
singular point at which it has a normal crossing in the (almost) complex
sense as a subvariety of M . The real resolution of M that supports
the analysis below is constructed in three steps. In the first step the
singular fibers of ψ are blown up in the real sense; i.e., this divisor is
locally replaced by a boundary which is its normal circle bundle. This
is well-defined in view of the transversality of the self-intersection but
results in a tied manifold since the boundary faces are not globally
embedded. The effect of this step is to introduce |z|, |w|, θz and θw as
local coordinates where

(4) z = |z|eiθz , w = |w|eiθw .
The second step in the resolution is to replace this C∞ structure by

its logarithmic weakening, i.e., replacing each (local) boundary defining
function x = |z|, or |w| by

ilog x = (log x−1)−1, x = e−1/ ilog x,

where we introduce this notation in view of the frequent appearance of
this function. This gives a new tied manifold mapping smoothly to the
previous one by a homeomorphism. These two steps can be thought of
in combination as the ‘logarithmic blow up’ of the singular fibers.

The third and final step in the resolution is to blow up the corners, of
codimension two, in the preimages of the singular fibers, i.e., ilog |z| =
ilog |w|. This results in a manifold with corners, Mmr, with the two
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Figure 1. The metric resolution.

boundary hypersurfaces denoted BI, resolving the singular fiber, and
BII arising at the final stage of the resolution. The ‘angular’ variable
ilog |z|/ ilog |w| is smooth on the interior of BII and this function is
precisely what this third blow-up resolves. The parameter space Z is
similarly resolved to a manifold with corners by the logarithmic blow
up of each of the singular points.

It is shown below that the Lefschetz fibration lifts to a smooth map

(5) Mmr
ψmr

�� Zmr,

which is a b-fibration. For the local model, this reduces to the statement
that the function

(6)
szsw
sz + sw

, sz = ilog |z|, sw = ilog |w|,

which is not smooth on [0, 1)×[0, 1) lifts to be smooth; this is the reason
for the third step in the construction.

This construction is perhaps best justified by the main result below;
its relevance can be seen by lifting the model fibre metrics. This is
carried out in Lemma 2 which shows that the plumbing metric lifts to
be smooth and non-degenerate as a fiber metric on a rescaling (at the
face BII) of the null bundle of (5) which is to say the fiber tangent
bundle. This ‘metric resolution’ is rather clearly the simplest space on
which the model, plumbing, metric is a smooth family of fiber metrics
on a line bundle.

More precisely, the smooth vector fields on Mmr which are tangent
to all boundaries and to the fibers of ψmr form the sections of a smooth
vector subbundle of bTMmr of rank two. The boundary hypersurfaceBII

has a preferred class of boundary defining functions, an element of which
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is denoted ρII, arising from the logarithmic nature of the resolution, and
this allows a Lie algebra of vector fields to be defined by

(7) V ∈ C∞(Mmr;
bTMmr), V ψ

∗C∞(Zmr) = 0, V ρII ∈ ρ2IIC∞(Mmr).

The possibly singular vector fields of the form ρ−1II V , with V as in
(7), also form all the sections of a smooth vector bundle, denoted
LTMmr. This vector bundle inherits a complex structure and, hence,
has a smooth Hermitian metric, which is unique up to a positive smooth
conformal factor on Mmr. The main result of this paper is:

Theorem. The fiber metrics of fixed constant curvature on a Lef-

schetz fibration, in the sense discussed above, extend to a continuous

Hermitian metric on LTMmr which is related to a smooth Hermitian

metric on this complex line bundle by a log-smooth conformal factor.

The notion of log-smoothness here, for a function, is the same as
polyhomogeneous conormality with non-negative integral powers and
linear multiplicity of slope one. Conormality in this context for f :
Mmr −→ R can be interpreted as the ‘symbol estimates’ that

(8) f ∈ A(Mmr)⇐⇒ Diff∗b(Mmr)f ⊂ L∞(Mmr),

which, in fact, implies that the space of these functions is stable un-
der the action, Diff∗b(Mmr)A(Mmr) ⊂ A(Mmr). On a manifold with
boundary, M , log-smoothness of a conormal function f ∈ A(M) means
the existence of an expansion at the boundary, generalizing the Tay-
lor series of a smooth function, so for any product decomposition near
the boundary with boundary defining function x, there exist coefficients
aj,k ∈ C∞(∂M), j ≥ 0, j ≥ k ≥ 0 such that for any finite N ,

(9) f −
∑

j≤N,0≤k≤j

aj,kx
j(log x)k ∈ xNA([0, 1) × ∂M), ∀ N.

We denote the linear space of such functions C∞log(M), it is independent
of choices.

In the case of a manifold with corners the definition may be extended
by iteration of boundary codimension. Thus, f ∈ C∞log(Mmr) if for any
product decompositions of Mmr near the two boundaries there are cor-
responding coefficients aj,k,b ∈ C∞log(Bb), b = I, II, such that

(10) f −
∑

j≤N,0≤k≤j

aj,k,bx
j
b(log xb)

k ∈ xNb A([0, 1)×Bb), b = I, II, ∀ N.

There are necessarily compatibility conditions between the two expan-
sions at the corners, BI ∩ BII, and together they determine f up to a
smooth function onMmr vanishing to infinite order on both boundaries.
In this sense the conformal factor in the main result above is ‘essentially
smooth’.
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For any z 	= 0, the metric gP tends to g0 as t tends to 0. This metric
can be extended (‘grafted’ as in [10]) to give an Hermitian metric on
LTMmr which has curvature R equal to −1 near BII and to second
order at BI. We prove the Theorem above by constructing the conformal
factor e2f for this metric which satisfies the curvature equation, ensuring
that the new metric has curvature −1:
(11) (Δ+ 2)f + (R+ 1) = −e2f + 1 + 2f = O(f2).

This equation is first solved in the sense of formal log-power series at
both boundaries, BI and BII, which gives us an approximate solution
f0 with

−Δf0 = R+ e2f0 + g, g ∈ s∞t C∞(Mmr).

Then a solution f = f0 + f̃ to (11) amounts to solving

f̃ = −(Δ+ 2)−1
(
2f̃(e2f0 − 1) + e2f0(e2f̃ − 1− 2f̃)− g

)
= K(f̃).

Here the non-linear operator K is at least quadratic in f̃ and the bound-

edness of (Δ+2)−1 on ρ
− 1

2

II H
M
b (Mmr) for all M allow the Inverse Func-

tion Theorem to be applied to show that f̃ ∈ s∞t C∞(Mmr) and, hence,
that f itself is log-smooth.

In §1 the model space and metric are analyzed and in §2 the global
resolution is described and the proof of the Theorem above is outlined.
The linearized model involves the inverse of Δ + 2 for the Laplacian
on the fibers and the uniform behavior, at the singular fibers, of this
operator is explained in §3. The solution of the curvature problem in
formal log-power series is discussed in §4 and using this the regularity
of the fiber metric is shown in §5.

In [7] Mazzeo and Swoboda discussed the expansion of the Weil–
Petersson metric on the moduli space of genus g surfaces which is closely
related to the expansion for the metric discussed here. Our interest in
the behavior of the fiber metrics was stimulated by the possibility, aris-
ing in discussion with Michael Singer, of extending the work of Fine [2],
to the Lefschetz case.

1. The plumbing model

We start with a description of the real resolution of the plumbing
variety, given in (2), and the properties of the fiber metric, (3), on the
resolved space. As noted above there are three steps in this resolution,
first the fiber complex structure is resolved, in a real sense, then two
further steps are required to resolve the fiber metric.

The plumbing variety itself is smooth with z and w global complex
coordinates – it is the model singular fibration φ which is to be ‘resolved’
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in the real sense. The fibers above each t 	= 0 are annuli

(1.1) {|t| ≤ |z| ≤ 3
4}

w=t/z
�� {|t| ≤ |w| ≤ 3

4},
whereas the singular fiber above t = 0 is the union of the two discs at
z = 0 and w = 0 identified at their origins

(1.2) φ−1(0) = {|z| ≤ 3

4
} ∪ {|w| ≤ 3

4
}/({z = 0} ∼ {w = 0}).

Note that the differential of φ vanishes at the singular point z = w = 0
so any smooth vector field on the range which lifts under it, i.e., is φ-
related to a smooth vector field on P , vanishes at t = 0. Conversely, t∂t
is φ-related to both z∂z and w∂w whereas the vector field

(1.3) V = z∂z − w∂w
annihilates φ∗t and so is everywhere tangent to the fibers of φ.

The first step in the resolution of φ : P −→ D 1

2

consists in passing to

the commutative square

(1.4) P∂
φ
∂

��

��

[D 1

2

, 0]

��

P
φ

�� D 1

2

.

Here [D 1

2

, 0] is the space obtained by real blow up of the origin in the

disk, which can be realized globally as

(1.5) [D 1

2

, 0] � [0,
1

2
]× S � (r, θ) �−→ t = reiθ ∈ D 1

2

,

if S = R/2πZ. As a real blow-up [D 1

2

, 0] is a well-defined manifold

with boundary and any diffeomorphism of D 1

2

fixing the origin lifts to a

global diffeomorphism. The complex structure on D 1

2

lifts to a complex

structure on bT [D 1

2

, 0] generated by t∂t = r∂r + i∂θ in terms of (1.5).

Proposition 1. The space

(1.6) P∂ = [P ; {z = 0} ∪ {w = 0}],
obtained by the real blow-up of the two normally-intersecting divisors

forming the singular fiber of φ, gives a commutative diagram (1.4) in

which φ∂ is a b-fibration with

(1.7) φ∗
∂
I∂ = II,LII,R,

where II,L and II,R correspond to the two boundary components intro-

duced by the blow-up, forming the proper transforms of z = 0 and w = 0,
respectively.
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Proof. The two divisors forming the singular fiber φ−1(0) are each
contained in a product neighborhood D 1

2

×D 3

4

⊂ P and D 3

4

×D 1

2

⊂ P .
The transversality of their intersection is clear and it follows that the
blow-up is well-defined independently of order with the new front faces
being

(1.8) BI,L = S× [D 3

4

, {0}] ⊂ P∂ , BI,R = [D 3

4

, {0}] × S ⊂ P∂ .
Here each of the blown up disks corresponds to the introduction of
polar coordinates, so rz = |z| is a defining function (globally) for BI,L

and rw = |w| for BI,R. Since rt = |t| is a defining function for the
blown-up disk in the range and

(1.9) rt = rzrw,

the b-fibration condition follows from the behavior of the corresponding
angular variables

(1.10) eiθt = eiθzeiθw .

As a compact manifold with corners, P∂ is globally the product of an

embedded manifold in R
2 and a 2-torus

P∂ = {(rz, rw); 0 ≤ rz, rw ≤ 3

4
, rzrw ≤ 1

2
} × Sz × Sw.(1.11)

q.e.d.

This first step in the resolution resolves the complex structure in a
real sense. In particular, the vector fields tangent to the fibers of φ∂ and

to the boundaries form all the sections of a subbundle of bTP∂ which
has a complex structure, spanned by the lift of the single vector field
(1.3).

Although the complex structure is effectively resolved, the plumbing
metric in (3) is not. That gP has curvature −1 on the fibers, away from
the singular point, can be seen by changing variables to s = log r, r = rz
and θ = θz in terms of which

gP = (
π/ log |t|

sin(πs/ log |t|) )
2(ds2 + dθ2).

It then follows from the standard formula for the Gauss curvature that

R = − 1

2
√
fg

(
∂s(

∂sg√
fg

) + ∂θ(
∂θf√
fg

)

)
= −1.

In view of the coefficients in gP it is natural to introduce the inverted
logarithms of the new boundary defining functions, so replacing the
radial by the logarithmic blow-up. Thus,

(1.12) sz = ilog rz =
1

log 1
rz

, sw = ilog rw
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become new boundary defining functions in place of rz and rw. The
space with this new C∞ structure can be written

(1.13) [P ; {z = 0}log ∪ {w = 0}log].
However, even after this second step, the fiber metric does not have

smooth coefficients:

gP =
π2s2t

sin2(πstsw
)

(
ds2w
s4w

+ dθ2w

)
.

Indeed, st =
szsw
sz+sw

is not a smooth function on the space (1.13).
The final part of the metric resolution is to blow up, radially, the

corner formed by the intersection of the two logarithmic boundary faces

(1.14) Pmr = [[P ; {z = 0}log ∪ {w = 0}log]; {sz = sw = 0}].
In terms of the presentation (1.11) this preserves the torus factor and
replaces the 2-manifold with corners by a new one with more smooth
functions and an extra boundary hypersurface.

Proposition 2. The model Lefschetz fibration φ lifts to a b-fibration

φmr giving a commutative diagram

(1.15) Pmr
φmr

��

��

[D 1

2

; {0}log]

��

P
φ

�� D 1

2

.

Proof. The radial variables on the spaces P∂ and [D 1

2

, {0}] are related
by

(1.16) |t| = |z||w| =⇒ st =
szsw
sz + sw

, st = ilog |t|,
so φ does not lift to be smooth. However, consider the further intro-

duction of the radial variable R = (s2z + s2w)
1

2 and the smooth defining
functions Rz = sz/R, Rw = sw/R for the lifts of the two boundary
hypersurfaces. Then

(1.17) st =
RzRRw
Rz +Rw

,

which is smooth since Rz and Rw have disjoint zero sets. It follows that
φ lifts to a b-fibration as in (1.15) under which the boundary ideal lifts
to the product of the three ideals

φ∗mrIst = IRz
IRIRw

.(1.18) q.e.d.

The generator V , in (1.3), of the fiber tangent space of φ lifts to P∂
as

V = rz∂rz − rw∂rw − i∂θz + i∂θw ,
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in terms of the coordinates in (1.10) and (1.9). Under the introduction
of the logarithmic variables in (1.12) it further lifts to

V = s2z∂sz − s2w∂sw − i∂θz + i∂θw .

In a neighborhood of the lift of the face sz = 0 to Pmr the variables sw
(defining the new front face) and ρz = sz/sw ∈ [0,∞) (defining the lift
of sz = 0) are valid and

(1.19) V = −sw(sw∂sw − ρz∂ρz − ρ2z∂ρz)− i∂θz + i∂θw .

Reviewing the three steps in the construction of Pmr, notice that
the two holomorphic defining functions z and w are well-defined up
to constant multiples and addition of (holomorphic) terms O(|z|2) and
O(|w|2), respectively. Under these two changes, the logarithmic vari-
ables sz change to sz + s2zG with G ∈ C∞(Pmr) smooth. The same is
true of sw so it follows that the radial variable

(1.20) R = (s2z + s2w)
1/2 ∈ C∞(Pmr),

which defines the front face, is also uniquely defined up to an additive
term vanishing quadratically there. This determines a ‘cusp’ structure
at BII and from (1.19) we conclude that

Lemma 1. The vector field R−1V on Pmr spans a smooth complex

line bundle, LTPmr over Pmr with underlying real plane bundle having

smooth sections precisely of the form R−1W where W is a smooth vector

field tangent to the boundaries, to the fibers of φmr and satisfying WR =
O(R2) at R = 0.

It is natural to consider this bundle, precisely because

Lemma 2. The plumbing metric defines an Hermitian metric on
LTPmr.

Proof. On Pmr, in a neighborhood of the lift of {sz = 0} as discussed
above,

st = ilog |t| = szsw
sz + sw

=
ρzsw
1 + ρz

,
log |z|
log |t| =

1

1 + ρz
,

so the fiber metric lifts to
(1.21)

g =
π2s2t

sin2(πstsw
)

(
ds2w
s4w

+ dθ2w

)
=

π2s2t
sin2( π

1+ρz
)

(
dρ2z

s2t (1 + ρz)4
+ dθ2z

)
.

This is Hermitian and the length of V relative to it is a smooth positive
multiple of R2. q.e.d.
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2. Global resolution and outline

It is now straightforward to extend the resolution of the plumbing
variety to a global resolution of any Lefschetz fibration as outlined in
the Introduction. By hypothesis, the singular fibers of a Lefschetz fibra-
tion ψ, as in (1), are isolated and each contains precisely one singular
point. Near the singular point the map ψ is reduced to φ by local com-
plex diffeomorphisms. Thus, each singular fiber is a connected compact
real manifold of dimension two with a transversal self-intersection. The
real blow-up of such a submanifold is well-defined, since it is locally
well-defined away from the self-intersection and well-defined near the
intersection in view of the transversality. Thus,

(2.1) M∂ = [M,φ−1(S)]
ψ
∂−→ [Z,S]

reduces to φ∂ near the preimage of the finite singular set F ⊂ M .
Similarly, the logarithmic step can be extended globally since away from
the singular set it corresponds to replacing |z|, by ilog |z|. Here z is a
local complex defining function with holomorphic differential along the
singular fiber. Finally, the third step is within the preimage of the set
of the singular points and so is precisely the same as for the plumbing
variety.

Thus, the resolved space Mmr with its global b-fibration (5) is well-
defined as is the Hermitian bundle LTMmr which reduces to LTPmr near
the singular points and is otherwise the bundle of fiber tangents toMmr

with its inherited complex structure.
To arrive at the description of the constant curvature fiber metric, as

an Hermitian metric on LTMmr we start with the “grafting” construc-
tion of Obitsu and Wolpert which we interpret as giving a good initial
choice of Hermitian metric. Namely choose any smooth Hermitian met-
ric h0 on LTMmr; from Lemma 2

(2.2) gPl = efPlh0 near BII, fPl smooth.

Away from the singular set, near the singular fiber, ψ is a fibration
in the real sense. Thus, it has a product decomposition, with the fi-
bration ψ the projection, and this can be chosen to be consistent with
the product structure on P away from the singular point. Then the
complex structure on the fibers is given by a smoothly varying tensor
J . The constant curvature metric g0 on the resolved singular fiber may,
therefore, be extended trivially to a metric on the fibers nearby, away
from the singular points. This has non-Hermitian part vanishing at
the singular fiber, so removing this gives a smooth family of Hermitian
metrics reducing to g0 and so with curvature equal to −1 at the sin-
gular fiber. After blow-up this remains true since the regular part of
the singular fiber is replaced by a trivial circle bundle over it. On the
introduction of the logarithmic variables in the base and total space, the
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curvature of this smooth family, gI, is constant to infinite order at the
singular fiber since it is equal to the limiting metric g0 to infinite order.
Comparing gI to the chosen Hermitian metric gives a conformal factor
gI = efIh, fI ∈ C∞(N) where N is a neighborhood of BI excluding a
neighborhood of BII. Moreover, gPl is also equal to the trivial extension
of g0 to second order in a compatible trivialization so the two conformal
factors

(2.3) fI = fPl to second order,

in their common domain of definition.
The grafting construction of Obitsu and Wolpert interpreted in this

setting is then to choose a cutoff χ ∈ C∞(Mmr) equal to 1 in a neigh-
borhood of BII and supported near it and to set

(2.4) h = eχfPl+(1−χ)fIh0.

It follows from the discussion above that h is a smooth Hermitian metric
on LTMmr near the preimage of the singular fibers and that its curvature

(2.5) R(h) =

{
−1 near BII,

−1 +O(s2t ) near BI.

We, therefore, use this in place of the initial choice of Hermitian metric.
Let g be the unique Hermitian constant curvature metric on the reg-

ular fibers of ψ, so g = e2fh. The curvatures are related by

R(g)e2f = Δhf +R(h),

which reduces to the curvature equation

(2.6) Δf +R(h) = −e2f , Δ = Δh.

The linearization of this equation is

(2.7) (Δ+ 2)f = −(R(h) + 1).

The uniform invertibility of Δ+ 2 with respect to the metric L2 norm,
shown below, implies that (2.6) has a unique small solution for small
values of the parameter. The proof of the Theorem in the Introduction,
therefore, reduces to the statement that (2.6) has a log-smooth solution
vanishing at the boundary.

3. Bounds on (Δ + 2)−1

In the linearization of the curvature equation (2.7), the operatorΔ+2,
for the fixed initial choice of smooth fiber hermitian metric, appears. For
the Laplacian on a compact manifold, Δ + 2 is an isomorphism of any
Sobolev space Hk+1 to Hk−1, in particular, this is the case for the map
from the Dirichlet space to its dual, corresponding to the case k = 0. For
a smooth family of metrics on a fibration the family of Dirichlet spaces
forms the fiber H1 space and its dual the fiber H−1 space and Δ + 2
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is again an isomorphism between them. These spaces are modules over
the C∞ functions of the total space and this, plus a simple commutation
argument, shows that in this case of a fibration Δ+2 is an isomorphism
for any k ≥ 1 between the space of functions with up to k derivatives,
in all directions, in the Dirichlet domain to the space with up to k
derivatives in the dual to the Dirichlet space. In particular, it follows
from this that Δ + 2 is an isomorphism on functions supported away
from the boundary:

(3.1) Δ+ 2 : C∞c (Mreg)←→ C∞c (Mreg), Mreg =Mmr \ ∂Mmr.

We extend this result up to the boundary of the resolved space for the
Lefschetz fibration in terms of tangential regularity.

Proposition 3. For the Laplacian of the grafted metric

(3.2) (Δ+ 2)−1 : ρ
− 1

2

II Hk
b(Mmr) −→ ρ

− 1

2

II H
k
b (Mmr) ∀ k ∈ N.

The main complication in the proof arises from the fact that the
Dirichlet space is not a C∞ module.

First consider the following analog of Fubini’s theorem.

Lemma 3. For the fiber metrics corresponding to an Hermitian met-

ric on LTMmr, the metric density is of the form

(3.3) |dg| = ρIIνb,fib,

and the space of weighted L2 functions with values in the L2 spaces of

the fibers can be realized as

(3.4) L2(Mmr; |dg|φ∗mrνb(Zmr)) = L2
b(Zmr;L

2(|dg|)) = ρ
− 1

2

II L
2
b(Mmr).

Proof. Away from BII ⊂ Mmr the resolved map ψmr is a fibration,
LTMmr is the fiber tangent bundle and the boundary is in the base.
Thus, (3.3) and (3.4) reduce to the local product decomposition for a
fibration and Fubini’s Theorem.

It, therefore, suffices to localize near BII and to consider the plumbing
metric since all hermitian metrics on LTMmr are quasi-conformal. The
symmetry in z and w means that it suffices to consider the region in
which ρz = sz/sw and sw are defining functions for the two boundary
hypersurfaces BI and BII, respectively. The plumbing metric may then
be written

g =
π2s2t

sin2(πstsw
)

(
ds2w
s4w

+ dθ2w

)
=

π2s2t
sin2( π

1+ρz
)

(
dρ2z

s2t (1 + ρz)4
+ dθ2z

)
.

Thus, the fiber area form,

|dg| = π2s2t
sin2( π

1+ρz
)

dρz
st(1 + ρz)2dθz

= f(ρz)
st
ρz

dρz
ρz

dθz = f̃(ρz)sw
dρz
ρz

dθz

is a positive multiple of sw
dρz
ρz
dθz from which (3.3) follows.
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The identification (3.4) holds after localization away from BII and
locally near it

||f ||2L2

b
(Zmr);L2(dg)) =

∫ ∫
|f |2|dg|dst

st
dθt =

∫
Zmr

|f |2ρIIνb.
q.e.d.

Since (Δ+ 2)−1 is a well-defined bounded operator on the metric L2

space which depends continuously on the parameter in Z \S with norm
bounded by 1/2, it follows from (3.4) that

(3.5) (Δ+ 2)−1 is bounded on ρ
− 1

2

II L2
b(Mmr).

We consider the ‘total’ Dirichlet space based on this L2 space – we
are free to choose the weighting in the parameter space. Thus, let D
be the completion of the smooth functions on Mmr supported in the
interior with respect to

(3.6) ‖u‖2D =

∫ (|dfibu|2g + 2|u|2) |dg|φ∗νb(Zmr).

Note that D depends only on the quasi-isometry class of the fiber Her-
mitian metric but does depend on the induced fibration of the bound-
ary BII.

The dual space, D′, to D as an abstract Hilbert space, may be em-
bedded in the extendible distributions on Mmr using the volume form
φ∗mrνb|dg|. As is clear from the discussion below, the image is indepen-
dent of the choice of, νb, of a logarithmic area form on Zmr but the
embedding itself depends on this choice. Thus, ṽ ∈ D′ is identified as a
map v : Ċ∞c (Mmr) −→ C by

(3.7)

∫
vφ|dg|φ∗νb(Zmr) = ṽ(φ).

We consider the space of vector fields W ⊂ ρ−1II Vb(Mmr) which are
tangent to the fibers of ψmr and to the fibers of BII and which commute
with ∂θz and ∂θw near BII.

Proposition 4. For the grafted metric

Δ+ 2 : D → D′ ⊂ C−∞(Mmr)

is an isomorphism, where the elements of D′ are precisely those ex-

tendible distributions which may be written as finite sums

(3.8) v =
∑
j

Wjuj , Wj ∈ W, uj ∈ ρ−
1

2

II L
2
b(Zmr),

and has the injectivity property that

(3.9) u ∈ C−∞(Mmr), (Δ+ 2)u ∈ D′ =⇒ u ∈ D.
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This result remains true for any Hermitian metric on LTMmr but is
only needed here for the grafted metric which is equal to the plumbing
metric near BII.

Proof. Although defined above by completion of the space of smooth
functions supported away from the boundary of Mmr with respect to
the norm (3.6) the space D can be identified in the usual way with the
subspace of C−∞(Mmr) consisting of those

(3.10) u ∈ ρ−
1

2

II L
2
b(Mmr) s.t. W · u ⊂ ρ−

1

2

II L2
b(Mmr),

with the derivatives taken in the sense of extendible distributions. In-
deed, choosing a cutoff μ ∈ C∞c (R) which is equal to 1 near 0 the se-
quence of multiplication operators 1 − μ(nρII) tends strongly to the

identity on ρ
− 1

2

II L
2
b(Mmr). By assumption this commutes with the ele-

ments of W and it follows that elements with support in the interior of
Mmr, where ψmr is a fibration, are dense in D; for these approximation
by smooth elements is standard.

That Δ+2 : D −→ D′ ⊂ C−∞(Mmr) is the explicit form of the Riesz
representation theorem in this setting. Then the identification, (3.8),
of elements of D′ follows from the form of Δ. Away from BII, D is a
C∞ module (since the elements of W are smooth there) and then (3.8)
is the identification of the fiber H−1 space. Near BII we may use the
explicit form of the Laplacian for the plumbing metric.

Indeed, the local version of the Dirichlet form is

(3.11) D(φ,ψ) =

∫ (
VReφVReφ+ VImφVImφ

) dswdθw
s2w

,

where V is given by (1.19) and it follows that the Laplacian acting on
functions on the fibers can be written

(3.12) Δ = −
sin2( π

1+ρz
)

π2s2t

(
V 2
R + (∂θz − ∂θw)2

)
,

in the coordinates sw, ρz, θw and θz.
The vector fields VR and ρ−1II (∂θz −∂θw) generateW near BII over the

functions which are constant in θw and θz. If we write DiffkW(Mmr) for
the differential operators which can be written as sums of products of
elements of at most k elements of W with smooth coefficients which are
independent of the angular variables near BII then

(3.13) Δ ∈ Diff2
W(Mmr).

Moreover,

(3.14)
Diff1

W(Mmr) : D −→ ρ
− 1

2

II L2
b(Mmr) and

Diff1
W(Mmr) : ρ

− 1

2

II L
2
b(Mmr) −→ D′,
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where the second statement follows by duality from the first. Together
(3.13) and (3.14) imply (3.8). q.e.d.

Consider the space U ⊂ Vb(Mmr), defined analogously to W, as con-
sisting of the vector fields which commute with ∂θz and ∂θw near BII.

Then let DiffkU (Mmr) be the part of the enveloping algebra of U up to

order k, this just consists of the elements of Diffkb(Mmr) which commute
with ∂θz and ∂θw near BII. We may define ‘higher order’ versions of the
spaces D and D′:

(3.15) Dk = {u ∈ D; DiffkU (Mmr) · u ⊂ D},
D′k = {u ∈ D′; DiffkU (Mmr) · u ⊂ D′}, k ∈ N.

Since U spans Vb(Mmr) over C∞(Mmr) it follows that

(3.16) Dk ⊂ ρ−
1

2

II H
k
b (Mmr) ⊂ D′k ∀ k.

Proposition 5. For any k, Ċ∞(Mmr) is dense in Dk and D′k and

(3.17) Δ+ 2 : Dk −→ D′k

is an isomorphism.

Proof. The density statement follows from the same argument as for
D and D′.

Consider the commutator relation which follows directly from the
definitions
(3.18)

[U ,W] ⊂ W =⇒ [DiffkU(Mmr),Δ] ⊂ Diff2
W(Mmr) ·Diffk−1U (Mmr), k ∈ N.

To prove (3.17) we need to show that if u ∈ D, Q ∈ DiffkU (Mmr)
and f = (Δ + 2)u ∈ D′k then Qu ∈ D. Assuming the result for Q ∈
Diffk−1U (Mmr) it follows from (3.18) that

(3.19) ΔQu = QΔu+
∑
p

LpQpu

with Lp ∈ Diff2
W(Mmr), Qp ∈ Diffk−1

U
(Mmr)

=⇒ ΔQu ∈ D′ =⇒ Qu ∈ D,
by distributional uniqueness. q.e.d.

Proof of Proposition 3. The boundedness in (3.2) follows directly
from (3.17) and (3.16). q.e.d.

4. Formal solution of (Δ+ 2)u = f

In the previous section the uniform invertibility of Δ + 2 for the
grafted metric was established. In particular, the case k = ∞ in (3.2)
shows the invertibility on conormal functions. In this section, we solve
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the same equation, (Δ+2)u = f in formal power series with logarithmic
terms.

Let C∞F (Mmr) ⊂ C∞(Mmr) denote the subspace annihilated to infinite
order at BII by the angular operators Dθz and Dθw .

Lemma 4. The restriction, ΔI, of the Laplacian to BI satisfies

(4.1) (ΔI + 2)−1
(
ρII(log ρII)

kgk

)
= ρII

∑
0≤p≤k+1

(log ρII)
pup, up ∈ C∞F (Mmr) ∀ gk ∈ C∞F (Mmr).

Proof. The fiber metric on BI is a trivial family with respect to the
product decomposition BI = A×S where A has the complete metric on
the Riemann surface with cusps arising from the ‘removal’ of the nodal
points. The Laplacian is, therefore, essentially self-adjoint and non-
negative, so Δ + 2 is invertible. Either from the form of a parametrix
or by Fourier expansion near the cusps it follows that rapid decay in
the non-zero Fourier modes (in both angular variables) is preserved by
(ΔI+2)−1. Near the boundary the zero Fourier mode satisfies a reduced,
ordinary differential, equation with regular singular points and having
indicial roots 1 and −2 in terms of a defining function for the (resolved)
cusps. Then (4.1) follows directly. q.e.d.

Lemma 5. If u ∈ C∞F (Mmr) then Δu ∈ C∞F (Mmr) restricts to BII to

Δ̃IIv, v = u
∣∣
BII

where Δ̃II is an ordinary differential operator of order

2 elliptic in the interior with regular singular endpoints, with indicial

roots −1, 2 such that

(4.2) Nul(Δ̃II + 2) ⊂ ρ−1I C∞(BII)

has no smooth elements and for hj ∈ C∞F (BII)

(4.3)
(Δ̃II + 2)−1(log ρI)

jhj =
∑

0≤q≤j

(log ρI)
qvq,j + ρ2I (log ρI)

j+1wj

with vq,j, wj ∈ C∞F (BII).

Proof. The form of the Laplacian in (3.12) shows that the reduced

operator Δ̃II exists and after the change coordinates on BII to

(4.4) ρ =
1

1 + ρII
becomes

(4.5) Δ+ 2 = 2− (
sin(πρ)

πρ
)2[(ρ∂ρ)

2 − ρ∂ρ].
The indicial roots of this operator are 2 and −1 and its homogeneity
shows that the null space has no logarithmic terms. The absence of
smooth elements in the null space follows by integration by parts and
positivity. q.e.d.
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The problem that we need to solve at BII is

(4.6) (Δ+ 2)(ρIIw) = ρIIg +O(ρ2II) =⇒ (Δ̃
(1)
II + 2)(w

∣∣
BII

) = g
∣∣
BII

.

Since the parameter, st, is the product of defining functions for BI and
BII and commutes through the problem this can be solved by dividing

by it. Thus, Δ̃
(1)
II is obtained from Δ̃II by conjugating by a boundary

defining function on BII so the preceding Lemma can be applied after
noting the shift of the indicial roots.

Lemma 6. For the conjugated operator on BII,

(4.7) Nul(Δ̃
(1)
II + 2) ⊂ C∞(BII),

with the Dirichlet problem uniquely solvable and

(4.8)
(Δ̃II + 2)−1(log ρI)

jhj =
∑

0≤q≤j

(log ρI)
qvq,j + ρ3I (log ρI)

j+1wj

with vq,j, wj ∈ C∞F (BII).

To express the form of the expansion which occur below, consider the
space of polynomials in log ρI and log ρII with coefficients in C∞F (Mmr)

(4.9) Pk =
⎧⎨⎩u =

∑
0≤l+p≤k

(log ρI)
l(log ρII)

pul,p, ul,p ∈ C∞F (Mmr)

⎫⎬⎭ .

We also consider the filtration of these spaces by the maximal order in
each of the variables:
(4.10)

Pk,jI ={
u =

∑
0≤l+p≤k, l≤j

(log ρI)
l(log ρII)

pul,p, ul,p ∈ C∞F (Mmr)

}
, j ≤ k;

Pk,mII ={
u =

∑
0≤l+p≤k, p≤m

(log ρI)
l(log ρII)

pul,p, ul,p ∈ C∞F (Mmr)

}
, m ≤ k.

Since the coefficients are in C∞F (Mmr), Δ acts as a smooth b-differential

operator on all of these spaces. If u ∈ Pk,pI , then u = up + u′ with

u′ ∈ Pk,p−1I and up = v(log ρI)
p where v ∈ Pk−p,0I . Then Δu =

(ΔIv)(log ρI)
p + f ′, f ′ ∈ Pk−1,p−1I + ρIPk,p−1I where the first error term

corresponds to at least one derivation of (log ρI)
p. Similar statements

apply to BII and Δ̃II.
As a basis for iteration, to capture the somewhat complicated behav-

ior of the logarithmic terms, we first consider a partial result.

Proposition 6. For each k

(4.11) f ∈ ρIIPk + ρIρIIPk+1 =⇒ ∃ u ∈ ρIIPk+1 + ρ2IρIIPk+2,k+1
II ,
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such that

(4.12) (Δ+ 2)u− f ∈ st
(
ρIIPk+1 + ρIρIIPk+2

)
.

Proof. We first solve on BI, then on BII. The second term in f
in (4.11) vanishes on BI so the restriction fI ∈ ρIIPk

∣∣
BI

. Proceeding

iteratively, suppose

f ∈ ρIIPk,jI + ρIρIIPk+1,

with j ≤ k and consider the term of order j in log ρI; this is a polynomial
in log ρII of degree at most k−j with coefficients in ρIIC∞F (BI). Applying
Lemma 4 to the restriction to BI gives a polynomial in log ρII of degree at
most k−j+1 with coefficients in ρIIC∞F (BI). Extending these coefficients

off BI and restoring the coefficient of (log ρI)
j gives vj ∈ ρIIPk+1,j

I such
that

(Δ+ 2)vj − f = −f ′, f ′ ∈ ρIIPk,j−1I + ρIρIIPk+1.

Here the first part of the error arises from differentiation of the factor
(log ρI)

j in vj at least once. If we start with j = k and proceed iteratively

over decreasing j this allows us to find v ∈ ρIIPk+1 such that

(4.13) (Δ+ 2)v − f = −g ∈ ρIρIIPk+1.

Now we proceed similarly by solving on BII using Lemma 6. So,

suppose h ∈ ρIρIIPk+1,p
II , for p ≤ k + 1. Then the coefficient hp of

(log ρII)
p is a polynomial of degree at most k + 1 − p in log ρI with

coefficients in ρIρIIC∞F (Mmr). Conjugating away the factor of ρII and
applying Lemma 6 to the restriction to BII and then extending the

coefficients off BII allows us to find wp ∈ ρIρIIPk+1,p
II + ρ2IρIIPk+2,p

II ,
where the second term arises from the possible increase in multiplicity
of the logarithmic coefficient of ρ2I in the solution, satisfying
(4.14)

(Δ+2)wp−g = −g′+e, g′ ∈ ρIρIIPk+1,p−1
II , e∈ ρIρ2IIPk+1,p

II +ρ2Iρ
2
IIPk+2,p

II ,

where the first part of the error arises from differentiation of (log ρII)
p

at least once. Starting with p = k + 1 and iterating over decreasing p
allows us to find w ∈ ρIρIIPk+1 + ρ2I ρIIPk+2,k+1 such that

(4.15) (Δ+ 2)w − g ∈ ρIρ2IIPk+1 + ρ2Iρ
2
IIPk+2.

Combining (4.13) and (4.15) gives (4.12) since ρIρII is a smooth mul-
tiple of st. q.e.d.

Proposition 6 allows iteration since st commutes through Δ+ 2.

Proposition 7. If f ∈ ρIIPk + ρIρIIPk+1 then u = (Δ + 2)−1f ∈
s−εt H∞b (Mmr) for any ε > 0, has a complete asymptotic expansion of the

form

(4.16) u �
∑
j≥0

sjtuj , uj ∈ ρIIPk+j + ρIρIIPk+j+1,k+j
II .
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Proof. For any ε > 0, g = sεtf ∈ ρ
− 1

2

II H
∞
b (Mmr) so u = s−εt (Δ+2)−1g

exists by (3.2). Comparing u to the expansion cut off at a finite point
gives (4.16). q.e.d.

This result can itself be iterated, asymptotically summed and then
the rapidly decaying remainder term again removed to show the log-
smoothness of the solution for an asymptotically convergent sum over
terms on the right in (4.16).

For the solution of the curvature equation the leading term is smooth
because of the special structure of the forcing term.

Lemma 7. If f ∈ C∞(Mmr) has support disjoint from BII then u =
(Δ+ 2)−1f is log-smooth and has an asymptotic expansion of the form

(4.17) u � ρIIv0 +
∑
k≥1

skt vk, vk ∈ ρIIPk + ρIρIIPk+1,k
II .

Note that log-smoothness follows from the fact that st = aρIρII, a ∈
C∞F (Mmr) so each term in the expansion can be written as a polynomial
in ρI, ρI log ρI, ρII and ρII log ρII of degree at least 2k.

5. Log-smoothness for the curvature equation

Under a conformal change from the grafted metric h with curvature
R to e2fh the condition for the curvature of the new metric to be −1
is given by (11). To construct the canonical metrics on the fibers we
proceed, as in the linear case discussed above, to solve (11) in the sense
of formal power series at the two boundaries above st = 0 and then,
using the Implicit Function Theorem deduce that the actual solution
has this asymptotic expansion.

Lemma 8. For the grafted metric there is a formal log-power series

(5.1)
∑
k≥2

skt fk, f2 ∈ C∞F (Mmr), fk ∈ ρIIPk−2 + ρIρIIPk−1,k−2II , k ≥ 3,

solving (11).

The Pk are defined in (4.9); in the last term there is no factor of
(log ρII)

k−1.

Proof. Since R + 1 ∈ s2tC∞(Mmr) is supported away from BII, Lem-
ma 7 shows that g1 = −(Δ+ 2)−1(R+ 1) is of the form (5.1). We look
for the formal power series solution of the non-linear problem as

(5.2) f �
∑
k≥1

gk.

Inserting this sum into the equation gives

(5.3) −(Δ+ 2)(
∑
i≥1

gi) =
∑
j≥2

2j

j!
(g1 +

∑
k≥2

gk)
j + 1 +R.
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For each i ≥ 2 we fix gi by

(5.4) − (Δ+ 2)gi =
∑
j≥1

2j

j!
(g1 +

∑
i−1≥k≥2

gk)
j − 2j

j!
(g1 +

∑
i−2≥k≥2

gk)
j

= gi−1Pi(g1, g2, ...gi−1),

where Pi is a formal power series in g1, ...gi−1 without constant term.
Proceeding by induction we claim that

(5.5) gi �
∑
j≥2i

sjtgi,j , gi,j ∈ ρIIPj−2i + ρIρIIPj−2i+1,j−2i
II .

We have already seen that this holds for i = 1 and using the obvious
multiplicitivity properties

Pk · Pj ⊂ Pj+k, Pk · Pj,j−1II ⊂ Pj+k,j+k−1II ,

it follows from the inductive assumption, that (5.5) holds for all smaller
indices, that

(5.6) gi−1Pi(g1, g2, ...gi−1)

� s2it
∑

k≥2,j≥2i−2

(
ρIIPj−2i+2 + ρIρIIPj−2i+3,j−2i+2

II

)
(
ρIIPk−2 + ρIρIIPk−1,k−2II

)
�

∑
k≥2i

sjkFk, Fk ∈ ρIIPk−2i + ρIρIIPk−2i+1,k−2i
II .

Applying Proposition 7 we recover the inductive hypothesis at the next
step. Then (5.1) follows from (5.2) and (5.5). q.e.d.

Summing the formal power series solution gives a log-smooth function
with

(5.7) −Δf0 = R+ e2f0 + g, g ∈ O(s∞t ).

Now we look for the solution as a perturbation f = f0+ f̃ , so f̃ satisfies

(5.8) −Δf̃ = −g + e2f0(e2f̃ − 1),

which can be rewritten as

f̃ = −(Δ+ 2)−1
(
2f̃(e2f0 − 1) + e2f0(e2f̃ − 1− 2f̃)− g

)
.

So consider the nonlinear operator

(5.9) K : f̃ �→ (Δ+ 2)−1
(
2f̃(e2f0 − 1) + e2f0(e2f̃ − 1− 2f̃)− g

)
,

which acts on sNt H
M
b (Mmr) for all N ≥ 1 and M > 2. Note that for

M > 2, the b-space HM
b (Mmr) is closed under multiplication, therefore,
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this weighted Sobolev space is also an algebra. Since the nonlinear terms
are at least quadratic, K is well-defined on this domain. The solution
to (5.8) satisfies f̃ = K(f̃).

Proposition 8. For any M > 1 and N ≥ 1 there is a unique solution

f̃ ∈ sNt HM
b (Mmr) to equation (5.8).

Proof. We construct the solution f̃ by iteration. Let

f̃ = sNt
∑
i≥2

st
ifi,

put it into equation (5.8), divide by the common factor sNt on both sides
and then we get

(5.10)
∑
i≥2

sitfi = K(
∑

sitfi)

= (Δ + 2)−1
(
(e2f0 − 1)

∑
sitfi + sNt (

∑
sitfi)

2 + s−Nt g
)
.

The right hand side belongs to (Δ + 2)−1(O(s2t )) because of the qua-
dratic structure and the fact that e2f0 − 1 ∈ O(s2t ). Therefore, the right

hand side is the form (Δ+2)−1(sth) where sth ∈ ρ−
1

2

II HM
b (Mmr) so this

quantity is well-defined using Proposition 3.
Now we proceed by induction. Assume that the first k terms in the

expansion have been solved, then the equation for the next term fk is
given by

fk = (Δ+ 2)−1
(
(e2f0 − 1)fk−2 + sNt Q(f0, ...fk−1)

)
,

where the polynomial Q on the right hand side is a quadratic polynomial
of order k−N . By using the invertibility property in Proposition 3, we
can now solve fk. Therefore, the induction gives us the total expansion
for f̃ . q.e.d.

Proof of Theorem . From Proposition 8 we obtain the solution, f =
f0 + f̃ , to the curvature equation R(e2fh) = −1. Since f0 is the formal

power series and f̃ ∈ s∞t C∞(Mmr), we get the solution with required
regularity. q.e.d.
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