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DEGENERATIONS OF ABELIAN DIFFERENTIALS

Dawei Chen

Abstract

Consider degenerations of Abelian differentials with prescribed
number and multiplicity of zeros and poles. Motivated by the the-
ory of limit linear series, we define twisted canonical divisors on
pointed nodal curves to study degenerate differentials, give dimen-
sion bounds for their moduli spaces, and establish smoothability
criteria. As applications, we show that the spin parity of holomor-
phic and meromorphic differentials extends to distinguish twisted
canonical divisors in the locus of stable pointed curves of pseudo-
compact type. We also justify whether zeros and poles on gen-
eral curves in a stratum of differentials can be Weierstrass points.
Moreover, we classify twisted canonical divisors on curves with
at most two nodes in the minimal stratum in genus three. Our
techniques combine algebraic geometry and flat geometry. Their
interplay is a main flavor of the paper.
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1. Introduction

An Abelian differential defines a flat metric on the underlying Rie-
mann surface with conical singularities at its zeros. Varying the flat
structure by GL+

2 (R) induces an action on the moduli space of Abelian
differentials, called Teichmüller dynamics. A number of questions about
the geometry of a Riemann surface boil down to the study of its GL+

2 (R)-
orbit, which has provided abundant results in various fields. To name a
few, Kontsevich and Zorich ([KZ]) classified connected components of
strata of Abelian differentials with prescribed number and multiplicity
of zeros. Surprisingly those strata can have up to three connected com-
ponents, due to hyperelliptic and spin structures. Eskin and Okounkov
([EO]) used symmetric group representations and modular forms to
enumerate special GL+

2 (R)-orbits arising from covers of tori with only
one branch point, which allows them to compute volume asymptotics
of strata of Abelian differentials. Eskin and Masur ([EMa]) proved
that the number of families of bounded closed geodesics on generic flat
surfaces in a GL+

2 (R)-orbit closure has quadratic asymptotics, whose
leading term satisfies a formula of Siegel–Veech type. Eskin, Kontse-
vich, and Zorich ([EKZ]) further related a version of this Siegel–Veech
constant to the sum of Lyapunov exponents under the Teichmüller geo-
desic flow. In joint work with Möller ([CM1, CM2]) the author applied
intersection theory on moduli spaces of curves to prove a nonvarying
phenomenon of sums of Lyapunov exponents for Teichmüller curves in
low genus. A recent breakthrough by Eskin, Mirzakhani, and Moham-
madi ([EMi, EMM]) showed that the closure of any GL+

2 (R)-orbit is
an affine invariant manifold, i.e., locally it is cut out by linear equations
of relative period coordinates with real coefficients. More recently Filip
([F]) proved that all affine invariant manifolds are algebraic varieties
defined over Q, generalizing Möller’s earlier work on Teichmüller curves
([Mö]).

Despite the analytic guise in the definition of Teichmüller dynam-
ics, there is a fascinating and profound algebro-geometric foundation
behind the story, already suggested by some of the results mentioned
above. In order to borrow tools from algebraic geometry, the upshot is
to understanding degenerations of Abelian differentials, or equivalently,
describing a compactification of strata of Abelian differentials, analo-
gous to the Deligne–Mumford compactification of the moduli space of
curves by adding stable nodal curves. This is the focus of the current
paper.

We use g to denote the genus of a Riemann surface or a smooth,
complex algebraic curve. Let μ = (m1, . . . ,mn) be a partition of 2g −
2. Consider the space H(μ) parameterizing pairs (C, ω), where C is
a smooth, connected, compact complex curve of genus g, and ω is a
holomorphic Abelian differential on C such that (ω)0 = m1p1 + · · · +



DEGENERATIONS OF ABELIAN DIFFERENTIALS 397

mnpn for distinct points p1, . . . , pn ∈ C. We say thatH(μ) is the stratum
of (holomorphic) Abelian differentials with signature μ. For a family of
differentials in H(μ), if the underlying smooth curves degenerate to a
nodal curve, what is the corresponding limit object of the differentials?
In other words, is there a geometrically meaningful compactification of
H(μ) and can we describe its boundary elements?

The space of all Abelian differentials on genus g curves forms a vector
bundle H of rank g, called the Hodge bundle, over the moduli space Mg

of smooth genus g curves. Let Mg be the Deligne–Mumford moduli
space of stable nodal genus g curves. The Hodge bundle H extends to
a rank g vector bundle H overMg. If C is nodal, the fiber of H over C
can be identified with H0(C,K), where K is the dualizing line bundle of
C. Geometrically speaking, H0(C,K) is the space of stable differentials
ω̃ such that ω̃ has at worst simple pole at each node of C with residues
at the two branches of every node adding to zero (see, e.g., [HMo,
Chapter 3.A]).

Thus it is natural to degenerate Abelian differentials to stable differ-
entials, i.e., to consider the closure of H(μ) in H. Denote by H(μ) the

closure of H(μ) in H. For (C, ω) ∈ H, let C̃ be the normalization of C.
First consider the case when ω has isolated zeros and simple poles, i.e.,
it does not vanish entirely on any irreducible component of C. Identify

ω with a stable differential ω̃ on C̃. Suppose that

(ω̃)0 − (ω̃)∞ =
∑
i

aizi +
∑
j

(b′jh
′
j + b′′jh

′′
j )−

∑
k

(p′k + p′′k),

where the zi are the zeros of ω̃ in the smooth locus of C, the h′j , h
′′
j are

the preimages of the node hj which is not a pole of ω̃, and the p′k, p
′′
k

are the simple poles of ω̃ on the preimages of the node pk. Moreover,
ai ≥ 1 is the vanishing order of ω̃ at zi, and b′j , b

′′
j ≥ 0 are the vanishing

orders of ω̃ on h′j , h
′′
j , respectively. Our first result describes which strata

closures in H contain such (C, ω).

Theorem 1.1. In the above setting, we have

(C, ω) ∈ H(· · · , ai, · · · , b′j + 1, b′′j + 1, · · · ).
Comparing to the signature of ω̃, the notation (· · · , ai, · · · , b′j+1, b′′j+

1, · · · ) means keeping all ai unchanged, adding one to all b′j , b
′′
j , and

getting rid of all −1. We remark that when ω vanishes on a component
of C, we prove a similar result (see Corollary 3.4).

Even though H has a nice vector bundle structure, a disadvantage of
compactifying H(μ) in H is that sometimes it loses information of the
limit positions of the zeros of ω, especially if ω vanishes on a component
of the underlying curve. Alternatively, we can consider degenerations in
the Deligne–Mumford moduli space Mg,n of stable genus g curves with
n ordered marked points by marking the zeros of differentials in H(μ).
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For μ = (m1, . . . ,mn) an ordered partition of 2g−2, let P(μ) ⊂Mg,n

parameterize pointed stable curves (C, z1, . . . , zn), where m1z1 + · · · +
mnzn is a canonical divisor on a smooth curve C. We say that P(μ) is
the stratum of (holomorphic) canonical divisors with signature μ. If we
do not order the zeros, then P(μ) is just the projectivization of H(μ),
parameterizing differentials modulo scaling. Denote by P(μ) the closure
of P(μ) in Mg,n.

Inspired by the theory of limit linear series [EH1], we focus on nodal
curves of the following type inMg,n. A nodal curve is of compact type if
every node is separating, i.e., removing it makes the whole curve discon-
nected. A nodal curve is of pseudocompact type if every node is either
separating or a self-intersection point of an irreducible component. We
call a node of the latter type a self-node or an internal node, since both
have been used in the literature. Note that curves of compact type are
special cases of pseudocompact type, where all irreducible components
are smooth.

For the reader to get a feel, let us first consider curves of compact
type with only one node. Suppose (C, z1, . . . , zn) ∈ Mg,n such that
C = C1 ∪q C2, where Ci is smooth and has genus gi, and q is a node
connecting C1 and C2. In particular, the marked points zj are different
from q. Define

Mi =
∑
zj∈Ci

mj ,

as the sum of zero orders in each component of C. Our next re-
sult determines when the stratum closure P(μ) in Mg,n contains such
(C, z1, . . . , zn).

Theorem 1.2. In the above setting, (C, z1, . . . , zn) ∈ P(μ) if and
only if ∑

zj∈Ci

mjzj + (2gi − 2−Mi)q ∼ KCi ,

for i = 1, 2, where ∼ stands for linear equivalence.

For curves of (pseudo)compact type with more nodes, we prove a
more general result (see Theorem 4.14 and Remark 4.15). In general,
we remark that for a pointed nodal curve of pseudocompact type to be
contained in P(μ), the linear equivalence condition as above is necessary,
but it may fail to be sufficient (see Example 4.5 and Proposition 4.6).

For curves of non-pseudocompact type, extra complication comes into
play when blowing up a non-separating node and inserting chains of ra-
tional curves in order to obtain a regular smoothing family of the curve.
We explain this issue and discuss a possible solution in Section 4.5. We
also treat certain curves of non-pseudocompact type in low genus by an
ad hoc method (see Section 7).
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A useful idea is to thinking of the pair⎛⎝ ∑
zj∈C1

mjzj + (2g1 − 2−M1)q,
∑
zj∈C2

mjzj + (2g2 − 2−M2)q

⎞⎠ ,

appearing in Theorem 1.2 as a twisted canonical divisor (see Section 4.1),
in the sense that each entry is an ordinary canonical divisor on Ci. Note
that if 2gi − 2−Mi < 0, then it is not effective, i.e., the corresponding
differential on Ci is meromorphic with a pole. In general, we call such
Ci a polar component. Conversely if on Ci a twisted canonical divisor
is effective, we call it a holomorphic component.

Therefore, it is natural to enlarge our study by considering meromor-
phic differentials and their degenerations, also for the sake of complete-
ness. Take a sequence of integers μ = (k1, . . . , kr,−l1, . . . ,−ls) such
that ki, lj > 0, and

r∑
i=1

ki −
s∑

j=1

lj = 2g − 2.

We still use H(μ) to denote the stratum of meromorphic differentials
with signature μ, parameterizing meromorphic differentials ω on con-
nected, closed genus g Riemann surfaces C such that

(ω)0 − (ω)∞ =
r∑

i=1

kizi −
s∑

j=1

ljpj ,

for distinct zi, pj ∈ C. We sometimes allow the case ki = 0 by treating
zi as a marked point irrelevant to the differential. Let P(μ) be the
corresponding stratum of meromorphic canonical divisors with signature
μ. As in the case of holomorphic differentials, ordering and marking the
zeros and poles, we denote by P(μ) the closure of P(μ) in Mg,n with
n = r+ s. As an analogue of Theorem 1.2, we have the following result.

Theorem 1.3. Suppose C = (C1∪q C2, z1, . . . , zr, p1, . . . , ps) ∈Mg,n

is a curve of compact type with one node q such that Ci has genus gi
and both Ci are polar components. Then C ∈ P(k1, . . . , kr,−l1, . . . ,−ls)
if and only if∑

zj∈Ci

kjzj −
∑

ph∈Ci

lhph + (2gi − 2−Mi)q ∼ KCi ,

for i = 1, 2, where Mi =
∑

zj∈Ci
kj −

∑
ph∈Ci

lh.

Again, here we treat the pair
∑

zj∈Ci
kjzj −

∑
ph∈Ci

lhph + (2gi− 2−
Mi)q as a twisted meromorphic canonical divisor on C. For curves of
(pseudo)compact type with more nodes, we prove a more general result
for twisted meromorphic canonical divisors (see Theorem 4.20). We re-
mark that in both holomorphic and meromorphic cases, the upshot of
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our proof is to establish certain dimension bounds for irreducible com-
ponents of moduli spaces of twisted canonical divisors (see Section 4.2).

Note that for special signatures μ, P(μ) can be disconnected. Kont-
sevich and Zorich ([KZ]) classified connected components for strata
of holomorphic differentials. In general, P(μ) may have up to three
connected components, distinguished by hyperelliptic, odd or even spin
structures. When these components exist, we adapt the same notation
as [KZ], using “hyp”, “odd” and “even” to distinguish them. Recently
Boissy ([Bo]) classified connected components for strata of meromorphic
differentials, which are similarly distinguished by hyperelliptic and spin
structures. Therefore, when P(μ) has more than one connected compo-
nent, one can naturally ask how to distinguish the boundary points in
the closures of its connected components.

For hyperelliptic components, it is well-known that a degenerate hy-
perelliptic curve in Mg can be described explicitly using the theory of
admissible covers ([HMu]), by comparing to the moduli space of sta-
ble genus zero curves with 2g + 2 marked points, where the marked
points correspond to the 2g + 2 branch points of a hyperelliptic double
cover. In this way we have a good understanding of compactifications
of hyperelliptic components. For spin components, the following result
distinguishes their boundary points in the locus of curves of pseudocom-
pact type.

Theorem 1.4. Let P(μ) be a stratum of holomorphic or meromor-
phic differentials with signature μ that possesses two spin components
P(μ)odd and P(μ)even. Then P(μ)odd and P(μ)even are disjoint in the
locus of curves of pseudocompact type.

However, we remark that in the locus of curves of non-pseudocompact
type in Mg,n, these components can intersect (see Theorem 5.3).

For a point p on a genus g Riemann surface C, if h0(C, gp) ≥ 2, we
say that p is a Weierstrass point. The study of Weierstrass points has
been a rich source for understanding the geometry of Riemann surfaces
(see, e.g., [ACGH, Chapter I, Exercises E]). In the context of strata
of holomorphic differentials, for example, if m1z1 + · · · + mnzn is a
canonical divisor of C such that m1 ≥ g, then it is easy to see that z1
is a Weierstrass point. Furthermore, the Weierstrass gap sequences of
the unique zero of general differentials in the minimal strata P(2g − 2)
were calculated by Bullock ([Bu]). Using techniques developed in this
paper, we can prove the following result.

Theorem 1.5. Let (C, z1, . . . , zr, p1, . . . , ps) be a general curve in (the
non-hyperelliptic components of) P(k1, . . . , kr,−l1, . . . ,−ls) with s > 0.
Then zi is not a Weierstrass point.

We also establish similar results as above in a number of other cases
(see Propositions 6.5 and 6.6).
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This paper is organized as follows. In Section 2, we introduce basic
tools that are necessary to prove our results, such as limit linear se-
ries and admissible covers. In Section 3, we consider degenerations of
Abelian differentials in the Hodge bundle H and prove Theorem 1.1. In
Section 4, we consider degenerations of canonical divisors in Mg,n and
prove Theorems 1.2 and 1.3. In Section 5, we consider boundary points
of connected components of H(μ) and prove Theorem 1.4. In Section 6,
we study Weierstrass point behavior for general differentials in H(μ)
and prove Theorem 1.5. Finally, in Section 7, we carry out a case study
by analyzing the boundary of P(4) in M3,1 in detail.

Our techniques combine both algebraic geometry and flat geometry.
The interplay between the two fields is a main flavor throughout the
paper. For that reason, we will often identify smooth, complex alge-
braic curves with Riemann surfaces and switch our language back and
forth.
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Matt Bainbridge, Gabriel Bujokas, Izzet Coskun, Eduard Duryev, Alex
Eskin, Eduardo Esteves, Simion Filip, Sam Grushevsky, Joe Harris,
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Geometry”, Ilhabela, January 2015. The author thanks the organizers
Sasha Anan’in, Ivan Cheltsov, and Carlos Grossi for their invitation and
hospitality. Finally, the author thanks the referees for helpful comments
on the paper.

2. Preliminaries

In this section, we review basic background material and introduce
necessary techniques that will be used later in the paper.

2.1. Abelian differentials and translation surfaces. A translation
surface (also called a flat surface) is a compact topological surface C
(without boundary) together with a finite set Σ ⊂ C such that:

• There is an atlas of charts from C\Σ→ C with transition functions
given by translation.

• For each p ∈ Σ, under the Euclidean metric of C the total angle
at p is (2π) · k for some k ∈ Z+.

We say that p is a saddle point of cone angle (2π) · k.
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Equivalently, a translation surface is a closed Riemann surface C with
a holomorphic Abelian differential ω, not identically zero:

• The set of zeros of ω corresponds to Σ in the first definition.
• If p is a zero of ω of order m, then the cone angle at p is (2π) ·
(m+ 1).

Let us briefly explain the equivalence between translation surfaces
and Abelian differentials. Given a translation surface, away from its
saddle points differentiating the local coordinates yields a globally de-
fined holomorphic differential. Conversely, integrating an Abelian dif-
ferential away from its zeros provides an atlas of charts with transition
functions given by translation. Moreover, a saddle point p has cone
angle (2π) · (m + 1) if and only if locally ω = d(zm+1) ∼ zmdz for a
suitable coordinate z, hence if and only if p is a zero of ω of order m.
We refer to [Z] for a comprehensive introduction to translation surfaces.

2.2. Strata of Abelian differentials and canonical divisors. Take
a sequence of positive integers μ = (m1, . . . ,mn) such that

∑n
i=1mi =

2g − 2. We say that μ is a partition of 2g − 2. Define

H(μ) =
{
(C, ω) | C is a closed, connected Riemann surface of genus g,

ω is an Abelian differential on C such that (ω)0 = m1p1+ · · ·+mnpn

}
.

We say that H(μ) is the stratum of (holomorphic) Abelian differentials
with signature μ. Using the description in Section 2.1, equivalentlyH(μ)
parameterizes translation surfaces with n saddle points, each having
cone angle (mi + 1) · (2π). By using relative period coordinates (see,
e.g., [Z, Section 3.3]), H(μ) can be regarded as a complex orbifold of
dimension

dimCH(μ) = 2g + n− 1,

where n is the number of entries in μ.
For special partitions μ, H(μ) can be disconnected. Kontsevich and

Zorich ([KZ, Theorems 1 and 2]) classified connected components of
H(μ) for all μ. If a translation surface (C, ω) has C being hyperelliptic,
(ω)0 = (2g−2)z or (ω)0 = (g−1)(z1+z2), where z is a Weierstrass point
of C in the former or z1 and z2 are conjugate under the hyperelliptic
involution of C in the latter, we say that (C, ω) is a hyperelliptic trans-
lation surface. Note that being a hyperelliptic translation surface not
only requires C to be hyperelliptic, but also imposes extra conditions
on ω (see [KZ, Definition 2 and Remark 3]).

In addition, for a nonhyperelliptic translation surface (C, ω), if (ω)0 =
2k1z1 + · · ·+ 2knzn, then the line bundle

OC

(
n∑

i=1

kizi

)
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is a square root of KC , which is called a theta characteristic. Such a
theta characteristic along with its parity, i.e.,

h0

(
C,

n∑
i=1

kizi

)
(mod 2)

is called a spin structure (see Section 2.7 for more details). In general,
H(μ) may have up to three connected components, distinguished by
possible hyperelliptic structures and the parity of spin structures.

Note that two Abelian differentials are multiples of each other if
and only if their associated zero divisors are the same. Therefore, it
makes sense to define the stratum of canonical divisors with signature
μ in Mg,n, denoted by P(μ), parameterizing (C, z1, . . . , zn) such that∑n

i=1mizi is a canonical divisor in C. Here we choose to order the
zeros only for the convenience of stating related results. Alternatively if
one considers the corresponding stratum of canonical divisors without
ordering the zeros, it is just the projectivization of H(μ). In particular,

dimC P(μ) = dimCH(μ)− 1 = 2g + n− 2.

2.3. Meromorphic differentials and translation surfaces with
poles. One can also consider the flat geometry associated to meromor-
phic differentials on Riemann surfaces. In this case we obtain flat sur-
faces with infinite area, called translation surfaces with poles.

For k1, . . . , kr, l1, . . . , ls ∈ Z+ such that
∑r

i=1 ki −
∑s

j=1 lj = 2g − 2,
denote by

H(k1, . . . , kr,−l1, . . . ,−ls),
the stratum of meromorphic differentials parameterizing (C, ω), where
ω is a meromorphic differential on a closed, connected genus g Riemann
surface C such that ω has zeros of order k1, . . . , kr and poles of order
l1, . . . , ls, respectively. The dimension and connected components of
H(k1, . . . , kr,−l1, . . . ,−ls) have been determined by Boissy ([Bo, The-
orems 1.1, 1.2 and Lemma 3.5]), using an infinite zippered rectangle
construction. In particular, if s > 0, i.e., if there is at least one pole,
then

dimCH(k1, . . . , kr,−l1, . . . ,−ls) = 2g − 2 + r + s.

If we consider meromorphic differentials modulo scaling, i.e., meromor-
phic canonical divisors, then the corresponding stratum has dimension

dimC P(k1, . . . , kr,−l1, . . . ,−ls) = 2g − 3 + r + s.

As in the case of holomorphic differentials, H(k1, . . . , kr,−l1, . . . ,−ls)
can be disconnected due to possible hyperelliptic and spin structures
([Bo, Section 5]), but all connected components of a stratum have the
same dimension.

A special case is when ω has a simple pole at p. Under flat geometry,
the local neighborhood of p can be visualized as a half-infinite cylinder
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(see [Bo, Figure 3]). The width of the cylinder corresponds to the
residue of ω at p.

For a pole of order m ≥ 2, one can glue 2m− 2 basic domains appro-
priately to form a flat-geometric presentation (see [Bo, Section 3.3]).
Each basic domain is a “broken half-plane” whose boundary consists of
a half-line to the left and a parallel half-line to the right, connected by
finitely many broken line segments. In particular, the residue of a pole
can be read off from the complex lengths of the broken line segments
and the gluing pattern.

For example, for k ≥ 0 the differential zkdz has a zero of order k, so
locally one can glue 2k + 2 half-disks consecutively to form a cone of
angle 2π · (k + 1), see Figure 1.

B1 A1

B1 A2

B2

B2

A2

A3

Bk+1 Ak+1

Bk+1 A1

Figure 1. A zero of order k.

Now let w = 1/z, and the differential with respect to w has a pole of
degree k+2 with zero residue. In terms of the flat-geometric language,
the 2k + 2 half-disks transform to 2k + 2 half-planes (with the disks
removed), where the newborn left and right half-line boundaries are
identified in pairs by the same gluing pattern, see Figure 2.

AjBi

AiBi

Figure 2. Half-planes transformed from half-disks.

Furthermore, varying the positions of the half-line boundaries with
suitable rotating and scaling can produce poles of order k + 2 with
arbitrary nonzero residues (see [Bo, Section 2.2]).
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2.4. Deligne–Mumford stable curves and stable one-forms. Let
Mg,n be the Deligne–Mumford moduli space of stable nodal genus g
curves with n ordered marked points (C, p1, . . . , pn). The stability con-
dition means that Aut(C, p1, . . . , pn) is finite, or equivalently, the nor-
malization of every rational component of C contains at least three spe-
cial points (preimages of a node or marked points). For S ⊂ {1, . . . , n},
denote by Δi;S the boundary component of Mg,n whose general point
parameterizes two smooth curves of genus i and g−i, respectively, glued
at a node such that the genus i component only contains the marked
points labeled by S in the smooth locus. For i = 0 (resp. i = g), we
require that |S| ≥ 2 (resp. |S| ≤ n− 2) to fulfill the stability condition.
The codimension of Δi;S inMg,n is one, so we call it a boundary divisor.

The Hodge bundle H is a rank g vector bundle onMg (in the orbifold
sense). Formally it is defined as

H := π∗ωC/Mg
,

where π : C → Mg is the universal curve and ωC/Mg
is the relative

dualizing line bundle of π. Geometrically speaking, the fiber of H over
C is H0(C,K), where K is the dualizing line bundle of C. If C is nodal,
then H0(C,K) can be identified with the space of stable differentials on

the normalization C̃ of C. A stable differential ω̃ on C̃ is a meromorphic
differential that is holomorphic away from preimages of nodes of C and
has at worst simple pole at the preimages of a node, with residues
on the two branches of a polar node adding to zero (see, e.g., [HMo,
Chapter 3.A]).

2.5. Admissible covers. Harris and Mumford ([HMu]) developed the
theory of admissible covers to deal with degenerations of branched covers
of smooth curves to covers of nodal curves. Let f : C → D be a finite
morphism of nodal curves satisfying the following conditions:

• f maps the smooth locus of C to the smooth locus of D and maps
the nodes of C to the nodes of D.

• Suppose f(p) = q for a node p ∈ C and a node q ∈ D. Then there
exist suitable local coordinates x, y for the two branches at p, and
local coordinates u, v for the two branches at q, such that

u = f(x) = xm, v = f(y) = ym,

for some m ∈ Z+, see Figure 3.

We say that such a map f is an admissible cover. The reader can refer
to [HMo, Chapter 3.G] for a comprehensive introduction to admissible
covers. In this paper we will only use admissible double covers of rational
curves as degenerations of hyperelliptic coverings of P1. In particular,
the closure of the locus of hyperelliptic curves in Mg is isomorphic to

the moduli spaceM0,2g+2/S2g+2 of stable genus zero curves with 2g+2
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C

D

p

q

m

Figure 3. An admissible cover with a node of order m.

unordered marked points, where the 2g + 2 marked points correspond
to the branch points of a hyperelliptic double cover and the action of
the symmetric group S2g+2 is induced by permuting them.

2.6. Limit linear series. A linear series grd on a smooth curve C
consists of a degree d line bundle L with a subspace V ⊂ H0(C,L)
such that dimV = r + 1. For a point z ∈ C, take a basis σ0, . . . , σr of
V such that the vanishing orders ai = ordz(σi) are strictly increasing.
We say that 0 ≤ a0 < · · · < ar is the vanishing sequence of (L, V ) at z,
which is obviously independent of the choices of a basis. Set αi = ai− i.
The sequence 0 ≤ α0 ≤ · · · ≤ αr is called the ramification sequence of
(L, V ).

Now consider a nodal curve C. Recall that if removing any node
makes the whole curve disconnected, C is called of compact type. Equiv-
alently, a nodal curve is of compact type if and only if its Jacobian is
compact, which is then isomorphic to the product of Jacobians of its
irreducible components. One more equivalent definition uses the dual
graph of a nodal curve, whose vertices correspond to components of the
curve and two vertices are linked by an edge if and only if the corre-
sponding two components intersect at a node. It is easy to see that a
curve is of compact type if and only if its dual graph is a tree.

Eisenbud and Harris ([EH1]) established a theory of limit linear
series as a powerful tool to study degenerations of linear series from
smooth curves to curves of compact type. If C is a curve of compact
type with irreducible components C1, . . . , Ck, a (refined) limit linear se-
ries grd is a collection of ordinary grd’s (Li, Vi) on each Ci such that if
Ci and Cj intersect at a node q and if (a0, . . . , ar) and (b0, . . . , br) are
the vanishing sequences of (Li, Vi) and (Lj , Vj) at q, respectively, then
al + br−l = d for all l.

Eisenbud and Harris showed that if a family of grd’s on smooth curves
degenerate to a curve of compact type, then the limit object is a limit
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linear series grd. Furthermore, they constructed a limit linear series
moduli scheme Gr

d that is compatible with imposing ramification con-
ditions to points in the smooth locus of a curve, came up with a lower
bound on the dimension of any irreducible component of Gr

d, and used
it to study smoothability of limit linear series. They also remarked that
the method works for a larger class of curves, called tree-like curves,
which we call of pseudocompact type in our context. Recall that a curve
is of pseudocompact type, if every node is either separating or a self-
node, i.e., arising from the self-intersection of an irreducible component
of the curve. Equivalently, a curve is of pseudocompact type if any
simple closed path in its dual graph is a loop connecting a vertex to
itself.

We want to apply limit linear series to the situation when canoni-
cal divisors with n distinct zeros with prescribed vanishing orders de-
generate in the Deligne–Mumford moduli space Mg,n. In this context

we need to treat the case of limit canonical series gg−1
2g−2, because on a

smooth genus g curve a gg−1
2g−2 is uniquely given by the canonical line

bundle along with the space of holomorphic Abelian differentials. We
illustrate this idea in some cases (see Example 4.5 and Proposition 4.6).
Nevertheless, in general our situation is slightly different, since an ele-
ment in a stratum of differentials is a single section of the canonical line
bundle, not the whole space of sections. In principle keeping track of
degenerations of gg−1

2g−2 along with a special section could provide finer
information, but in practice it seems complicated to work with. Instead,
in Section 4.1, we introduce the notion of twisted canonical divisors that
play the role of “limit canonical divisors” on curves of pseudocompact
type. We also discuss a possible extension of twisted canonical divisors
to curves of non-pseudocompact type in Section 4.5.

2.7. Moduli of spin structures. Recall that a theta characteristic
is a line bundle L on a smooth curve C such that L⊗2 = KC , i.e., L
is a square root of the canonical line bundle. A theta characteristic is
also called a spin structure, whose parity is given by h0(C,L) (mod 2).
In particular, a spin structure is either even or odd, and the parity
is deformation invariant (see [A, Mu]). Cornalba ([Co]) constructed

a compactified moduli space of spin curves Sg = S+
g 	 S−

g over Mg,
which defines limit spin structures and further distinguishes odd and
even parities.

Let us first consider spin structures on curves of compact type. Take
a nodal curve C with two smooth components C1 and C2 union at a
node q. Blow up q to insert a P1 between C1 and C2 with new nodes
qi = Ci ∩ P1 for i = 1, 2. Such P1 is called an exceptional component.
Then a spin structure η on C consists of the data

(η1, η2,O(1)),
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where ηi is an ordinary theta characteristic on Ci and O(1) is a line
bundle of degree one on the exceptional component. Note that the total
degree of η is

(g1 − 1) + (g2 − 1) + 1 = g − 1,

which remains to be one half of the degree of KC . Since h
0(P1,O(1)) =

2, the parity of η is determined by

h0(C1, η1) + h0(C2, η2) (mod 2).

In other words, η is even (resp. odd) if and only if η1 and η2 have the
same (resp. opposite) parity. If there is no confusion, we will simply
drop the exceptional component and treat (η1, η2) as a limit theta char-
acteristic. The same description works for spin structures on a curve of
compact type with more nodes, by inserting an exceptional P1 between
any two adjacent components, and the parity is determined by the sum
of the parities on each non-exceptional component.

If C is a nodal curve of non-compact type, say, by identifying q1, q2 ∈
C̃ to form a non-separating node q, there are two kinds of spin structures
on C. The spin structures of the first kinds are just square roots of KC ,

which can be obtained as follows. Take a line bundle L on C̃ such that
L⊗2 ∼= C̃(q1+ q2). For each parity, there is precisely one way to identify
the fibers of L over q1 and q2, such that it descends to a square root of
KC with the desired parity. The spin structures of the second kinds are

obtained by blowing up q to insert a P1 attached to C̃ at q1 and q2, and

suitably gluing a theta characteristic L on C̃ to O(1) on the exceptional
component. In this case the parity is the same as that of L.

3. Degenerations in the Hodge bundle

In this section, we consider degenerations of holomorphic Abelian
differentials in the Hodge bundle H over Mg. Let us first prove The-

orem 1.1. Recall that C̃ is the normalization of C. Identify ω with a

stable differential ω̃ on C̃ satisfying

(ω̃)0 − (ω̃)∞ =
∑
i

aizi +
∑
j

(b′jh
′
j + b′′jh

′′
j )−

∑
k

(p′k + p′′k),

where the zi are the zeros of ω̃ in the smooth locus of C, the h′j , h
′′
j are

the preimages of the node hj which is not a pole of ω̃, and the p′k, p
′′
k are

the simple poles of ω̃ on the preimages of the node pk, see Figure 4.
Moreover, ai ≥ 1 is the vanishing order of ω̃ at zi, and b′j , b

′′
j ≥ 0

are the vanishing orders of ω̃ on h′j , h
′′
j , respectively. Then Theorem 1.1

states that (C, ω) is contained in the closure of H(· · · , ai, · · · , b′j+1, b′′j +
1, · · · ) in the Hodge bundle over Mg.

Proof of Theorem 1.1. We will carry out two local operations. First,
we need to smooth out a holomorphic node h with zero order b′ and b′′



DEGENERATIONS OF ABELIAN DIFFERENTIALS 409

p

z

h

Figure 4. A nodal curve with zeros and holomorphic
and polar nodes.

on the two branches of h to two smooth points of zero order b′ + 1 and
b′′ + 1, respectively. Secondly, we need to smooth out simple poles.

Let us describe the first operation. Recall the notation that the preim-

ages of h in the normalization C̃ are h′ and h′′. In C̃, take any two suffi-
ciently small parallel intervals of equal length to connect h′ to a nearby
point q′′ and connect h′′ to a nearby point q′ in reverse directions, cut
along the intervals, and finally identify the edges by translation as in
Figure 5.

B

c

d

a

A

B
s

A

b

Figure 5. Two parallel interval slits.

Locally we obtain two new zeros h′ = q′ and h′′ = q′′ of order b′+1 and
b′′+1, respectively. The zero orders increase by one for each, because the
cone angles at q′ and at q′′ are both 2π, so after this operation the new
cone angle at each zero gain an extra 2π. In particular, as long as the
interval is small enough but nonzero, it gives rise to a differential on a
genus g Riemann surface, which preserves the other zero and pole orders
of ω̃. Now shrinking the interval to a point, this operation amounts to
identifying h′ and h′′, thus recovering the stable differential (C, ω).

Next, let p be a simple pole with preimages p′ and p′′ in C̃. As
mentioned in Section 2.3, the local flat geometry of ω̃ at p′ and p′′ is
presented by two half-infinite cylinders with p′ = +∞ and p′′ = −∞,
see Figure 6, where the sides of the cylinders with the same labeling are
glued via translation.

The condition Resp′(ω̃) + Resp′′(ω̃) = 0 implies that both cylinders
have the same width. Truncate the half-infinite cylinders by two parallel
vectors (given by the residues) and identify the top and bottom by
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a

a

b

b

p

q

Figure 6. Half-infinite cylinders around simple poles.

translation as in Figure 7, where the sides of the cylinders with the
same labeling are glued via translation as before.

a

a

b

b

c

c

Figure 7. Local view of plumbing a cylinder.

The cylinders become of finite length, i.e., locally the simple pole dis-
appears. This operation is called plumbing a cylinder in the literature,
see Figure 8. In particular, the plumbing operation does not produce

Figure 8. Global view of plumbing a cylinder.
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any new zeros or poles. Conversely, extending the two finite cylinders
to infinity on both ends, we recover the pair of simple poles. The reader
can refer to [W, Section 6.3] for an explicit example of analytically
plumbing an Abelian differential at a simple pole.

Now carrying out the two operations locally for all holomorphic nodes
and simple poles one by one, we thus conclude that the stable differential
(C, ω) can be realized as a degeneration of holomorphic differentials in
the desired stratum. q.e.d.

Corollary 3.1. Let ω ∈ H0(C,K) on a nodal curve C. If (ω)0 =
m1z1 + · · ·+mnzn such that every zi is in the smooth locus of C, then

(C, ω) ∈ H(m1, . . . ,mn).

Proof. We first remark that by assumption C cannot have separating
nodes. Otherwise if X was a connected component of C separated by
such a node q, since the restriction of KC to X is KX(q), it would have
a base point at q, contradicting that ω has no zero in the nodal locus
of C. Now let us proceed with the proof of the corollary. Identify ω
with a stable differential ω̃ on the normalization of C. By assumption,
ω̃ has simple poles at preimages of each node of C, and hence there is
no holomorphic node. The desired result thus follows as a special case
of Theorem 1.1. q.e.d.

Nori ([N]) informed the author that the above corollary can also be
proved by studying first-order deformations of such (C, ω).

Example 3.2. Let C consist of two elliptic curves C ′ and C ′′ meeting
at two nodes p1 and p2. Let p′i ∈ C ′ and p′′i ∈ C ′′ be the preimages of
pi in the normalization of C. Let ω be a section of KC such that ω̃|C′

has a double zero at a smooth point z1 and two simple poles at p′1, p′2
and ω̃|C′′ has a double zero at a smooth point z2 and two simple poles
at p′′1, p′′2, see Figure 9.

C' C''

p1

p2

z1z2

Figure 9. A curve in H(2, 2)odd.

In other words, 2z1 ∼ p′1 + p′2 in C ′ and 2z2 ∼ p′′1 + p′′2 in C ′′ with
the residue condition Resp′i(ω̃) + Resp′′i (ω̃) = 0 for i = 1, 2. It follows

from Theorem 1.1 that (C, ω) ∈ H(2, 2). Note that H(2, 2) has two
connected components H(2, 2)hyp and H(2, 2)odd. In this example, C
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is in the closure of locus of genus three hyperelliptic curves. However,
by assumption z1 and z2 are ramification points of the corresponding
admissible double cover, hence they are not conjugate under the hy-
perelliptic involution. We thus conclude that (C, ω) ∈ H(2, 2)odd and
(C, ω) �∈ H(2, 2)hyp.

Remark 3.3. In Theorem 1.1, the zero orders b′ and b′′ on both
branches of a holomorphic node matter, not only their sum. For exam-
ple, translation surfaces in H(2) cannot degenerate to two flat tori E1

and E2 attached at one point q such that both have nonzero area (in
this case b′ = b′′ = 0, hence Theorem 1.1 only implies smoothing into
H(1, 1)). This is because the dualizing line bundle restricted to Ei is
OEi(q), which has degree one. In particular, it cannot have a double
zero, unless the stable differential vanishes entirely on Ei. However, if
we forget the flat structure and only keep track of the limit position
of the double zero, using the notion of twisted canonical divisors (Sec-
tion 4.1) we will see that points in Ei that are 2-torsions to q appear as
all possible limits of the double zero.

We have discussed the case when ω has isolated zeros. If ω vanishes
on a component of C, we can obtain a similar result by tracking the zero
orders on the branches of the nodes contained in the complement of the
vanishing component. For ease of statement, let us deal with the case
when ω vanishes on only one component C ′, where C ′ is a connected
subcurve of C. The general case that ω vanishes on more components
can be similarly tackled without further difficulty.

Let C ′′ = C\C ′ and C ′ ∩ C ′′ = {q1, . . . , qm}. Since ω vanishes on C ′,
all q1, . . . , qm are holomorphic nodes. In the normalization C̃, let q′l and
q′′l be the preimages of ql contained in C̃ ′ and in C̃ ′′, respectively, for
l = 1, . . . ,m.

Consider ω̃ restricted to C̃ ′′ such that

(ω̃|
˜C′′)0−(ω̃|

˜C′′)∞ =
∑
i

aizi+
∑
j

(b′jh
′
j+b′′jh

′′
j )−

∑
k

(p′k+p′′k)+
∑
l

c′′l q
′′
l ,

where zi are the isolated zeros of ω̃ in the smooth locus of C, h′j , h
′′
j are

the preimages of the node hj that is not a pole of ω̃ and not contained
in C ′, and p′k, p

′′
k are the simple poles of ω̃ on the preimages of the node

pk. As before, ai ≥ 1 is the vanishing order of ω̃ at zi, b
′
j , b

′′
j ≥ 0 are the

vanishing orders of ω̃ on the preimages h′j , h
′′
j of the holomorphic node

hj , respectively, and c′′l ≥ 0 is the vanishing order of ω̃ on the preimage

q′′l of ql contained in C̃ ′′.
Suppose the arithmetic genus of C ′ is g′. Let μ′ be a partition of 2g′−2

such that C ′ has a differential ω′ with signature (c′1, . . . , c′l, d1, . . . , ds),
where c′l is the vanishing order of ω

′ at q′l and d1, . . . , ds are the vanishing
orders of ω′ at the zeros other than the q′l in C ′.
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Corollary 3.4. In the above setting, we have

(C, ω) ∈ H(· · · , ai, · · · , b′j + 1, b′′j + 1, · · · , c′l + 1, c′′l + 1, · · · , dr, · · · ).
Proof. Consider the nodal flat surface given by ω′ on C ′ and ω on

C ′′ union at q1, . . . , qm. Apply the local operations as in the proof of
Theorem 1.1 to smooth out zi, hj , pk, ql and dt into the desired stratum.
Meanwhile, scaling ω′ by t · ω′ as t→ 0 (and we require that the length
of the intervals used in the local operations tends to zero faster than
t), the area of the flat surface (C ′, t · ω′) tends to zero while ω on C ′′
remains unchanged. The limit flat surface restricted to C ′ corresponds
to the identically zero differential on C ′, hence equal to ω|C′ . We thus
obtain (C, ω) as a degeneration of differentials in the desired stratum.

q.e.d.

Example 3.5. Let C consist of two smooth curves C ′ and C ′′, both
of genus two, attached at a node q. Let q′ ∈ C ′ and q′′ ∈ C ′′ be the
preimages of q in the normalization of C. Let ω be a section of KC ,
identified with a stable differential ω̃ on the normalization of C, such
that ω|C′ ≡ 0 and (ω̃|C′′)0 = 2z′′ for a smooth point z′′ ∈ C ′′. In this
case, g′ = 2. Take μ′ = (2) and ω′ ∈ H(2) on C ′ such that (ω′)0 = 2z′
for a smooth point z′ ∈ C ′, see Figure 10.

C'

C''

q

z''

z'

Figure 10. A curve in H(2, 1, 1, 2).

Then we have c′ = c′′ = 0 and a = d = 2 in the above notation. By
Corollary 3.4, we conclude that (C, ω) ∈ H(2, 1, 1, 2).

4. Degenerations in the Deligne–Mumford space

As we have seen, a stable differential in the closure H(μ) ⊂ H may
vanish entirely on a component of the underlying curve. In this case
when Abelian differentials in H(μ) degenerate to it, we lose the infor-
mation about the vanishing component as well as the limit positions of
the zeros. Below we describe a refined compactification that resolves
this issue. Note that modulo scaling, an Abelian differential is uniquely
determined by its zeros, i.e., the corresponding canonical divisor. Recall
that P(μ) parameterizes canonical divisors with signature μ. Viewing
it as a subset in Mg,n by marking the zeros, we can take the closure
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P(μ) ⊂ Mg,n. The question reduces to analyzing which stable pointed

curves appear in the boundary of P(μ).
Inspired by the theory of limit linear series, we introduce the notion

of twisted canonical divisors, first on curves of pseudocompact type.
The upshot is that when canonical divisors in P(μ) degenerate from
underlying smooth curves to a curve of pseudocompact type, the limit
object in Mg,n must be a twisted canonical divisor. Conversely, in a
number of cases twisted canonical divisors do appear as such limits, but
not always. In the end we also discuss how to extend this notion to
curves of non-pseudocompact type.

4.1. Twisted canonical divisors. For the reader to get a feel, let us
begin with curves of compact type with only one node. Suppose that a
curve C has a node q connecting two smooth components C1 and C2 of
genera g1 and g2, respectively, with g1+g2 = g. Moreover, suppose that
C is the limit of a family of smooth genus g curves Ct over a punctured
disk T , see Figure 11.

Ct C1

C2

q

T

Figure 11. A curve of compact type in a family of curves.

Let X → T be the universal curve. The dualizing line bundle KC

serves as a limit of canonical line bundles KCt as t→ 0. However, this
limit is not unique. Because for any mi ∈ Z,

OX

(
2∑

i=1

miCi

)
|C ⊗KC(1)

is also a limit of KCt .
Observe that

OX (C1 + C2)|C ∼= OC ,

OX (C2)|C1
∼= OC1(q),

OX (C1)|C1
∼= OC1(−q).

Hence, restricted to C, such limit line bundles are determined by the
twisting coefficients mi and independent of the smoothing family X . We
say that the line bundle in (1) is a twisted canonical line bundle on C.
Equivalently in this case, a twisted canonical line bundle consists of the
data

(KC1(a1q),KC2(a2q)),
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where a1 + a2 = 2. From the viewpoint of differentials, KCi(aiq) is
the sheaf of meromorphic differentials on Ci that are holomorphic away
from q and have pole order at most ai at q.

The degree of KCi(aiq) is di = 2gi − 2 + ai. We say that the bidegree
of (KC1(a1q),KC2(a2q)) is (d1, d2), where d1 + d2 = 2g − 2. In partic-
ular, the dualizing line bundle KC corresponds to (KC1(q),KC2(q)) of
bidegree (2g1 − 1, 2g2 − 1). Note that knowing either one of the ai or
one of the di suffices to determine a twisted canonical line bundle on C.

Remark 4.1. Recall that a nodal curve is called of pseudocompact
type, if each of its nodes is either separating or is an internal node of
an irreducible component. Curves of compact type are special cases of
pseudocompact type. As in the theory of limit linear series ([HMo, p.
265–266]), the above analysis also applies to curves of pseudocompact
type by treating KCi as the dualizing line bundle of an irreducible com-
ponent Ci, if Ci contains self-nodes, and gi stands for the arithmetic
genus of Ci. In contrast, for a curve of non-pseudocompact type, even
if we fix the line bundles restricted to each of its components, in gen-
eral they do not determine the total line bundle. There are extra so
called enriched structures coming into play (see [Ma]), which depend
on first-order deformations of the curve.

Now suppose that a family of canonical divisors m1z1(t) + · · · +
mnzn(t) on Ct degenerates to m1z1 + · · ·+mnzn on C, where all the zi
are contained in the smooth locus of C. Define

Mi =
∑
zj∈Ci

mj ,

for i = 1, 2, measuring the total vanishing orders of the limit zeros in
Ci. We use “∼” to denote linear equivalence between two divisors on a
curve.

Proposition 4.2. In the above setting, we have∑
zj∈Ci

mjzj + (2gi − 2−Mi)q ∼ KCi ,(2)

for i = 1, 2.

In particular, this proposition proves the “only if” part of Theo-
rem 1.2.

Proof. Let π : X → T be the universal curve and ωX/T the relative
dualizing line bundle. Denote by Zi the section of π corresponding to
the zero zi(t) for i = 1, . . . , n. Define a line bundle L on X by

L := ωX/T ⊗OX ((M1 − 2g1 + 1)C2)⊗OX

(
−

n∑
i=1

miZi

)
.
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Note that for t �= 0,
∑n

i=1mizi(t) is a canonical divisor of Ct, and Ct

and C are disjoint. It follows that

L|Ct = KCt

(
−

n∑
i=1

mizi(t)

)
= OCt .

Moreover,

L|Ci = KCi

⎛⎝(Mi − 2gi + 2)q −
∑
zj∈Ci

mjzj

⎞⎠ ,

for i = 1, 2.
Consider the direct image sheaf π∗L. For t �= 0,

(π∗L)|Ct = H0(Ct,O) = C.

It follows from semicontinuity that h0(L|C) ≥ 1. Note that L|Ci is a
line bundle of degree zero for i = 1, 2. We claim that L|Ci is the trivial
line bundle on Ci. Proof by contradiction. If say L|C1 �= OC1 , then
for any section σ ∈ H0(L|C), σ|C1 ∈ H0(L|C1), hence σ|C1 ≡ 0. In
particular, σ(q) = 0, hence σ|C2 ≡ 0 and σ ≡ 0 on C, contradicting that
h0(L|C) ≥ 1.

Since L|Ci = OCi , it follows that

KCi ∼ (2gi − 2−Mi)q +
∑
zj∈Ci

mjzj ,

for i = 1, 2, thus proving the proposition. q.e.d.

From the viewpoint of differentials, Relation (2) means there exists
a (possibly meromorphic) differential on Ci such that its zero order at
zj ∈ Ci is mj and its zero or pole order at q is 2gi − 2−Mi. Note that

(2g1 − 2−M1) + (2g2 − 2−M1) = −2.
Relation (2) also implies that 2gi−2−Mi �= −1, for otherwise q is a base
point of KCi(q) and hence some zero zj would coincide with q, leading to
a contradiction. As a consequence, exactly one of 2gi−2−Mi is negative,
and we call the corresponding component Ci a polar component of C.

For (C, z1, . . . , zn) satisfying (2), we say that
∑n

i=1mizi is a twisted
canonical divisor. By definition, a twisted canonical divisor uniquely
determines the corresponding twisted canonical line bundle whose re-
striction to Ci is the line bundle

OCi

⎛⎝ ∑
zj∈Ci

mjzj

⎞⎠ .

Note that Ci is a polar component if and only if the restriction of the
twisted canonical line bundle has degree Mi strictly bigger than 2gi−2.
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The essence of Proposition 4.2 says that limits of canonical divisors in
P(μ) are twisted canonical divisors in the locus of curves of pseudocom-
pact type. Clearly the concepts of twisted canonical line bundles and
twisted canonical divisors as well as Proposition 4.2 can be generalized
without any difficulty to curves of pseudocompact type with arbitrarily
many nodes. Nevertheless, for curves of pseudocompact type with more
nodes, there exist twisted canonical divisors that do not appear as lim-
its of ordinary canonical divisors. This is one place where the theory
of limit linear series can help us extract more delicate information (see
Example 4.5 and Proposition 4.6).

Remark 4.3. If the universal curve X is not smooth at a separating
node of C, by blowing up and making finite base change successively, we
can resolve the singularity. The resulting special fiber amounts to in-
serting chains of rational curves between the two components connected
by the node. In this case, the curve is still of pseudocompact type, hence
the above argument works and we can deduce the same result (see [EH1,
Theorem 2.6 and Remark after]). In addition, we do not have to resolve
the surface singularity at a self-node, because locally at such a node the
corresponding component of C is still a Cartier divisor of X (see, e.g.,
[EM, Section 1.3]). However, for a curve of non-pseudocompact type,
inserting chains of rational curves at a non-separating and external node
may change significantly the possible types of twisted canonical divisors.
We analyze this issue in detail in Section 4.5.

4.2. Dimension bounds on spaces of twisted canonical divisors.
Recall that μ = (m1, . . . ,mn) is a partition of 2g − 2. Let π : X → B
be a smoothing family of genus g curves of compact type with n sec-
tions z1, . . . , zn, in the sense of [EH1, p. 354]. Inspired by [EH1,
Theorem 3.3], we show that there exists a variety P(X/B;μ) param-
eterizing (C, z1, . . . , zn) ∈ B such that

∑n
i=1mizi is a twisted canoni-

cal divisor on C. Moreover, P(X/B;μ) has a determinantal structure,
which gives rise to a lower bound for every irreducible component of
P(X/B;μ).

Theorem 4.4. There exists a variety P(X/B;μ) over B, compatible
with base change, whose point over any q in B (if not empty) corre-
sponds to a twisted canonical divisor given by m1z1(q) + · · ·mnzn(q).
Furthermore, every irreducible component of P(X/B;μ) has dimension
≥ dimB − g.

Proof. Our argument follows from [EH1, Proof of Theorem 3.3]. Let
Xq be the fiber of X over q. If in X no nodes are smoothed, it is clear
how to define the variety of twisted canonical divisors, by taking the
union of strata of ordinary (possibly meromorphic) canonical divisors
on each component of X.
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Suppose now some of the nodes of fibers of π are smoothed in the
generic fiber. It suffices to deal with the case when the general fiber
of X is smooth. Then for an arbitrary smoothing family, one regards
the family as being obtained from several families, in each of which all
nodes are smoothed (see [EH1, Figure in p. 355]).

It remains to prove the result when the general fiber of X is smooth.
Since the problem is local on B, we assume that B is affine. Take a
relatively ample divisor D on X such that D is contained in the smooth
locus of π and disjoint from the sections zi. Replacing D with a high
multiple of itself, we may assume that it intersects every component of
a reducible fiber with high degree. Denote by d the total degree of D
relative over B.

Let ωμ be a twisted relative canonical line bundle on X such that
restricted to each fiber (C, z1, . . . , zn) it is the unique twisted canonical
line bundle of multi-degree

∑
zj∈Ci

mj on every component Ci of C. The

existence of ωμ is explained in [EH1, p. 359]. It follows that π∗ωμ(D)
is a vector bundle of rank

1− g + (2g − 2 + d) = g − 1 + d,

by Riemann–Roch. Let P ′ be the corresponding projective bundle with
fiber dimension g − 2 + d over B. A point of P ′ over q′ ∈ B is thus a
section σ ∈ H0(ωμ(D)|Xq′ ), up to the equivalence σ ∼ λσ for a nonzero

scalar λ.
Consider the subvariety P ′(X/B;μ) in P ′ cut out by the following

groups of equations:

• Vanishing on D. We require that σ vanishes on D.
• Ramification at zi. For each section zi, σ vanishes on zi with
multiplicity ≥ mi.

The vanishing condition on D is given by d equations. The ramifica-
tion condition at each zi imposes mi equations, so the total ramification
conditions impose

∑n
i=1mi = 2g − 2 equations. It follows that the di-

mension of every irreducible component of P ′(X/B;μ) is at least

dimB + (g − 2 + d)− d− (2g − 2) = dimB − g.

Let U be an irreducible component of P ′(X/B;μ). For a general point
σ ∈ U , there are two possibilities. First, if σ vanishes on a component
of the underlying curve C, then this property holds for all sections
parameterized in U . The other case is that σ has isolated zeros in C.
Then it follows from the construction that

(σ)0 =

n∑
i=1

mizi +D,

which gives rise to a twisted canonical divisor by subtracting the fixed
part D. Conversely, a twisted canonical divisor determines such a σ
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up to scaling, where σ has isolated zeros in C. By collecting irreducible
components of P ′(X/B;μ) of the latter type, we thus obtain the desired
P(X/B;μ) parameterizing twisted canonical divisors with signature μ.

q.e.d.

We present an example to show that the dimension bound in Theo-
rem 4.4 can be attained.

Example 4.5. Consider μ = (1, 1) in g = 2. Let B1 be the locus of
curves of compact type inM2,2. Let U1 be the irreducible locus inM2,2

parameterizing pointed curves C that consist of two elliptic curves E1

and E2, connected by a rational curve R, where the two marked points
z1 and z2 are contained in R. Let qi = Ei∩R for i = 1, 2, see Figure 12.

q1

q2

z1

z2

E1

E2

R

Figure 12. Two elliptic curves connected by a rational
curve with two simple zeros.

Since z1+z2 ∼ q1+q2 in R ∼= P1, elements in U1 are twisted canonical
divisors with signature (1, 1). Note that dimB1 = dimM2,2 = 5 and
dimU1 = 3. Hence, the dimension of U1 is equal to dimB1 − g.

Similarly, for μ = (2) in g = 2, consider U2 ⊂ M2,1 parameterizing
the same underlying curve as in U1, where the unique marked point z
is contained in R, see Figure 13.

q1

q2

z

E1

E2

R

Figure 13. Two elliptic curves connected by a rational
curve with a double zero.

Since 2z ∼ q1+ q2 in R, elements in U2 are twisted canonical divisors
with signature (2). Note that dimB2 = dimM2,1 = 4 and dimU2 = 2.
Hence, the dimension of U2 is equal to dimB2 − g.
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We further classify which twisted canonical divisors in the above ex-
amples come from degenerations of ordinary canonical divisors.

Proposition 4.6. In the above setting, (C, z1, z2) ∈ U1 is contained
in P(1, 1) if and only if z1 + z2 is a section in the linear series g12 on R
induced by 2q1 ∼ 2q2. On the other hand, U2 is disjoint with P(2).

Proof. First consider (C, z1, z2) in U1. If it is a degeneration of canon-
ical divisors from P(1, 1), the canonical limit series on C possesses a
section z1 + z2 in its aspect g12 on R (see [EH1] for the definition of
aspects of limit linear series). By the compatibility condition on vanish-
ing sequences (see Section 2.6), the aspect on Ei has vanishing sequence
(0, 2) at qi for i = 1, 2. Hence, the vanishing sequences of the aspect
on R at q1 and q2 are both equal to (0, 2). It implies that the aspect
g12 on R is induced by 2q1 ∼ 2q2, i.e., a double cover of P1 ramified at
q1, q2 and mapping z1, z2 to the same image. Conversely, if z1 + z2 is a
section of such g12 on R, using either the smoothability result of limit
linear series or admissible double covers, we see that (C, z1, z2) can be
smoothed into P(1, 1).

The same argument works for (C, z) in U2. If it was contained in
P(2), the limit g12 on R would be a double cover of P1 ramified at q1, q2
and z, contradicting the fact that such a cover has only two ramification
points. q.e.d.

The proposition implies that there exist twisted canonical divisors
that cannot be smoothed. Before studying in general which twisted
canonical divisors appear in the boundary of P(μ), we point out that
as a component of space of twisted canonical divisors over Mg,n, the
dimension of P(μ) is indeed one larger than the dimension bound in
Theorem 4.4:

dimP(μ) = 2g + n− 2 = dimMg,n − (g − 1).

The reason is that on a genus g curve, the dimension of space of holo-
morphic sections for the canonical line bundle is one larger than the
other line bundles of degree 2g − 2. Under certain extra assumptions,
we can take this into account and come up with a refined dimension
bound as follows.

Proposition 4.7. In the setting of Theorem 4.4, suppose that the
twisted canonical line bundle on each fiber curve over B has exactly g-
dimensional space of sections. Then the dimension of every irreducible
component of P(X/B;μ) is at least

dimB − (g − 1).

Compared to Theorem 4.4, we say that dimB− (g− 1) is the refined
dimension bound. We remark that in the case B =Mg,n, i.e., smooth
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curves with nmarked points, P(X/B;μ) is just the stratum P(μ), hence
has dimension equal to the refined dimension bound.

Proof. The argument is similar to the proof of Theorem 4.4. The
only difference is that we do not twist by a very ample divisor D. In-
stead, by assumption π∗ωμ is a vector bundle of rank g over B. After
projectivization and imposing the vanishing conditions on zi, we obtain
the desired dimension lower bound as

dimB + (g − 1)− (2g − 2) = dimB − (g − 1). q.e.d.

Corollary 4.8. In the setting of Theorem 4.4, suppose that B pa-
rameterizes curves of compact type that have at most one node q such
that h0(Ci, (2gi − 2 − Mi)q) = 1 for any holomorphic component Ci.
Then every irreducible component of P(X/B;μ) has dimension at least

dimB − (g − 1).

Proof. Suppose C = C1 ∪q C2 is a nodal curve in B. Recall that Mi

is the sum of zero orders for those zeros contained in Ci. Without loss
of generality, assume that M1 > 2g1 − 2 and M2 ≤ 2g2 − 2. Then C1 is
a polar component and C2 is holomorphic. Let Ki be the restriction of
the corresponding twisted canonical line bundle Kμ to Ci, i.e.,

Ki = KCi((Mi − 2gi + 2)q),

which has degree Mi for i = 1, 2. Since M1 > 2g1−2, by Riemann–Roch
we have

h0(C1,K1) = 1− g1 +M1.

On C2, we have

h0(C2,K2) = h0(C2, (2g2 − 2−M2)q) + 1− g2 +M2 = 2− g2 +M2.

It implies that

h0(C,Kμ) = h0(C1,K1) + h0(C2,K2)− 1 = g,

where we subtract one because gluing two sections of K1 and K2 at q
imposes one condition. Now the desired dimension bound follows from
Proposition 4.7. q.e.d.

4.3. Smoothing twisted canonical divisors. Inspired by [EH1,
Theorem 3.4], using dimension bounds on P(X/B;μ) we obtain the
following smoothability result of twisted canonical divisors.

Proposition 4.9. In the setting of Proposition 4.7, suppose a pointed
curve (C, z1, . . . , zn) ∈ B is contained in an irreducible component U of
P(X/B;μ) such that dimU = dimB−(g−1), i.e., the refined dimension
bound is attained. Then (C, z1, . . . , zn) ∈ P(μ).
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Proof. We adapt the proof of [EH1, Theorem 3.4] to our case. Let

X̃ → B̃ be the versal family of pointed curves around (C, z1, . . . , zn).

Let f : B → B̃ be the map locally inducing X → B with n sections

of marked points. Let Ũ be a component of P(X̃/B̃;μ) such that U

is a component of f∗Ũ and let C̃ be the point in Ũ corresponding to
the pointed curve C. Since the dimension of space of sections does not

drop under specialization, the family X̃ → B̃ satisfies the assumption
in Proposition 4.7, hence by the refined dimension bound we have

dim Ũ ≥ dim B̃ − (g − 1).

If Ũ does not lie entirely in the discriminant locus of X̃/B̃ parameter-

izing nodal curves, then it implies that a general point of Ũ parameter-
izes an ordinary canonical divisor with signature μ on a smooth curve,

and hence we are done. Suppose on the contrary that Ũ lies over a

component B̃′ of the discriminant locus. Note that B̃′ is a hypersurface

in B̃, hence

dim Ũ ≥ dim B̃ − (g − 1) > dim B̃′ − (g − 1).

Thus every component of f∗Ũ , including U , has dimension > dimB −
(g − 1), contradicting the assumption that dimU = dimB − (g − 1).

q.e.d.

Example 4.10. Consider the boundary divisor B = Δ1;{1} in Mg,1

parameterizing curves C = C1 ∪q C2, where C1 has genus g1 = 1, C2

has genus g2 = g−1, and the unique marked point z is contained in C2,
see Figure 14. In this case C1 is a holomorphic component with M1 = 0

C1

C2

z

q

Figure 14. An elliptic curve union a pointed curve of
genus g − 1.

and 2g1 − 2−M1 = 0. Since h0(C1,O) = 1, B satisfies the assumption
of Corollary 4.8. A twisted canonical divisor with signature (2g − 2) in
this case is given by a curve in P(2g− 2,−2) glued to C1 at the double
pole. Hence, we conclude that

dimP(X/B; 2g−2) = dimP(2g−2,−2)+1 = 2g−2 = dimB− (g−1).
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By Proposition 4.9, P(X/B; 2g − 2) is contained in P(2g − 2). Note
that it proves the “if” part of Theorem 1.2 in this special case.

On the other hand, if C1 contains z, thenM2 = 0, C2 is a holomorphic
component, and 2g2 − 2 −M2 = 2g − 4. But h0(C2, (2g − 4)q) > 1 for
any g > 4, hence Proposition 4.9 does not directly apply.

Now let us prove the “if” part of Theorem 1.2 in general. The up-
shot is a direct dimension count using the dimension of strata of mero-
morphic differentials, combined with an explicit deformation using the
flat-geometric description of a higher order pole.

Proof of Theorem 1.2, the “if” part. Without loss of generality, as-
sume that C = (C1∪qC2, z1, . . . , zn) where z1, . . . , zk ∈ C1 and zk+1, . . . ,
zn ∈ C2, satisfying Relation (2), which is equivalent to

(C1, z1, . . . , zk, q) ∈ P1 := P(m1, . . . ,mk, 2g1 − 2−M1),

(C2, zk+1, . . . , zn, q) ∈ P2 := P(mk+1, . . . ,mn, 2g2 − 2−M2).

Recall thatM1+M2 = 2g−2 and g1+g2 = g. In particular, 2gi−2−Mi =
−1 cannot hold for i = 1, 2, for otherwise q would coincide with some zi,
because KC |Ci = KCi(q) has a base point at q. It follows that exactly
one of P1 and P2 is a stratum of meromorphic differentials with a pole
at q (see Section 2.3). Without loss of generality, further assume that
2g1 − 2−M1 ≥ 0 and 2g2 − 2−M2 < 0. By [Bo, Lemma 3.6], we have

dimP1 + dimP2 = (2g1 − 2 + (k + 1)) + (2g2 − 3 + (n− k + 1))(3)

= 2g − 3 + n.

Note that Pi may have more than one connected component, but all
components have the same dimension, hence all irreducible components
of P1 × P2 have dimension 2g − 3 + n given by (3).

Let Δ◦
g1;{1,...,k} be the open dense subset of the boundary divisor

Δg1;{1,...,k} that parameterizes curves with only one node, i.e., nodal
curves of the same topological type as that of C. We have proved that

P(μ) ∩Δ◦
g1;{1,...,k} ⊂ P1 × P2.

Suppose U = U1 × U2 is an irreducible component of P1 × P2 that
intersects P(μ) non-empty, where Ui is an irreducible component of Pi.
Then

dim(U ∩ P(μ)) ≥ dimP(μ) + dimΔg1;{1,...,k} − dimMg,n

= dimP(μ)− 1

= dimU,

which implies that U ⊂ P(μ) by the irreducibility of U .
It remains to show that every irreducible component U1×U2 of P1×P2

intersects P(μ). We prove it by an explicit procedure, inspired by [Bo].
Take a translation surface X = (C1, z1, . . . , zk, q) parameterized in U1,
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where q is the zero of order 2g1−2−M1. The flat-geometric local neigh-
borhood of q can be obtained by gluing 2g1−1−M1 disks Di, each with
a radius slit whose edges are labeled by Ai and Bi, where Bi is identi-
fied with Ai+1. Then the centers of the disks are identified as the same
point q, with desired cone angle (2g1 − 1 −M1) · (2π). Now, expand
the boundary of each Di to infinity such that Di becomes the stan-
dard Euclidean plane, while preserving the gluing pattern of the radius
slits. At the same time, inside each Di remove a small neighborhood Ei

around q, where the Ei’s have suitable polygon boundaries and gluing
pattern, such that the newborn (2g1− 1−M1) broken Euclidean planes
are glued to form a (possibly special) element Y = (C2, zk+1, . . . , zn, q)
in U2, where the pole sits at the infinity of the Di’s (identified alto-
gether) with pole order (2g1 − 1−M1) + 1 = −(2g2 − 2−M2) by [Bo,
Section 3], see Figure 15.

Ai

Bi

Di

q
Ei

Ai

Bi

Di

Figure 15. Remove a neighborhood of a zero and ex-
pand to a pole.

Note that in the intermediate stage when Di is relatively large com-
pared to Ei, but still of finite area, the above operation provides a
translation surface in H(μ), with zeros at z1, . . . , zn and no pole. If we
shrink each Ei to a point, it gives rise to X ∈ U1. Alternatively, shrink-
ing Ei is equivalent to expanding Di modulo scaling, hence it also gives
rise to Y ∈ U2. Therefore, the limit object of this shrinking/expanding
process consists of X union Y as a stable curve. In other words, we have
exhibited an explicit family of translation surfaces in H(μ) degenerating
to an element in U1 × U2, thus finishing the proof. q.e.d.

Example 4.11. Consider a small flat torus Y embedded in a big flat
torus X as in Figure 16.

The region X\Y represents a translation surface in H(2), where the
inner vertex z is the double zero. Expanding the boundary of X to
infinity, we obtain a flat torus E1 in H(2,−2), where the double pole is
at the infinity (see [Bo, Figure 4]). Up to rescaling, this procedure is
the same as shrinking Y to a point q. We thus obtain another flat torus
E2 in H(0), with q is marked as the attachment point to the double pole
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X

z Y

Figure 16. A small flat torus embedded in a big one.

of E1. It matches with our theory of twisted canonical divisors applied
to this case.

Example 4.12. Let C consist of two smooth curves C1 and C2, of
genus one and two respectively, meeting at a node q. Take a Weierstrass
point z2 ∈ C2 and a 2-torsion point z1 ∈ C1 with respect to q, see
Figure 17. In this setting, 2z1 − 2q ∼ KC1 and 2z2 ∼ KC2 , hence

C1

C2

z2

q

z1

Figure 17. An elliptic curve marked at a 2-torsion
union a genus two curve marked at a Weierstrass point.

Theorem 1.2 implies that (C, z1, z2) ∈ P(2, 2).
Example 4.13. Motivated by the expanding/shrinking idea, we give

an example when the degenerate differential lies on a curve of non-
compact type. Take the translation surface X\Y as in Figure 16, rep-
resenting a differential in H(2). Instead of shrinking Y , we shrink a
saddle connection given by a pair of identified parallel edges of Y . The
resulting surface is a torus with two points identified, where the two
points are the end points of the other pair of parallel edges of Y . As
a stable (unmarked) curve, it is a one-nodal curve of geometric genus
one, where the double zero z degenerates to the node, see the left hand
side of Figure 18. If we mark the node, its stable model as a marked
curve consists of the torus union a P1 at two points p1 and p2 given by
normalizing the node, where z is contained in the smooth locus of P1,
see the right hand side of Figure 18.
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z z

P

p1

p2

Figure 18. A curve marked at the node and its stable model.

On the other hand, let us decompose X\Y into two regions as in
Figure 19, where the edges with the same labelings are identified by
translation. Suppose d is the saddle connection that becomes arbitrarily

a1

a1

a2

a2

b b

c1

c1

c2

c2

d d

e e

f f

z

Figure 19. Shrink d or alternatively expand the other
labeled edges.

short. Up to scaling, it amounts to expanding all the other labeled edges
to be of arbitrarily long. Then we obtain two pairs of basic domains in
the sense of [Bo], which gives rise to two double poles p1 and p2, and
the double zero z remains there. Therefore, the underlying surface is P1,
and the corresponding meromorphic differential ω satisfies (ω) = 2z −
2p1−2p2. We thus uncover the flat-geometric picture of the exceptional
P1-component in the preceding paragraph.

In Section 4.5, we will study degenerate differentials in the locus of
curves of non-(pseudo)compact type in general.

Now let us consider curves of compact type with more nodes. Suppose
a curve C of compact type has m+1 irreducible components C0, . . . , Cm

of genus g0, . . . , gm, respectively. Then C possesses m nodes q1, . . . , qm.
The locus B of such pointed curves in Mg,n has dimension

dimB = 3g − 3 + n−m.

As before, define Mi =
∑

zj∈Ci
mj for i = 0, . . . ,m. We have

m∑
i=0

gi = g,

g∑
i=0

Mi = 2g − 2.



DEGENERATIONS OF ABELIAN DIFFERENTIALS 427

Let X be the universal n-pointed curve over B. There exists a unique
twisted canonical line bundle L, independent of X , such that the re-
striction L|Ci has degree Mi for all i. Suppose that

L|Ci ⊗OCi

⎛⎝ ∑
qj∈Ci

sijqj

⎞⎠ = KCi ,

for some sij ∈ Z. In particular,∑
qj∈Ci

sij = 2gi − 2−Mi.

Recall that Ci is called a polar component of C, if at least one sij < 0.
Conversely If all sij ≥ 0, we call Ci a holomorphic component. In other
words, a component is holomorphic (resp. polar) if the corresponding
twisted canonical divisor restricted to it is effective (resp. not effective).

Suppose that C possesses N polar components. Let qj be a node con-
necting two components Ci and Ck. Then sij +skj = −2. In particular,
if Ci is a tail of C, i.e., if Ci meets the closure of its complement in C
at only one point, then sij �= −1, again because qj is a base point of
KCi(qj). It immediately follows that

N ≤ m.

In other words, at least one component of C is holomorphic.
Consider the extremal case when N = m.

Theorem 4.14. For (C, z1, . . . , zn) ∈Mg,n in the above setting, if it

is contained in P(μ), then∑
zj∈Ci

mjzj +
∑
qj∈Ci

sijqj ∼ KCi(4)

holds for all i. Conversely, if Relation (4) holds and further assume that
C has only one holomorphic component, then it is contained in P(μ).

Proof. The first part of the result follows from the same proof as in
Proposition 4.2. For the other part, by assumption there exists at least
one tail of C, denoted by X, which is a polar component. Let Y = C\X
and q = X ∩ Y . Suppose sX < 0 and sY ≥ 0 are the signatures of the
twisted canonical line bundle restricted to X and to Y at q. Suppose
the genera of X and Y are gX and gY , respectively, and the vanishing
orders of the marked points in X and in Y are of signature μX and μY ,
respectively. We have g = gX + gY , μ = (μX , μY ), and sX + sY = −2.
By Theorem 1.2, every one-nodal curve in P(μX , sX)×P(μY , sY ) can be
smoothed into P(μ). Now treat q as a marked point in Y with signature
sY ≥ 0. By assumption, all components of Y but one are polar, hence
the desired result follows from induction on the number of components
of the underlying curve. q.e.d.
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Remark 4.15. Theorem 4.14 also holds for C of pseudocompact type
under the same assumption, by treating KCi as the dualizing line bundle
of Ci and taking the qj ’s from the set of separating nodes of C only.
The same proof works for the first part as explained in Remark 4.1.
To see the smoothability part, note that at the two branches of a self-
node the (stable) differential has simple poles. Therefore, one can first
smooth out all self-nodes by the plumbing operation as in the proof of
Theorem 1.1, and then reduce it to the case of compact type.

Example 4.16. Suppose a smooth curve C0 is attached to m tails
C1, . . . , Cm as in Figure 20.

C0

C1

C2

Cm

Figure 20. A curve with m tails.

Suppose further that the zero orders of marked points in Ci add up
to di ≥ 2gi for i > 0 and that they satisfy Relation (4). Then Ci is
a polar component for i = 1, . . . ,m. Therefore, by Theorem 4.14 this
pointed curve is contained in P(μ).

Example 4.17. Let C be a chain of elliptic curves E1, . . . , Eg such
that qi = Ei ∩ Ei+1 for i = 1, . . . , g − 1. Suppose that Eg contains a
marked point z, see Figure 21.

E1 E2 Eg-1 Eg

z

q1 qg-1

Figure 21. A chain of elliptic curves.

Further suppose that (2g − 2)z ∼ (2g − 2)qg−1 in Eg, (2g − 4)qg−1 ∼
(2g−4)qg−2 in Eg−1, . . . , 2q2 ∼ 2q1 in E2. In this setting, E1 is the only
holomorphic component, and Relation (4) holds on every component of
C. By Theorem 4.14, we conclude that (C, z) ∈ P(2g − 2).

We remark that for a pointed curve of pseudocompact type with
more than one separating node, Relation (4) may fail to be sufficient
for proving that it is contained in P(μ), if the curve has more than one
holomorphic component (see Example 4.5).
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4.4. Twisted meromorphic canonical divisors. Take a sequence of
integers μ = (k1, . . . , kr,−l1, . . . ,−ls) such that ki ≥ 0, lj > 0,

∑r
i=1 ki−∑s

j=1 lj = 2g − 2 and s > 0, i.e., we consider meromorphic differentials
with at least one pole. We use zi to denote a zero of order ki, and
pj for a pole of order lj . For pointed nodal curves of pseudocompact
type, the notion of twisted canonical divisors can be defined in the same
way in the meromorphic setting, by allowing sections of marked points
to have negative coefficients if they correspond to poles. Below we
establish similar dimension bounds for components of space of twisted
meromorphic canonical divisors as well as smoothability results.

Theorem 4.18. Let π : X → B be a smoothing family of genus
g curves of compact type with n = r + s sections z1, . . . , zr, p1, . . . , ps.
Then there exists a variety P(X/B;μ) over B, compatible with base
change, whose point over any q in B (if not empty) corresponds to a
twisted meromorphic canonical divisor given by k1z1(q)+ · · ·+krzr(q)−
l1p1(q) − · · · − lsps(q). Furthermore, every irreducible component of
P(X/B;μ) has dimension ≥ dimB − g.

Proof. As explained in the proof of Theorem 4.4, it suffices to prove
the result when the general fiber of X is smooth. Since the problem is
local on B, we assume that B is affine. Take a relatively ample divisor
D on X such that D is contained in the smooth locus of π and disjoint
from the sections zi and pj . Replacing D with a high multiple of itself,
we may assume that it intersects every component of a reducible fiber
with high degree. Denote by d the total degree of D relative over B.

Let ωμ be a twisted relative canonical line bundle on X such that
restricted to each fiber (C, z1, . . . , zr, p1, . . . , ps) it is the unique twisted
canonical line bundle of degree

∑
zj∈Ci

kj −
∑

ph∈Ci
lh on every compo-

nent Ci of C. It follows that

π∗ωμ

⎛⎝ s∑
j=1

ljpj +D

⎞⎠
is a vector bundle of rank

1− g +

⎛⎝2g − 2 +

s∑
j=1

lj + d

⎞⎠ = g − 1 + d+

s∑
j=1

lj ,

by Riemann–Roch. Let P ′ be the corresponding projective bundle with
fiber dimension g− 2+ d+

∑s
j=1 lj over B. A point of P ′ over q′ ∈ B is

thus a section σ ∈ H0(ωμ(D +
∑s

j=1 ljpj)|Xq′ ), modulo the equivalence

σ ∼ λσ for a nonzero scalar λ.
Consider the subvariety P ′(X/B;μ) in P ′ cut out by the following

groups of equations:

• Vanishing on D. We require that σ vanishes on D.
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• Ramification at zi. For each section zi, σ vanishes on zi with
multiplicity ≥ ki.

The vanishing condition on D is given by d equations. The ramifica-
tion condition on each zi imposes ki equations, so in total they impose∑r

i=1 ki = 2g − 2 +
∑s

j=1 lj equations. It follows that the dimension of

every irreducible component of P ′(X/B;μ) is at least

dimB +

⎛⎝g − 2 + d+

s∑
j=1

lj

⎞⎠− d−
⎛⎝2g − 2 +

s∑
j=1

lj

⎞⎠ = dimB − g.

Let U be an irreducible component of P ′(X/B;μ). For a general point
σ ∈ U , there are two possibilities. First, if σ vanishes on a component
of the underlying curve C, then this property holds for all sections
parametrized in U . The other case is that σ has isolated zeros in C.
Then it follows from construction that

(σ)0 =

r∑
i=1

kizi +D ∼ ωμ +D +

s∑
j=1

ljpj ,

hence
∑r

i=1 kizi−
∑s

j=1 ljpj is a twisted meromorphic canonical divisor
restricted to C. Conversely, a twisted meromorphic canonical divisor de-
termines such a σ up to scaling. By collecting irreducible components of
P ′(X/B;μ) of the latter type, we thus obtain the desired P(X/B;μ) pa-
rameterizing twisted meromorphic canonical divisors with signature μ.

q.e.d.

Proposition 4.19. In the above suppose (C, z1, . . . , zr, p1, . . . , ps) ∈
B is contained in an irreducible component U of P(X/B;μ) such that
dimU = dimB − g. Then (C, z1, . . . , zr, p1, . . . , ps) ∈ P(μ).

Proof. Let X̃ → B̃ be the versal family around (C, z1, . . . , zr, p1, . . . ,

ps). Let f : B → B̃ be the map locally inducing X → B with n = r+ s

sections of marked points. Let Ũ be a component of P(X̃/B̃;μ) such

that U is a component of f∗Ũ and let C̃ be the point in Ũ corresponding
to the pointed curve C. By Theorem 4.18 we have

dim Ũ ≥ dim B̃ − g.

If Ũ does not lie entirely in the discriminant locus of X̃/B̃ parame-

terizing nodal curves, then it implies that a general point of Ũ parame-
terizes an ordinary meromorphic canonical divisor with signature μ on
a smooth curve, and hence we are done. Suppose on the contrary that

Ũ lies over a component B̃′ of the discriminant locus. Note that B̃′ is a
hypersurface in B̃, hence

dim Ũ ≥ dim B̃ − g > dim B̃′ − g.
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Thus every component of f∗Ũ , including U , has dimension > dimB−g,
contradicting the assumption that dimU = dimB − g. q.e.d.

Now we consider twisted meromorphic canonical divisors on curves of
compact type. Suppose C is a pointed curve of compact type with m+1
irreducible components C0, . . . , Cm of genus g0, . . . , gm, respectively, and
with q1, . . . , qm as the nodes. Let z1, . . . , zr, p1, . . . , ps be the marked
points in C with respect to the signature μ = (k1, . . . , kr,−l1, . . . ,−ls).
Denote by Mi the sum of zero orders minus pole orders for the zeros zji
and poles phi

contained in each Ci. Since C is of compact type, there
exists a unique twisted canonical line bundle whose restriction to each
Ci has degree Mi and is of type KCi(

∑m
j=1 tijqj) for tij ∈ Z. Recall that

Ci is a polar component if either Ci contains some pj , or contains some
qj with tij > 0.

Theorem 4.20. In the above setting, if C ∈ P(μ), then we have∑
zj∈Ci

kjzj −
∑

ph∈Ci

lhph −
m∑
j=1

tijqj ∼ KCi ,(5)

for all i. Conversely, assume that Relation (5) holds and also that all
Ci are polar components, then C ∈ P(μ).

Proof. The first part of the result follows from the same proof as
Proposition 4.2. Conversely, suppose Relation (5) holds. Let B ⊂Mg,n

be the locus of nodal curves that are of the same topological type as
C. It is an open dense subset of the corresponding boundary stratum
of Mg,n, where n = r + s, hence

dimB = dimMg,n −m = 3g − 3 + n−m.

Consider the space of twisted meromorphic canonical divisors with sig-
nature μ over B. Restricted to each Ci, it is the stratum of ordinary
meromorphic canonical divisors with zeros at zji and poles at phi

, and
have zero or pole of order −tij at qj . By assumption Ci is polar, hence
it contains at least one pole. Therefore, using the dimensions of strata
of meromorphic differentials, we have

dimP(X/B;μ) =
m∑
i=0

(2gi − 3) + r + s+ 2m

= 2g − 3 + n−m

= dimB − g.

The desired smoothability conclusion thus follows from Proposition 4.19.
q.e.d.

Remark 4.21. Analogous to Remark 4.15, Theorem 4.20 also holds
for C of pseudocompact type under the same assumption, by treating
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KCi as the dualizing line bundle of Ci and only taking the separating
nodes qj into account. Again, the first part follows from the explanation
of Remark 4.1, and the smoothability part follows from smoothing out
all self-nodes by the plumbing operation to reduce to the case of compact
type.

Note that Theorem 1.3 is a special case of the above result for curves
of compact type with one node.

4.5. Curves of non-pseudocompact type. Let us study the closure
of P(μ) in the locus of curves of non-pseudocompact type. It is possible
to extend the notion of twisted canonical divisors to a curve of non-
pseudocompact type, but we need to consider semistable models of the
curve by inserting chains of rational curves at a non-separating and
external node, as already considered in the study of limit linear series
(see, e.g., [EM, O]). We explain this issue in detail in the following
example.

Some setup first. Let π : X → T be a one-parameter family of genus
g curves over a disk such that the generic fiber Ct is smooth and the
central fiber C is nodal. We say that X is a smoothing of C. If X
is smooth everywhere but possibly at those nodes of C that are self-
intersections of each of its irreducible components, we say that X is a
regular smoothing. The reason to consider regular smoothing families
is that every irreducible component of C is a Cartier divisor on such
X . In particular, if C is of compact type, then every regular smoothing
family is smooth everywhere. The reader can refer to [EM, Section 1.3]
for more details on this setting.

Now, let C1 be a nodal curve consisting of two components X and
R intersecting at two nodes q1 and q2, where X is smooth of genus two
and R ∼= P1. Let z be a marked point contained in R. Therefore, (C1, z)
is a stable pointed curve parameterized in M3,1. Furthermore, assume
that q1 is a Weierstrass point of X, i.e., 2q1 ∼ KX . Let C3 be the
semistable model of C1 by blowing up q1 and inserting two exceptional
P1-components, denoted by E1 and E2, see Figure 22.

RX

q1

q2

z

C1 C3

X

z

R

E1

E2

q1

q2

Figure 22. A curve with a semistable model.
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Here the subscript i of Ci stands for the length of the chain of rational
curves between q1 and q2.

Proposition 4.22. In the above setting, we have (C1, z) ∈ P(4)odd.
In addition, any one-dimensional smoothing family of (C1, z) into P(4)
must be singular. However, there exists a one-dimensional regular
smoothing family of (C3, z) into P(4).

Proof. If we forget z and blow down R, then we get a one-nodal curve
C0 with a node q. By assumption, C0 is not in the closure of genus three
hyperelliptic curves, hence it admits a canonical embedding as a plane
nodal quartic (see [H, Proposition 2.3]). The section 3q1 + q2 of the
dualizing line bundle KX(q1+q2) corresponds to a line L in P2 that has
total contact order four to C0 at q, that is, contact order three to the
branch of q1 and transversal to the branch of q2, see Figure 23.

q

L

C

Figure 23. A nodal quartic with a hyperflex at the node.

Note that the space of plane quartics that have contact order four to
L at q is irreducible, and its general element corresponds to a smooth,
non-hyperelliptic curve C with a hyperflex q, i.e., 4q ∼ KC , and hence
(C, q) ∈ P(4)odd. Blowing up C0 at q yields the stable pointed curve
(C1, z), thus proving the first part of the proposition.

Next, suppose there is a smoothing family π : X → T such that
X is everywhere smooth with a section Z, C1 is the special fiber with
Z(0) = z, and the generic fiber (Ct, Z(t)) ∈ P(4). Let ωπ be the relative
dualizing line bundle of the family. Consider the direct image sheaf

F = π∗(ωπ(2X − 4Z)).

By assumption, F|Ct = H0(Ct,O) = C, hence F|C1 must have a section
not identically zero. Note that

ωπ(2X − 4Z)|X = KX(−q1 − q2), ωπ(2X − 4Z)|R = OP1 .

It implies that q1 + q2 ∼ KX , contradicting the assumption that
2q1 ∼ KX .

Finally, fix q ∈ L ⊂ P2 in the first paragraph. Among all plane
quartics that have contact order four to L at q, take a general one
and denote it by Q. Consider the pencil of plane quartics generated by
tQ+C0, where t is the base parameter. Locally around (q = (0, 0), t = 0)
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this family can be written as t(y − x4) + x(y − x3), hence has an A3-
singularity at the origin. Running stable reduction by resolving it as
well as other base points of the pencil, it is easy to see that (C3, z) arises
as the central fiber in the resulting everywhere regular family (see also
the proof of Theorem 5.3 for a concrete and harder example of stable
reduction). q.e.d.

Remark 4.23. In the above proof, when theta characteristics ηt on
smooth curves Ct ∈ P(4)odd degenerate to C0, it is not hard to see that
the limit theta characteristic η0 is of the second kind (see Section 2.7),
i.e., it consists of (OX(q1),OR(1)) on the semistable model C1 of C0

without the marked point. The parity of η0 equals h0(X, q1) = 1, hence
it is odd, as already predicted by Proposition 4.22. See Remark 5.4 for
a comparable example.

In essence, Proposition 4.22 says that in order to prove that (C1, z)
is contained in P(4), it is necessary to insert chains of rational curves
at a non-separating and external node, and consider semistable models.
For a curve C of pseudocompact type, after this procedure it remains
to be of pseudocompact type, and in Section 4.1, we have seen that the
twisting operation can provide a unique twisted canonical line bundle
that has the desired degree Mi on each component of C and has degree
zero on the exceptional P1-components. However, for curves of non-
pseudocompact type, inserting extra rational chains at non-separating
and external nodes can change the twisting pattern significantly.

Let us study this issue in general. Suppose C is a pointed nodal curve
(possibly semistable) with n = r + s marked points and m irreducible
components C1, . . . , Cm. Denote by aij the number of nodes contained
in Ci ∩ Cj for i �= j. Set aii = −

∑
j �=i aij for all i. The m ×m matrix

L(C) = (aij) (or sometimes−L(C)) is called the Laplacian matrix of the
dual graph of C. In particular, L(C) is symmetric, zero is an eigenvalue
of L(C), and (1, . . . , 1)t is an eigenvector associated to zero.

Now take a signature μ = (k1, . . . , kr,−l1, . . . ,−ls). As before, let Mi

be the sum of zero orders minus the pole orders for those marked points
contained in Ci.

Proposition 4.24. In the above setting, if there is a regular smooth-
ing family π : X → T of C into P(μ), then there exists an integer
sequence (b1, . . . , bm), unique modulo (1, . . . , 1), such that

L(C) · (b1, . . . , bm)t = (M1 − 2g1 + 2, . . . ,Mm − 2gm + 2)t.(6)

Moreover,
∑r

i=1 kizi −
∑s

j=1 ljpj is a twisted meromorphic canonical

divisor with respect to the twisted canonical line bundle ωπ(
∑m

i=1 biCi)|C .
Proof. Let Zi and Pj denote the sections of zi and pj in X , respec-

tively. Since X is a regular smoothing, every component Ci is a Cartier
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divisor of X . Note that
∑r

i=1 kiZi−
∑s

j=1 ljPj restricted to the open lo-

cus X ◦ = X\C, as a meromorphic section of π∗ωπ|X ◦ , extends uniquely
to

∑r
i=1 kiZi−

∑s
j=1 ljPj−

∑m
i=1 biCi as a meromorphic section of π∗ωπ

for some bi ∈ Z. Therefore, restricted to the central fiber C we conclude
that

∑r
i=1 kizi −

∑s
j=1 ljpj is a twisted canonical divisor with respect

to the twisted canonical line bundle KC ⊗OX (
∑m

i=1 biCi)C . Moreover,
degOX (Cj)|Ci = aij , hence Relation (6) follows by taking the degree on
each Ci. Finally, the uniqueness of (b1, . . . , bm) modulo (1, . . . , 1) follows
from the fact that OX (

∑m
i=1 diCi) is trivial if and only if (d1, . . . , dm) is

a multiple of (1, . . . , 1). Alternatively, it also follows from the fact that
the algebraic multiplicity of the zero eigenvalue is one for the Laplacian
matrix of any connected graph (see, e.g., [Ch, Lemma 1.7]), which is
our case because C is connected. q.e.d.

Corollary 4.25. If a pointed stable nodal curve C ′ is contained in
P(μ), then C ′ admits a semistable model of C obtained by inserting
chains of rational curves at the nodes of C ′ such that there exists a
regular smoothing family π : X → T of C into P(μ), and hence C
satisfies the properties described in Proposition 4.24.

Proof. By assumption, there exists a smoothing family of C ′ into
P(μ). If it is not regular, running semistable reduction explained in
[EM, Section 2.7] yields the desired regular smoothing family with a
semistable model C as the new central fiber. The rest part of the corol-
lary follows from Proposition 4.24. q.e.d.

In the following example we illustrate how to apply the above results.

Example 4.26. Recall the semistable model (C3, z) of the stable
curve (C1, z) described in Proposition 4.22. Line up the components of
C3 in the order X,R,E1 and E2. Then the Laplacian matrix of C3 is

L(C3) =

⎛⎜⎜⎝
−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎞⎟⎟⎠ .

Since degKC3 |X = 4 and degKC3 |R = degKC3 |Ei = 0 and we want the
twisted canonical line bundle to have degree four on R and degree zero
on the other components, one checks that

L(C3) · (0,−3,−2,−1)t = (−4, 4, 0, 0)t.
Therefore, for a regular smoothing family π : X → T of C3

L = ωπ(−3R− 2E1 − E2)

is the twisted relative canonical line bundle whose restriction to C3 has
the desired degree on each component. Note that

L|X = KX(−2q1), L|R = OP1(4), L|Ei = OP1 .
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If 4z is a section of L|C3 , then L|C3(−4z) has degree zero on every
component of C3 and has a section not identically zero, hence it is
trivial restricted to every component of C3. It follows that 2q1 ∼ KX

and q1 is a Weierstrass point of X. This provides an inverse statement
to Proposition 4.22, that is, if such (C3, z) can be smoothed into P(4)
via a regular smoothing family, then q1 is a Weierstrass point of X.

5. Boundary of hyperelliptic and spin components

Let us first prove Theorem 1.4. We treat the cases of holomorphic
and meromorphic differentials simultaneously.

Proof of Theorem 1.4. Let μ = (2k1, . . . , 2kr,−2l1, . . . ,−2ls) be a par-
tition of 2g−2 with ki, lj ∈ Z+. If s = 0, it is just a signature of holomor-

phic differentials. Let P(μ)odd and P(μ)even be the two spin components
of P(μ). Prove by contradiction. Suppose (C, z1, . . . , zr, p1, . . . , ps) ∈
Mg,n with n = r + s is a curve of pseudocompact type contained in

both P(μ)odd and P(μ)even. Let π : X → T be a smoothing family of
spin curves (C, z1(t), . . . , zr(t), p1(t), . . . , ps(t)) in P(μ) degenerating to
the pointed curve C. Let Zi and Pj be the sections corresponding to
zi(t) and pj(t), respectively. Denote by

ηt = OCt

⎛⎝ r∑
i=1

kizi(t)−
s∑

j=1

ljpj(t)

⎞⎠ ,

the theta characteristic on a generic fiber Ct.
To describe the limit spin structure when ηt degenerates to C, as de-

scribed in Section 2.7, we blow up each separating node of C to insert
an exceptional P1-component. The resulting curve remains of pseudo-
compact type, and we still denote by C the special fiber. In particular,
the marked points zj and ph are contained in the non-exceptional com-
ponents of C only. Let C1, . . . , Cm be the irreducible components of
C, and let q1, . . . , qm−1 be the separating nodes of C. For each non-
exceptional component Ci, let ηi be the limit spin structure restricted
to Ci, and on an exceptional P1 it is O(1) (see Section 2.7). Also
denote by ηX the universal theta characteristic line bundle such that
ηX |Ct = ηt and ηX |C = η. Since C is of pseudocompact type and∑r

j=1 kj −
∑s

h=1 lh = g − 1 = deg ηt, there exists a unique twisted
universal theta characteristic

ημ = ηX

(
m∑
i=1

biCi

)
,

for some bi ∈ Z, independent of X and depending on C only, such that

deg ημ|Ci =
∑
zj∈Ci

kj −
∑

ph∈Cj

lh,
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for non-exceptional components Ci and deg ημ|Cj = 0 when Cj is excep-
tional. Denote by

L = ημ

⎛⎝− r∑
j=1

kjZj +

s∑
h=1

lhPh

⎞⎠ ,

and consider the direct image sheaf F = π∗L. By assumption, F|Ct =
H0(Ct,O) = C, hence F|C = H0(C,L|C) has a section not identically
zero. Since the degree of L restricted to every component of C is zero
and C is connected, it implies that L is the trivial line bundle, and hence

ημ|Ci = OCi

⎛⎝ ∑
zj∈Ci

kjzj −
∑

ph∈Cj

lhph

⎞⎠ .

It follows that

ηi = ηX |Ci = ημ

(
−

m∑
i=1

biCi

)
|Ci ,

which is independent of X and depends on C only. Thus the parity of
the limit spin structure η on C is given by

∑m
i=1 h

0(Ci, ηi) (mod 2), and
hence cannot be both even and odd, leading to a contradiction. q.e.d.

Remark 5.1. The above proof implies that if an irreducible compo-
nent Ci has self-nodes, then ηi is of the first kind (see Section 2.7), i.e.,
η⊗2
i = KCi , where KCi is regarded as the dualizing line bundle of Ci.
In other words, the zeros and poles do not degenerate to a self-node, so
we do not blow up a self-node to insert an exceptional P1, and hence ηi
cannot be of the second kind.

Moreover, for the signature (2k1, . . . , 2kr,−1,−1) with ki > 0, the
corresponding stratum of meromorphic differentials also has two spin
components (see [Bo, Section 5.3]). Suppose X is a pointed smooth
curve contained in this stratum with p1 and p2 as the two simple poles.
Identifying p1 and p2, we obtain an irreducible one-nodal curve X ′.
Let η′ = OX′(

∑r
j=1 kjzj). Since η′⊗2 = KX′ , η′ is a spin structure of

the first kind on X ′, and the parity of η′ determines that of X. Now
suppose X degenerates to a pointed curve C of pseudocompact type.
As long as p1 and p2 are contained in the same irreducible component
of C, identifying them as a node yields a curve C ′, which is still of
pseudocompact type. Therefore, keeping track of η′ on X ′ degenerating
to C ′, the same proof as above goes through, and hence the closures of
the two spin components of H(2k1, . . . , 2kr,−1,−1) remain disjoint in
the locus of such pointed nodal curves.

Example 5.2. Let us explicitly determine the limit spin structure
for a pointed one-nodal curve C = C1 ∪q C2 contained in P(μ) for
μ = (2k1, . . . , 2kr,−2l1, . . . ,−2ls), which can help the reader capture
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the upshot of the above proof. Blow up q to insert an exceptional P1-
component between C1 and C2. Let qi = Ci ∩P1. Let η = (η1, η2,O(1))
be the limit spin structure, where O(1) is the unique degree one line
bundle on P1 and ηi is an ordinary theta characteristic on Ci. For
i = 1, 2, denote by

Ni =
∑
zj∈Ci

kj −
∑

ph∈Ci

lh.

Then we have

ηi = OCi

⎛⎝ ∑
zj∈Ci

kjzj −
∑

ph∈Ci

lhph + (gi − 1−Ni)qi

⎞⎠ ,

for i = 1, 2. Hence, the parity of (C, η) is given by h0(C1, η1)+h0(C2, η2)
(mod 2).

In general, if we consider all possible types of pointed stable curves,
then P(μ)hyp, P(μ)odd and P(μ)even can intersect, illustrated by the
following result.

Consider the stratum P(4) in genus three. It consists of two con-
nected components P(4)hyp and P(4)odd. In this case the hyperelliptic
component coincides with the even spin component. Let C be the union
ofX and P1, attached at two nodes q1 and q2, whereX is a smooth curve
of genus two, q1 and q2 are conjugate under the hyperelliptic involution
of X, and P1 contains a marked point z, see Figure 24.

X P

z

q1

q2

Figure 24. A stable curve of non-pseudocompact type.

In particular, as a pointed curve (C, z) is stable and is not of pseu-
docompact type.

Theorem 5.3. P(4)hyp and P(4)odd intersect inM3,1, both contain-
ing (C, z).

Proof. Since q1 and q2 are hyperelliptic conjugate inX, it implies that
C admits an admissible double cover with z as a ramification point, and
hence (C, z) is contained in P(4)hyp, see Figure 25.

To prove that it is contained in P(4)odd, take a pencil of plane quartics
generated by Q0 and Q1, where Q0 is a double conic tangent to a line
L at z, and Q1 is general among all plane quartics that are tangent to
L at z with multiplicity four, see Figure 26.
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z
P1

X

q1

q2

P1 P1

Figure 25. A degenerate hyperelliptic double cover.

Q0Q1

z

L

Figure 26. Quartics degenerate to a double conic with
a common hyperflex.

Let us carry out stable reduction to this pencil to see that the stabi-
lization of (Q0, z) is (C, z). Suppose the pencil is given by (y − x2)2 +
t(x4 + yf(x, y)) with t the base parameter, where f(x, y) is general of
degree three. All curves in this family share a common hyperflex line
defined by y = 0. Let Z be the section of hyperflex points given by
x = y = 0. Let C be the reduced central fiber when t = 0, i.e., the
double conic is 2C. At x = y = t = 0, the total family as a surface
has an A3-singularity, i.e., locally of type uv = w4. First, blowing it
up reduces the singularity to of type A1, and the proper transform of
C meets the new singularity, where the two exceptional curves E1 and
E2 meet, and Z meets exactly one of E1 and E2. Blowing up the sin-
gularity again makes the family smooth, and now C meets the interior
of the new exceptional curve E3. The pencil has six other base points,
which are all A1-singularities. Blowing them up yields six exceptional
curves B1, . . . , B6. All the Ei and Bj have self-intersection −2. Let
bj = Bj ∩ C, ei = Ei ∩ E3 for i = 1, 2, and e3 = E3 ∩ C. At this stage
the central fiber of the family consists of

2C + E1 + E2 + 2E3 +
6∑

j=1

Bj ,

see Figure 27.
Take a base change of degree two branched along allBj , E1 and E2. In

particular, bj and e1, e2 are branch points on C and on E3, respectively.
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C

B1

B6

E3

E1 E2

b1

b6

e1

e2

e3

z

Figure 27. The central fiber after resolving the singularities.

Pull back the central fiber and divide it by two. We obtain the new
central fiber reduced and consisting of

C̃ + Ẽ1 + Ẽ2 + Ẽ3 +

6∑
j=1

B̃j ,

see Figure 28.

C

B1

B6

E3

E1

E2

z

q1

q2

Figure 28. The central fiber after a base change.

Here C̃ is a double cover of C branched at all bj , hence of genus

two, Ẽ3 is a double cover of E3 branched at e1, e2, Ẽ2
3 = −4, and

B̃2
j = Ẽ2

i = −1 for i = 1, 2 and for all j. Moreover, Ẽ3 meets C̃ at

two points q1, q2 ∈ C̃ that are the inverse images of e3 under the double
cover, hence q1 and q2 are conjugate under the hyperelliptic involution

of C̃. Finally, blowing down Ẽ1, Ẽ2 and Bj , we obtain the desired curve
configuration as (C, z). Since Z meets exactly one of E1 and E2, after

blowing down E1 and E2, Z only meets Ẽ3 in the central fiber, and

hence as a marked curve Ẽ3 along with q1, q2 and z is stable. q.e.d.

Remark 5.4. In the above setting, let C0 be the stable model of
C after forgetting z, i.e., C0 is obtained by identifying q1 and q2 in
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X as a node. When theta characteristics ηt = OCt(2z) degenerate
to C0 from smooth curves Ct ∈ P(4), it is not hard to see that the
limit spin structure η0 is of the first kind, whose pullback η′0 on X is
η′0 = OX(q1 + q2) = KX . There are two ways to identify fibers of η′0
over q1 and q2 such that it descends to η0 on C0 with h0(C0, η0) = 1
and h0(C0, η0) = 2, respectively, hence both parities can appear.

6. Weierstrass point behavior of general differentials

Suppose P(μ) is a stratum (component) of effective canonical divisors
with signature μ = (m1, . . . ,mn). If m1 ≥ g, then by Riemann–Roch,

h0(C, gz1) = h0(C, (m1 − g)z1 +m2z2 + · · ·+mnzn) + 1 ≥ 2,

hence by definition z1 is a Weierstrass point for all (C, z1, . . . , zn) ∈
P(μ). Now assume that m1 < g. Then it is natural to expect that for a
general (C, z1, . . . , zn) ∈ P(μ), z1 is not a Weierstrass point. Similarly,
for a stratum (component) of meromorphic canonical divisors P(μ) with
μ = (k1, . . . , kr,−l1, . . . ,−ls), it is natural to expect that for a general
(C, z1, . . . , zr, p1, . . . , ps) ∈ P(μ), z1 and p1 are not Weierstrass points.

We first consider hyperelliptic components of holomorphic differen-
tials (see [KZ, Definition 2]). For (C, z) ∈ P(2g − 2)hyp, we have seen
that z is a Weierstrass point of C. For (C, z1, z2) ∈ P(g − 1, g − 1)hyp,
the two zeros z1 and z2 are conjugate under the hyperelliptic involu-
tion, hence they are not Weierstrass points. Now consider hyperelliptic
components of meromorphic differentials (see [Bo, Proposition 5.3]).
For (C, z, p) ∈ P(2k,−2l)hyp, both z and p are Weierstrass points. For
(C, z, p1, p2) ∈ P(2k,−l,−l)hyp, z is a Weierstrass point, but p1 and
p2 are conjugate under the hyperelliptic involution, hence they are not.
For (C, z1, z2, p) ∈ P(k, k,−2l)hyp, p is a Weierstrass point, but z1 and
z2 are conjugate under the hyperelliptic involution, hence they are not.
Finally, for (C, z1, z2, p1, p2) ∈ P(k, k,−l,−l)hyp, z1 and z2 (resp. p1 and
p2) are conjugate under the hyperelliptic involution, hence all of them
are not Weierstrass point. Therefore, for the rest of the section when we
speak of a stratum (component), we assume that it is not hyperelliptic.

Below we explore several approaches and analyze a number of non-
hyperelliptic strata.

6.1. Merging zeros and poles. First, we point out that the case of
P(m1, . . . ,mn) can be reduced to P(m1, 2g − 2−m1).

Lemma 6.1. For m1 < g, if z1 in a general curve (C, z1, z2) ∈
P(m1, 2g − 2 −m1) is not a Weierstrass point, then neither is z1 in a
general curve (C, z1, . . . zn) ∈ P(m1, . . . ,mn).

Proof. By [KZ], a zero of order 2g − 2 − m1 = m2 + · · · + mn can
be split off as distinct zeros of order m2, . . . ,mn, respectively. In other
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words, marking z1 and lifting the strata into Mg,1, then P(m1, 2g −
2 − m1) is contained in the closure of P(m1, . . . ,mn). If a general
curve (C, z1, . . . zn) ∈ P(m1, . . . ,mn) has z1 as a Weierstrass point,
then the closure of the locus of Weierstrass points in Mg,1 contains
P(m1, . . . ,mn), and hence contains P(m1, 2g − 2 −m1), contradicting
the assumption that z1 in a general curve (C, z1, z2) ∈ P(m1, 2g−2−m1)
is not a Weierstrass point. q.e.d.

Next, for the case of meromorphic differentials. There is a similar
procedure of merging poles.

Lemma 6.2. A pole of order d = d1 + d2 can be split off as two
poles of order d1 and d2, respectively. In other words, a meromorphic
differential in H(k1, . . . , kr,−d,−l1, . . . ,−ls) is a limit of differentials
in H(k1, . . . , kr,−d1,−d2,−l1, . . . ,−ls).

Proof. Let p be a pole of order d. As we have seen, the local flat-
geometric neighborhood of p can be constructed by gluing d − 1 pairs
of basic domains D±

i , where D+
i has boundary rays ai and li, and D−

i
has boundary rays ai and li+1, see Figure 29.

liai

li+1ai

D+

D-

Figure 29. A pair of broken half-planes as basic domains.

Now truncate a1 in D+
1 and ld1+1 in D+

d1+1 by a vertical half-line x

upward. Truncate a1 in D−
1 and ld1+1 in D−

d1
by a vertical half-line y

downward. We choose the truncated line segments in a1 (resp. in ld1+1)
such that they can still be glued under translation, see Figure 30.

After this operation,D−
2 , . . . , D

−
d1−1, D

−
d1
∪D−

1 andD+
2 , . . . , D

+
d1−1, D

+
1

form a flat-geometric neighborhood of a pole of order d1. Similarly, the
remaining basic domains form a pole of order d2. If we reverse this pro-
cess by extending the line segments in a1 and in ld1+1 arbitrarily long,
the two poles thus merge to a single pole of order d1 + d2 = d. q.e.d.

Remark 6.3. Note that one cannot always merge a zero and a pole.
For instance, differentials in H(2,−1,−1) cannot specialize to a differ-
ential in H(1,−1), because differentials of the latter type do not exist.
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l1a1

l2a1

D1+

D1-

x

y

x

Dd+

ad+ ld+

ad ld-

y

Dd-

Figure 30. Basic domains after truncation.

We can reduce the case P(k1, . . . , kr,−l1, · · · ,−ls) to P(k1, . . . ,
kr,−l), where l =

∑s
i=1 l1 + · · ·+ ls.

Lemma 6.4. If p in general (C, z1, . . . , zr, p) ∈ P(k1, . . . , kr,−l) is
not a Weierstrass point, neither is pi in general (C, z1, . . . zr, p1, . . . , ps)∈
P(k1, . . . , kr,−l1, · · · ,−ls).

Proof. The same proof as in Lemma 6.1 works, with merging poles
instead of zeros guaranteed by Lemma 6.2. q.e.d.

6.2. Curves with an elliptic tail. As already used in [EH2] and
[Bu], degenerating to nodal curves with an elliptic tail provides a pow-
erful method to study the geometry of general curves.

Proposition 6.5. Suppose (X, z1, . . . , zn) ∈ P(m1 − 2,m2, . . . ,mn)
is a general pointed curve such that z1 is not a Weierstrass point and
that m1 � g. Then z1 in a general curve (C, z1, . . . , zn) ∈ P(m1, . . . ,mn)
is not a Weierstrass point.

Proof. By assumption, we can take a general curve (X, q, z2, . . . , zn) ∈
P(m1 − 2,m2, . . . ,mn) such that q is not a Weierstrass point in X.
Attach to X at q an elliptic curve E with an m1-torsion point z1 to q,
i.e., m1z1 ∼ m1q in E, such that gz1 �∼ gq, see Figure 31.

Such z1 in E exists because m1 � g. By Theorem 1.2, the union of
X and E with the marked points zi’s is contained in P(m1, . . . ,mn).
Since gz1 �∼ gq in E, it implies that z1 is not a limit of Weierstrass
points degenerating from smooth curves to X union E (see [HMo,
Theorem 5.45]). It follows that z1 in a general curve (C, z1, . . . , zn) ∈
P(m1, . . . ,mn) is not a Weierstrass point.

One subtlety is when P(m1,m2, . . . ,mn) has two spin components
(we have already discussed hyperelliptic components). In this case
P(m1 − 2,m2, . . . ,mn) also has two spin components. Since X union
E is of compact type, the spin parity still holds by Theorem 1.4, and
is determined by that of each component. Therefore, we can take a
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X

E

z2

zn

z1

q

Figure 31. A curve union an elliptic tail marked at an
m1-torsion point.

general X in each of the spin components of P(m1−2,m2, . . . ,mn) and
carry out the above smoothing argument, which will lead to each of
the spin components of P(m1,m2, . . . ,mn) (see also [Bu] for a similar
discussion). q.e.d.

Proposition 6.6. Let (X, z1, . . . , zr, p1, . . . , ps) ∈ P(k1, . . . , kr,−l1−
2,−l2, . . . ,−ls) be a general curve. Suppose that p1 is not a Weierstrass
point and that l1 � g. Then p1 in a general curve (C, z1, . . . zr, p1, . . . ,
ps) ∈ P(k1, . . . , kr,−l1, · · · ,−ls) is not a Weierstrass point.

Proof. Take general (X, z1, . . . zr, q, p2, . . . , ps) ∈ P(k1, . . . , kr,−l1 −
2,−l2, . . . ,−ls) such that q is not a Weierstrass point. Attach to X at
q an elliptic curve E with an l1-torsion point p1 to q, i.e., l1p1 ∼ l1q in
E, such that gp1 �∼ gq, see Figure 32.

X

E

q

p1

p2

ps

z1

zr

Figure 32. A curve union an elliptic tail marked at an
l1-torsion point.

Such p1 exists because l1 � g. By Theorem 4.20, the union of X and
E with the marked points is contained in P(k1, . . . , kr,−l1, · · · ,−ls).
Since gp1 �∼ gq in E, it implies that p1 is not a limit of Weierstrass
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points degenerating from smooth curves to X union E, thus proving the
desired claim. The case when the stratum consists of spin components
can be treated by the same argument as in the proof of Proposition 6.5.

q.e.d.

Let us prove Theorem 1.5. For the reader’s convenience, we recall its
content as follows.

Theorem 6.7. For a general curve (C, z1, . . . , zr, p1, . . . , ps) in (the
non-hyperelliptic component of) P(k1, . . . , kr,−l1, . . . ,−ls), z1 is not a
Weierstrass point.

Proof. Let k =
∑r

i=1 and l =
∑s

j=1. Then 2g− 2 = k− l. Analogous

to Lemmas 6.1 and 6.4, it suffices to prove the result for P(k,−l). Do
induction on g. The case g = 1 is trivial, because there is no Weierstrass
point on an elliptic curve. Suppose the claim holds for g − 1. Take
(X, q, p) ∈ P(k − 2,−l) such that q is not a Weierstrass point. Attach
to X an elliptic curve E at q. Take a k-torsion z with respect to q in
E such that z and q are not g-torsion to each other. This is feasible
because k = 2g − 2 + l > g. By Theorem 4.20 we have (X ∪q E, z, p) ∈
P(k,−l), and z is not a limit Weierstrass point, thus proving the desired
result by induction. Again, the case when the stratum consists of spin
components can be treated by the same argument as in Proposition 6.5.

q.e.d.

6.3. Chains of elliptic curves. For the sake of completeness, let us
analyze limits of Weierstrass points as smooth curves degenerate to a
chain C of g elliptic curves E1, . . . , Eg. Suppose Ei ∩ Ei+1 = qi for
i = 1, . . . , g − 1. Let qg ∈ Eg be a smooth point, see Figure 33.

E1 E2 Eg-1 Eg

z

q1 qg-1

Figure 33. A chain of elliptic curves marked in the last component.

Denote by t(x, y) the torsion order of x and y in an elliptic curve,
i.e., the minimal positive integer t such that tx ∼ ty. If such t does
not exist, set t(x, y) = ∞. In particular, let ti = t(qi−1, qi) in Ei for
i = 2, . . . , g.

Proposition 6.8. In the above setting, qg is a limit Weierstrass point
if and only if there exists an integer sequence g = kg ≥ kg−1 ≥ · · · ≥
k2 ≥ k1 ≥ 2 such that kiqi − ki−1qi−1 is an effective divisor class in Ei

for i = 2, . . . , g.

Proof. Note that qg is a limit Weierstrass point if and only if there
exists an admissible cover of degree g, totally ramified at qg as in Fig-
ure 34.
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qg

qg-1
qg-2

Eg

Eg-1

Eg-2

g

Figure 34. An admissible cover totally ramified at qg.

Suppose that ki encodes the ramification order of the cover at qi ∈
Ei+1. Start from Eg and keep track of the cover along the chain at each
node qg−1, . . . , q1. The desired result follows right away. q.e.d.

Remark 6.9. If ki > ki−1, the effectiveness of kiqi− ki−1qi−1 always
holds by the group structure of elliptic curves. On the other hand, if
ki = ki−1, then the effectiveness condition implies that ti | ki.

Corollary 6.10. In the above setting, if ti | i for some i, then qg is
a limit Weierstrass point.

Proof. Take kj = j + 1 for j ≤ i − 1 and kl = l for l ≥ i. Since
iqi ∼ iqi−1, the result follows from Proposition 6.8. q.e.d.

7. Boundary of the minimal stratum in genus three

In genus three, the minimal stratum P(4) consists of two connected
components P(4)hyp and P(4)odd. Denote by z the unique zero. We
would like to classify which stable nodal curve (C, z) ∈ M3,1 is con-

tained in P(4)hyp and in P(4)odd. As we have seen before, using ad-
missible double covers provides us a good understanding of P(4)hyp.
Moreover, in this case P(4)even coincides with P(4)hyp, hence the result
in Theorem 1.4 also applies. Below we will classify boundary points of
P(4)hyp and P(4)odd for curves with at most two nodes. We separate
the discussion by the number of nodes and the topological type of a
curve.

7.1. Curves with one node. There are three cases for (C, z) ∈M3,1

such that C has one node, see Figure 35.
Here we denote by q the node, z the marked point, and label the

geometric genus of each component of C.

• Case (I). By Theorem 1.2, (C, z) ∈ P(4) if and only if 4z ∼ 4q in
C1 and 2q ∼ KC2 in C2. In particular, the condition on C2 implies
that q is a Weierstrass point of C2. It suffices to distinguish which
component of P(4) contains (C, z). As in the proof of Theorem 1.4,
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q q q

C1:g=1 C2:g=2 C1:g=1 C2:g=2 C:g=2

z z z

(I) (II) (III)

Figure 35. Stable pointed genus three curves with one node.

the limit spin structure on C is (OC1(2z−2q),OC2(q)) (we drop the
exceptional P1), hence the parity is even if and only if 2z ∼ 2q in
C1. We thus conclude that (C, z) ∈ P(4)hyp if and only if 2z ∼ 2q
in C1 and 2q ∼ KC2 in C2, and (C, z) ∈ P(4)odd if and only if
4z ∼ 4q, 2z �∼ 2q, and 2q ∼ KC2 .

• Case (II). As above, (C, z) ∈ P(4) if and only if 4z ∼ 2q + KC2

in C2. The limit spin structure on C is (OC1 ,OC2(2z − q)). Its
parity is even if and only if 2z − q is effective in C2. Note that
2z − q is effective if and only if z is a Weierstrass point of C2,
i.e., 2z ∼ KC2 , which further implies that 2z ∼ 2q. We thus
conclude that (C, z) ∈ P(4)hyp if and only if 2z ∼ 2q ∼ KC2 , and
(C, z) ∈ P(4)odd if and only if 4z ∼ 2q +KC2 and 2z �∼ KC2 .

• Case (III). Let C̃ be the normalization of C, and q1, q2 ∈ C̃ the

preimages of q. A stable one-form on C̃ with a zero of multiplicity
four at z corresponds to a section of K

˜C
(q1+q2). By Theorem 1.1,

(C, z) ∈ P(4) if and only if 4z ∈ K
˜C
+ q1+ q2 in C̃. The limit spin

structure on C is given by OC(2z). Hence, it is even if and only
if C is a (degenerate) hyperelliptic curve and z is a ramification
point of the corresponding admissible double cover, i.e., if and only
if 2z ∼ q1 + q2 ∼ K

˜C
. We thus conclude that (C, z) ∈ P(4)hyp if

and only if q1 + q2 ∼ 2z ∼ K
˜C
, and (C, z) ∈ P(4)odd if and only if

4z ∈ K
˜C
+ q1 + q2 but 2z �∼ K

˜C
.

7.2. Curves with two nodes. There are ten cases for (C, z) ∈ M3,1

such that C has two nodes, see Figure 36.
Again, we denote by q1, q2 the two nodes, z the marked point, and

label the geometric genus of each component of C

• Case (IV). Note that C is of compact type. If (C, z) ∈ P(4),
the limit spin structure on C would be (OC0(−1),OC1 ,OC2(q2)),
hence its parity is even, which implies that (C, z) ∈ P(4)hyp. Nev-
ertheless, by analyzing possible admissible double covers f on C,
it follows that f |C0 has ramification at q1, q2 and z, contradicting
the fact that on C0

∼= P1 there are only two ramification points by
Riemann–Hurwitz. We thus conclude that P(4) is disjoint from
the locus of curves of type (IV).
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Figure 36. Stable pointed genus three curves with two nodes.

• Case (V). If (C, z) ∈ P(4), necessarily we have 4z ∼ 4q1 in C1

and 2q1 ∼ 2q2 in C2 by Proposition 4.2. In addition, the limit
spin structure on C is (OC1(2z − 2q1),OC2(q1 − q2),OC3). It is
even if and only if 2z ∼ 2q1. In this case, again using admissible
covers we see that (C, z) ∈ P(4)hyp if and only if 2z ∼ 2q1 in C1

and 2q1 ∼ 2q2 in C2. Moreover, (C, z) ∈ P(4)odd if and only if
2q1 ∼ 2q2 in C2, 4z ∼ 4q1 but 2z �∼ 2q1 in C1, where the “if” part
follows from Theorem 4.14 because C3 is the only holomorphic
component.

• Case (VI). If (C, z) ∈ P(4), necessarily we have 4z ∼ 2z1 + 2z2 in
C2. The limit spin structure on C is (OC1 ,OC2(2z−q1−q2),OC3),
hence it is odd if and only if 2z ∼ q1 + q2 in C2. Using admissible
covers we see that (C, z) ∈ P(4)hyp if and only if 2z ∼ 2q1 ∼ 2q2
in C2. On the other hand, if 2z ∼ q1 + q2, then certainly 2z �∼ 2qi
for i = 1, 2. Furthermore, if there exists a limit g24 on C such
that the vanishing sequences of its aspect on C2 at z, q1 and q2
are (0, 1, 4), (0, 2, 3) and (0, 2, 3), respectively, such g24 imposes two
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conditions to pointed curves of type (VI), matching the adjusted
Brill–Noether number by imposing vanishing sequence (0, 1, 4) to
z. Hence, by the smoothability criterion of limit linear series
([EH1, Theorem 3.4]) such (C, z) appears in P(4)odd.

• Case (VII). Note that C is of pseudocompact type, so the discus-
sion of twisted canonical divisors and limit spin structures also
applies. The situation is very similar to Case (II). Let q′1 and q′′1
be the preimages of q1 in C̃1. Then (C, z) ∈ P(4)hyp if and only if

2z ∼ 2q2 ∼ q′1 + q′′1 in C̃1, again easily seen by admissible covers.
On the other hand, (C, z) ∈ P(4)odd if and only if 4z ∼ 2q2+q′1+q′′1
and 2z �∼ 2q2, where the “if” part follows from plumbing a cylinder
at q1 in the proof of Theorem 1.1 and applying Theorem 1.2.

• Case (VIII). This is similar to Case (I). We conclude that (C, z) ∈
P(4)hyp if and only if 2q2 ∼ q′1 + q′′1 in C1 and 2z ∼ 2q2 in C̃2 by
admissible covers, and (C, z) ∈ P(4)odd if and only if 2q2 ∼ q′1+q′′1
in C̃1, 4z ∼ 4q2 and 2z �∼ 2q2 in C2.

• Case (IX). This is similar to Case (I). We conclude that (C, z) ∈
P(4)hyp if and only if 2q2 ∼ KC2 and q′1, q′′1 are conjugate under

the double cover induced by 2z ∼ 2q2 on C̃1. On the other hand,
(C, z) ∈ P(4)odd if and only if 2q2 ∼ KC2 and z, q2 are primitive
4-torsions in the rational nodal curve C1.

• Case (X). This is similar to Case (II). We conclude that (C, z) ∈
P(4)hyp if and only if 2z ∼ 2q2 in C2, and (C, z) ∈ P(4)odd if and
only if 4z ∼ 2q2 +KC2 and 2z �∼ KC2 .

• Case (XI). Suppose (C, z) ∈ P(4). The limit spin structure is
(OC1(2z − q1 − q2),OP1(1),OP1(1),OC2), after blowing up q1, q2
and inserting two exceptional P1-components. The parity is de-
termined by h0(C1, 2z − q1 − q2) + h0(C2,O), hence it is even if
and only if 2z ∼ q1 + q2 in C1, i.e., if and only if (C1, z) ∈ P(4)hyp
by using admissible covers. Now suppose (C, z) ∈ P(4)odd and
2z �∼ q1 + q2. We claim that 4z ∼ 2q1 + 2q2 in C1, which can be
seen as follows. Embed C1 to P3 by the linear system |2q1 + 2q2|
as an elliptic normal quartic. Let H be the plane in P3 that cuts
out 2q1 + 2q2 in C1. Choose a point in H and project C1 from it
to P2. The image of C1 is a plane quartic C ′

1 with a tacnode q,
and H maps to a line that passes through q and is tangent to both
branches of C ′

1 at q. When smooth plane quartics with a hyperflex
degenerate to C ′

1, the limit hyperflex line cuts out 4z, hence we
conclude that 4z ∼ 2q1 + 2q2. Conversely if 4z ∼ 2q1 + 2q2 in C1,
since the space of plane quartics with a hyperflex is irreducible,
the tacnodal elliptic quartic model C ′

1 of C1 appears as a limit of
smooth plane quartics with a hyperflex, with z as the limit hy-
perflex point. Running stable reduction to a general pencil in this
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degeneration to resolve the tacnode, the stable limit is of type (XI)
and all possible elliptic bridges C2 show up. Moreover, in this case
we see that 2z �∼ q1+ q2. Otherwise 2z+ q1+ q2 ∼ 2q1+2q2 would
imply that the tangent line to C ′

1 at z cuts out 2z+q1+q2, contra-
dicting that z is a hyperflex of C ′

1. Hence, it belongs to P(4)odd,
and not to P(4)hyp.

• Case (XII). By admissible covers we see that (C, z) ∈ P(4)hyp
if and only if q1 + q2 ∼ KC2 . In this case it also belongs to
P(4)odd as proved in Theorem 5.3. Suppose now (C, z) ∈ P(4)odd
and C is not hyperelliptic, i.e., q1 + q2 �∼ KC2 . Let C ′ be the
irreducible nodal curve by blowing down C1, i.e., identifying q1
and q2 in C2 as a node q. Since C ′ is not hyperelliptic, it admits a
canonical embedding as a plane nodal quartic. Consider smooth
curves in P(4)odd as plane quartics with a hyperflex line. When
they degenerate to C ′, in order to have contact order four to C ′ at
q, the limit L of hyperflex lines cuts out either 3q1+ q2 or q1+3q2
in C2. Without loss of generality, suppose the former occurs. It
then implies that 3q1+q2 ∼ KC2(q1+q2), hence q1 is a Weierstrass
point of C2. Conversely if 2q1 ∼ KC2 (or 2q2 ∼ KC2 by symmetry),
since the space of plane quartics that have contact order four to
L at q is irreducible, such a (C, z) appears as a limit of smooth
plane quartics with a hyperflex, hence it is contained in P(4)odd.

• Case (XIII). Using admissible covers, we obtain that (C, z) ∈
P(4)hyp if and only if q′1 + q′′1 ∼ q′2 + q′′2 ∼ 2z in C̃. On the
other hand, (C, z) ∈ P(4)odd if and only if 4z ∼ q′1 + q′′1 + q′2 + q′′2 ,
the corresponding meromorphic differential in C̃ has residues sum-
ming up to zero at q′i, q

′′
i for both i = 1, 2, and 2z �∼ q′i + q′′i for

either i, where the “if” part follows from plumbing a cylinder at
q1 and at q2.

7.3. A curve of non-pseudocompact type with three nodes.
Finally, we consider a more exotic case. Let C consist of a smooth curve
E of genus one meeting L ∼= P1 at three nodes q1, q2 and q3, where L
contains the marked point z in the smooth locus, see Figure 37.

z
L

E

C:

q1 q2 q3

Figure 37. A curve of genus one meeting a marked pro-
jective line at three nodes.
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Proposition 7.1. In the above setting, (C, z) �∈ P(4)hyp and (C, z) ∈
P(4)odd.

Proof. If C admits an admissible hyperelliptic double covering, then
the subcovers restricted to both E and L have degree two. Hence, they
cannot intersect at three nodes, because otherwise the arithmetic genus
of the target curve would be greater than zero, leading to a contradic-
tion. This proves that (C, z) �∈ P(4)hyp.

Since C is not in the closure of the locus of hyperelliptic curves, it
admits a canonical embedding as a singular plane quartic, where E is
a cubic and L is a line in P2. Without loss of generality, set z = (0, 0)
and L : y = 0 in the affine coordinates x and y. Recall that curves in
P(4)odd admit canonical embeddings as plane quartics with a hyperflex
line. The defining equation of a plane quartic that has contact order
four to L at z is of the form

tx4 + yg(x, y),

where g(x, y) is any polynomial of degree at most three. Now take g(x, y)
to be the defining equation of the plane cubic E and let t approach
zero. We obtain a family of pointed curves in P(4)odd that degenerate
to (C, z), thus proving that (C, z) ∈ P(4)odd.

Alternatively, we present a flat-geometric explanation to prove that
it is contained in P(4). Let ωL be a meromorphic differential on L such
that it has a quadruple zero at z and a double pole at each qi. Suppose
the residue of ωL at qi is ηi. Let ωE be a holomorphic differential on
E, realizing E as a flat torus. Take away a polygon from the interior
of E and identify the edges with the same labelings by translation, see
Figure 38. We require that c1 = η1, c2 = η2 and c1 + c2 + η3 = 0.

t1
t3

t2

a

a

b b

c1

c2

c2

c1

1

1

2

2

3

3

Figure 38. A flat torus with a polygon removed.



452 D. CHEN

Since the residues ηi sum up to zero, such a polygon with the desired
gluing pattern exists. It is easy to check that the resulting translation
surface is inH(4), where the blue points are identified to form the unique
zero z.

Now shrink c1 and c2 to be arbitrarily short. The limit surface is E
with the three endpoints of li identified as a triple point. Up to scaling,
this procedure amounts to expanding all the other edges to be arbi-
trarily long in comparison to c1 and c2. According to [Bo], extending
each pair of li to infinity gives rise to a double pole with residue equal
to ηi, and the quadruple zero z remains there. Hence, the resulting
flat surface of infinite area corresponds to a meromorphic differential of
type ωL, thus recovering the P1-component with the marked zero after
blowing up the triple point in E. q.e.d.

It appears possible to classify curves with more than two nodes that
are contained in P(4). But the number of topological types of curves
with three nodes or more increases significantly, so here we choose to
end our discussion.
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