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Abstract

The behavior and the location of singular points of a solution to
Painlevé VI equation could encode important geometric proper-
ties. For example, Hitchin’s formula indicates that singular points
of algebraic solutions are exactly the zeros of Eisenstein series of
weight one. In this paper, we study the problem: How many sin-
gular points of a solution λ(t) to the Painlevé VI equation with pa-
rameter ( 18 ,

−1
8 , 1

8 ,
3
8 ) might have in C\{0, 1}? Here t0 ∈ C\{0, 1}

is called a singular point of λ(t) if λ(t0) ∈ {0, 1, t0,∞}. Based on
Hitchin’s formula, we explore the connection of this problem with
Green function and the Eisenstein series of weight one. Among
other things, we prove:

(i) There are only three solutions which have no singular points
in C\{0, 1}. (ii) For a special type of solutions (called real solutions
here), any branch of a solution has at most two singular points
(in particular, at most one pole) in C \ {0, 1}. (iii) Any Riccati
solution has singular points in C \ {0, 1}. (iv) For each N ≥ 5 and
N �= 6, we calculate the number of the real j-values of zeros of the
Eisenstein series EN

1 (τ ; k1, k2) of weight one, where (k1, k2) runs
over [0, N − 1]2 with gcd(k1, k2, N) = 1.

The geometry of the critical points of the Green function on a
flat torus Eτ , as τ varies in the moduli M1, plays a fundamental
role in our analysis of the Painlevé VI equation. In particular,
the conjectures raised in [23] on the shape of the domain Ω5 ⊂
M1, which consists of tori whose Green function has extra pair of
critical points, are completely solved here.
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1. Introduction

1.1. Painlevé property. In the literature, a nonlinear differential equa-
tion in one complex variable is said to possess the Painlevé property if
its solutions have neither movable branch points nor movable essential
singularities. For the class of second order differential equations

(1.1) λ′′(t) = F (t, λ, λ′), t ∈ CP1,

where F (t, λ, λ′) is meromorphic in t and rational in both λ and λ′,
Painlevé (later completed by Gambier, [12, 31]) obtained the clas-
sification of those nonlinear ODEs which possess the Painlevé prop-
erty. They showed that there were fifty canonical equations of the
form (1.1) with this property, up to Möbius transformations. Fur-
thermore, of these fifty equations, forty-four are either integrable in
terms of previously known functions (such as elliptic functions), equiv-
alent to linear equations, or are reduced to one of six new nonlin-
ear ODEs which define new transcendental functions (see, e.g., [18]).
These six nonlinear ODEs are called Painlevé equations. Among them,
Painlevé VI is often considered to be the master equation, because oth-
ers can be obtained from Painlevé VI by the confluence. Due to its
connection with many different disciplines in mathematics and physics,
Painlevé VI has been extensively studied in the past several decades. See
[1, 3, 8, 10, 11, 13, 14, 16, 21, 26, 27, 29, 30, 37] and the references
therein.

Painlevé VI (PVI) is written as

d2λ

dt2
=
1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(
1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
λ(λ− 1)(λ− t)

t2(t− 1)2

[
α+ β

t

λ2
+ γ

t− 1

(λ− 1)2
+ δ

t(t− 1)

(λ− t)2

]
,(1.2)

where α, β, γ, δ are four complex constants. From (1.2), the Painlevé
property says that any solution λ(t) is a multi-valued meromorphic func-
tion in C\{0, 1}. To avoid the multi-valueness of λ(t), it is better to lift
solutions of (1.2) to its universal covering. It is known that the universal
covering of C\{0, 1} is the upper half plane H = {τ | Im τ > 0}. Then t
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and the solution λ(t) can be lifted through the covering map τ �→ t by

(1.3) t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
, λ(t) =

℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
,

where ℘(z) = ℘(z|τ) is the Weierstrass elliptic function defined by

(1.4) ℘(z|τ) := 1

z2
+

∑
ω∈Λτ\{0}

(
1

(z − ω)2
− 1

ω2

)
,

and Λτ := {m + nτ |m,n ∈ Z} is the lattice generated by ω1 = 1
and ω2 = τ . Also ω3 = 1 + τ and ei(τ) = ℘(ωi

2 |τ) for i = 1, 2, 3.
Consequently, p(τ) satisfies the following elliptic form of PVI:

(1.5)
d2p(τ)

dτ2
=
−1
4π2

3∑
i=0

αi℘
′ (p(τ) + ωi

2 |τ
)
,

where ω0 = 0 and

(1.6) (α0, α1, α2, α3) =
(
α,−β, γ, 12 − δ

)
.

This elliptic form was first discovered by Painlevé [32]. For more recent
derivations of it, see [1, 27].

1.2. Hitchin solutions. In this paper, we consider the special case
αi =

1
8 for 0 ≤ i ≤ 3, i.e.,

(1.7)
d2p(τ)

dτ2
=
−1
32π2

3∑
i=0

℘′ (p(τ) + ωi
2 |τ

)
,

which is the elliptic form of PVI( 1
8
,−1

8
, 1
8
, 3
8
). Equation (1.7) has connec-

tions with some geometric problems. The well-known example is related
to the construction of Einstein metrics in four dimension; see [16]. In
the seminal work [16], Hitchin obtained his famous formula to express
a solution p(τ) of (1.7) with some complex parameters r, s:

(1.8) ℘ (p(τ)|τ) = ℘(r + sτ |τ) + ℘′(r + sτ |τ)
2(ζ(r + sτ |τ)− (rη1(τ) + sη2(τ)))

.

Here ηi(τ) = 2ζ(ωi
2 |τ), i = 1, 2, are quasi-periods of the Weierstrass zeta

function ζ(z|τ) = − ∫ z
℘(ξ|τ)dξ.

By (1.8), he could construct an Einstein metric with positive cur-
vature if r ∈ R and s ∈ iR, and an Einstein metric with negative
curvature if r ∈ iR and s ∈ R. He also obtained an Einstein metric with
zero curvature, but the corresponding solution of (1.7) is given by an-
other formula other than (1.8). Indeed, this corresponds to the Riccati
solutions of (1.7); see §3.

For simplicity, we denote pr,s(τ) (equivalently, λr,s(t) via (1.3)) to be
the solution of (1.7) with the expression (1.8). It is obvious that if

(r, s) ∈ 1
2Z

2 :=
{
(0, 0), (0, 12), (

1
2 , 0), (

1
2 ,

1
2)
}
+ Z2,



188 Z. CHEN, T.-J. KUO, C.-S. LIN & C.-L. WANG

then either ζ(r+sτ |τ)−(rη1(τ)+sη2(τ)) ≡ ∞ or ζ(r+sτ |τ)−(rη1(τ)+
sη2(τ)) ≡ 0 in H. Hence for any complex pair (r, s) �∈ 1

2Z
2, pr,s(τ) is

always a solution to (1.7), or equivalently, λr,s(t) is a (multi-valued)
solution to PVI( 1

8
,−1

8
, 1
8
, 3
8
). We say that two solutions λr,s(t) and λr′,s′(t)

give (or belong to) the same solution if λr′,s′(t) is the analytic continu-
ation of λr,s(t) along some closed loop in C\{0, 1}. In §4, we will prove
that λr,s and λr′,s′ give the same solution to PVI( 1

8
,−1

8
, 1
8
, 3
8
) if and only

if (s′, r′) ≡ (s, r) · γ modZ2 for some matrix

γ ∈ Γ(2) = {γ ∈ SL(2,Z) | γ ≡ I2 mod 2}.
In this paper, we are mainly concerned with the question of smooth-

ness of solutions to PVI( 1
8
,−1

8
, 1
8
, 3
8
), and the location of its singular points.

Notice that for a solution λ(t) and a point t0 ∈ C\{0, 1}, the RHS of
Painlevé VI (1.2) has a singularity at (t0, λ(t0)) provided that λ(t0) ∈
{0, 1, t0,∞}. Therefore, in this paper, we say λ(t) is smooth at t0 if
λ(t0) �∈ {0, 1, t0,∞}. Furthermore, a singular point t0 ∈ C\{0, 1} is
called of type 0 (1, 2, 3, respectively) if λ(t0) = ∞ (λ(t0) = 0, 1, t0, re-
spectively).

We take PVI(0,0,0, 1
2
) as an initial example for our discussion, because

it can be transformed to PVI( 1
8
,−1

8
, 1
8
, 3
8
) of our concern by a Bäcklund

transformation (cf. [30]). In the literature, the Bäcklund transforma-
tion plays a very useful role in the study of Painlevé VI; for example, for
finding the algebraic solutions, see [11, 28, 26]. Conventionally, solu-
tions of PVI(0,0,0, 1

2
), the so-called Picard solutions, can be expressed in

terms of Gauss hypergeometric functions. It was first found by Picard
[33]. Let

(1.9) ω1(t) = −iπF (12 ,
1
2 , 1; 1− t), ω2(t) = πF (12 ,

1
2 , 1; t)

be two linearly independent solutions of the Gauss hypergeometric equa-
tion

(1.10) t(1− t)ω′′(t) + (1− 2t)ω′(t)− 1
4ω(t) = 0.

Then Picard solution of PVI(0,0,0, 1
2
) can be expressed as (cf. [13, 28])

(1.11) λ̂ν1,ν2(t) = ℘(ν1ω1(t) + ν2ω2(t) | ω1(t), ω2(t)) +
1 + t

3
,

for some (ν1, ν2) �∈ 1
2Z

2, where ℘(·|ω1(t), ω2(t)) is the Weierstrass elliptic

function with periods ω1(t) and ω2(t). The lifting of λ̂ν1,ν2(t) by (1.3) is
given by p̂ν1,ν2(τ) = ν1+ν2τ , which of course is a solution of the elliptic

form of PVI(0,0,0, 1
2
):

d2p(τ)
dτ2

= 0. So λ̂ν1,ν2(t) has another expression:

(1.12) λ̂ν1,ν2(t) =
℘(ν1 + ν2τ |τ)− e1(τ)

e2(τ)− e1(τ)
,
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which implies that λ̂ν1,ν2(t) is smooth for all t ∈ C\{0, 1} if and only

if (ν1, ν2) ∈ R2\12Z2. Then the Bäcklund transformation takes λ̂ν1,ν2(t)
into solution λr,s(t) of PVI( 1

8
,−1

8
, 1
8
, 3
8
) with (r, s) = (ν1, ν2). See, e.g.,

[6, Appendix A] for a rigorous proof of this fact and (1.12). Thus, in
the elliptic form the Bäcklund transformation seems comparably sim-
ple.

It is surprising to us that after the Bäcklund transformation from
PVI(0,0,0, 1

2
) to PVI( 1

8
,−1

8
, 1
8
, 3
8
), PVI( 1

8
,−1

8
, 1
8
, 3
8
) has only three solutions which

are smooth in C\{0, 1}.
Theorem 1.1. There are only three solutions λ(t) to PVI( 1

8
,−1

8
, 1
8
, 3
8
)

such that λ(t) is smooth for all t ∈ C\{0, 1}. They are precisely λ 1
4
,0(t),

λ0, 1
4
(t) and λ 1

4
, 1
4
(t).

Theorem 1.1 shows that the Bäcklund transformation does not pre-
serve the smoothness of solutions. Thus, Theorem 1.1 cannot be proved
by applying Picard solutions and the Bäcklund transformation. We re-
mark that the Bäcklund transformation is complicated due to not only
the complicated form of birational maps between solutions but also the
fact that it transforms a pair of solutions of the Hamiltonian system
(equivalently, the pair (λ(t), λ′(t))), but not the solution λ(t) only.

To prove Theorem 1.1, we start from the formula (1.8). Of course,
(1.8) does not give the complete set of solutions to (1.7). The missing
ones are solutions obtained from Riccati equations. For such Riccati
solutions, we have some expressions like (1.8). By employing these ex-
pressions, we will prove in §6 that any Riccati solution has singularities
in C\{0, 1}. Hence our strategy for the proof of Theorem 1.1 is to study
the smoothness of λr,s(t) for any complex pair (r, s) �∈ 1

2Z
2.

From (1.8), it is easy to see that if (r, s) is not a real pair, then
λr,s(t) always possesses a singularity t0 �∈ {0, 1,∞} (indeed, infinitely
many singularities), because there always exist infinitely many τ0 ∈ H

such that r + sτ0 is a lattice point of the torus Eτ0 := C/Λτ0 . So for
the proof of Theorem 1.1 we could restrict ourselves to consider only
(r, s) ∈ R2\12Z2. In this case, we introduce the Green function and the
Hecke form to study it.

1.3. Green function and Hecke form. Let G(z|τ) be the Green
function on the torus Eτ :

(1.13)

{
−ΔG(z|τ) = δ0(z)− 1

|Eτ | in Eτ ,∫
Eτ

G(z|τ)dz = 0,

where δ0 is the Dirac measure at 0 and |Eτ | is the area of the torus Eτ .
We recall the analytic description of G(z|τ) in [23]. Recall the theta
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function ϑ := ϑ1, where

ϑ1(z; τ) = −i
∞∑

n=−∞
(−1)ne(n+1

2)
2πiτe(2n+1)πiz.

Then the Green function is given by

(1.14) G(z|τ) = − 1

2π
log |ϑ(z; τ)|+ (Im z)2

2 Im τ
+ C(τ),

where C(τ) is a constant so that
∫
Eτ

G = 0. Recall that ηi(τ) =

2ζ(ωi
2 |τ), i = 1, 2, are quasi-periods of ζ(z|τ). Using (log ϑ)z = ζ(z)−η1z

and the Legendre relation η1ω2 − η2ω1 = 2πi, we have

(1.15) −4πGz(z|τ) = ζ(z|τ)− rη1(τ)− sη2(τ),

where z = r + sτ with r, s ∈ R. As mentioned before, ζ(r + sτ |τ) −
rη1(τ) − sη2(τ) ≡ 0 in H whenever (r, s) ∈ 1

2Z
2 \ Z2. Thus for (r, s) ∈

R2\12Z2, (1.15) shows that r + sτ is a non-half-period critical point of
G(z|τ) (we call such critical point a nontrivial critical point) if and only
if ζ(r + sτ |τ) − rη1(τ) − sη2(τ) = 0. Naturally, we ask the question:
How many nontrivial critical points might G(z|τ) have? Note that the
nontrivial critical points must appear in pair because G(z|τ) is an even
function in z. This question was answered in the following surprising
result:

Theorem A. [23] For any torus Eτ , G(z|τ) has at most one pair of
nontrivial critical points.

Theorem B. [24] Suppose that G(z|τ) has one pair of nontrivial crit-
ical points. Then the three half-periods are all saddle points of G(z|τ),
i.e., the Hessian satisfies detD2G(ωk

2 |τ) ≤ 0 for k = 1, 2, 3.1

For any (r, s) ∈ R2\12Z2, we define Z = Zr,s by

(1.16) Zr,s(τ) := ζ(r + sτ |τ)− rη1(τ)− sη2(τ), ∀τ ∈ H.

Clearly Zr,s is a holomorphic function in H. If (r, s) is an N -torsion

point, i.e., (r, s) = (k1N , k2N ) with 0 ≤ k1, k2 < N and gcd(k1, k2, N) =
1, it was proved by Hecke in [15] that Zr,s(τ) is a modular form of
weight 1 with respect to Γ(N) = {A ∈ SL(2,Z) | A ≡ I2 (mod N) }.
This modular form is called the Hecke form in [22]. Indeed, it is the
Eisenstein series of weight 1 with characteric (r, s) if (r, s) is an N -
torsion point. Following [34, p. 59], the Eisenstein series of weight 1 is

1Theorem B is used in the proof of Theorem 1.2 (ii) to be stated later. After
establishing Theorem 1.2, we have a stronger version of Theorem B: detD2G(ωk

2
|τ)

< 0 for k = 1, 2, 3 if G(z|τ) has one pair of nontrivial critical points; see Proposition
6.2 in §6.
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defined by

EN
1 (τ, s; k1, k2) := (Im τ)s

∑
(m,n)

(mτ + n)−1|mτ + n|−2s,

where (m,n) runs over Z2 under the condition 0 �= (m,n) ≡ (k1, k2)
modN . It is known that EN

1 (τ, s; k1, k2) is a meromorphic function in
the s-plane and holomorphic at s = 0. Set EN

1 (τ ; k1, k2) := EN
1 (τ, 0; k1,

k2). By using the Fourier expansions of both Zr,s(τ) and EN
1 (τ ; k1, k2)

(see [34, p. 59] and [9, p. 139]), we have

(1.17) Zr,s(τ) = NEN
1 (τ ; k1, k2), if (r, s) ≡ (k1N , k2N ) mod 1.

Hence, (1.15) yields that G(z|τ0) has a critical N -torsion point k1
N + k2

N τ0
with N ≥ 3 if and only if EN

1 (τ0; k1, k2) = 0.
Now we see the connection of the Hecke form with the solution pr,s(τ)

(or λr,s(t)) of (1.7): Zr,s(τ) appears in the denominator of the RHS of
(1.8). When (r, s) ∈ R2\12Z2, the formula (1.8) implies that t0 is a type
0 singularity, i.e., λr,s(t0) =∞ if and only if Zr,s(τ0) = 0, t0 = t(τ0), or
equivalently, the Green function G(z|τ0) has a nontrivial critical point
r+ sτ0. By Theorem A, it means that G(z|τ0) have exactly five critical
points in the torus Eτ0 :

ω1
2 , ω2

2 , ω3
2 and ±(r+sτ0). This connection and

(1.8) together with the Painlevé property say that the Eisenstein series
EN
1 (τ ; k1, k2) of weight 1 has only simple zeros; see Theorem 4.1. The

simplicity of zeros was also proved by Dahmen [7] as a consequence of
his counting formula of algebraic integral Lamé equations by the method
of dessins d’enfants. In §7, we will discuss the position and the number
of those zeros of EN

1 (τ0; k1, k2).
Recall the group action of SL(2,Z) on the upper half plane H:

τ ′ = γ · τ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL(2,Z).

Then we have the transformation law (see (4.4) in §4):
(1.18) Zr′,s′(τ

′) = (cτ + d)Zr,s(τ) where (s′, r′) = (s, r) · γ−1.

From here, we see that G(z|τ ′) has five critical points whenever G(z|τ)
has five critical points. Let M1 := H/SL(2,Z) and

Ω5 := {τ ∈M1 | G(z|τ) has five critical points},
Ω3 := {τ ∈M1 | G(z|τ) has three critical points}.

Then we have Ω3 ∪Ω5 =M1 by Theorem A. Moreover, from the proof
of Theorem A in [23], we know that Ω5 ⊂M1 is open and Ω3 is closed.
In this paper we determine the geometry of Ω3 and Ω5 as conjectured
in [23]:

Theorem 1.2 (Geometry of Ω3 and Ω5).

(i) Both Ω5 and Ω̄3 = Ω3 ∪ {∞} are simply connected in M1
∼= S2.
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(ii) C = ∂Ω5 = ∂Ω̄3
∼= S1. C\{∞} ∼= R is smooth. It consists of

points τ so that some half-period is a degenerate critical point of
G(z|τ).

The proof is given in §5 and §6. We actually prove a stronger result
on ∂Ω5: For any τ ∈ ∂Ω5, there is only one half period whose Hessian
detD2G vanishes. See Figure 1 for the numerical simulation.

Theorem 1.1 is clearly closely related to the following question: What
is the set of pairs (r, s) such that Zr,s(τ) has no zeros? We should write
an alternative form of (i) in Theorem 1.2 to answer this question. We
note that the following two statements hold:

(1.19) Zr,s(τ) = ±Zr′,s′(τ)⇐⇒ (r, s) ≡ ±(r′, s′) (mod Z2),

(1.20) λr,s(τ) = λr′,s′(τ)⇐⇒ (r, s) ≡ ±(r′, s′) (mod Z2).

The statement (1.19) is trivial while (1.20) was proved in [6]. From both
(1.19) and (1.20), we could assume (r, s) ∈ [0, 1]×[0, 12 ]\12Z2. Then (i) of
Theorem 1.2 can be stated more precisely. For this purpose, we consider

(1.21) F0 = { τ ∈ H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2 }.
It is elementary to prove that F0 is a fundamental domain for Γ0(2)
(cf. Remark 5.1). Notice that F0 is one half of the fundamental domain
of Γ(2). The following theorem will imply (i) of Theorem 1.2.

Theorem 1.3. Let (r, s) ∈ [0, 1] × [0, 12 ]\12Z2. Then Zr,s(τ) = 0 has
a solution τ ∈ F0 if and only if

(r, s) ∈ �0 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2}.
Moreover, the solution τ ∈ F0 is unique for any (r, s) ∈ �0.

We will see that Theorem 1.1 is a consequence of the non-existence
part of Theorem 1.3 in §5. Indeed, the existence part of Theorem 1.3
has applications as well; see the next subsection, where we will discuss
the singular points of a real solution λ(t).

1.4. Real solution. It is well known that Painlevé VI governs the
isomonodromic deformations of some linear ODE. In the elliptic form
it is convenient to choose the ODE to be a generalized Lamé equation
(cf. (2.4)). A solution λ(t) of PVI( 1

8
,−1

8
, 1
8
, 3
8
) is called a real solution if

its associated monodromy of the generalized Lamé equation is unitary.
In [6] it was proved that a solution λ(t) is a real solution if and only
if λ(t) = λr,s(t) for some (r, s) ∈ R2\12Z2. We call such a solution of
PVI( 1

8
,−1

8
, 1
8
, 3
8
) real because any solution with unitary monodromy repre-

sentation must come from blowup solutions of the mean field equation;
see [6]. We remark that real solutions do not mean “real-valued solu-
tions along the real-axis of t”. Indeed, for (1.7) there are no real-valued
solutions; see the discussion in Appendix A.
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Figure 1. The lifted domain Ω̃5 ⊂ F0 of Ω5 is the do-
main bounded by the 3 curves corresponding to the loci
of degenerate critical points.

The reasons we are studying real solutions are: (i) any algebraic
solution is a real solution; (ii) any real solution is smooth for t ∈ R\{0, 1}
(see [6]); (iii) any real solution has no essential singularity even at 0, 1
and ∞ (see Appendix A).

It is known (see §2) that t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

maps any fundamental do-

main of Γ(2) one-to-one and onto C\{0, 1}. Then by the transformation
(1.3), we see that any solution λ(t(τ)) is single-valued and meromorphic
whenever τ is restricted on a fundamental domain of Γ(2). In this pa-
per, a branch of a solution λ(t) to (1.2) means a solution λ(t(τ)) defined
for τ in a fundamental domain of Γ(2) (e.g., F2 given by (2.1)).

Recall a singular point t0 �∈ {0, 1,∞} of λ(t) means λ(t0) ∈ {0, 1, t0,
∞}. Denote C± = {t | Im t ≷ 0}. Then for real solutions we have:
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Theorem 1.4. Suppose λ(t) is a real solution. Then any branch
of λ(t) has at most two singular points in C \ {0, 1}, and they must
be different type singular points if the branch has exactly two singular
points. Furthermore, the set
(1.22)

Ω
(0)
− := {t ∈ C− | t is a type 0 singular point of some real solution}

is open and simply connected and ∂Ω
(0)
− consists of three smooth curves

connecting 0, 1,∞, respectively.

Remark 1.5. Theorem 1.4 shows that for each k ∈ {0, 1, 2, 3}, any
branch of a real solution has at most one type k singular point in
C\{0, 1}. Theorem 1.4 will be proved in §6, where we will see that, the
curve of ∂Ω

(0)
− connecting∞ and 0 (resp. connecting 1 and∞, connect-

ing 0 and 1) is the image of the degenerate curve of ω1
2 (resp. ω2

2 , ω3
2 )

of Green function G(z|τ) in F0 under the map t(τ). Similarly, we can
define
(1.23)

Ω
(k)
± := {t ∈ C± | t is a type k singular point of some real solution}.

Then Ω
(k)
− = Ω

(0)
− and Ω

(k)
+ = Ω

(0)
+ = {t | t−1 ∈ Ω

(0)
− } for k ∈ {1, 2, 3}, and

any real solution is smooth in C\ (Ω(0)
− ∪Ω(0)

+ ∪{0, 1}), which consists of
three connected components that contain (−∞, 0), (0, 1) and (1,+∞),
respectively. See the proof in §6.
1.5. Algebraic solution. A solution λ(t) to PVI is called an algebraic
solution if there is a polynomial h ∈ C[t, x] such that h(t, λ(t)) ≡ 0. It is
equivalent to that λ(t) has only a finite number of branches. By our clas-
sification theorem for (1.7), λ(t) is an algebraic solution of PVI( 1

8
,−1

8
, 1
8
, 3
8
)

if and only if λ(t) = λr,s(t) for some (r, s) ∈ QN with N ≥ 3, where

(1.24) QN :=
{(

k1
N , k2N

)∣∣∣ gcd(k1, k2, N) = 1, 0 ≤ k1, k2 ≤ N − 1
}

is the set of N -torsion points of exact order N . The classification of
the algebraic solutions for PVI( 1

8
,−1

8
, 1
8
, 3
8
) could be deduced from the

Bäcklund transformation and Picard solutions, as shown in [28]. It
is, therefore, natural to ask the following question:

Is any singular point t0 of an algebraic solution λ(t) an algebraic
number? Is the lifting τ0 of t0 a transcendental number?

The first question is equivalent to asking whether the j-value of any
zero of EN

1 (τ ; k1, k2) is an algebraic number. Here j(τ) is the classical
modular function, the j-invariant of τ , under the action by SL(2,Z);
see (1.25) below.

This question can be answered easily from the aspect of Painlevé VI or
from the q-expansion principle in the theory of modular forms (cf. [20]).
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It is well known from the addition theorem of ℘ function that there is a
polynomial ΨN ∈ Z[x, y, g2, g3] such that if (x, y) is an N -torsion point
of the elliptic curve y2 = 4x3− g2x− g3, then ΨN (x, y) = 0. The degree

of ΨN is N2−1
2 , and y appears only with odd powers in ΨN (x, y) if N

is even; y appears only with even powers in ΨN (x, y) if N is odd. See
[17, p. 272].

Now we come back to (1.9) and (1.11). Suppose that λ̂(t) = λ̂ν1,ν2(t)
is a solution of PVI(0,0,0, 1

2
), where (ν1, ν2) is an N -torsion point. Then

by the above result and the formula for ẽk := ℘(ωk(t)
2 |ω1(t), ω2(t)) (here

ω3 = ω1 + ω2, see [28]):

ẽ1 = −1 + t

3
, ẽ2 = 1− 1 + t

3
, ẽ3 = t− t+ 1

3
,

we see that there is a polynomial P̂ ∈ Q[t, x] such that

P̂ (t, λ̂(t)) ≡ 0.

This polynomial seems too complicated to be computed in general. By
the Bäcklund transformation, we conclude that for any algebraic solu-
tion λ(t), there is a polynomial P ∈ Q[t, x] such that P (t, λ(t)) ≡ 0.
Hence any singular point t of λ must be a root of a polynomial with
integral coefficients, which implies that t is an algebraic number.

Let t = t(τ). Recall the classical modular function j(τ) of SL(2,Z):

(1.25) j(τ) := 1728
g2(τ)

3

g2(τ)3 − 27g3(τ)2
= 1728

g2(τ)
3

Δ(τ)
,

where g2(τ) and g3(τ) are the coefficients of the elliptic curve Eτ : y
2 =

4x3 − g2(τ)x− g3(τ), and the relation between t(τ) and j(τ) is

(1.26) j = 256
(t2 − t+ 1)3

t2(t− 1)2
.

So if t(τ) is algebraic, then j(τ) is algebraic.
Another way to see it is to use a general principle from the theory

of modular forms. Since all the coefficients of the Fourier expansion of
Zr,s(τ) are algebraic numbers, {j(τ) | Zr,s(τ) = 0} are algebraic by the
so-called q-expansion principle (cf. [20]). However, we can prove more.
Let us consider

Z(N)(τ) :=
∏

(r,s)∈QN

Zr,s(τ).

This is a modular form of weight |QN | := #QN with respect to SL(2,Z).

For N ≥ 5, m := |QN |
24 ∈ N and

Z(N)(τ)

Δ(τ)2m
is invariant under SL(2,Z).

Observe that

(1.27) Zr,s(τ) =

⎧⎨
⎩
−Z1−r,0(τ) if s = 0,
−Z0,1−s(τ) if r = 0,
−Z1−r,1−s(τ) if r �= 0, s �= 0,
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which implies that any zero of
Z(N)(τ)

Δ(τ)2m
must be doubled. Since

Z(N)(τ)

Δ(τ)2m

has no poles in H, we conclude that

(1.28)
Z(N)(τ)

Δ(τ)2m
= C2m (�N (j))2 ,

for some monic polynomial �N of j and nonzero constant C2m. If N is

odd, then Z(N)(∞) �= 0. Hence
Z(N)(τ)

Δ(τ)2m
has poles of order 2m at τ =∞,

equivalently, �N (j) is a polynomial of degree m = |QN |
24 . If N is even,

then lN := deg �N < m. In any case, we have

Z(N)(τ) = C2mΔ(τ)2m−2lnH(G4(τ)
3,Δ(τ))2,

where H(X,Y ) is a homogeneous polynomial of X,Y and G4(τ) =
g2(τ)/60 is the classical Eisenstein series of weight 4. By using the q-
expansion of Zr,s(τ), we can prove that �N (j) has rational coefficients.

Theorem 1.6. For any N ≥ 5 with N �= 6, the monic polynomial
�N (j) determined by (1.28) has rational coefficients and satisfies

(i) for any zero j0 of �N (j), there is an algebraic solution λr,s(t),
(r, s) ∈ QN , such that j0 = j(τ0), where t0 = t(τ0) satisfies
λr,s(t0) =∞. Conversely, for any algebraic solution λr,s(t), (r, s) ∈
QN , if λr,s(t0) =∞ for some t0 = t(τ0), then j0 = j(τ0) is a zero
of �N (j);

(ii) �N (j) has distinct roots;
(iii) for any N1 �= N2, �N1(j) and �N2(j) have no common zeros;
(iv)

(1.29) deg �N =

{ |QN |
24 if N is odd,

|QN |
24 − 1

2ϕ(
N
2 ) if N is even,

where ϕ(·) is the Euler function.

Recall the elementary formula
(1.30)

|QN | = N2
∏

p|N, p prime

(
1− 1

p2

)
, ϕ(N) = N

∏
p|N, p prime

(
1− 1

p

)
.

Denote the j-value set of zeros of Z(N)(τ) by

J(N) := {j(τ) | Zr,s(τ) = 0 for some (r, s) ∈ QN}.
If N = 3, then |QN | = 8 and Z(N)(τ) =const·G4(τ)

2. Thus the zero

τ = ρ := e
πi
3 and J(3) = {0}. By Theorem 1.1 and Lemma 5.2, we see

that J(4) = J(6) = ∅. For N ≥ 5, J(N) is just the zero set of �N (j).
Note that formula (1.29) also holds for N = 6, which gives deg �6 = 0,
so �6(j) is a non-zero constant. This also proves J(6) = ∅.
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The computation of �N seems to be difficult in general. However,
by applying PVI, it is considerably easier for small N . Here are some
examples:

(1.31) J(3) = {0}, J(5) =
{

5·212
35

}
, J(8) =

{
207646

38

}
,

(1.32) J(7) =
{

211

57·34 (−333009± 175519
√
21)

}
.

For N = 9, the polynomial is

�9(j) =j3 +
86191391040000000

78815638671875
j2 +

19885648112869441536

78815638671875
j

− 7205712225604271603712

78815638671875
.

So J(9) = {a, b, b̄}, where a ∈ R and b �∈ R. Numerically,

(1.33) a ≈ 186.3, b ≈ −639.9 + 285.0×√−1.
It seems that except for N = 3, all elements in J(N) are not algebraic
integers. If this would be true, then by a classical result of Siegal and
Schneider, all τ such that λ(t(τ)) =∞ for an algebraic solution λ(t) are
transcendental. A natural question is how to determine their location
in the fundamental domain F of SL(2,Z), where

(1.34) F = {τ ∈ H | 0 ≤ Re τ < 1, |τ | ≥ 1, |τ − 1| > 1} ∪ {ρ = e
πi
3 }.

The above examples show that there is at least one zero of �N (j) of
where the corresponding τ is on the circular arc {τ ∈ H | |τ | = 1}.
Define

J−
N := {(r, s) ∈ QN | 2r + s = 1 and 1

3 < s < 1
2},

J+
N := {(r, s) ∈ QN | 2r + s = 1 and 0 < s < 1

3}.
Then we have the following interesting result:

Theorem 1.7. For any N ≥ 5 with N �= 6, �N (j) has exactly #J+
N

real zeros in (0, 1728) and exactly #J−
N real zeros in (−∞, 0). Further-

more, �N (j) has no zeros in {0} ∪ [1728,+∞).

Notice that in the fundamental domain F of SL(2,Z), the corre-
sponding τ of any positive zero of �N (j) is on the circular arc {τ ∈ F
| |τ | = 1}; while the corresponding τ of any negative zero of �N (j) is
on the line {τ ∈ F | Re τ = 1

2}. We can use (1.31)–(1.33) to check the
validity of Theorem 1.7 for small values of N . For example,

J+
5 = {(25 , 15)}, J−

5 = ∅; J+
7 = {(37 , 17)}, J−

7 = {(27 , 37)};
J+
8 = {(38 , 28)}, J−

8 = ∅; J+
9 = {(49 , 19)}, J−

9 = ∅.
The proof of Theorems 1.6 and 1.7 will be given in §7. In §8, we will give
some further remarks about Theorems 1.4 and 1.7. Finally, Appendix
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A is denoted to the asymptotics of real solutions at {0, 1,∞}, which are
needed in the computation of �N (j).

2. Painlevé VI: Overviews

In this section, we start with the discussion of Painlevé VI (1.2):

d2λ

dt2
=
1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(
1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
λ(λ− 1)(λ− t)

t2(t− 1)2

[
α+ β

t

λ2
+ γ

t− 1

(λ− 1)2
+ δ

t(t− 1)

(λ− t)2

]
.

It is well-known that (1.2) possesses the Painlevé property, which says
that any solution λ(t) has no branch points and no essential singularities
at any t ∈ C\{0, 1}.
2.1. Multi-valueness via single-valueness. The Painlevé property
implies that although a solution λ(t) is multi-valued in C, λ(t) is a single-
valued meromorphic function if t is restricted in C± = {z = x+ iy|y ≷
0}. That means if λ(t) is analytically continued along a closed curve
t = t(ε), t(0) = t(1), in C+ (or C−), then λ(t(0)) = λ(t(1)).

Due to the multi-valueness of a solution of (1.2), it is convenient to
lift solutions and the equation to the universal covering. The universal
covering space of C\{0, 1} is the upper half plane H. The covering map
t(τ) is given in (1.3), by which, Painlevé VI (1.2) is transformed into
the elliptic form (1.5).

It is elementary that t(τ) is invariant under the action of γ ∈ Γ(2),
where

Γ(2) = {A ∈ SL(2,Z) |A ≡ I2mod2}.
That is t(τ) = t(τ ′) if and only if τ ′ = γ · τ = aτ+b

cτ+d for some γ =(
a b
c d

)
∈ Γ(2). Indeed t(τ) is the principal modular function of Γ(2).

Let H∗ = H ∪ Q, where Q is the set of rational numbers. Then it is
well known that H∗/Γ(2) ∼= CP1 with three cusp point ∞, 0, 1 which
are mapped to 1, 0,∞ by t(τ), respectively. As the consequence of the
isomorphism, we have

t′(τ) =
dt

dτ
(τ) �= 0, ∀τ ∈ H,

namely the transformation t(τ) is locally one-to-one. Therefore, t(τ)
maps any fundamental domain of Γ(2) one-to-one onto C \ {0, 1}, and
any solution λ(t(τ)) is single-valued and meromorphic whenever τ is
restricted in a fundamental domain of Γ(2). As pointed out in §1,
throughout this article, a branch of a solution λ(t) always means a
solution λ(t(τ)) defined for τ in a fundamental domain of Γ(2).
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The fundamental domain F2 of Γ(2) is

(2.1) F2 =
{
τ | 0 ≤ Re τ < 2, |τ − 1

2 | ≥ 1
2 , |τ − 3

2 | > 1
2

}
.

When τ ∈ iR+, ek(τ) are real-valued and satisfies e2(τ) < e3(τ) <
e1(τ) (see, e.g., [6]). From here, it is easy to see that t(iR+) = (0, 1),
where t(i∞) = 1 and t(i0) = 0. Here we have used limτ→i∞ e2(τ) =

limτ→i∞ e3(τ) = −π2

3 (see §6). Furthermore, we could deduce from
above that for any τ ∈ F2, t(τ) ∈ R if and only if τ ∈ iR+ ∪ {τ ∈
H | |τ − 1

2 | = 1
2} ∪ {τ ∈ H | Re τ = 1}.

By the formula (1.8), we see that ℘(p(τ)|τ) is always a single-valued
meromorphic function defined in H. However, as a solution of (1.7), p(τ)
has a branch point at those τ such that p(τ) ∈ Eτ [2], where Eτ [2] :=
{ωk

2 |0 ≤ k ≤ 3} is the set of 2-torsion points in Eτ . The single-valueness
of ℘(p(τ)|τ) is one of the advantages of the elliptic form.

Recalling (1.21) and (2.1), F0 is a half part of F2. Then it is not
difficult to prove that the transformation t(τ) maps the interior of F0

onto the lower half plane C−, and t(τ) maps F2\F0 onto C+; see §6.
Hence it is convenient to use τ ∈ F2 when a branch of solution λ(t) with
t ∈ C \ {0, 1} is discussed. Different branches of λ(t) can be obtained
from (1.8) by considering τ in another fundamental domain of Γ(2).

2.2. Isomonodromic deformation. It is well known that Painlevé
VI governs the isomonodromic deformation of some linear ODE. See
[19] in this aspect. For the elliptic form (1.5), it was shown in [5] that
it is convenient to use the so-called generalized Lamé equation (GLE):

(2.2) y′′ =
[ ∑3

j=0 nj(nj + 1)℘(z +
ωj

2 ) + 3
4(℘(z + p)

+℘(z − p)) +A(ζ(z + p)− ζ(z − p)) +B

]
y.

Suppose nj �∈ 1
2 +Z. Then p(τ) is a solution of (1.5) if and only if there

exist A(τ) and B(τ) such that GLE (2.2) preserves the monodromy as
τ deforms. The formula to connect parameters of (1.5) and (2.2) is:

(2.3) αj =
1
2

(
nj +

1
2

)2
, j = 0, 1, 2, 3.

See [5] for the proof. The advantage to employ GLE (2.2) is that for
some cases, the monodromy representation is easier to describe. For
example, let us consider nj = 0 for all j. Then the elliptic form of PVI
is (1.7), and GLE is

(2.4) y′′ = [34(℘(z + p) + ℘(z − p)) +A(ζ(z + p)− ζ(z − p)) +B]y.

For any p �∈ Eτ [2], ±p are the singular points of (2.4) with local ex-
ponents −1

2 and 3
2 . We always assume that ±p are apparent singu-

larities. If (r, s) ∈ C2\12Z2 and p(τ) = pr,s(τ) is the solution given
by (1.8), then we proved in [6] that the monodromy representation
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ρ : π1(Eτ\{±p}, q0)→ SL(2,C) of GLE (2.4) is generated by

ρ(γ±) = −I2, ρ(�1) =

(
e−2πis 0

0 e2πis

)
, ρ(�2) =

(
e2πir 0
0 e−2πir

)
,

where q0 is a base point, γ± ∈ π1(Eτ\{±p}, q0) encircles ±p once and
�1,2 ∈ π1(Eτ\{±p}, q0) are two fundamental circles of the torus Eτ such

that γ+γ− = �−1
2 �−1

1 �2�1. In particular, the monodromy representation
ρ is completely reducible.

2.3. Bäcklund transformation. In [30], Okamoto constructed the
so-called Bäcklund transformations between solutions of Painlevé VI
with different parameters. Indeed, this transformation is a birational
transformation between the solutions of the corresponding Hamilton-
ian system, or equivalently, a birational transformation of (λ(t), λ′(t))
together. Since λ(t) and λ′(t) are algebraically independent generally
(otherwise, Painlevé equation would be reduced to a first order ODE),
the Bäcklund transformation is not a birational transformation of the
solution λ(t) only.

For example, it is known that a solution λ(t) of PVI( 1
8
,−1

8
, 1
8
, 3
8
) can be

obtained from a solution λ̂(t) of PVI(0,0,0, 1
2
) by the following Bäcklund

transformation (cf. [36, transformation s2 in p. 723]):

(2.5) λ(t) = λ̂(t) +
1

2μ̂(t)
, μ̂(t) =

t(t− 1)λ̂′ − λ̂(λ̂− 1)

2λ̂(λ̂− 1)(λ̂− t)
.

As mentioned in the Introduction, for PVI(0,0,0, 1
2
), all its solutions are

Picard solutions:

(2.6) λ̂(t) = λ̂ν1,ν2(t) = ℘(ν1ω1(t) + ν2ω2(t) | ω1(t), ω2(t)) +
t+ 1

3
,

where (ν1, ν2) ∈ C2\12Z2 and ω1,2(t) are given by (1.9). See [28, 13].
In principle, Hitchin’s formula (1.8) could be obtained from Picard so-
lution (2.6) via (2.5), as mentioned by [28] and some other references.

However, the computation of λ̂′(t) via (2.6) is actually very difficult, and
in practice, it is not easy at all to obtain Hitchin’s formula from Picard
solution. (This is why we cannot find a rigorous derivation of Hitchin’s
formula from Picard solution in the literature.) In a previous paper [6],
we gave a rigorous derivation from Hitchin’s formula to Picard solution.

In the literature, researchers often restrict the study of Painlevé VI
to special parameters via Bäcklund transformations. This leaves the
impression that the theory for different parameters may be much the
same. However, this turns out not to be completely true in general.
For example, the expression (1.12) shows that λ̂(t) is smooth for all
t ∈ C\{0, 1} if and only if (ν1, ν2) ∈ R2\12Z2. But this assertion is
obviously false for PVI( 1

8
,−1

8
, 1
8
, 3
8
).
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However, the Bäcklund transformation is useful to discuss branch
points and essential singularities, which are preserved under the Bäcklund
transformation in general. For the discussion of branch points for real
solutions, please see Appendix A.

3. Riccati solutions

First we review the classification theorem of solutions to the ellip-
tic form (1.7) due to the associated monodromy representation of GLE
(2.4). Clearly solutions expressed in (1.8) does not contain all the so-
lutions. Indeed, we have the following classification theorem proved in
[6]. In this article, when we talk about the monodromy representation,
we always mean the one of GLE (2.4).

Theorem C. ([6]) Suppose p(τ) is a solution to the elliptic form
(1.7). Then the following hold:

(i) The monodromy representation is completely reducible if and only
if there exists (r, s) ∈ C2\12Z2 such that ℘(p(τ)|τ) is given by
(1.8).

(ii) The monodromy representation is not completely reducible if and
only if

(3.1) λ(t) =
℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
, t =

e3(τ)− e1(τ)

e2(τ)− e1(τ)

satisfies one of the following four Riccati equations:

(3.2)
dλ

dt
= − 1

2t(t− 1)
(λ2 − 2tλ+ t),

(3.3)
dλ

dt
=

1

2t(t− 1)
(λ2 − 2λ+ t),

(3.4)
dλ

dt
=

1

2t(t− 1)
(λ2 − t),

(3.5)
dλ

dt
=

1

2t(t− 1)
(λ2 + 2(t− 1)λ− t).

It is known that Riccati equations can be transformed into second
order linear equations (such as the Gauss hypergeometric equation).
Hence, this classification shows that once the associated monodromy
representation is not completely reducible, then solution λ(t) can be
expressed in terms of previously known functions, i.e., it does not define
new transcendental functions.

Now we discuss the solutions of these four Riccati equations, and the
results in this section will be used to prove Theorem 1.1 in §5. In [6] it
was proved that these Riccati solutions can be parametrized by CP1.
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Theorem D. ([6]) Let λC(t) =
℘(pC(τ)|τ)−e1(τ)

e2(τ)−e1(τ)
.

(i) λC(t) solves the Riccati equation (3.2) if and only if there exists
constant C ∈ CP1 such that

(3.6) ℘(pC(τ)|τ) = η2(τ)− Cη1(τ)

C − τ
.

(ii) For C ∈ CP1, we let

(3.7) ℘(pC(τ)|τ) =
ek(Cη1(τ)− η2(τ)) + ( g24 − 2e2k)(C − τ)

Cη1(τ)− η2(τ) + ek(C − τ)
.

Then λC(t) satisfies the Riccati equation (3.3) if k = 1, (3.4)
if k = 2, (3.5) if k = 3. Furthermore, such λC(t) give all the
solutions of these three Riccati equations.

Remark 3.1. The formula (3.6) was previously obtained in [16, 35]
and (3.7) was obtained in [35], where there does not contain the relation
between λC(t) and Riccati equations. For (3.6), it is easy to see that
if ImC > 0, then λC(t) has singularities (at least a pole) in C\{0, 1}.
However, it is not so obvious to see whether λC(t) has singularities
or not if ImC ≤ 0. In §6, we will exploit formula (3.6) and (3.7) to
prove that any solution of the four Riccati equations has singularities
in C\{0, 1}.

A simple observation is that C =∞ in (3.6) gives that

(3.8) λ∞(t) = −η1(τ) + e1(τ)

e2(τ)− e1(τ)

is a solution of PVI( 1
8
,−1

8
, 1
8
, 3
8
). Since λ∞(t), λ∞(t)− 1 and λ∞(t)− t can

have only simple zeros (cf. [19, Proposition 1.4.1]), a direct consequence
is

Theorem 3.2. For fixed k ∈ {1, 2, 3}, the following hold:

(i) Any zero of η1(τ) + ek(τ) must be simple.
(ii)

(3.9)
d

dτ
((η1(τ) + ek(τ))

−1) �= 1

2πi
for any τ ∈ H.

(iii) η2(τ)+τek(τ)
η1(τ)+ek(τ)

is a locally one-to-one map from H to C ∪ {∞}.
Proof. Recall

t = t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
.

Since t′(τ) �= 0 for all τ ∈ H, the assertion (i) follows readily from the
fact that λ∞(t) (for k = 1), λ∞(t) − 1 (for k = 2) and λ∞(t) − t (for
k = 3) can have only simple zeros.
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For the assertion (ii), we note from the Legendre relation and (3.6)
that

λC(t) = −
η1(τ) + e1(τ)− 2πi

τ−C

e2(τ)− e1(τ)
.

Fix any τ0 ∈ H. If τ0 is a simple zero of η1 + e1, then d
dτ ((η1 +

e1)
−1)|τ=τ0 =∞. So it suffices to consider the case η1(τ0) + e1(τ0) �= 0.

Then by letting

C = τ0 − 2πi

η1(τ0) + e1(τ0)
,

we see that t0 = t(τ0) is a zero of λC(t). Since λC(t) has only simple
zeros, we have

d

dτ

(
η1 + e1 − 2πi

τ − C

)
|τ=τ0 �= 0.

This, together with η1(τ0) + e1(τ0)− 2πi
τ0−C = 0, easily implies d

dτ ((η1 +

e1)
−1)|τ=τ0 �= 1

2πi . This proves (3.9) for k = 1. Similarly, by considering
λC(t)− 1 and λC(t)− t, we can prove (3.9) for k = 2, 3. This proves the
assertion (ii).

Finally, using the Legendre relation leads to

η2(τ) + τek(τ)

η1(τ) + ek(τ)
= τ − 2πi

η1(τ) + ek(τ)
.

Therefore, η2(τ)+τek(τ)
η1(τ)+ek(τ)

is locally one-to-one. q.e.d.

Remark 3.3. In §6, we will see that the Hessian of the Green function
G(z|τ) at z = ω1

2 = 1
2 :

detD2G(12 |τ) = −C(τ) · Im
(
η2(τ) + τe1(τ)

η1(τ) + e1(τ)

)
,

for some C(τ) > 0, provided that η1(τ) + e1(τ) �= 0. The local one-

to-one of the map η2(τ)+τe1(τ)
η1(τ)+e1(τ)

is important for studying the curve in H

where the half-period ω1
2 is a degenerate critical point of G(z|τ). See

§6. Furthermore, we will prove a stronger result that η1(τ) + e1(τ) has
only one zero in any fundamental domain of Γ(2); see Theorem 6.6.

For solution pC(τ) of the Riccati equations given in Theorem D, we
let τ ′ = γ · τ and C ′ = γ · C for γ ∈ SL(2,Z). By using (4.2)–(4.3) (see
§4) and the formula of ℘ (pC(τ)|τ), it is easy to prove

(3.10) ℘(pC′(τ
′)|τ ′) = (cτ + d)2℘ (pC(τ)|τ) .

Remark that pC′(τ
′) solves the same Riccati equation as pC(τ) for all

γ ∈ SL(2,Z) if and only if pC(τ) satisfies the first Riccati equation
(3.2). If pC(τ) satisfies one of the other three equations (3.3)–(3.5),
then pC′(τ

′) solves the same equation as pC(τ) provided γ ∈ Γ(2) (use
(4.8) in §4). Then we have the following result, which can be proved by
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the same argument of Proposition 4.4 in §4, so we omit the details of
the proof here.

Proposition 3.4. Let λC(t) and λC′(t) solve the same one of the
four Riccati equations (3.2)–(3.5). Then they give the same solution to
PVI( 1

8
,−1

8
, 1
8
, 3
8
) if and only if C ′ = γ · C for some γ ∈ Γ(2).

We conclude this section by a remark. In [28], Mazzocco classified
solutions of PVI((2μ−1)2/2,0,0, 1

2
) (write PVIμ for convenience) for μ ∈

1
2 + Z. Notice that PVI 1

2
is precisely PVI(0,0,0, 1

2
) and PVIμ can be

transformed to PVI 1
2
via Bäcklund transformations. Mazzocco proved

for μ ∈ 1
2+Z and μ �= 1

2 , say μ = −1
2 for instance, PVI−1

2
has two types of

solutions: one is so-called Picard type solutions, which is obtained from
Picard solutions (2.6) via Bäcklund transformations; the other one is
so-called Chazy solutions, such as

˜λ(t) =
1
8
{[ω2 + νω1 + 2t(ω′2 + νω′1)]

2 − 4t(ω′2 + νω′1)
2}2

(ω2 + νω1)(ω′2 + νω′1)[2(t− 1)(ω′2 + νω′1) + ω2 + νω1][ω2 + νω1 + 2x(ω′2 + νω′1)]
,

(where ν ∈ C), which will turn to be the singular solutions λ0(t) ≡
0, 1, t or ∞ of PVI 1

2
via Bäcklund transformations. Here together with

Theorem C and our argument in §2, in principle, solutions of the four
Riccati equations could be obtained from Chazy solutions of PVI−1

2
via

Bäcklund transformations, but the process would be too complicated to
be computed.

4. Completely reducible solutions

4.1. Simple zeros of Hecke form. By Theorem C in §3, any solution
λ(t) of PVI( 1

8
,−1

8
, 1
8
, 3
8
) with a completely reducible monodromy represen-

tation can be expressed by (3.1):

λ(t) =
℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
, t =

e3(τ)− e1(τ)

e2(τ)− e1(τ)
,

where ℘(p(τ)|τ) is given by (1.8) with some (r, s) ∈ C2\12Z2. From
(1.8), we have the following application of the Painlevé property.

Theorem 4.1. Suppose (r, s) ∈ C2\12Z2 is a pair of complex con-
stants. Then the Hecke form Zr,s(τ) = ζ(r + sτ |τ) − (rη1(τ) + sη2(τ))
has only simple zeros.

Proof. First, we note that the situations r+sτ ∈ Eτ [2] and Zr,s(τ) =
0 cannot occur simultaneously. If not, then there are τ0 and m,n ∈
Z such that r + sτ0 = m + nτ0 + ω

2 , where ω is any lattice points
{0, ω1, ω2, ω3 = ω1+ω2}, and also ζ(r+sτ0) = rη1(τ0)+sη2(τ0). Without
loss of generality, we might assume ω = ω1. The other cases can be
proved similarly.



GREEN FUNCTION AND PAINLEVÉ VI EQUATION 205

The second identity also implies

1
2η1(τ0) = ζ(ω1

2 ) = ζ ((r −m) + (s− n)τ0)

= ζ(r + sτ0)−mη1(τ0)− nη2(τ0)

= (r −m)η1(τ0) + (s− n)η2(τ0).

Therefore, we have

(r −m− 1
2) + (s− n)τ0 = 0,

(r −m− 1
2)η1(τ0) + (s− n)η2(τ0) = 0,

which implies r−m− 1
2 = 0 and s = n because matrix

(
1 τ

η1(τ) η2(τ)

)
is non-degenerate for any τ due to the Legendre relation. Obviously it
contradicts to the assumption (r, s) �∈ 1

2Z
2.

Now suppose Zr,s(τ0) = 0, which implies ℘(p(τ0)) = ∞ by (1.8)
because ℘′(r + sτ0) �= 0. Consider the transformation τ0 �→ t0 via
(3.1). Then by the Painlevé property, we know that λ(t) has a pole at
t = t0 �∈ {0, 1,∞}. By substituting the local expansion of λ(t) at t = t0
into (1.2), it is easy to prove that the order of pole at t = t0 is 1, which
implies the zero of Zr,s at τ = τ0 is simple. q.e.d.

Remark 4.2. If (r, s) is an N -torsion point, i.e., (r, s) = (k1N , k2N ) for
positive integers ki, N ≥ 3 and gcd(k1, k2, N) = 1, then the function
Zr,s(τ) is a modular form of weight 1 with respect to the modular group
Γ(N). In this case, Theorem 4.1 was proved in [7], where the method
of dessins d’enfants was used. For a real pair of (r, s), we will give an
alternative proof in §5.

Since αi = 1
8 for 0 ≤ i ≤ 3, it is easy to see that for 1 ≤ k ≤ 3,

p(τ) + ωk
2 is also a solution of the elliptic form (1.7) provided that p(τ)

is a solution of (1.7). Then we have the following result, which will be
used in §5.

Proposition 4.3. Given (r, s) ∈ C2 \ 1
2Z

2, we define

(4.1) (rk, sk) =

⎧⎨
⎩

(r − 1
2 , s) if k = 1,

(r, s− 1
2) if k = 2,

(r − 1
2 , s− 1

2) if k = 3.

Then pr,s(τ) +
ωk
2 = ±prk,sk(τ) in Eτ .

Proof. It was proved in [6] that (1.8) is equivalent to

ζ(r + sτ + pr,s(τ)) + ζ(r + sτ − pr,s(τ))− 2(rη1(τ) + sη2(τ)) = 0.

Form here, we easily obtain

ζ(rk + skτ + (pr,s(τ) +
ωk
2 )) + ζ(rk + skτ − (pr,s(τ) +

ωk
2 ))

− 2(rkη1(τ) + skη2(τ)) = 0,
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and so

℘(pr,s(τ) +
ωk
2 |τ)

=℘(rk + skτ |τ) + ℘′(rk + skτ |τ)
2(ζ(rk + skτ |τ)− (rkη1(τ) + skη2(τ)))

=℘(prk,sk(τ)|τ).
This completes the proof. q.e.d.

We call a solution to (1.5) a real solution if the monodromy group of
its associated GLE (2.2) is contained in SU(2). For the case αj = 1

8 ,
p(τ) is a real solution if and only if it is given by (1.8) for some real pair
(r, s) ∈ R2\12Z2.

4.2. Modularity. In this subsection we study the modularity property
of solutions to PVI( 1

8
,−1

8
, 1
8
, 3
8
). Consider the pair (z, τ) ∈ C×H and

z = r + sτ . For any γ =

(
a b
c d

)
∈ SL(2,Z), conventionally γ can act

on C×H by γ(z, τ) := ( z
cτ+d , γ · τ) = ( z

cτ+d ,
aτ+b
cτ+d). Then

z

cτ + d
=

r + sτ

cτ + d
= r′ + s′τ ′, where τ ′ = γ · τ and (s′, r′) = (s, r) · γ−1.

Using

(4.2) ℘

(
z

cτ + d

∣∣∣∣ τ ′
)

= (cτ + d)2 ℘ (z|τ) , τ ′ =
aτ + b

cτ + d
,

we derive

ζ

(
z

cτ + d

∣∣∣∣ τ ′
)

= (cτ + d) ζ (z|τ) ,

and so

(4.3)

(
η2(τ

′)
η1(τ

′)

)
= (cτ + d)γ ·

(
η2(τ)
η1(τ)

)
.

Set (r, s) · (η1(τ), η2(τ))T = rη1(τ) + sη2(τ). Then (r′, s′) · (η1(τ ′),
η2(τ

′))T = (cτ + d)(r, s) · (η1(τ), η2(τ))T and so

(4.4) Zr′,s′(τ
′) = (cτ + d)Zr,s(τ).

Together (4.2) and (4.4), we obtain

(4.5) ℘
(
pr′,s′(τ

′)|τ ′) = (cτ + d)2℘ (pr,s(τ)|τ) = ℘

(
pr,s(τ)

cτ + d

∣∣∣∣ τ ′
)
,

where (r′ + s′τ ′, τ ′) = γ(r + sτ, τ). Indeed, by a direct calculation, we

could prove that
pr,s(τ)
cτ+d as a function of τ ′ is a solution of the elliptic

form (1.7) since pr,s(τ) is a solution of (1.7). Particularly,
pr,s(τ)
cτ+d =
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±pr′,s′(τ ′) mod Λτ ′ . Recall that λr,s(t) is the corresponding solution of
(1.2), namely

(4.6) λr,s(t) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
.

Then the above argument yields the following result:

Proposition 4.4. λr,s (t) and λr′,s′ (t) belong to the same solution of
PVI( 1

8
,−1

8
, 1
8
, 3
8
) if and only if (s, r) ≡ (s′, r′) ·γmodZ2 by some γ ∈ Γ (2).

Proof. For the sufficient part, assume (s, r) ≡ (s′, r′) · γmodZ2 by
some γ ∈ Γ (2). Recall from [6, Lemma 4.6] that

(4.7) ℘(pr,s(τ)|τ) = ℘ (pr̃,s̃(τ)|τ)⇐⇒ (r, s) ≡ ±(r̃, s̃) (mod Z2),

which implies that all elements in ±(r, s) + Z2 give precisely the same
solution λr,s(t). Hence we may assume (s, r) = (s′, r′) · γ by replacing
(s, r) with some element in (s, r) + Z2 if necessary. Let �0 ⊂ H be a
path starting from any fixed point τ0 to τ ′0 = γ · τ0. Then � := t(�0)

∈ π1(CP
1\{0, 1,∞}, t0), where t (τ) = e3(τ)−e1(τ)

e2(τ)−e1(τ)
and t0 = t(τ0). Let

U ⊂ H be a small neighborhood of τ0 and denote V = t(U). Since

λr′,s′ (t) =
℘(pr′,s′(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
, τ ∈ U,

so the analytic continuation �∗λr′,s′ (t) of λr′,s′ (t) along � satisfies

�∗λr′,s′ (t) =
℘(pr′,s′(γ · τ)|γ · τ)− e1(γ · τ)

e2(γ · τ)− e1(γ · τ) , τ ∈ U.

On the other hand, (s, r) = (s′, r′) · γ gives (r′ + s′τ ′, τ ′) = γ(r+ sτ, τ),

where τ ′ = γ · τ . Moreover, γ =

(
a b
c d

)
∈ Γ(2) gives

(4.8) ej(γ · τ) = (cτ + d)2ej(τ), j = 1, 2, 3.

Then it follows from (4.5) and (4.8) that

λr′,s′ (t(γ · τ)) =
℘(pr′,s′(γ · τ)|γ · τ)− e1(γ · τ)

e2(γ · τ)− e1(γ · τ)(4.9)

=
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
= λr,s (t(τ)) , τ ∈ U,

namely

(4.10) λr,s (t) = �∗λr′,s′ (t) , t ∈ V.

Conversely, assume that λr,s (t) and λr′,s′ (t) represent different
branches of the same solution in a small neighborhood V of
t0 ∈ CP1\{0, 1,∞}. Then there is � ∈ π1(CP

1\{0, 1,∞}, t0) such that
(4.10) holds. Fix any τ0 ∈ H such that t0 = t (τ0) and let t−1(�) ⊂ H

denote the lifting path of � under the map t (τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

such that
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its starting point is τ0. Denote its ending point by τ ′0. Then t(τ ′0) =

t0 = t(τ0), which implies τ ′0 = γ · τ0 for some γ =

(
a b
c d

)
∈ Γ(2). Let

U be a neighborhood of τ0 such that t(U) ⊂ V . Then (4.6) and (4.10)
give (4.9). Define (s̃, r̃) := (s′, r′) · γ, then (r′ + s′τ ′, τ ′) = γ(r̃ + s̃τ, τ),
where τ ′ = γ · τ , and so (4.5) gives

(4.11) ℘(pr′,s′(γ · τ)|γ · τ) = (cτ + d)2℘(pr̃,s̃(τ)|τ).
Substituting (4.11) and (4.8) into (4.9) leads to

℘(pr,s(τ)|τ) = ℘ (pr̃,s̃(τ)|τ) , τ ∈ U.

Again by (4.7) we obtain (r, s) ≡ ±(r̃, s̃)modZ2, namely (s, r) ≡ (s′, r′)·
(±γ)modZ2 where ±γ ∈ Γ(2). q.e.d.

Define for any N -torsion point (r, s) = (k1N , k2N ) ∈ QN ,

Γ(r,s) :=
{
γ ∈ SL(2,Z) | (s, r) · γ ≡ ±(s, r)modZ2

}
.

Then ℘(pr,s(τ)|τ) is a modular form of weight 2 with respect to Γ(r,s)

in the sense

℘(pr,s(τ
′)|τ ′) = (cτ + d)2℘(pr,s(τ)|τ), ∀γ ∈ Γ(r,s).

For example, if r = 0, then

Γ(r,s) =

{
γ =

(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ b ≡ 0, a ≡ ±1modN

}
.

5. Geometry of Ω5

In this and the next sections, our main purpose is to prove Theorems
1.1–1.4. In these two sections, we mainly consider τ ∈ F0, where F0 ⊂ H

is the fundamental domain for Γ0(2) defined by

(5.1) F0 := {τ ∈ H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2}.
Remark 5.1. Recall that

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

It is well known that the modular curveX0(N) = H/Γ0(N) parametrizes
the pair (E,C) of an elliptic curve E together with a cyclic subgroup
C ⊂ E with |C| = N . ForN = p being a prime, [SL(2,Z) : Γ0(p)] = p+1
and a fundamental domain for Γ0(p) is given by

F̃ = F ∪ S(F ) ∪ ST (F ) ∪ · · · ∪ ST p−1(F ),

where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
and F is any fundamental domain

for SL(2,Z).
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For N = p = 2, X0(2) parametrizes (E, q) with q a half period. An
alternative choice of fundamental domain is F0 = F ∪TS(F )∪(TS)2(F )

(notice that (TS)3 = −Id and TS fixes ρ = eπi/3).

Recall the Hecke form

Zr,s(τ) := ζ(r + sτ |τ)− (rη1(τ) + sη2(τ)),

which is doubly periodic in (r, s) ∈ R2. It is related to the Green
function on Eτ via Zr,s(τ) = −4π∂zG(r + sτ |τ).

Recall also the q expansion for ζ with q := e2πiτ :

ζ(z|τ) = η1(τ)z − πi
1 + e2πiz

1− e2πiz

− 2πi

∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
.

(5.2)

(This can be deduced form the Jacobi triple product formula for theta
function ϑ and the relation between ϑ and σ, see, e.g., [38].)

We use the Legendre relation η1τ − η2 = 2πi and the above q expan-
sion to compute the q expansion for Z:

Zr,s(τ) = 2πis− πi
1 + e2πiz

1− e2πiz

− 2πi
∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
,

(5.3)

where z = r + sτ . See also [9, 15].
For fixed s ∈ [0, 1), (5.3) then implies that

(5.4) lim
τ→∞Zr,s(τ) =

{
2πi(s− 1

2) if s �= 0,

π cotπr if s = 0.

By the periodicity, the limit is a discontinuous linear function with
discontinuity at s ∈ Z.

To compute the limit as τ → 0, we use the transformation τ �→ S ·τ =
−1/τ , and (4.4) yields

(5.5) Zr,s(−1/τ) = τZ−s,r(τ),

and for r ∈ (0, 1),

(5.6) Zr,s(τ) =
−1
τ

Z−s,r(−1/τ) = 2πi

τ

(
1
2 − r + o(1)

)
,

as τ → 0. For r = 0, a contribution π cotπs/τ appears as the dominant
term instead. For other r, the value is determined by periodicity.

It is also easy to see that under the translation τ �→ T · τ = τ + 1,
(4.4) yields

(5.7) Zr,s(τ + 1) = Zr+s,s(τ),
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Figure 2. F0 = F ∪ TS(F ) ∪ (TS)2(F ).

and for r + s ∈ (0, 1),

(5.8) Zr,s(τ) = Zr+s,s(τ − 1) =
2πi

τ − 1

(
1
2 − (r + s) + o(1)

)
,

as τ → 1. For r+s = 0, the dominant term is replaced by π cotπs/(τ −
1). For general r + s, the value is again determined by periodicity.

We will analyze the structure of the solutions τ ∈ F0 for Zr,s(τ) = 0
by varying (r, s). Since half periods are trivial solutions for all τ , we
exclude those cases by assuming that r, s are not half integers in our
discussion.

For the proof of Theorems 1.2 and 1.3, we need the following result
about the critical points of the Green function G(z|τ) if τ ∈ ∂F0. Recall
that for τ ∈ ∂F0 ∩H, Eτ is conformally equivalent to rectangular tori.

Theorem E. [23] If Eτ is a rectangular torus, then G(z|τ) has only
three critical points, i.e., the three half-periods ωk

2 , k = 1, 2, 3.

Using our language, Theorem E just says that for any (r, s) ∈ R2\12Z2,
Zr,s(τ) �= 0 for τ ∈ ∂F0 ∩ H. Based on this, the idea of our analysis is
to make use of the argument principle along the curve ∂F0 to analyze
the number of zeros of Zr,s in F0.

We start with a simple yet important observation:

Lemma 5.2. For any τ ∈ H,

(i) ζ(34ω1 +
1
4ω2) �= 3

4η1 +
1
4η2.

(ii) ζ(16ω1 +
1
6ω2) �= 1

6η1 +
1
6η2.

(iii) ζ(26ω1 +
3
6ω2) �= 2

6η1 +
3
6η2.

In particular, solution λr,s(t) of PVI( 1
8
,−1

8
, 1
8
, 3
8
) has no poles provided that

(r, s) ∈ {(34 , 14), (16 , 16), (26 , 36)}.
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Figure 3. Triangle region �0 describing all r, s coordi-
nates of p(τ). The upper one third is bijective to Ω5 ⊂
M1.

Proof. We will use the addition formula

℘′(z)
℘(z)− ℘(u)

= ζ(z + u) + ζ(z − u)− 2ζ(z).

For (i), we choose z = 1
4(3ω1 + ω2) =

1
2ω1 +

1
4ω3 and u = 1

4ω3. Then

ζ(z−u) = ζ(12ω1) =
1
2η1 and ζ(z+u) = ζ(ω1+

1
2ω2) = η1+

1
2η2. Hence

ζ(34ω1 +
1
4ω2)− (34η1 +

1
4η2) = ζ(z)− 1

2(ζ(z + u) + ζ(z − u))

= −1

2

℘′(34ω1 +
1
4ω2)

℘(34ω1 +
1
4ω2)− ℘(14ω3)

�= 0.

This proves (i).
For (ii), we choose z = 1

6(ω1 + ω2) =
1
6ω3 and u = 1

3ω3. Then

0 �= ℘′(z)
℘(z)− ℘(u)

= ζ(12ω3) + ζ(−1
6ω3)− 2ζ(16ω3)

= −3(ζ(16ω1 +
1
6ω2)− 1

6η1 − 1
6η2).

This proves (ii).
For (iii), we choose z = 1

3ω1 +
1
2ω2 and u = 1

3ω1. Then ℘′(z) �= 0 and

0 �= ζ(23ω1 +
1
2ω2) + ζ(12ω2)− 2ζ(13ω1 +

1
2ω2)

= ζ(−1
3ω1 − 1

2ω2) + (η1 + η2) +
1
2η2 − 2ζ(13ω1 +

1
2ω2)

= −3(ζ(13ω1 +
1
2ω2)− 1

3η1 − 1
2η2).

This proves (iii). q.e.d.

Now we are in the position to prove Theorem 1.3. See Figure 3 for
the set �0.
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Proof of Theorem 1.3. We separate the proof into three steps.

Step 1. We will show that Zr,s(τ) has no solutions if (r, s) �∈ �0.
Indeed, if s, r, r + s �= 1

2 , then (5.4), (5.6) and (5.8) imply that

Zr,s(τ) �→ 0 as τ →∞, 0, 1,

respectively. Furthermore, the pole order at τ = 0, 1 is unchanged
among such (r, s)’s.

Thus an extended version of the argument principle shows that the
number of zero of Zr,s(τ) is constant in the region

�3 := {(r, s) | r > 0, s > 0, r + s < 1
2}.

By Lemma (5.2) (ii), Z1/6,1/6(τ) has no solutions. Since (16 ,
1
6) ∈ �3,

this implies that Zr,s(τ) has no solutions for any (r, s) ∈ �3.
Similarly Zr,s(τ) has no solutions for (r, s) ∈ �, where

� := {(t, s) | 1
2 < t < 1 and 0 < s < 1

2}.
This follows from Lemma (5.2) (i) and the fact that (34 ,

1
4) ∈ �.

Step 2. Zr,s(τ) has no solutions if (r, s) �∈ �0.
Indeed, it follows easily form the argument principle in complex anal-

ysis that the points (r, s) such that Zr,s(τ) has only finite solutions form

an open set. In particular, by Step 1, for (r, s) ∈ � ∪�3, the function
Zr,s(τ) either has no solutions or has infinite solutions (which corre-
sponds to the trivial case r, s ∈ 1

2Z and Zr,s ≡ 0).

Step 3. In order to conclude the proof of the theorem, by the
same reasoning as in Step 1 we only need to establish the existence
and uniqueness of solution Zr,s(τ) = 0 in τ ∈ F0 for one special point
(r, s) ∈ �0. For this purpose we take (r, s) = (13 ,

1
3) ∈ �0.

By an easy symmetry argument (cf. [23]), Z 1
3
, 1
3
(τ) = 0 for τ = ρ :=

eπi/3. Conversely we will prove that ρ ∈ F0 is the unique zero of Z 1
3
, 1
3

and it is a simple zero. The following argument motivated by [15, 2] is
the only place where the theory of modular forms is used.

Recall

Z(3)(τ) =
∏′

Z k1
3
,
k2
3

(τ),

where the product is over all pairs (k1, k2) with 0 ≤ k1, k2 ≤ 2 and with
gcd(k1, k2, 3) = 1. In this case it simply means (k1, k2) �= (0, 0). There
are 8 factors in the product and, in fact, Z(3) is a modular function of
weight 8 with respect to the full modular group SL(2,Z). The counting
formula for the zeros of Z(3) then reads as

ν∞(Z(3)) +
1

2
νi(Z(3)) +

1

3
νρ(Z(3)) +

∑
p �=∞,i,ρ

νp(Z(3)) =
8

12
.
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Since Z 1
3
, 1
3
(ρ) = Z 2

3
, 2
3
(ρ) = 0, we have νρ(Z(3)) ≥ 2. The counting

formula then implies that νρ(Z(3)) = 2 and all the other terms vanish.
Hence τ = ρ is a simple (and unique) zero for Z 1

3
, 1
3
(τ) (as well as for

Z 2
3
, 2
3
(τ)).

The proof of the theorem is complete. q.e.d.

Corollary 5.3. The set Ω5 ⊂ M1 is an “unbounded” simply con-
nected domain.

Proof. Let Ω̃5 be the lifting of Ω5 in F0, i.e.,

Ω̃5 = {τ ∈ F0 | G(z|τ) has five critical points}.
Theorem 1.3 establishes a continuous map φ : (r, s) �→ τ from �0 onto

Ω̃5. The map φ is one to one due to the uniqueness theorem of extra
pair of nontrivial critical points of Green function G; see Theorem A
in §1. Being the continuous image of a simply connected domain �0

under a one to one continuous function φ on R2, Ω̃5 must also be a
simply connected domain. (This is the classic result on “Invariance of
Domain” proved in algebraic topology. In the current case it follows
easily from the inverse function theorem since φ is differentiable.)

It is also proven in [23] that the domain Ω̃5 contains the vertical line
1
2 + ib for b > b1 where b1 ∈ (1/2,

√
3/2), hence it is unbounded.

The corresponding statement for Ω5 follows from the obvious Z3 iden-
tification. q.e.d.

Define

�1 := {(r, s) | 1
2 < r < 1, 0 < s < 1

2 , r + s > 1},

�2 := {(r, s) | 1
2 < r < 1, 0 < s < 1

2 , r + s < 1}.
Corollary 5.4. Let (r, s) ∈ [0, 1]× [0, 12 ]\12Z2. Then

(i) λr,s(t) =∞ (equivalently, pr,s(τ) = 0) has a solution t = t(τ) with
τ ∈ F0 if and only if (r, s) ∈ �0.

(ii) λr,s(t) = 0 (equivalently, pr,s(τ) =
ω1
2 ) has a solution t = t(τ) with

τ ∈ F0 if and only if (r, s) ∈ �1.
(iii) λr,s(t) = 1 (equivalently, pr,s(τ) =

ω2
2 ) has a solution t = t(τ) with

τ ∈ F0 if and only if (r, s) ∈ �2.
(iv) λr,s(t) = t (equivalently, pr,s(τ) =

ω3
2 ) has a solution t = t(τ) with

τ ∈ F0 if and only if (r, s) ∈ �3.

Proof. Noting from (1.8) that pr,s(τ) = 0 in Eτ if and only if Zr,s(τ) =
0, this corollary follows readily from Theorem 1.3, Proposition 4.3 and
(4.7). q.e.d.

Now we can give the proof of Theorem 1.1.
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M1

0 1
2 1

i

1
2 (1 + i)

1
2 + b1i

Figure 4. The dotted region is the lifted domain Ω̃5 ⊂
F0. The lower boundary curve C1 � 1

2 + b1i consists of

τ with 1
2ω1 being a degenerate critical point of G. The

upper left (resp. right) boundary is C3 (resp. C2), respec-
tively.

Proof of Theorem 1.1. Suppose λ(t) is smooth for all t ∈ C\{0, 1}.
We will prove in Corollary 6.7 (see §6) that any Riccati solution has
singularities in C\{0, 1}. Therefore, λ(t) = λr,s(t) for some (r, s) ∈
[0, 1)× [0, 12 ]\12Z2.

First we claim (r, s) ∈ Q2. By Corollary 5.4, we must have (r, s) ∈
∪3
k=0∂�k. Recalling from (4.9) that for any γ ∈ Γ(2),

(5.9) λr′,s′(t(τ)) = λr,s(t(γ · τ)), whenever (s′, r′) = (s, r) · γ,
we see that λr′,s′(t) is also smooth for all t ∈ C\{0, 1}, namely

±(r′, s′) ∈ ∪3
k=0∂�k + Z2 for any γ ∈ Γ(2) and (s′, r′) = (s, r) · γ.

Taking γ =

(
3 2
4 3

)
, we conclude that {r, s, r + s} ∩ Q �= ∅ and {4r +

3s, 3r + 2s, 7r + 5s} ∩Q �= ∅, which implies (r, s) ∈ Q2.
Once (r, s) ∈ Q2, it is straightforward to check that if for some N ≥

3 there are no N -torsion points contained in ∪3
k=0�k, then N = 4.

Thus (r, s) must be a 4-torsion point. By Proposition 4.4, it is easy
to check that λ 1

4
,0 and λ 1

4
, 2
4
give the same solution; λ0, 1

4
and λ 2

4
, 1
4
give

the same solution; λ 1
4
, 1
4
and λ 3

4
, 1
4
give the same solution. Therefore,

{λ 1
4
,0, λ0, 1

4
, λ 1

4
, 1
4
} gives all the solutions that are smooth in C \ {0, 1}.

The proof is complete. q.e.d.

6. Geometry of ∂Ω5

Even though Ω̃5, the lifting of Ω5 in F0, is a simply connected domain,
its boundary may still possibly be ill-behaved. The purpose in this
section is to show that this is not the case.
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For i = 1, 2, 3 we put
(6.1)

Ci(F0) := {τ ∈ F0 | 1
2ωi is a degenerate critical point of G(z|τ)}.

It is known that all the half period points 1
2ωi’s are non-degenerate

critical points of G(z|τ) if τ ∈ ∂F0. Hence Ci(F0) ∩ ∂F0 = ∅ for all i.
When no confusion may possibly arise, we will drop the dependence on
F0 and simply write Ci.

The first main result of this section is

Theorem 6.1. (1) For each i, Ci is a smooth connected curve.
(2)

∂Ω̃5 =
⋃3

i=1
Ci.

We first derive the equation for Ci, and then extend the discussion in
[23] for rhombus tori to the general cases. To compute the Hessian of
G(z|τ) at 1

2ωi, we recall that for τ = a+ bi, z = x+ iy,

(6.2) 4πGz = −(log ϑ)z − 2πi
y

b
,

where ϑ denotes the theta function ϑ1. Then

2πGxx = −Re (log ϑ)zz,
2πGxy = +Im (log ϑ)zz,

2πGyy = +Re (log ϑ)zz +
2π

b
,

(6.3)

and the Hessian H is given by

H = detD2G

=
−1
4π2

(
|(log ϑ)zz|2 + 2π

b
Re (log ϑ)zz

)
=
−1
4π2

(∣∣∣(log ϑ)zz + π

b

∣∣∣2 − π2

b2

)
.

(6.4)

The relation to the Weierstrass elliptic functions is linked by

(6.5) (log ϑ)z(z) = ζ(z)− η1z.

For z = 1
2ωi we have then

(6.6) (log ϑ)zz(
1
2ωi) = −℘(12ωi)− η1 = −(ei + η1).

For our discussion, using the SL(2,Z) action (see (6.13) below) we only
need to work on the case i = 1. At the critical point z = 1

2 , we have
clearly (by (6.2) and (6.5))

(6.7) (log ϑ)z(
1
2 ; τ) = 0.

Recall the heat equation for theta function

ϑzz = 4πiϑτ .
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It allows us to transform the Hessian into deformations in τ . Then

(6.8) (log ϑ)zz = 4πi(log ϑ)τ − (log ϑ)2z.

At z = 1
2 we get (log ϑ)zz = 4πi(log ϑ)τ , and (6.4) becomes

H(12 ; τ) = −4|(log ϑ)τ |2 +
2

b
Im (log ϑ)τ

=
−1
4b2

(| − 4bi(log ϑ)τ − 1|2 − 1
)
.

(6.9)

That is, the curve Ci is the inverse image of the unit circle centered at
ξ = 1 under the analytic (but not holomorphic) map F0 → C:

(6.10) τ �→ ξ := −4bi(log ϑ)τ (12 ; τ) =
b

π
(e1 + η1).

To proceed, we need to calculate (log ϑ)ττ at z = 1
2 . By (6.8), (6.7)

and (6.5),

4πi(log ϑ)ττ = (log ϑ)zzτ + 2(log ϑ)z(log ϑ)zτ

= (4πi)−1
(
(log ϑ)zz + (log ϑ)2z

)
zz

= (4πi)−1
(− ℘′′(12) + 2(log ϑ)2zz

)
,

which implies that

(6.11) (log ϑ)ττ − 2(log ϑ)2τ =
℘′′(12)
16π2

�= 0,

since ℘′′(12) = (e1 − e2)(e1 − e3).

If (log ϑ)τ (
1
2 ; τ) = 0, then (log ϑ)ττ �= 0 and ∇τH(12 ; τ) �= 0 since

∂H/∂a =
2

b
Im (log ϑ)ττ ,

∂H/∂b =
2

b
Re (log ϑ)ττ .

In particular, C1 is smooth near such τ .
If (log ϑ)τ (

1
2 ; τ) �= 0, we may write

H = −2

b
|(log ϑ)τ |2Im

(
2τ +

1

(log ϑ)τ

)
,

and C1 is defined by Im f = 0 where

(6.12) f(τ) := 2τ +
1

(log ϑ)τ (
1
2 ; τ)

.

We compute

f ′ = 2− (log ϑ)ττ
(log ϑ)2τ

= −(log ϑ)ττ − 2(log ϑ)2τ
(log ϑ)2τ

�= 0.

Since
∂Im f

∂a
= Im f ′,

∂Im f

∂b
= Re f ′,

we conclude again that C1 is smooth near such τ .
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Hence Ci are smooth curves for i = 1, 2, 3.
To characterize ∂Ω̃5, we first show that Ci ∩ Ω̃5 = ∅. If not, say

Ci ∩ Ω̃5 is a (not necessarily connected) smooth curve in the open set

Ω̃5. Let τ0 ∈ C1 ∩ Ω̃5. Either (log ϑ)τ (
1
2 ; τ0) = 0 or Im f(τ0) = 0.

Since (log ϑ)τ (
1
2 ; τ) has only discrete zeros (it is non-constant since

(log ϑ)ττ �= 0 over the zeros), we may choose τ0 so that (log ϑ)τ (
1
2 ; τ0) �=

0. Since Ω̃5 is open, there is a neighborhood U of τ0 inside Ω̃5 such that
(log ϑ)τ (

1
2 ; τ) �= 0 for all τ ∈ U . Thus, f(12 ; τ) is a holomorphic function

in U .
By Theorem B, z = 1

2 is a saddle point of G(z|τ) for all τ ∈ U . Thus
H(τ) ≤ 0 for all τ ∈ U ; this is equivalent to that Im f ≥ 0 over U .
But Im f is a harmonic function on U and Im f(τ0) = 0, the maximal
principle implies that Im f(τ) ≡ 0 on U and f(τ) is a constant, which

leads to a contradiction. Thus Ci ∩ Ω̃5 = ∅ for all i.
Similar argument applies to the open set Ω̃◦

3, the interior of Ω̃3, where
z = 1

2 is known to be a minimal point and H ≥ 0 (cf. [23]). Again the

maximum principle implies Ci ∩ Ω̃◦
3 = ∅ for all i.

Hence we have proved the following result:

Proposition 6.2. ∂Ω̃5 = ∂Ω̃3 =
⋃3

i=1Ci. In particular, for τ ∈
Ω̃5 ∪ Ω̃◦

3, all the half period points are non-degenerate critical points.

Proof of Theorem 6.1. It remains to show that Ci is connected for
each i. Since ∂Ω̃5 =

⋃3
i=1Ci and Ω̃5 is simply connected, Ci cannot

bound any bounded domain. (We note that this cannot be proved by the
maximal principle as we have done above since f might have singularities
on the boundary of this bounded domain. Instead, the contradiction is
draw from the unboundedness and simply connectedness of Ω̃5.)

It thus suffices to show that at each cusp (i.e., 0, 1,∞), C1 has at
most one component near a neighborhood of them.

It is known that as Im τ → +∞, 2η1(τ)−e1(τ)→ 0 and e1(τ)→ 2
3π

2.
Thus (6.9)–(6.10) yield that

C1 ∩ {τ ∈ F0 | Im τ ≥ R} = ∅,
for large R. Since C1 is symmetric with respect to the line Re τ = 1

2 ,
it suffices to show that C1 ∩ {τ ∈ F0 | |τ | < δ0} is a smooth curve for
small δ0 > 0.

It is readily checked that the Hessian of G satisfies

(6.13) H((cτ + d)z; τ) = |cτ + d|4H(z; τ ′),

where

γ =

(
a b
c d

)
∈ SL(2,Z), τ ′ = γ · τ =

aτ + b

cτ + d
.
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Let γ =

(
1 −1
1 0

)
, i.e., τ ′ = (τ − 1)/τ . Then γ maps F0 onto F0 with

γ(∞) = 0. By (6.13) we have

(6.14) H(12 ; τ) = |τ |4H(12(1− τ ′); τ ′) = |τ |4H(12(1 + τ ′); τ ′).

Therefore, the degeneracy curve C1 is mapped to the degeneracy curve
C3 and it suffices to show that C3 ∩ {τ ∈ F0 | Im τ ≥ R} is a smooth
curve for large R.

In doing so, we use the following q = e2πiτ expansion for ℘(z|τ):
Proposition 6.3. [22, p. 46] For |q| < |e2πiz| < 1/|q|, we have

℘(z|τ)
(2πi)2

=
1

12
+

e2πiz

(1− e2πiz)2
+

∞∑
m=1

∞∑
n=1

nqmn(e2πinz + e−2πinz − 2).

By substituting z = 1
2 + 1

2τ , we have e2πinz = (−1)nqn/2. After
rearranging terms and simplifications, we get

(6.15) e3(τ) = −π2

3
− 8π2

∞∑
n=1

(
(−1)n

∑
d∈N,n/d odd

d−
∑

d∈N,n/d even

d
)
q

n
2 .

By integrating the q expansion in Proposition 6.3, we get a second q
expansion for ζ(z|τ) which does not involve η1(τ) (cf. (5.2)):

Corollary 6.4.

ζ(z|τ)
2πi

= −2πiz

12
− 1

1− e2πiz
+

1

2

+ 4πiz
∞∑
n=1

nqn

1− qn
+

∞∑
n=1

e2πinz − e−2πinz

1− qn
.

(6.16)

By substituting z = 1
2 , e

2πinz = (−1)n, we get

(6.17) η1(τ) =
π2

3
− 8π2

∞∑
n=1

nqn

1− qn
.

Thus for τ = a+ ib,

e3(τ) + η1(τ) = 8π2eπiτ (1 +O(e−πb)).

By (6.4) and (6.6), it is easy to see that H(12ω3; τ) = 0 if and only if
(a, b) satisfies

cosπa = 4πbe−πb(1 +O(b−1)).

This implies that near ∞ the curve C3 is (smooth and) connected.
The proof is complete. q.e.d.

Remark 6.5. Similarly, for z = 1
2 , e

2πiz = −1, Proposition 6.3 leads
to

e1(τ) =
2π2

3
+ 16π2

∞∑
n=1

( ∑
0<d|n, d odd

d
)
qn.
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It had been shown in [23] that along the line τ = 1
2 + ib, e1 ↗ 2

3π
2,

1
2e1 − η1 ↗ 0 and e1 + η1 ↗ π2 as b→ +∞.

Recalling (6.4) and (6.6), we have

H(ωk
2 ; τ) = − 1

4π2b
|ek(τ) + η1(τ)|2Im

(
τ − 2πi

ek(τ) + η1(τ)

)
.

In the following, we use H(ωk
2 ; τ) to determine the location of zeros of

ek(τ) + η1(τ). Note that if ek(τ) + η1(τ) �= 0, then H(ωk
2 ; τ) = 0 if and

only if Im (τ − 2πi
ek(τ)+η1(τ)

) = 0. Theorem 3.2 says that ek(τ)+η1(τ) has

only simple zeros, which can also be obtained by (6.11) as well.
Clearly ek(τ) + η1(τ) is not a modular form. However, any zero of

ek(τ) + η1(τ) lies on the curve H(ωk
2 ; τ) = 0. Recall that H(ωk

2 ; τ) = 0
is the degenerate curve of ωk

2 as a critical point of G(z|τ). Since Eτ ′ is
conformally equivalent to Eτ if τ ′ = γ · τ for some γ ∈ SL(2,Z), but
transforms H(ωk

2 ; τ) = 0 to another degenerate curve H(
ωj

2 ; τ ′) = 0 (by
(6.13)). Therefore, without loss of generality, we may assume k = 1.
Then by (6.10), it is equivalent to determine the location of zeros of
(log ϑ)τ (

1
2 ; τ).

From (6.13), if γ ∈ Γ0(2) = {γ ∈ SL(2,Z) | c ≡ 0 (mod 2)}, the
image of C1(F0) is mapped to C1(F

′
0) for another fundamental domain

F ′
0 := γ(F0). For example, if γ = TS−1T 2S−1 =

(
1 −1
2 −1

)
, i.e.,

τ ′ = γ · τ =
τ − 1

2τ − 1
,

then F ′
0 is the domain bounded by 3 half circles:

F ′
0 = {τ ∈ H | |τ − 1

2 | ≤ 1
2 , |τ − 1

4 | ≥ 1
4 , |τ − 3

4 | ≥ 1
4}.

Noting that the curve {τ | |τ − 1
2 | = 1

2} is invariant under γ, the curves

C1(F0), C1(F ′
0) bound a simply connected domain D in

F0 ∪ F ′
0 = {τ ∈ H | 0 ≤ Re τ ≤ 1, |τ − 1

4 | ≥ 1
4 , |τ − 3

4 | ≥ 1
4},

where D ∩ R = {0, 1}. Since Γ0(2) = Γ(2) ∪ γΓ(2), F0 ∪ F ′
0 is also a

fundamental domain of Γ(2) (different from (2.1)). Note that for any
τ ∈ D, the half period 1

2 is a minimum point of G(z|τ) in Eτ , and

Theorem 6.1 yields that 1
2 is actually a non-degenerate critical point of

G(z|τ).
Thus, the map κ = f(τ) = 2τ + (log ϑ)−1

τ maps C1(F0) ∪ C1(F ′
0) to

the real axis. By [23, Theorem 1.6],

(6.18) C1(F0) ∩ {τ | Re τ = 1
2} = {12 + ib1},

where b1 ∈ (12 ,
√
3
2 ) is the unique zero of the increasing function in b

(6.19) e1 + η1 − 2π

b
,
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along the vertical line 1
2 + ib. Similarly, C1(F

′
0) ∩ {τ | Re τ = 1

2} =

{12 + ib0} where b0 ∈ (0, 12) is the unique zero of the increasing function

e1 + η1 along 1
2 + ib. Then

f(12 + ib) = 2(12 + ib)− 4πi

e1 + η1
= 1 +

2bi

e1 + η1

(
e1 + η1 − 2π

b

)
.

In particular, f(12 + ib1) = 1, f(12 + ib0) = 1− i∞ and f maps D to the
lower half plane C− = {κ | Imκ < 0} in a locally one-to-one manner,
because for any τ ∈ D, the half period 1

2 is a non-degenerate minimum
point. The local one-to-one is due to Theorem 3.2. Then f is actually
one to one over D onto C− ∪ R ∪ {∞}.

Since (log ϑ)τ (
1
2 ; τ) → ∞ when τ ∈ C1(F0) ∪ C1(F

′
0) tends to the

boundary point 0 (resp. 1), we have by (6.12) that f(τ) → 0 (resp. 2).

Therefore, f maps C1(F0) and C1(F ′
0) onto [0, 2] and R ∪ {∞}\(0, 2),

respectively. Then f(τ) =∞ has only one solution τ = 1
2 + ib0.

Therefore, we have proved the following theorem:

Theorem 6.6. The function (log ϑ)τ (
1
2 ; τ) has a unique zero τ0 ∈

F0 ∪ F ′
0. It takes the form τ0 = 1

2 + ib0 where 0 < b0 < 1
2 is the unique

zero for e1 + η1 along the vertical line Re τ = 1
2 . Therefore, in any

fundamental domain of Γ(2), (log ϑ)τ (
1
2 ; τ) has a unique zero.

Remark that although (log ϑ)τ (
1
2 ; τ) is not a modular form, the curve

C1(F0) ∪ C1(F
′
0), the degenerate curve of 1

2ω1 in F0 ∪ F ′
0, is invariant

under Γ(2), a fact coming from the invariance of the Green function
under SL(2,Z) action and that 1

2ω1 is preserved under Γ(2). The last
statement of Theorem 6.6 follows from this and the fact that zeros of
(log ϑ)τ (

1
2 ; τ) lie on this curve.

As a consequence, we are in a position to prove the following result
about Riccati solutions.

Corollary 6.7. Any solution of the four Riccati equations (3.2)–(3.5)
has singularities in C \ {0, 1}.

Proof. For k ∈ {1, 2, 3}, we define

fk(τ) :=
τek(τ) + η2(τ)

ek(τ) + η1(τ)
= τ − 2πi

ek(τ) + η1(τ)
.

Clearly f1(τ) =
1
2f(τ), where f is defined in (6.12). Then the proof of

Theorem 6.6 shows that f1 is one-to-one from D onto C− ∪ R ∪ {∞}
and f1(0) = 0, f1(1) = 1. Remark that D\{0, 1} ⊂ H, so

(6.20) f1
(D\{0, 1}) = C− ∪ R ∪ {∞}\{0, 1} ⊂ f1(H).

Step 1. Let λC(t) be any solution of the Riccati equation (3.2). We
show that λC(t) has singularities in C\{0, 1}.
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If C ∈ H, we let τ0 = C. By the Legendre relation τ0η1(τ0)−η2(τ0) =
2πi, we easily deduce from (3.6) that t(τ0) is a pole of λC .

It suffices to consider C ∈ C− ∪ R ∪ {∞}. First we assume C �∈
{0, 1}. Then (6.20) shows the existence of τ0 ∈ D\{0, 1} ⊂ H such that
f1(τ0) = C, which is equivalent to

℘(pC(τ0)|τ0) = η2(τ0)− Cη1(τ0)

C − τ0
= e1(τ0).

Therefore, λC(t(τ0)) = 0, i.e., t(τ0) is a type 1 singularity of λC .
Before we consider the final case C ∈ {0, 1}, we prove that

(6.21) C− ∪ R\{−1}⊂f2(H),

(6.22) C− ∪ R ∪ {∞}\{0, 12}⊂f3(H).

Let τ ′ = γ · τ = −τ
τ−1 and C ′ = γ · C = −C

C−1 , where γ = STS =(−1 0
1 −1

)
. Using (4.2) it is easy to see t(τ ′) = t(τ)

t(τ)−1 . Let λC(t) and

λC′(t) be solutions of the Riccati equation (3.2). Then by (3.10), we
easily obtain

λC′(
t(τ)

t(τ)−1) = λC′(t(τ
′)) =

λC(t(τ))− t(τ)

1− t(τ)
.

For any C ∈ C− ∪ R ∪ {∞}\{0, 12}, we have C ′ ∈ C− ∪ R ∪ {∞}\{0, 1},
which implies the existence of τ0 ∈ H such that λC′(

t(τ0)
t(τ0)−1) = 0. Con-

sequently, λC(t(τ0)) = t(τ0), i.e., ℘(pC(τ0)|τ0) = e3(τ0). This, together
with (3.6), gives f3(τ0) = C. This proves (6.22). To prove (6.21), we let
τ ′ = S · τ = −1

τ and C ′ = S · C = −1
C . Then t(τ ′) = 1− t(τ) and

λC′(1− t(τ)) = λC′(t(τ
′)) = 1− λC(t(τ)).

From here, we can prove (6.21) similarly.
Now for C ∈ {0, 1}, (6.21) shows the existence of τ0 ∈ H such that

f2(τ0) = C, which is equivalent to λC(t(τ0)) = 1. Thus, λC has a type
2 singularity at t(τ0). This completes the proof of Step 1.

Step 2. Let λ(t) be any solution of the three Riccati equations (3.3)–
(3.5). We show that λ(t) has singularities in C\{0, 1}.

For λ(t) satisfying (3.3), we define

λ̃(t) :=
t

λ(t)
.

Then a straightforward computation shows that λ̃(t) solves (3.2). Since

Step 1 shows that λ̃(t) has singularities in C\{0, 1}, so does λ(t).
For λ(t) satisfying (3.4), we define

λ̃(t) :=
λ(t)− t

λ(t)− 1
.
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Again λ̃(t) solves (3.2), which implies that λ(t) has singularities in
C\{0, 1}.

For λ(t) satisfying (3.5), we define

λ̃(t) := t
λ(t)− 1

λ(t)− t
.

Again λ̃(t) solves (3.2), so λ(t) has singularities in C\{0, 1}.
The proof is complete. q.e.d.

Remark 6.8. There is another way to prove Step 2 of Corollary 6.7.
That is, we can exploit the formula (3.7) and (6.20)–(6.22) to show that
λC(t) has singularities just as done in Step 1. We leave the details to
the reader.

We conclude this section by giving the proof of Theorem 1.4. Recall
the fundamental domain F2 of Γ(2) defined in (2.1) and F0 of Γ0(2)
defined in (5.1). As mentioned in Subsection 2.1, first we prove the
following:

Lemma 6.9. The map t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

maps the interior of F0

onto the lower half plane C−, and maps F2\F0 onto C+.

Proof. Note that t(iR+) = (0, 1) (see, e.g., [6]). Using t(T · τ) =
1

t(τ) and t(ST−1 · τ) = 1 − 1
t(τ) (see, e.g., Propositions A.2 and A.3 in

Appendix A), we obtain t(1+ iR+) = (1,+∞) and t({τ ∈ H | |τ − 1
2 | =

1
2}) = (−∞, 0). That is, t(τ) maps ∂F0 ∩H onto R\{0, 1}.
Recalling ρ = e

πi
3 ∈ F0, we claim t(ρ) ∈ C−. Indeed, by [23, (2.10)]

we have
℘(z|ρ) = ρ2℘(ρz|ρ),

by which, it is easy to see that e3(ρ) = ρ2e1(ρ) and e2(ρ) = ρ−2e1(ρ) =
ρ4e1(ρ). Hence,

t(ρ) =
ρ2 − 1

ρ4 − 1
= ρ̄ =

1

2
(1−

√
3) ∈ C−.

Now this lemma follows readily from the fact that t(τ) is one-to-one
from F2 onto C\{0, 1}. q.e.d.

Proof of Theorem 1.4. Suppose λ(t) is a real solution. Then there
exists (r, s) ∈ [0, 1]× [0, 12 ] \ 1

2Z
2 such that λ(t) = λr,s(t). The goal is to

prove that any branch of λr,s(t) has at most one singular point in both

C−\{0, 1} and C+. For this purpose, it suffices to consider the F2 branch
(i.e., the branch corresponding to τ ∈ F2) when a branch of λr,s(t) in
C \ {0, 1} is discussed. By (5.9) (or (4.9)), for any other branch of the
same real solution λr,s(t) in C\{0, 1}, which can be obtained from (1.8)
by considering τ in another fundamental domain of Γ(2), its restriction
in C− \ {0, 1} (resp. in C+) is just the restriction in C− \ {0, 1} (resp.
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in C+) of the F2 branch of a “new” real solution λr′,s′(t). Therefore, we
only need to prove this theorem for the F2 branch.

Step 1. We consider τ ∈ F0. Applying Corollary 5.4 and Lemma
6.9, we see that the F2 branch of λr,s(t) has at most one singular point

in C− \ {0, 1} = t(F0). More precisely, this F2 branch of λr,s(t) has no
singularities in R\{0, 1} = t(∂F0∩H) (see also [6]); if (r, s) ∈ ∪3

k=0∂�k,
then it has no singularities in C− either; while for k ∈ {0, 1, 2, 3}, it has
only a type k singularity in C− if and only if (r, s) ∈ �k. Recalling that

Ω̃5 is the lifting of Ω5 in F0, we have

Ω̃5 = {τ ∈ F0 | G(z|τ) has five critical points}
=

{
τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 12 ] \ 1

2Z
2
}

= {τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ �0} .
This, together with the definition (1.22) of Ω

(0)
− , easily implies

Ω
(0)
− = t ({τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ �0}) = t(Ω̃5).

Therefore, we conclude from Theorem 6.1 that Ω
(0)
− is open and simply

connected and ∂Ω
(0)
− consists of three smooth curves connecting 0, 1,∞,

respectively; they are precisely t(Ci(F0)) for i = 1, 2, 3, where Ci(F0) is
defined in (6.1).

Now we recall Ω
(k)
− defined in (1.23) and fix k ∈ {1, 2, 3}. It follows

from Proposition 4.3, (4.7) and Corollary 5.4 that

Ω
(k)
− = t

({
τ ∈ F0 | pr,s(τ) = ωk

2 for some (r, s) ∈ [0, 1]× [0, 12 ] \ 1
2Z

2
})

= t
({

τ ∈ F0 | prk,sk(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 12 ] \ 1
2Z

2
})

= t
({

τ ∈ F0 | pr,s(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 12 ] \ 1
2Z

2
})

= t ({τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ �0})
= Ω

(0)
− .

Step 2. We consider τ ∈ F2 \ F0. Then τ ′ = T−1 · τ = τ − 1 ∈ F0.
By (A.11), we have t(τ) = 1/t(τ ′) and

λr,s(t(τ)) =
λr1,s1(t(τ

′))
t(τ ′)

,

where (r1, s1) ∈ [0, 1]× [0, 12 ]\12Z2 is given by (A.10):

(6.23) (r1, s1) :=

{
(r + s, s) if r + s < 1,
(r + s− 1, s) if r + s ≥ 1.

Therefore, by the result of Step 1, we conclude that the F2 branch of

λr,s(t) has at most one singular point in C+ = t(F2 \ F0) and Ω
(k)
+ =

Ω
(0)
+ = {t ∈ C+ | t−1 ∈ Ω

(0)
− } (see (1.23) for the definition of Ω

(k)
+ ).
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In conclusion, the F2 branch of λr,s(t) has at most two singular points
in C \ {0, 1}. If it has two singular points, then one is in C+ and the
other one is in C−. Furthermore, they are the same type 0 (resp. type
1) singular points if and only if both (r, s) and (r1, s1) given by (6.23)
belong to �0 (resp. �1); while they are the same type 2 (resp. type
3) if and only if (r, s) ∈ �2 and (r1, s1) ∈ �3 (resp. (r, s) ∈ �3 and
(r1, s1) ∈ �2). Therefore, it is easy to see from the definition of �k and
(6.23) that these two singular points cannot be the same type. Finally,

any real solution is smooth in C \ (Ω(0)
− ∪ Ω

(0)
+ ∪ {0, 1}).

The proof is complete. q.e.d.

7. Algebraic solutions and Eisenstein series of weight one

In this section, we study the monic polynomial �N (j) defined in (1.28)
and prove Theorems 1.6 and 1.7. In the following we always assume
N ≥ 5.

Lemma 7.1.

deg �N =

{ |QN |
24 if N is odd,

|QN |
24 − 1

2ϕ(
N
2 ) if N is even.

Proof. Recalling q = e2πiτ , we use the q-expansions (cf. [17, p. 193]):

(7.1) Δ(τ) = (2π)12q

+∞∏
n=1

(1− qn)24,

(7.2) j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · · .

Let τ = ib with b ↑ +∞, then q = e−2πb ↓ 0. By (A.3), (A.6), (A.7) in
Appendix A and (1.27), we have for (r, s) ∈ QN that, as b ↑ +∞,

(7.3) Zr,s(τ) =

⎧⎨
⎩

2πi(s− 1
2) +O(qs) if s �∈ {0, 12},

π cotπr +O(q) if s = 0,

4π sin(2πr)q
1
2 +O(q) if s = 1

2 .

First we assume that N is odd. Then r, s �= 1
2 , which implies that

Z(N)(τ) converges to a nonzero constant as b ↑ +∞. Substituting
(7.1) and (7.2) into (1.28) and computing the leading term, we obtain

deg �N = m = |QN |
24 .

Now we consider that N is even. Then the number of (r, 12) in QN

is 2ϕ(N2 ), which implies from (7.3) that Z(N)(τ) ∼ qϕ(
N
2
) as b ↑ +∞.

Again by (7.1), (7.2) and (1.28), we obtain deg �N = m− 1
2ϕ(

N
2 ). q.e.d.

Lemma 7.2. The constant C2m and all the coefficients of �N (j) are
rational numbers. In particular, all zeros of �N (j) are algebraic numbers.
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Proof. Denote a = e2πi/N . Then for any (r, s) = (k1N , k2N ) ∈ QN ,

e2πi(r+sτ) = ak1qs = ak1q
k2
N . Recalling the q-expansion (5.3) of Zr,s, we

have

Zr,s(τ)

πi
=2s− (1 + ak1qs)

∞∑
l=0

(ak1qs)l(7.4)

− 2

∞∑
n=1

∞∑
l=1

(
(ak1qn+s)l − (a−k1qn−s)l

)
, if s �= 0,

Zr,0(τ)

πi
= −1 + ak1

1− ak1
− 2

∞∑
n=1

∞∑
l=1

(
(ak1qn)l − (a−k1qn)l

)
.

Therefore,

(7.5)
Z(N)(τ)

(πi)|QN | =
∏

(r,s)∈QN

Zr,s(τ)

πi
= R0(a) +

∞∑
n=1

Rn(a)q
n,

where Rj(a) are rational functions of a with integer coefficients. Here
by (1.28) and (7.1)–(7.2) we know that there are no terms of q with
fractional powers in (7.5). Define

PN := {k ∈ N | 1 ≤ k ≤ N − 1, gcd(k,N) = 1}.
Fix any k ∈ PN . Then for any (r, s) = (k1N , k2N ) ∈ QN , we also have
gcd(kk1, k2, N) = 1. Denote r′ = kr − [kr] ∈ [0, 1), then (r′, s) ∈ QN

and aN = 1 gives e2πi(r
′+sτ) = (ak)k1qs. Thus, repeating the argument

of (7.4)–(7.5) leads to

∏
(r,s)∈QN

Zr′,s(τ)

πi
= R0(a

k) +

∞∑
n=1

Rn(a
k)qn.

Since (r′, s) takes over all elements in QN whenever (r, s) does, we con-
clude that

Z(N)(τ)

(πi)|QN | =
∏

(r,s)∈QN

Zr′,s(τ)

πi
= R0(a

k) +
∞∑
n=1

Rn(a
k)qn, ∀k ∈ PN .

Comparing this with (7.5), we have for any j ≥ 0 that Rj(a) = Rj(a
k),

∀k ∈ PN , which implies that Rj(a) are rational numbers.

Recall |QN | = 24m and i|QN | = 1. It follows from (1.28), (7.1) and

(7.5) that all the coefficients of the q-expansion of C2m(�N (j))2 =
Z(N)(τ)

Δ(τ)2m

are rational numbers. This, together with (7.2), easily implies that C2m

and all the coefficients of �N (j) are rational numbers. This completes
the proof. q.e.d.
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Motivated by (1.27), we define

(7.6) Q′
N =

{
(r, s) ∈ QN

∣∣∣∣ r < 1
2 if s = 0; s < 1

2 if r = 0;
s ≤ 1

2 if r �= 0, s �= 0

}
.

Clearly |Q′
N | = |QN |/2. We are now in the position to prove Theorem

1.6. Recall the fundamental domain F of SL(2,Z) defined in (1.34).

Proof of Theorem 1.6. The assertion (i) follows readily from the fact
that for (r, s) ∈ R2 \ 1

2Z
2, λr,s(t0) = ∞ for some t0 = t(τ0) if and only

if Zr,s(τ0) = 0. So it suffices to prove (ii) and (iii).
(ii) Assume by contradiction that j0 = j(τ0), τ0 ∈ F , is a multiple zero

of �N (j). Then by (1.28) and (1.27), there exist at least two (ri, si) ∈ Q′
N

such that Zri,si(τ0) = 0 for i = 1, 2. The definition (7.6) of Q′
N implies

that r1 + s1τ0 �= ±(r2 + s2τ0) in the torus Eτ0 . Thus, G(z|τ0) has
two pairs of nontrivial critical points ±(r1 + s1τ0) and ±(r2 + s2τ0), a
contradiction with Theorem A.

(iii) Suppose that for some N1 �= N2, �N1(j) and �N2(j) has a common
zero j0 = j(τ0), τ0 ∈ F . Then there exists (ri, si) ∈ Q′

Ni
such that

Zri,si(τ0) = 0 for i = 1, 2. Clearly r1 + s1τ0 �= ±(r2 + s2τ0) in the torus
Eτ0 , again we obtain a contradiction.

The proof is complete. q.e.d.

To give the proof of Theorem 1.7, we exploit the following result in

[23]. Recall from (6.19) that b1 ∈ (12 ,
√
3
2 ) is the unique zero of the

increasing function e1 + η1 − 2π
b in b where τ is along the vertical line

1
2 + ib.

Theorem F. [23, Lemma 6.4 and Theorem 6.7] For any b > b1,
G(z|τ) with τ = 1

2 + ib has a critical point of the form 1
2 + iy(b) with

y(b) ∈ (0, b
2).

Recalling from (6.18) that τ1 := 1
2 + ib1 ∈ ∂Ω̃5, where Ω̃5 is the

lifting of Ω5 in F0, so G(z|τ1) has only three critical points 1
2 ,

τ1
2 and

1+τ1
2 . Therefore, y(b) ↓ 0 as b ↓ b1. Write the critical point 1

2 + iy(b) =
r(b) + s(b)τ , then

(7.7) 2r(b) + s(b) = 1, s(b) =
y(b)

b
∈ (

0, 12
)
, lim

b→b1
s(b) = 0.

Lemma 7.3. As a function of b ∈ (b1,+∞), s(b) is strictly increas-

ing. Furthermore, s(
√
3
2 ) = 1

3 and limb→∞ s(b) = 1
2 .

Proof. It was shown in [23] that if τ = ρ = e
πi
3 , then G(z|τ) has a

critical point at 1+τ
3 , which gives s(

√
3
2 ) = 1

3 .
If s(b) is not strictly increasing, then there exist b3 > b2 > b1 such

that s(b2) = s(b3). Clearly (7.7) gives r(b2) = r(b3) and (r, s) :=
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(r(b2), s(b2)) ∈ �0. Write τk = 1
2 + ibk for k = 2, 3, then τk ∈ F0

by (5.1). Since G(z|τk) has a critical point at r+sτk, so Zr,s(τ) has two
zeros τ2, τ3 ∈ F0, which contradicts to Theorem 1.3.

Finally, we prove limb→∞ s(b) = 1
2 . Suppose limb→∞ s(b) = s̄ < 1

2 .

Define a function K : (0, 12) × F0 → C by K(s, τ) := Z 1−s
2

,s(τ). Since

(1−s̄
2 , s̄) ∈ �0, Theorem 1.3 shows that there is a unique τ̄ ∈ F0 such that

K(s̄, τ̄) = 0. Furthermore, Theorem 4.1 gives ∂K
∂τ (s̄, τ̄) �= 0. Then by the

implicit function theorem, there exists a function τ(s) for s ∈ (s̄−ε, s̄+ε)
such that τ(s̄) = τ̄ and K(s, τ) = 0 for s ∈ (s̄ − ε, s̄ + ε) if and only if
τ = τ(s), where ε > 0 is small. Thus Theorem F implies τ(s) = 1

2 + ib
for s ∈ (s̄ − ε, s̄) and b ↑ +∞ as s ↑ s̄, which is a contradiction with
τ(s)→ τ̄ . This completes the proof. q.e.d.

Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7. Let j = j(τ0) ∈ J(N), τ0 ∈ F , be a real zero of
�N (j). Since J(3) = {0}, the same proof as Theorem 1.6-(iii) shows that
j(τ0) �= 0. Recall that in F , j(τ) maps {ib | b ≥ 1} onto [1728,+∞);

maps {τ ∈ F | |τ | = 1} onto [0, 1728]; maps {12 + ib|b >
√
3
2 } onto

(−∞, 0). Since Theorem E says that Zr,s(τ) �= 0 for any (r, s) ∈ R2\12Z2

and τ ∈ iR+, we deduce from Theorem 1.6-(i) that �N (j) has no zeros
in [1728,+∞). Thus, j(τ0) ∈ (−∞, 0) ∪ (0, 1728).

Step 1. We prove that �N (j) has #J−
N zeros in (−∞, 0).

Assume that j(τ0) ∈ (−∞, 0), τ0 ∈ F , is a zero of �N (j). Then

τ0 ∈ {12+ib | b >
√
3
2 } and there exists (r, s) ∈ Q′

N such that Zr,s(τ0) = 0.

Write τ0 = 1
2 + ib̂ with b̂ >

√
3
2 . Then Theorem F, Lemma 7.3 and

(7.7) imply that Zr(b̂),s(b̂)(τ0) = 0 and 1
3 < s(b̂) < 1

2 . Since (r, s),

(r(b̂), s(b̂)) ∈ [0, 1)× [0, 12 ] and G(z|τ0) has at most one pair of nontrivial

critical points ±(r + sτ0), we conclude that (r, s) = (r(b̂), s(b̂)), i.e.,
(r, s) ∈ J−

N .

Conversely, given (r, s) ∈ J−
N , by Theorem F, Lemma 7.3 and (7.7),

there exists b̄ ∈ (
√
3
2 ,+∞) such that s = s(b̄), namely G(z|τ̄) with

τ̄ = 1
2 + ib̄ has a critical point at r + sτ̄ . Thus Zr,s(τ̄) = 0 and then

j(τ̄) ∈ (−∞, 0) is a zero of �N (j).
For any two different (r2, s2), (r3, s3) ∈ J−

N , we have s2 �= s3, say
s2 < s3. Then there exist b3 > b2 > b1 such that sk = s(bk) for k = 2, 3.
Write τk = 1

2 + ibk. Then b3 > b2 implies j(τ2) > j(τ3), so j(τ2) �= j(τ3)
are two different zeros of �N (j) in (−∞, 0). This proves the one-to-one
correspondence between elements of J−

N and negative zeros of �N (j).

Therefore, �N (j) has exactly #J−
N zeros in (−∞, 0).

Step 2. We prove that �N (j) has #J+
N zeros in (0, 1728).
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Assume that j(τ0) ∈ (0, 1728), τ0 ∈ F , is a zero of �N (j). Then

τ0 ∈ {τ ∈ F | |τ | = 1}. Let τ ′ = γ · τ = 1
1−τ , where γ =

(
0 1
−1 1

)
.

Then τ ′ = 1+i
2 if τ = i, τ ′ = τ if τ = e

πi
3 , and

τ ∈ {τ ∈ F | |τ | = 1} ⇐⇒ τ ′ ∈ {12 + ib | 1
2 ≤ b ≤

√
3
2 }.

Furthermore, j(τ ′) = j(τ), which gives that j maps {12+ib | 12 ≤ b ≤
√
3
2 }

onto [0, 1728] with j(1+i
2 ) = 1728 and j(e

πi
3 ) = 0. Therefore, τ ′0 ∈ {12+ib

| 1
2 < b <

√
3
2 } and there exists (r, s) ∈ Q′

N such that Zr,s(τ
′
0) = 0. Since

it was shown in [23] that G(z|τ) has only three critical points 1
2 ,

τ
2

and 1+τ
2 if τ = 1

2 + ib with 1
2 ≤ b ≤ b1, we see that τ ′0 = 1

2 + ib̂

with b1 < b̂ <
√
3
2 . Then Theorem F, Lemma 7.3 and (7.7) imply that

Zr(b̂),s(b̂)(τ
′
0) = 0 and 0 < s(b̂) < 1

3 . Similarly as in Step 1, we conclude

that (r, s) = (r(b̂), s(b̂)), i.e., (r, s) ∈ J+
N .

Conversely, given (r, s) ∈ J+
N , there exists b̄ ∈ (b1,

√
3
2 ) such that

s = s(b̄), namely G(z|τ̄) with τ̄ = 1
2 + ib̄ has a critical point at r + sτ̄ .

Thus Zr,s(τ̄) = 0 and then j(τ̄) ∈ (0, 1728) is a zero of �N (j).
Finally, we can prove that any two different points in J+

N correspond
to two different positive zeros of �N (j) as in Step 1. Therefore, �N (j)
has exactly #J+

N zeros in (0, 1728).
The proof is complete. q.e.d.

In the rest of this section, we give a generic approach to compute
�N (j) for small N . Fix N ≥ 5 with N �= 6. Recalling that J(N) is the
zero set of �N (j), we denote

J(N) = {jk | 1 ≤ k ≤ deg �N}.
Instead of considering the product like Z(N)(τ), we consider the sum-
mation of λr,s(t) with (r, s) ∈ Q′

N (see (7.6)), because (4.7) implies
that λr,s(t) = λ1−r,1−s(t) if r, s �= 0, λ0,s(t) = λ0,1−s(t) and λr,0(t) =
λ1−r,0(t). Define

(7.8) yN (t) :=
∑

(r,s)∈Q′N
λr,s(t) =

1

2

∑
(r,s)∈QN

λr,s(t).

Clearly Proposition 4.4 implies that yN (t) is meromorphic and single-
valued in C ∪ {∞}. Furthermore, Propositions A.1 and A.2 yield that
yN (t) is holomorphic at t = 0, 1 (i.e., neither 0 nor 1 is a pole), and
Proposition A.3 shows that yN (t) is at most linear growth at t = ∞.
Therefore, yN (t) is a rational function. Note from (A.9) that

λr,s(t) = 1− λr̃,s̃(1− t),

where (r̃, s̃) ∈ Q′
N is determined by (r, s) via (A.8). Since (r̃, s̃) take
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over all elements of Q′
N whenever (r, s) does, we obtain

(7.9) yN (t) = |Q′
N | − yN (1− t).

Similarly, by (A.10) and (A.11), we have

(7.10) yN (t) = tyN (1t ).

On the other hand, it is known (see [19, Proposition 1.4.1] or the
proof of Theorem 4.1) that poles of any solution of PVI( 1

8
,−1

8
, 1
8
, 3
8
) must

be simple poles. Moreover, similarly as the proof of Theorem 1.6-(ii),
we see that for any two different (rk, sk) ∈ Q′

N , k = 1, 2, λr1,s1(t(τ))
and λr2,s2(t(τ)) have no common poles as functions of τ . Therefore,
t0 = t(τ0) is a pole of yN (t) if and only if there exists an (r, s) ∈ Q′

N
such that t0 is a pole of λr,s(t) ((r, s) is uniquely determined by τ0,
i.e., if t0 = t(τ1) with τ1 �= τ0, then (r, s) might be different, because by
Proposition 4.4, (r, s) will permute in Q′

N after the analytic continuation
along a path connecting τ0 and τ1 although yN (t) remains invariant).
Furthermore, t0 is a simple pole with

(7.11) Res
t=t0

yN (t) = Res
t=t0

λr,s(t) = −2t0(t0 − 1).

Here the second equality in (7.11) was proved in [16].
From (7.9)–(7.10), we see that if t0 is pole of yN (t), then any of

(7.12) Ξ(t0) :=
{
t0, 1− t0,

1
t0
, 1− 1

t0
, 1

1−t0
, t0

t0−1

}
is also a pole of yN (t). This, together with Theorem 1.6-(i), implies
that all elements in Ξ(t0) give the same j-value j(t0) ∈ J(N) via (1.26).
For jk ∈ J(N), since jk �∈ {0, 1728} by Theorem 1.7, there are exactly
six different t’s which satisfies j(t) = jk. We fix a tk ∈ C such that
j(tk) = jk, then Ξ(tk) gives precisely these six different t’s. Therefore,
we conclude that

deg �N⋃
k=1

Ξ(tk)

gives precisely all the poles of yN (t).
From the above argument, we have

(7.13) yN (t) = −
deg �N∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)

t− a
+ Ct+D,

where C,D are two constants that can be easily determined. Indeed,
by (7.12),

∑
a∈Ξ(tk) a = 3, which implies

yN (0) = 2

deg �N∑
k=1

∑
a∈Ξ(tk)

(a− 1) +D = D − 6 deg �N .
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First we assume that N is odd. Then s < 1
2 for any (r, s) ∈ Q′

N .
By Proposition A.1, we have yN (1) = |Q′

N |. This, together with (7.9)–
(7.10), gives yN (0) = 0 and yN (t) = o(t) as t → ∞. Therefore, C = 0

and D = 6deg �N = |QN |
4 , namely

yN (t) = −
deg �N∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)

t− a
+
|QN |
4

, if N odd.

Now we consider that N is even. Then the number of (r, 12) in Q′
N is

ϕ(N2 ), and Proposition A.1 gives yN (1) = |Q′
N |−2ϕ(N2 ), yN (0) = 2ϕ(N2 )

and yN (t) = 2ϕ(N2 )t + O(1) as t → ∞. Therefore, C = 2ϕ(N2 ) and

D = 6deg �N + 2ϕ(N2 ) =
|QN |
4 − ϕ(N2 ), namely

yN (t) = −
deg �N∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)

t− a
+ 2ϕ(N2 )t+

|QN |
4

− 2ϕ(N2 ), ifN even.

We turn back to the problem of computing J(N). The key observa-
tion is that the coefficients of the Taylor expression of yN (t) at t = 0 are
expressed in terms of jk ∈ J(N). For example, we use

∑
a∈Ξ(tk)

a−1
a = 3

to obtain

y′N (0) = 2

deg �N∑
k=1

∑
a∈Ξ(tk)

a− 1

a
+ C = 6deg �N + C;

we use the following formula, which is obtained from (7.12) and (1.26):

1

2

∑
a∈Ξ(tk)

a− 1

a2
= 3− (t2k − tk + 1)3

t2k(tk − 1)2
= 3− jk

256
,

to obtain

y′′N (0) = 4

deg �N∑
k=1

∑
a∈Ξ(tk)

a− 1

a2
= 8

deg �N∑
k=1

(
3− jk

256

)
.

Similarly, a direct computation gives

y′′′N (0) = 12

deg �N∑
k=1

(
3− jk

256

)
;

y′′′′N (0) = 48

deg �N∑
k=1

[(
3− jk

256

)
− 2

(
3− jk

256

)2

+ 12

]
;

and so on. Thus, if deg �N = 1 (such as N = 5, 8), then J(N) can
be computed from y′′N (0). If deg �N = 2 (such as N = 7), then J(N)
can be computed from y′′N (0) and y′′′′N (0). In general, J(N) should be

determined by y
(2l)
N (0) with 1 ≤ l ≤ deg �N . On the other hand, by
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exploiting the same argument as Proposition A.1 in Appendix A, we
can compute the Taylor expansion of yN (t) at t = 1 up to the term
(t−1)2 deg �N (which can be done by using Mathematica). Consequently,
by using (7.9) we obtain the Taylor expansion of yN (t) at t = 0 up to
the term t2 deg �N , from which we can compute J(N) as explained above.
Once J(N) is determined, all poles of yN (t) (or equivalently, poles of
λr,s(t) with (r, s) ∈ Q′

N ) can be computed via (1.26).
By exploiting the above approach, we computed for the cases N =

5, 7, 8, 9 and obtained (1.31)–(1.33). We take N = 7 as an example.

Example 7.4. Let N = 7, then deg �7 = 2. By using Mathematica,
the Taylor expansion of y7(t) at t = 0 is

y7(t) = 12t+
19243064

703125
t2 +

9621532

703125
t3 − 536777924542148

27× 7031252
t4 +O(t5).

Hence,

4
2∑

k=1

(
3− jk

256

)
=

19243064

703125
,

2

2∑
k=1

[(
3− jk

256

)
− 2

(
3− jk

256

)2

+ 12

]
= −536777924542148

27× 7031252
.

From here, a straightforward computation gives

�7(j) = j2 − (j1 + j2)j + j1j2 = j2 +
212 · 37001
32 · 57 j − 224 · 571787

37 · 57 ,

and so J(7) is given by (1.32).

8. Further discussion

In this final section, we make some further remarks about the results
proved in this paper.

First we turn back to Step 2 in the proof of Theorem 1.7 in §7. Denote

j0 := j(12 + ib1) ∈ (0, 1728),

because 1
2 < b1 <

√
3
2 and j maps {12 + ib | 1

2 ≤ b ≤
√
3
2 } one-to-one

onto [0, 1728] with j(1+i
2 ) = 1728 and j(e

πi
3 ) = 0. Since G(z|τ) has only

three critical points 1
2 ,

τ
2 and 1+τ

2 if τ = 1
2 + ib with 1

2 ≤ b ≤ b1, we see

that Zr,s(
1
2 + ib) �= 0 for any (r, s) ∈ R2\12Z2 and 1

2 ≤ b ≤ b1, which
implies that �N (j) has no zeros in [j0, 1728]. Therefore, Theorem 1.7
can be restated in a sharper form: �N (j) has no zeros in {0}∪ [j0,+∞)
and has exactly #J+

N zeros in (0, j0).

For each prime N ≥ 5, we define (rN , sN ) := (N−1
2N , 1

N ). Clearly

(rN , sN ) ∈ J+
N . The proof of Theorem 1.7 shows that ZrN ,sN (τ) has a

zero 1
2 + ibN with bN ↓ b1 as N ↑ +∞. Therefore, �N (j) has a positive

zero jN := j(12 + ibN ) which satisfies jN ↑ j0 as N ↑ +∞. Even though
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jN is an algebraic number for each primeN , we still do not know whether
j0 is an algebraic number or not. This question seems very difficult and
remains open.

We conjecture that the polynomial �N (j) is irreducible in Q[j] and,
moreover, Q[j]/(�N (j)) is a Galois extension of Q. Once this conjecture
can be proved, all the zeros of �N (j) should not be algebraic integers
provided N ≥ 5, which implies that all the corresponding τ are tran-
scendental.

Now let us turn to Theorem 1.4. Recall from Lemma 6.9 that t(iR+) =
(0, 1), t(1 + iR+) = (1,+∞) and t({τ ∈ H | |τ − 1

2 | = 1
2}) = (−∞, 0).

Clearly

C− \ Ω(0)
− = U1 ∪ U2 ∪ U3 ∪ t(C1) ∪ t(C2) ∪ t(C3),

where U1 (resp. U2, U3) is the domain bounded by (−∞, 0] and the curve
t(C1) (resp. by [1,+∞) and t(C2), by [0, 1] and t(C3)) (these can be seen
from Figures 2 and 4). Let D1 ⊂ F0 be the domain bounded by C1 and
{τ ∈ H | |τ − 1

2 | = 1
2}, then t(D1) = U1. Recalling the domain D defined

in the proof of Theorem 6.6, clearly D1 ∪ C1 ⊂ D \ {0, 1}. Then Step 1
of the proof of Corollary 6.7 shows that for any t0 = t(τ0) ∈ U1 ∪ t(C1)
with τ0 ∈ D1 ∪ C1, we have λC(t0) = 0, i.e., t0 is a type 1 singularity
of λC , where C = f1(τ0) and λC is a solution of the Riccati equation
(3.2). Therefore, each element in U1 ∪ t(C1) is a type 1 singularity of
some solution of the Riccati equation (3.2).

We can prove analogous results for U2∪t(C2) and U3∪t(C3). Recalling

(6.13)–(6.14), we let γ =

(
1 −1
1 0

)
, i.e., τ ′ = (τ − 1)/τ . Then γ maps

F0 onto F0 and

τ ∈ {τ ∈ H | |τ − 1
2 | = 1

2} ⇐⇒ τ ′ ∈ iR+.

Furthermore, (6.14) implies that γ maps C1 onto C3. Denote D3 ⊂ F0

to be the domain bounded by C3 and iR+ (see Figure 4). Then it is
easy to see that t(D3) = U3 and

(8.1) τ ∈ D1 ∪ C1 ⇐⇒ τ ′ ∈ D3 ∪ C3.

Let C ′ = γ ·C = (C−1)/C. Similarly as Step 1 of the proof of Corollary
5.4, we can prove t(τ ′) = 1/(1− t(τ)) and

λC′(t(τ
′)) =

λC(t(τ))− 1

t(τ)− 1
=

λC(t(τ))

t(τ)− 1
+ t(τ ′),

namely t(τ ′) ∈ U3 ∪ t(C3) is a type 3 singular point of λC′ provided
that t(τ) ∈ U1 ∪ t(C1) is a type 1 singular point of λC . Therefore,
we have proved that each element in U3 ∪ t(C3) is a type 3 singularity
of some solution of the Riccati equation (3.2). Similarly, by letting

γ =

(
0 1
−1 1

)
, i.e., τ ′ = 1/(1 − τ), which maps {τ ∈ H | |τ − 1

2 | = 1
2}



GREEN FUNCTION AND PAINLEVÉ VI EQUATION 233

onto 1 + iR+, we can prove that each element in U2 ∪ t(C2) is a type 2
singularity of some solution of the Riccati equation (3.2).

Finally, we make a remark about Theorem C in §3. Let ME denote
the solution space of the elliptic form (1.7), andMC denote the solution
space of PVI( 1

8
,−1

8
, 1
8
, 3
8
). Define (r, s) ∼ (r̃, s̃) if (r, s) ≡ ±(r̃, s̃)modZ2.

Then by Theorem C and Propositions 3.4, 4.4 and (4.7), we have

ME
∼= ((

C2\12Z2
)
/ ∼) ∪ four copies of CP1,

and

MC
∼= (

(C2\12Z2)/(∼ ∪Γ(2))) ∪ four copies of CP1/Γ(2).

Appendix A. Asymptotics of real solutions at {0, 1,∞}
In this appendix, we prove the following asymptotic behaviors for

real solutions at branch points, which are needed in §7. See [13] for
asymptotics of solutions to Painlevé VI with generic parameters. As
before, we may assume λ(t) = λr,s(t) for some (r, s) ∈ [0, 1)×[0, 12 ]\ 1

2Z
2.

First we consider t→ 1. The covering map t = t(τ) has infinitely many
branches over (0, 1). For our purpose we only need to consider τ ∈ iR+.

Proposition A.1. Suppose that t = t(τ), τ ∈ iR+ and λ(t) = λr,s(t)
is a real solution with (r, s) ∈ [0, 1) × [0, 12 ] \ 1

2Z
2, then the following

hold:

(i) if s ∈ (0, 12), then

(A.1) λ(t) = 1 +
8se2πir

2s− 1

(
1− t

16

)2s

+O((1− t) + (1− t)4s) as t ↑ 1.

(ii) if s = 0, then

λ(t) = 1 +
t− 1

2
+O((t− 1)2) as t ↑ 1.

(iii) if s = 1
2 , then

λ(t) = −1 + 1

4
(cos(2πr)− 2) (t− 1) +O((t− 1)2) as t ↑ 1.

Proof. By t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

, we have that if τ = ib with b ∈ R+, then

t ∈ (0, 1) and t ↑ 1 as b → +∞. To compute the limit, we recall the
formula for ℘(z|τ) in Proposition 6.3: if q = e2πiτ and |q| < |e2πiz| <
|q|−1, then
(A.2)

℘(z|τ) = −π2

3
−4π2

[
e2πiz

(e2πiz − 1)2
+

∞∑
n=1

nqn

1− qn
(
e2πinz + e−2πinz − 2

)]
.

Now we put z = r+sτ = r+ibs with (r, s) ∈ [0, 1)×[0, 12 ]. Then e−2πb =

|q| < |e2πiz| = e−2πsb < |q|−1. We consider three cases separately.
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Case 1. 0 < s < 1
2 .

In this case, by (A.2) and (5.3) we have

℘(r + sτ |τ) = −π2

3
− 4π2e2πire−2πbs +O

(
e2π(s−1)b

)
,

℘′(r + sτ |τ) = −8π3ie2πire−2πbs +O(e2π(s−1)b + e−4πbs),

(A.3) Zr,s(ib) = πi (2s− 1) +O(e−2πbs),

as b→ +∞. Since

℘(pr,s(τ)|τ) = ℘(r + sτ |τ) + ℘′(r + sτ |τ)
2Zr,s(τ)

,

we have

℘(pr,s(τ)|τ) =− π2

3
− 8s

2s− 1
π2e2πire−2πbs

+O
(
e2π(s−1)b + e−4πbs

)
as b→ +∞.

On the other hand, by letting z = 1
2 ,

τ
2 ,

1+τ
2 in (A.2) respectively, we

easily obtain the following expansions for ei(τ) (see (6.15) and Remark
6.5):

e1(τ) =
2π2

3
+ 16π2

∞∑
k=1

akq
k, e2(τ) = −π2

3
− 8π2

∞∑
k=1

akq
k
2 ,

e3(τ) = −π2

3
− 8π2

∞∑
k=1

(−1)kakq
k
2 ,

where ak =
∑

0<d|k, d odd d. From here, we easily deduce

t− 1 =
e3(τ)− e2(τ)

e2(τ)− e1(τ)
= −16e−πb +O

(
e−2πb

)
,(A.4)

and

λ(t)− 1 =
℘(pr,s(τ)|τ)− e2(τ)

e2(τ)− e1(τ)

=
8s

2s− 1
e2πire−2πbs +O

(
e−πb + e−4πbs

)
,(A.5)

as b→ +∞, which implies (A.1) by using (A.4).
Case 2. s = 0.
In this case, as b→ +∞, we have

℘(r|τ) = −π2

3
+

π2

sin2(πr)
+ 16π2 sin2(πr)e−2πb +O(e−4πb),

℘′(r|τ) = −2π3

sin2(πr)
cot(πr) + 16π3 sin(2πr)e−2πb +O(e−4πb),

(A.6) Zr,0(ib) = π cot(πr) + 4π sin(2πr)e−2πb +O(e−4πb),
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℘(pr,0(τ)|τ) = −π2

3
+ 8π2

(
1 + 4 sin2(πr)

)
e−2πb +O(e−4πb),

and so, as t ↑ 1,
λ(t)− 1 = −8e−πb + 16(3− 2 sin2(πr))e−2πb +O(e−3πb)

=
t− 1

2
+O((t− 1)2).

Case 3. s = 1
2 .

In this case, we note that |e2πiz| = e−πb = |qe−2πiz|. As b → +∞, a
straightforward computation gives

℘(r + τ
2 |τ) =−

π2

3
− 8π2 cos(2πr)e−πb

+ 8π2 (1− 2 cos(4πr)) e−2πb +O(e−3πb),

℘′(r + τ
2 |τ) = 16π3 sin(2πr)e−πb + 64π3 sin(4πr)e−2πb +O(e−3πb),

(A.7) Zr, 1
2
(ib) = 4π sin(2πr)e−πb + 4π sin(4πr)e−2πb +O(e−3πb),

℘(pr, 1
2
(τ)|τ) = 5π2

3
+ 4π2 cos(2πr)e−πb +O(e−2πb),

and so, as t ↑ 1,
λ(t) + 1 = (8− 4 cos(2πr)) e−πb +O(e−2πb)

=
1

4
(cos(2πr)− 2) (t− 1) +O((t− 1)2).

This completes the proof. q.e.d.

Proposition A.2. Suppose that t = t(τ), τ ∈ iR+ and λ(t) = λr,s(t)
is a real solution with (r, s) ∈ [0, 1) × [0, 12 ] \ 1

2Z
2, then the following

hold:

(i) if r �∈ {0, 12}, then

λ(t) = −8s̃e2πir̃

2s̃− 1

(
t

16

)2s̃

+O(t+ t4s̃) as t ↓ 0,

where

(A.8) (r̃, s̃) =

⎧⎨
⎩

(s, 1− r) if r ∈ [12 , 1),
(1− s, r) if r ∈ [0, 12), s > 0,
(0, r) if r ∈ [0, 12), s = 0.

(ii) if r = 0, then

λ(t) =
t

2
+O(t2) as t ↓ 0.

(iii) if r = 1
2 , then

λ(t) = 2 +
1

4
(cos(2πs)− 2) t+O(t2) as t ↓ 0.
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Proof. Let τ ′ = S · τ = − 1
τ and (s′, r′) = (s, r) · S−1 = (−r, s). By

using (4.5), e1(τ
′) = τ2e2(τ), e2(τ

′) = τ2e1(τ) and e3(τ
′) = τ2e3(τ), we

obtain

λr,s(t(τ)) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
= −℘(pr′,s′(τ

′)|τ ′)− e2(τ
′)

e2(τ ′)− e1(τ ′)
(A.9)

= −λr′,s′(t(τ
′)) + 1 = −λr′,s′(1− t(τ)) + 1

= −λr̃,s̃(1− t(τ)) + 1,

where (r̃, s̃) ∈ ±(r′, s′)+Z2 is given by (A.8), namely s̃ = min{r, 1−r} ∈
[0, 12 ]. Now our assertion follows readily from Proposition A.1. q.e.d.

To give the asymptotic behavior as t ↑ +∞, we remark that t(τ) ∈
(1,+∞) provided τ ∈ 1 + iR+, see the proof of the following result.

Proposition A.3. Suppose that t = t(τ), τ ∈ 1 + iR+ and λ(t) =
λr,s(t) is a real solution with (r, s) ∈ [0, 1)× [0, 12 ] \ 1

2Z
2. Define

(A.10) (r1, s1) :=

{
(r + s, s) if r + s < 1,
(r + s− 1, s) if r + s ≥ 1.

Then the following hold:

(i) if r1 �∈ {0, 12}, then

λ(t) = − s̃e2πir̃

2(2s̃− 1)
(16t)1−2s̃ +O(1 + t1−4s̃) as t ↑ +∞,

where

(r̃, s̃) =

⎧⎨
⎩

(s1, 1− r1) if r1 ∈ (12 , 1),
(1− s1, r1) if r1 ∈ (0, 12), s1 > 0,
(0, r1) if r1 ∈ (0, 12), s1 = 0.

(ii) if r1 = 0, then

λ(t) =
1

2
+O(t−1) as t ↑ +∞.

(iii) if r1 =
1
2 , then

λ(t) = 2t+
1

4
(cos(2πs1)− 2) +O(t−1) as t ↑ +∞.

Proof. Let τ ′ = T−1 · τ = τ − 1 ∈ iR+. Then e1(τ
′) = e1(τ), e2(τ

′) =
e3(τ) and e3(τ

′) = e2(τ), which implies t(τ) = 1
t(τ ′) ∈ (1,+∞). Define

(s′, r′) = (s, r) · γ−1 = (s, r + s). By using (4.5) we have

λr,s(t(τ)) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
=

℘(pr′,s′(τ
′)|τ ′)− e1(τ

′)
e3(τ ′)− e1(τ ′)

(A.11)

=
λr′,s′(t(τ

′))
t(τ ′)

= t(τ)λr′,s′(t(τ)
−1)

= t(τ)λr1,s1

(
1

t(τ)

)
,
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where (r1, s1) ∈ (r′, s′) + Z2 is given by (A.10). Consequently, this
proposition follows readily from Proposition A.2. q.e.d.

As pointed out in §1, no solution is real-valued along the real-axis.
To see it, we first classify all solutions λr,s(t) which are real-valued along
t(τ) ∈ (0, 1) with τ ∈ iR+.

Proposition A.4. Let t = t(τ), τ ∈ iR+ and (r, s) ∈ C2\12Z2. Then
λr,s(t(τ)) is real-valued along τ ∈ iR+ if and only if either r ∈ R,
s ∈ 1

2Z + iR or s ∈ R, r ∈ 1
2Z + iR. In particular, for such a solution

λr,s(t(τ)), it is smooth for t(τ) ∈ (0, 1) if and only if it is also a real
solution.

Proof. Since τ ∈ iR+, it is easy to see from the definition (1.4) of

℘(z) that ℘(z) = ℘(z̄), ℘′(z) = ℘′(z̄) and ζ(z) = ζ(z̄). In particular,
ej(τ) ∈ R, η1(τ) ∈ R and η2(τ) ∈ iR. Clearly λr,s(t(τ)) is real-valued
for τ ∈ iR+ if and only if ℘(pr,s(τ)) is real-valued for τ ∈ iR+, which is
equivalent to

℘(pr,s(τ)) = ℘(pr,s(τ))

= ℘(r + sτ) +
℘′(r + sτ)

2(ζ(r + sτ)− rη1(τ)− sη2(τ))

= ℘(r̄ − s̄τ) +
℘′(r̄ − s̄τ)

2(ζ(r̄ − s̄τ)− r̄η1(τ) + s̄η2(τ))

= ℘(pr̄,−s̄(τ)) for all τ ∈ iR+.(A.12)

Together with (4.7), we conclude that λr,s(t(τ)) is real-valued for τ ∈
iR+ if and only if (r, s) ≡ ±(r̄,−s̄) modZ2. This proves the first asser-
tion.

For the second assertion, we recall [6, Theorem 1.6] where we proved
that any real solution λr,s(t) has no singularities in R\{0, 1}, i.e., λr,s(t) �∈
{0, 1, t,∞} for all t ∈ R\{0, 1}, so the sufficient part holds. For the nec-
essary part, it suffices to prove r, s ∈ R. If not, without loss of generality,
we may assume Im s �= 0. Then r ∈ R and s ∈ 1

2Z + iR. Clearly there

exists τ0 ∈ iR+ such that r + sτ0 ∈ {0, 12τ0} + Λτ0 , by which we have
λr,s(t(τ0)) ∈ {1,∞}, namely λr,s(t(τ)) has a singularity t(τ0) ∈ (0, 1),
a contradiction with the assumption that λr,s(t(τ)) is smooth in (0, 1).

q.e.d.

Remark A.5. From Propositions A.1, A.2 and A.4, we see that for
any real solution λr,s(t(τ)) which is real-valued along τ ∈ iR+, its ana-
lytic continuation to the line 1+ iR+ (i.e., t(τ) ∈ (1,+∞)) or to the arc
{τ ∈ H | |τ − 1

2 | = 1
2} (i.e., t(τ) ∈ (−∞, 0)) turns out not real-valued.

It is easy to see that any other solution cannot be real-valued along the
real-axis either, because it has at least a branch point at one of {0, 1,∞}
by Propositions 3.4 and 4.4.
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The following result seems an interesting consequence of our smooth-
ness result.

Proposition A.6. Let t = t(τ), τ ∈ iR+ and (r, s) ∈ [0, 1)× [0, 12 ] \
1
2Z

2. Then

0 < t < λr,0(t) < 1, 0 < λ0,s(t) < t < 1,(A.13)

λr, 1
2
(t) < 0, λ 1

2
,s(t) > 1.

In particular, λr,0(t) and λ0,s(t) are both one-to-one from (0, 1) onto
(0, 1).

Proof. By Proposition A.4 and the assumption, λr,0, λ0,s, λr, 1
2
and

λ 1
2
,s are all real-valued for τ ∈ iR+. To prove (A.13), we use again that

any real solution λr,s(t) satisfies λr,s(t) �∈ {0, 1, t,∞} for all t ∈ R\{0, 1}.
Together this with Propositions A.1 and A.2, (A.13) follows readily.

It suffices to prove the one-to-one for λr,0(t). The proof for λ0,s(t) is
similar and we omit the details. Recall from Propositions A.1, A.2 and
(A.13) that

lim
t↓0

λr,0(t) = 0, lim
t↑1

λr,0(t) = 1, t < λr,0(t) < 1.

Suppose λr,0(t) is not one-to-one, then there is a critical point t0 ∈ (0, 1)
such that λ′

r,0(t0) = 0 and λ′′
r,0(t0) ≤ 0, which implies from Painlevé VI

(1.2) that

1

8
− 1

8

t0
λ(t0)2

− 1

8

1− t0
(λ(t0)− 1)2

− 3

8

t0(1− t0)

(λ(t0)− t0)2
≥ 0.

Thus, t0 < λ(t0)
2 and 1− t0 < (λ(t0)− 1)2, which imply 2λ(t0)(λ(t0)−

1) > 0, a contradiction to 0 < λ(t0) < 1.
This completes the proof. q.e.d.
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[14] G.H. Halphen, Traité des Fonctions Elliptique II, 1888.

[15] E. Hecke, Zur Theorie der elliptischen Modulfunctionen, Math. Ann. 97 (1926),
210–242.

[16] N.J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations,
J. Diff. Geom. 42 (1995), no. 1, 30–112, MR1350695, Zbl 0861.53049.
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