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Abstract

Let X be an abstract not necessarily compact orientable CR

manifold of dimension 2n − 1, n � 2. Let �
(q)
b be the Gaffney

extension of Kohn Laplacian on (0, q)-forms. We show that the

spectral function of �
(q)
b admits a full asymptotic expansion on

the non-degenerate part of the Levi form. As a corollary, we de-
duce that if X is compact and the Levi form is non-degenerate

of constant signature on X , then the spectrum of �
(q)
b in ]0,∞[

consists of point eigenvalues of finite multiplicity. Moreover, we
show that a certain microlocal conjugation of the associated Szegő
kernel admits an asymptotic expansion under a local closed range
condition. As applications, we establish the Szegő kernel asymp-
totic expansions on some weakly pseudoconvex CR manifolds and
on CR manifolds with transversal CR S1 actions. By using these
asymptotics, we establish some local embedding theorems on CR
manifolds and we give an analytic proof of a theorem of Lem-
pert asserting that a compact strictly pseudoconvex CR manifold
of dimension three with a transversal CR S1 action can be CR
embedded into CN , for some N ∈ N.

Contents

1. Introduction and statement of the main results 83

2. Preliminaries 91

2.1. Standard notations 91

2.2. Set up and terminology 93

The first author was partially supported by Taiwan Ministry of Science of Technol-
ogy project 103-2115-M-001-001, the DFG project MA 2469/2-2 and funded through
the Institutional Strategy of the University of Cologne within the German Excellence
Initiative.

The second author partially supported by the DFG projects SFB/TR 12, MA
2469/2-1 and Université Paris 7.
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1. Introduction and statement of the main results

Let (X,T 1,0X) be a CR manifold of hypersurface type and dimension

2n−1, n ≥ 2. Let �
(q)
b be the Gaffney extension of the Kohn Laplacian

acting on (0, q) forms (see (2.9)). The orthogonal projection Π(q) :

L2
(0,q)(X)→ Ker�

(q)
b onto Ker�

(q)
b is called the Szegő projection, while

its distribution kernel Π(q)(x, y) is called the Szegő kernel. The study of
the Szegő projection and kernel is a classical subject in several complex
variables and CR geometry.

When the Levi form satisfies condition Y (q) onX (see Definition 2.2),
then Kohn’s subelliptic estimates with loss of one derivative for the

solutions of �
(q)
b u = f hold, cf. [23, 34, 50], and, hence, Π(q) is a

smoothing operator. When condition Y (q) fails, one is interested in the
singularities of the Szegő kernel Π(q)(x, y).

A very important case is when X is a compact strictly pseudoconvex
CR manifold (in this case Y (0) fails). Assume first that X is the bound-
ary of a strictly pseudoconvex domain. Boutet de Monvel–Sjöstrand [17]

showed that Π(0)(x, y) is a Fourier integral operator with complex phase.

In particular, Π(0)(x, y) is smooth outside the diagonal of X × X and
there is a precise description of the singularity on the diagonal x = y,
where Π(0)(x, x) has a certain asymptotic expansion.

The Boutet de Monvel–Sjöstrand description of the Szegő kernel had a
profound impact in many research areas, especially through [18]: several
complex variables, symplectic and contact geometry, geometric quan-
tization, Kähler geometry, semiclassical analysis, quantum chaos, cf.
[11, 12, 13, 15, 16, 21, 22, 26, 29, 38, 40, 49, 54, 55, 64, 66], to
quote just a few. These ideas also partly motivated the introduction of
alternative approaches, see [55, 56, 58, 57].
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From the works of Boutet de Monvel [14], Boutet de Monvel–Sjöstrand
[17], Harvey–Lawson [39], Burns [19] and Kohn [51, 52] follows that
the conditions below are equivalent for a compact strictly pseudoconvex
CR manifold X, dimRX � 3:

(a) X is embeddable in the Euclidean space C
N , for N sufficiently

large;

(b) X bounds a strictly pseudoconvex complex manifold;

(c) The Kohn Laplacian �
(0)
b on functions of X has closed range in L2.

Therefore, the description of the Szegő kernel given by [17] holds for CR
manifolds satisfying the equivalent conditions (a)–(c). Moreover, ifX an
abstract compact strictly pseudoconvex of dimension ≥ 5, then X satis-
fies condition (a), by a theorem of Boutet de Monvel [14]. Among em-
beddable strictly pseudoconvex CR manifolds of dimension three there
are those carrying interesting geometric structures, such as transverse
S1 actions, cf. [9, 30, 53], conformal structures, cf. [7], or Sasakian
structures, cf. [59].

The first author [44] showed that if the Levi form is non-degenerate

and �
(q)
b has L2 closed range for some q ∈ {0, 1, . . . , n− 1}, then the

Szegő kernel Π(q)(x, y) is a complex Fourier integral operator. Therefore,
the study of the singularities of the Szegő kernel is closely related to the
closed range property of the Kohn Laplacian.

Kohn [52] proved that if Y (q) fails but Y (q−1) and Y (q+1) hold on a

compact CR manifold X, then �
(q)
b has L2 closed range. In this case the

result of [44] applies and we can describe the Szegő kernel Π(q)(x, y). On
the negative side, Burns [19] showed that the closed range property fails
in the case of the non-embeddable examples of Grauert, Andreotti–Siu
and Rossi [36, 1, 62].

Beside Kohn’s criterion, it is very difficult to determine when �
(q)
b

has L2 closed range. Let’s see a simple example. Let [z] = [z1, . . . , zN ]
be the homogeneous coordinates of CPN−1. Consider 1 ≤ m ≤ N − 1.
Put

(1.1) X :=
{
[z1, . . . , zN ] ∈ CP

N−1;
N∑
j=1

λj |zj |2 = 0
}
,

where λj < 0 for 1 ≤ j ≤ m and λj > 0 for m+1 ≤ j ≤ N . Then, X is
a compact CR manifold of dimension 2(N − 1) − 1 with CR structure
T 1,0X := T 1,0

CP
N−1 ∩ CTX. It is straightforward to see that the Levi

form has exactly m − 1 negative eigenvalues and N − m − 1 positive
eigenvalues at every point ofX. Thus, when q = m−1, N−m−1 = q+1,
Y (q) and Y (q + 1) fail and Kohn’s criterion does not work in this case.
Even in this simple example, it doesn’t follow from Kohn’s criterion that

�
(q)
b has L2 closed range. We are lead to ask the following questions:
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Question 1.1. Let X be compact CR manifold whose Levi form is
non-degenerate of signature (n−, n+). Assume n+ ∈ {n− − 1, n− + 1}.
When does �

(q)
b have L2 closed range for q = n−? Note that in this

case, Y (q) and Y (q + 1) fail.

This question was asked by Boutet de Monvel. We will introduce
another condition, called W (q) (see Definition 6.22) which applied for

CR manifolds with S1 action shows that �
(q)
b has L2 closed range in the

situation of Question 1.1, see Theorem 6.23. In particular, the Kohn
Laplacian on the manifold X in the examples (1.1) has closed range.

Question 1.2. Let X be a not-necessarily compact CR manifold and
the Levi form can be degenerate (for example, X is weakly pseudocon-

vex). Assume that �
(q)
b has L2 closed range. Does the Szegő kernel

Π(q)(x, y) admit an asymptotic expansion on the set where the Levi
form is non-degenerate?

Question 1.3. Find a natural local analytic condition (weaker than
L2 closed range condition) which implies that the Szegő kernel admits
a local asymptotic expansion.

Without any regularity assumption, Ker�
(q)
b could be trivial and,

therefore, we consider the spectral projections Π
(q)
≤λ := E([0, λ]), for

λ > 0, where E denotes the spectral measure of �
(q)
b .

Question 1.4. Is Π
(q)
≤λ a Fourier integral operator, for every λ > 0?

The purpose of this work is to answer Questions 1.1–1.4. Our first
main results tell us that on the non-degenerate part of the Levi form,

Π
(q)
≤λ is a Fourier integral operator with complex phase, for every λ > 0,

and Π
(q)
(λ1,λ2]

:= E((λ1, λ2]) is a smoothing operator, for every 0 < λ1 <

λ2.

Theorem 1.5. Let X be a CR manifold whose Levi form is non-
degenerate of constant signature (n−, n+) at each point of an open set
D � X. Then for every λ > 0 the restriction of the spectral projector

Π
(q)
≤λ to D is a smoothing operator for q /∈ {n−, n+} and is a Fourier

integral operator with complex phase for q ∈ {n−, n+}. Moreover, in the

latter case, the singularity of Π
(q)
≤λ does not depend on λ, in the sense

that the difference Π
(q)
≤λ1

−Π
(q)
≤λ2

is smoothing on D for any λ1, λ2 > 0.

The Fourier integral operators A considered here (and in this paper)
have kernels of the form
(1.2)

A(x, y) =

∫ ∞

0
eiϕ−(x,y)ts−(x, y, t)dt+

∫ ∞

0
eiϕ+(x,y)ts+(x, y, t)dt+R(x, y) ,
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where the integrals are oscillatory integrals, ϕ−, ϕ+ are complex phase
functions, s−, s+ classical symbols of type (1, 0) and order n−1, s− = 0
if q �= n−, s+ = 0 if q �= n+ and R a smooth function, see Section 2 for
a precise definition.

A detailed version of Theorem 1.5 will be given in Theorems 4.1, 4.7
and 4.8. As a corollary of Theorem 1.5, we deduce:

Corollary 1.6. Let X be a CR manifold of dimension 2n− 1, whose
Levi form is non-degenerate of constant signature at each point of an
open set D � X. Let 0 ≤ q ≤ n − 1 and 0 < λ1 < λ2. Then, the

projector Π
(q)
(λ1,λ2]

is a smoothing operator on D. In particular, if X is

compact and the Levi form is non-degenerate of constant signature on

X, then the projector Π
(q)
(λ1,λ2]

is a smoothing operator on X.

As a consequence, we deduce that if X is compact and the Levi form
is non-degenerate of constant signature on X, then the spectrum of

�
(q)
b in ]0,∞[ consists of point eigenvalues of finite multiplicity. Burns–

Epstein [20, Theorem1.3] proved that if X is compact, strictly pseudo-

convex of dimension three, then the spectrum of �
(0)
b in ]0,∞[ consists

of point eigenvalues of finite multiplicity. We generalize their result to
any q ∈ {0, 1, . . . , n− 1} and any dimension.

Theorem 1.7. We assume that X is compact and the Levi form is
non-degenerate of constant signature (n−, n+) on X. Fix

q ∈ {0, 1, . . . , n− 1} .
Then, for any μ > 0, Spec�

(q)
b ∩ [μ,∞[ is a discrete subset of R, any

ν ∈ Spec�
(q)
b with ν > 0 is an eigenvalue of �

(q)
b and the eigenspace

Hq
b,ν(X) :=

{
u ∈ Dom�

(q)
b ; �

(q)
b u = νu

}
is finite dimensional with

Hq
b,ν(X) ⊂ Ω0,q(X).

If �
(q)
b has closed range, then Π(q) = Π

(q)
≤λ for some λ > 0, so we

can deduce the asymptotic of the Szegő kernel from Theorem 1.5. We
introduce now the following local and more flexible version of the closed
range property.

Definition 1.8. Fix q ∈ {0, 1, 2, . . . , n− 1}. Let Q : L2
(0,q)(X) →

L2
(0,q)(X) be a continuous operator. We say that �

(q)
b has local L2 closed

range on an open set D ⊂ X with respect to Q if for every D′ � D,
there exist constants CD′ > 0 and p ∈ N, such that∥∥∥Q(I −Π(q))u

∥∥∥2 ≤ CD′
(
(�

(q)
b )pu |u), ∀u ∈ Ω0,q

0 (D′).

When D = X, Q is the identity map and p = 2, this property is just

the L2 closed range property for �
(q)
b . When D = X, Q is the identity
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map, p = 1 and q = 0, this property is the L2 closed range property
for ∂b.

Let Σ = Σ− ∪ Σ+ be the characteristic manifold of �
(q)
b (see (2.14)).

For an open set D ⊂ X, let Lm
cl (D,T ∗0,qX � T ∗0,qX) denote the space

of classical pseudodifferential operators on D of order m from sections
of T ∗0,qX to sections of T ∗0,qX, respectively. We refer the reader to
Section 2.2, for the notations and definitions used in the following the-
orem.

Theorem 1.9. Let X be a CR manifold of dimension 2n− 1, whose
Levi form is non-degenerate of constant signature (n−, n+) at each point
of an open set D � X. Let q ∈ {0, 1, . . . , n− 1} and let Q : L2

(0,q)(X)→
L2
(0,q)(X) be a continuous operator and let Q∗ be the L2 adjoint of Q

with respect to ( · | · ). Suppose that �
(q)
b has local L2 closed range on D

with respect to Q and QΠ(q) = Π(q)Q on L2
(0,q)(X) and

Q−Q0 ≡ 0 at Σ
⋂

T ∗D,

where Q0 ∈ L0
cl (D,T ∗0,qX � T ∗0,qX). Then, Q∗Π(q)Q is smoothing on

D if q /∈ {n−, n+} and is a Fourier integral operator with complex phase
if q ∈ {n−, n+}.

For the precise meaning for Q−Q0 ≡ 0 at Σ
⋂
T ∗D, see Definition 2.4.

This result will be proved in Section 5, see Theorem 5.1 for a detailed
version of Theorem 1.9. It should be mentioned that the operator Q in
Theorem 1.9 will be used when there is an S1 action on X.

For Q ∈ Lm
cl (X), let σQ(x, ξ) ∈ C∞(T ∗X) denote the principal sym-

bol of Q.
By using Theorem 1.9, we establish the following local embedding

theorem (see Section 5 for a proof).

Theorem 1.10. Let X be a CR manifold of dimension 2n−1, whose
Levi form is positive at each point of an open set D � X. Let Q :
L2(X)→ L2(X) be a continuous operator with QΠ(0) = Π(0)Q and

Q−Q0 ≡ 0 at Σ−
⋂

T ∗D,

where Q0 ∈ L0
cl (X). Assume that σQ0

(x, ξ) �= 0 at each point of

Σ−
⋂

T ∗D. Suppose that �
(0)
b has local L2 closed range on D with re-

spect to Q. Then, for any point x0 ∈ D, there is an open neighborhood
D̂ � D of x0 such that D̂ can be embedded into C

n by a global CR map.

We notice that in Theorem 1.10, �
(0)
b might not have L2 closed range,

however, with the help of the operator Q, we can still understand the
Szegő projection and produce many global CR functions.

We will apply Theorem 1.9 to establish Szegő kernel asymptotic ex-
pansions on compact CR manifolds with transversal CR S1 actions un-
der certain Levi curvature assumptions.
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Theorem 1.11. Let (X,T 1,0X) be a compact CR manifold of di-
mension 2n − 1, n ≥ 2, with a transversal CR S1 action and let T ∈
C∞(X,TX) be the real vector field induced by this S1 action. For

m ∈ Z, let B0,q
m (X) ⊂ L2

(0,q)(X) be the completion of

B0,q
m (X) :=

{
u ∈ Ω0,q(X); Tu = −√−1mu

}
,

and let Q
(q)
≤0 : L2

(0,q)(X) → ⊕m∈Z,m≤0B0,q
m (X) be the orthogonal projec-

tion. Assume that Z(q) fails but Z(q − 1) and Z(q + 1) hold at every

point of X. Then, �
(q)
b has local L2 closed range on X with respect to

Q
(q)
≤0. Suppose further that the Levi form is non-degenerate of constant

signature (n−, n+) on an open canonical coordinate patch D � Xreg .

Then, Q
(q)
≤0Π

(q)Q
(q)
≤0 is smoothing on D if q �= n− and Q

(q)
≤0Π

(q)Q
(q)
≤0 is a

Fourier integral operator with complex phase if q = n− .

This result will be proved in §6, see Theorem 6.20 for the details,
see Definition 6.1 and Definition 6.7 for the meanings of transversal CR
S1 action and condition Z(q) and see the discussion after (6.2) for the
meaning of Xreg . As a consequence we obtain (cf. Theorem 6.23 and
Corollary 6.24):

Theorem 1.12. Let (X,T 1,0X) be a compact CR manifold of dimen-
sion 2n−1, n ≥ 2, with a transversal CR S1 action. Assume W (q) holds

on X for some q ∈ {0, 1, . . . , n− 1}. Then �
(q)
b has L2 closed range.

In particular, for any CR submanifold in CP
N of the form (1.1), the

associated Szegő kernel Π(q)(x, y) admits a full asymptotic expansion.

We notice that if the Levi form is non-degenerate of constant signa-
ture on X then W (q) holds on X (see Definition 6.22). In particular,
for a 3-dimensional compact strictly pseudoconvex CR manifold, W (0)

holds on X. Hence, �
(0)
b has L2 closed range if X admits a transversal

CR S1 action. From this, we deduce the following global embeddability
of Lempert [53, Theorem2.1], cf. also [30, Theorem A16] (see Sec-
tion 6).

Theorem 1.13. Let (X,T 1,0X) be a compact strictly pseudoconvex
CR manifold of dimension three with a transversal CR S1 action. Then
X can be CR embedded into C

N , for some N ∈ N .

Note that Baouendi–Rothschild–Treves [3] proved that the existence
of a local transverse CR action implies local embeddability. Let us
point out that transversality in Theorem 1.13 cannot be dispensed with:
the non-embeddable example of Grauert, Andreotti–Siu and Rossi [36,
1, 62] admits a nontransversal circle action; see also the example of
Barrett [4] which admits a transverse CR torus action, but no one-
dimensional sub-action exists which itself is transverse. The embeddable
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small deformations of S1 invariant strictly pseudoconvex CR structures
on circle bundles over Riemann surfaces were described by Epstein [30].

Theorem 1.9 yields immediately the following.

Theorem 1.14. Suppose that X is a CR manifold such that �
(0)
b has

closed range in L2. Then the Szegő projector Π(0) is a Fourier integral
operator on the subset where the Levi form is positive definite.

Corollary 1.15. Let X be a compact pseudoconvex CR manifold
satisfying one of the following conditions:

(i) X = ∂M , where M is a relatively compact pseudoconvex domain
in a complex manifold, such that there exists a strictly psh function
in a neighborhood of X.

(ii) X admits a CR embedding into some Euclidean space C
N .

Then the Szegő projector Π(0) is a Fourier integral operator on the subset
where the Levi form is positive definite.

Indeed, it was shown that ∂b has closed range in L2 under condition
(i) in [52, p. 543] and under condition (ii) in [2, 61]. For boundaries of
pseudoconvex domains in C

n the closed range property was shown in
[10, 52, 63]. Note also that any three-dimensional pseudoconvex and
of finite type CR manifold X admits a CR embedding into some C

N if
∂b has L

2 closed range, cf. [24].
We can give a very concrete description of the Szegő kernel in case

(i) of Corollary 1.15. LetM be a relatively compact domain with smooth
boundary in a complex manifold M ′ and M = {ρ < 0} where ρ ∈
C∞(M ′) is a defining function of M . We assume that the Levi form
L(ρ) is everywhere positive semi-definite on the complex tangent space
to X = ∂M and is positive definite of a subset D ⊂ X. Fix D0 � D
and let U be a small neighborhood of D0 in M ′. As in [17], one can
construct an almost-analytic extension ϕ = ϕ(x, y) : M ′×M ′ → C of ρ
with the following properties:

ϕ(x, x) =
1√−1	(x) and ∂yϕ, ∂xϕ vanish to infinite order on x = y.

(1.3)

ϕ(y, x) = ϕ(x, y).

Imϕ(x, y) ≥ c |x− y|2 on U × U , where c > 0 is a constant.

Then on D0, the Szegő kernel Π(0)(x, y) of X has the form

Π(0)(x, y) =

∫ ∞

0
eiϕ(x,y)ts(x, y, t)dt+R(x, y)

= F (x, y)
(− iϕ(x, y) + 0

)−n
+G(x, y) log

(− iϕ(x, y) + 0
)
,

(1.4)
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for some smooth functions F , G and R. Here we denote by
(−iϕ(x, y)+

0
)−n

, log
(− iϕ(x, y) + 0

)
the distributions limit of

(− iϕ(x, y) + ε
)−n

and log
(− iϕ(x, y) + ε

)
as ε→ 0+. See Section 7 for more details.

Our method can be extended to non-compact weakly pseudoconvex
tube domains in C

n with basis a strictly pseudoconvex domain in C
n−1

cf. Theorems 7.4 and 7.5.
Let us, finally, mention that the analysis of the Szegő kernels was

also used to study embeddings given by CR sections of a positive CR
bundle, introduced in [47] (see also [45, 46]).

The Szegő projector plays an important role in embedding problems
also through the framework of relative index for Szegő projectors intro-
duced by Epstein cf. [31]. One outcome of this analysis is the solution
of the relative index conjecture [32], which implies that the set of em-
beddable deformations of a strictly pseudoconvex CR structure on a
compact three-dimensional manifold is closed in the C∞-topology.

The layout of this paper is as follows. In Section 2, we collect some
notations, definitions and statements we use throughout.

In Section 3, we review some results in [44] about the existence of a
microlocal Hodge decomposition of the Kohn Laplacian on an open set
of a CR manifold where the Levi form is non-degenerate.

In Section 4, we first study the microlocal behavior of the spectral
function and by using the microlocal Hodge decomposition of the Kohn
Laplacian established in [44], we prove Theorem 1.5. Furthermore, by
using Theorem 1.5 and some standard technique in functional analysis,
we prove Theorem 1.7.

Section 5 is devoted to proving Theorems 1.9 and 1.10.
In Section 6, we study CR manifolds with transversal CR S1 actions.

We introduce the microlocal cut-off functions Q
(q)
≤0 and Q

(q)
≥0 and study

the closed range property with respect to these operators. Finally, we
establish Theorems 1.11, 1.12 and 1.13.

In Section 7, by using Hörmander’s L2 estimates, we establish the

local L2 closed range property for �
(0)
b with respect to Q(0) for some

weakly pseudoconvex tube domains in C
n, hence, establish the asymp-

totics of the Szegő kernel (see Theorem 7.4 and Theorem 7.5).
Finally, in Section 8, we prove the technical Theorem 5.4 by using

semi-classical analysis and global theory of complex Fourier integral
operators of Melin–Sjöstrand [60]. Theorem 5.4 will be used in the
proof of Theorem 1.9.

Acknowledgments. We are most grateful to Louis Boutet de Monvel
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sions about the Szegő kernel over the years. We also thank the referee
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tion.
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2. Preliminaries

2.1. Standard notations. We shall use the following notations: N =
{1, 2, . . .}, N0 = N ∪ {0}, R is the set of real numbers,

R+ := {x ∈ R; x ≥ 0} .
For a multiindex α = (α1, . . . , αn) ∈ N

n
0 we denote by |α| = α1+. . .+αn

its norm and by l(α) = n its length. For m ∈ N, write α ∈ {1, . . . ,m}n
if αj ∈ {1, . . . ,m}, j = 1, . . . , n. α is strictly increasing if α1 < α2 <
. . . < αn. For x = (x1, . . . , xn) we write

xα = xα1

1 . . . xαn
n ,

∂xj
=

∂

∂xj
, ∂α

x = ∂α1

x1
. . . ∂αn

xn
=

∂|α|

∂xα
,

Dxj
=

1

i
∂xj

, Dα
x = Dα1

x1
. . . Dαn

xn
, Dx =

1

i
∂x .

Let z = (z1, . . . , zn), zj = x2j−1 + ix2j , j = 1, . . . , n, be coordinates of
C
n. We write

zα = zα1

1 . . . zαn
n , zα = zα1

1 . . . zαn
n ,

∂zj =
∂

∂zj
=

1

2

( ∂

∂x2j−1
− i

∂

∂x2j

)
, ∂zj =

∂

∂zj
=

1

2

( ∂

∂x2j−1
+ i

∂

∂x2j

)
,

∂α
z = ∂α1

z1
. . . ∂αn

zn
=

∂|α|

∂zα
, ∂α

z = ∂α1

z1
. . . ∂αn

zn
=

∂|α|

∂zα
.

For j, s ∈ Z, set δj,s = 1 if j = s, δj,s = 0 if j �= s.
Let M be a C∞ paracompact manifold. We let TM and T ∗M denote

the tangent bundle of M and the cotangent bundle of M , respectively.
The complexified tangent bundle of M and the complexified cotangent
bundle of M are be denoted by CTM and CT ∗M , respectively. Write
〈 · , · 〉 to denote the pointwise duality between TM and T ∗M . We extend
〈 · , · 〉 bilinearly to CTM × CT ∗M . Let G be a C∞ vector bundle over
M . The fiber of G at x ∈M will be denoted by Gx. Let E be another
vector bundle over M . We write G�E to denote the vector bundle over
M ×M with fiber over (x, y) ∈ M ×M consisting of the linear maps
from Gx to Ey. Let Y ⊂M be an open set. From now on, the spaces of
distribution sections of G over Y and smooth sections of G over Y will
be denoted by D ′(Y,G) and C∞(Y,G), respectively. Let E ′(Y,G) be the
subspace of D ′(Y,G) whose elements have compact support in Y . For
m ∈ R, let Hm(Y,G) denote the Sobolev space of order m of sections
of G over Y . Put

Hm
loc (Y,G) =

{
u ∈ D

′(Y,G); ϕu ∈ Hm(Y,G), ∀ϕ ∈ C
∞
0 (Y )

}
,

Hm
comp (Y,G) = Hm

loc(Y,G) ∩ E
′(Y,G) .

We recall the Schwartz kernel theorem [42, Theorems 5.2.1, 5.2.6], [57,
TheoremB.2.7], [65, p. 296]. Let G and E be C∞ vector bundles over
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a paracompact orientable C∞ manifold M equipped with a smooth
density of integration. If A : C∞0 (M,G) → D ′(M,E) is continuous, we
write KA(x, y) or A(x, y) to denote the distribution kernel of A. The
following two statements are equivalent

(a) A is continuous: E ′(M,G)→ C∞(M,E),

(b) KA ∈ C∞(M ×M,Gy � Ex).

If A satisfies (a) or (b), we say that A is smoothing on M . Let A,B :
C∞0 (M,G)→ D ′(M,E) be continuous operators. We write

(2.1) A ≡ B (on M),

if A−B is a smoothing operator.
We say that A is properly supported if the restrictions of the two

projections (x, y) �→ x, (x, y) �→ y to SuppKA are proper.
Let H(x, y) ∈ D ′(M × M,Gy � Ex). We write H to denote the

unique continuous operator C∞0 (M,G) → D ′(M,E) with distribution
kernel H(x, y). In this work, we identify H with H(x, y).

2.2. Set up and terminology. Let (X,T 1,0X) be an orientable not
necessarily compact, paracompact CR manifold of dimension 2n−1, n �

2, where T 1,0X is a CR structure of X. Recall that T 1,0X is a complex
n− 1 dimensional subbundle of CTX, satisfying T 1,0X ∩ T 0,1X = {0},
where T 0,1X = T 1,0X, and [V,V] ⊂ V, where V = C∞(X,T 1,0X).

Fix a smooth Hermitian metric 〈 · | · 〉 on CTX so that 〈u | v 〉 is real if
u, v are real tangent vectors and T 1,0X is orthogonal to T 0,1X := T 1,0X .
Then locally there is a real vector field T of length one which is pointwise
orthogonal to T 1,0X ⊕ T 0,1X. T is unique up to the choice of sign. For
v ∈ CTX, we write |v|2 := 〈 v | v 〉. We denote by T ∗1,0X and T ∗0,1X
the dual bundles of T 1,0X and T 0,1X, respectively. Define the vector
bundle of (0, q) forms by T ∗0,qX := ΛqT ∗0,1X. The Hermitian metric
〈 · | · 〉 on CTX induces, by duality, a Hermitian metric on CT ∗X and
also on the bundles of (0, q) forms T ∗0,qX, q = 0, 1, . . . , n− 1. We shall
also denote all these induced metrics by 〈 · | · 〉. For u ∈ T ∗0,qX, we

write |u|2 := 〈u |u 〉. Let D ⊂ X be an open set. Let Ω0,q(D) denote

the space of smooth sections of T ∗0,qX over D and let Ω0,q
0 (D) be the

subspace of Ω0,q(D) whose elements have compact support in D.
Locally there exists an orthonormal frame ω1, . . . , ωn−1 of the bundle

T ∗1,0X. The real (2n − 2) form ω = in−1ω1 ∧ ω1 ∧ . . . ∧ ωn−1 ∧ ωn−1 is
independent of the choice of the orthonormal frame. Thus, ω is globally
defined. Locally there exists a real 1-form ω0 of length one which is
orthogonal to T ∗1,0X ⊕T ∗0,1X. The form ω0 is unique up to the choice
of sign. Since X is orientable, there is a nowhere vanishing (2n − 1)
form Θ on X. Thus, ω0 can be specified uniquely by requiring that
ω∧ω0 = fΘ, where f is a positive function. Therefore, ω0, so chosen, is
globally defined. We call ω0 the uniquely determined global real 1-form.
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We take a vector field T so that

(2.2) |T | = 1 , 〈T , ω0 〉 = −1 .
Therefore, T is uniquely determined. We call T the uniquely determined
global real vector field. We have the pointwise orthogonal decomposi-
tions:

CT ∗X = T ∗1,0X ⊕ T ∗0,1X ⊕ {λω0; λ ∈ C} ,
CTX = T 1,0X ⊕ T 0,1X ⊕ {λT ; λ ∈ C} .(2.3)

Definition 2.1. For p ∈ X, the Levi form Lp is the Hermitian qua-

dratic form on T 1,0
p X defined as follows. For any Z, W ∈ T 1,0

p X, pick
Z,W ∈ C∞(X,T 1,0X) such that Z(p) = Z, W(p) = W . Set

(2.4) Lp(Z,W ) =
1

2i

〈[Z,W ]
(p), ω0(p)

〉
,

where
[Z,W ]

= Z W −W Z denotes the commutator of Z and W .
Note that Lp does not depend on the choices of Z and W.

Locally there exists an orthonormal basis {Z1, . . . ,Zn−1} of T 1,0X
with respect to the Hermitian metric 〈 · | · 〉 such that Lp is diagonal in

this basis, Lp(Zj ,Z l) = δj,lλj(p). The entries λ1(p), . . . , λn−1(p) are
called the eigenvalues of the Levi form at p ∈ X with respect to 〈 · | · 〉.

Definition 2.2. Given q ∈ {0, . . . , n−1}, the Levi form is said to sat-
isfy condition Y (q) at p ∈ X, if Lp has at least either min (q + 1, n − q)
pairs of eigenvalues with opposite signs or max (q + 1, n − q) eigenval-
ues of the same sign. Notice that the sign of the eigenvalues does not
depend on the choice of the metric 〈 · | · 〉.

Let

(2.5) ∂b : Ω
0,q(X)→ Ω0,q+1(X)

be the tangential Cauchy–Riemann operator. We will work with two
volume forms on X:

• A given smooth positive (2n − 1)-form m(x) on X.

• The volume form v(x) induced by the Hermitian metric 〈 · | · 〉.
The natural global L2 inner product ( · | · ) on Ω0,q

0 (X) induced by m(x)
and 〈 · | · 〉 is given by

(2.6) (u|v) :=
∫
X

〈u(x)|v(x)〉m(x) , u, v ∈ Ω0,q
0 (X) .

We denote by L2
(0,q)(X) the completion of Ω0,q

0 (X) with respect to ( · | · ).
We write L2(X) := L2

(0,0)(X). We extend ( · | · ) to L2
(0,q)(X) in the
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standard way. For f ∈ L2
(0,q)(X), we denote ‖f‖2 := ( f | f ). We extend

∂b to L2
(0,r)(X), r = 0, 1, . . . , n− 1, by

(2.7) ∂b : Dom ∂b ⊂ L2
(0,r)(X)→ L2

(0,r+1)(X) ,

where Dom ∂b := {u ∈ L2
(0,r)(X); ∂bu ∈ L2

(0,r+1)(X)}, where for any

u ∈ L2
(0,r)(X), ∂bu is defined in the sense of distributions. We also write

(2.8) ∂
∗
b : Dom ∂

∗
b ⊂ L2

(0,r+1)(X)→ L2
(0,r)(X)

to denote the Hilbert space adjoint of ∂b in the L2 space with respect to

( · | ·). Let �
(q)
b denote the (Gaffney extension) of the Kohn Laplacian

given by

Dom�
(q)
b =

{
s ∈ L2

(0,q)(X); s ∈ Dom ∂b ∩Dom ∂
∗
b , ∂bs ∈ Dom ∂

∗
b ,

∂
∗
bs ∈ Dom ∂b

}
,

�
(q)
b s = ∂b∂

∗
bs+ ∂

∗
b∂bs for s ∈ Dom�

(q)
b .

(2.9)

By a result of Gaffney, for every q = 0, 1, . . . , n − 1, �
(q)
b is a positive

self-adjoint operator (see [57, Proposition 3.1.2]). That is, �
(q)
b is self-

adjoint and the spectrum of �
(q)
b is contained in R+, q = 0, 1, . . . , n− 1.

We shall write Spec�
(q)
b to denote the spectrum of �

(q)
b . For a Borel set

B ⊂ R we denote by E(B) the spectral projection of �
(q)
b corresponding

to the set B, where E is the spectral measure of �
(q)
b (see Davies [25, § 2]

for the precise meanings of spectral projection and spectral measure).
For λ1 > λ ≥ 0, we set

Hq
b,≤λ(X) := RanE

(
(−∞, λ]

) ⊂ L2
(0,q)(X) ,

Hq
b,>λ(X) := RanE

(
(λ,∞)

) ⊂ L2
(0,q)(X),

Hq
b,(λ,λ1]

(X) := RanE
(
(λ, λ1]

) ⊂ L2
(0,q)(X).

(2.10)

For λ = 0, we denote

(2.11) Hq
b (X) := Hq

b,≤0(X) = Ker�
(q)
b .

For λ1 > λ ≥ 0, let

Π
(q)
≤λ : L2

(0,q)(X)→ Hq
b,≤λ(X),

Π
(q)
>λ : L2

(0,q)(X)→ Hq
b,>λ(X),

Π
(q)
(λ,λ1]

: L2
(0,q)(X)→ Hq

b,(λ,λ1]
(X)

(2.12)
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be the orthogonal projections with respect to the product ( · | · ) defined
in (2.6) and let
(2.13)

Π
(q)
≤λ(x, y), Π

(q)
>λ(x, y), Π

(q)
(λ,λ1]

(x, y) ∈ D
′(X ×X,T ∗0,qy X � T ∗0,qx X),

denote the distribution kernels of Π
(q)
≤λ, Π

(q)
>λ and Π

(q)
(λ,λ1]

, respectively.

For λ = 0, we denote Π(q) := Π
(q)
≤0, Π

(q)(x, y) := Π
(q)
≤0(x, y).

We recall now some notions of microlocal analysis. The characteristic

manifold of �
(q)
b is given by Σ = Σ+ ∪Σ−, where

(2.14)
Σ+ = {(x, λω0(x)) ∈ T ∗X; λ > 0} , Σ− = {(x, λω0(x)) ∈ T ∗X; λ < 0} ,
where ω0 ∈ C∞(X,T ∗X) is the uniquely determined global 1-form (see
the discussion before (2.2)).

Let Γ be a conic open set of RM , M ∈ N, and let E be a smooth
vector bundle over Γ. Let m ∈ R, 0 ≤ ρ, δ ≤ 1. Let Sm

ρ,δ(Γ, E) denote
the Hörmander symbol space on Γ with values in E of order m type
(ρ, δ) and let Sm

cl (Γ, E) denote the space of classical symbols on Γ with
values in E of order m, see Grigis–Sjöstrand [37, Definition 1.1 and
p. 35] and Definition 2.3 below.

Let D be an open set of X. Let Lm
1

2
, 1
2

(D,T ∗0,qX � T ∗0,qX) and

Lm
cl (D,T ∗0,qD � T ∗0,qD) denote the space of pseudodifferential oper-

ators on D of order m type (12 ,
1
2 ) from sections of T ∗0,qX to sections

of T ∗0,qX and the space of classical pseudodifferential operators on D
of order m from sections of T ∗0,qX to sections of T ∗0,qX, respectively.
The classical result of Calderon and Vaillancourt tells us that for any
A ∈ Lm

1

2
, 1
2

(D,T ∗0,qX � T ∗0,qX),

(2.15)
A : Hs

comp(D,T ∗0,qX)→ Hs−m
loc (D,T ∗0,qX) is continuous, ∀s ∈ R.

We refer to Hörmander [43] for a proof.

Definition 2.3. For m ∈ R, Sm
1,0

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
is

the space of all a(x, y, t) ∈ C∞
(
D × D × R+, T

∗0,q
y X � T ∗0,qx X

)
such

that for all compact K � D ×D and all α, β ∈ N
2n−1
0 , γ ∈ N0, there is

a constant Cα,β,γ > 0 such that∣∣∣∂α
x∂

β
y ∂

γ
t a(x, y, t)

∣∣∣ ≤ Cα,β,γ(1 + |t|)m−|γ|, ∀(x, y, t) ∈ K × R+, t ≥ 1.

Put

S−∞
(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
:=

⋂
m∈R

Sm
1,0

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
.
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Let aj ∈ S
mj

1,0

(
D×D×R+, T

∗0,q
y X �T ∗0,qx X

)
, j = 0, 1, 2, . . . with mj →

−∞, j →∞. Then there exists a ∈ Sm0

1,0

(
D×D×R+, T

∗0,q
y X�T ∗0,qx X

)
unique modulo S−∞, such that a−∑k−1

j=0 aj ∈ Smk

1,0

(
D×D×R+, T

∗0,q
y X�

T ∗0,qx X
)
for k = 0, 1, 2, . . ..

If a and aj have the properties above, we write a ∼ ∑∞
j=0 aj in

Sm0

1,0

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
. We write

(2.16) s(x, y, t) ∈ Sn−1
cl

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
,

if s(x, y, t) ∈ Sn−1
1,0

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
and

s(x, y, t) ∼
∞∑
j=0

sj(x, y)tn−1−j in Sn−1
1,0

(
D ×D × R+ , T ∗0,qy X � T ∗0,qx X

)
,

sj(x, y) ∈ C
∞
(
D ×D,T ∗0,qy X � T ∗0,qx X

)
, j ∈ N0.

(2.17)

Definition 2.4. Let Q : L2
(0,q)(X) → L2

(0,q)(X) be a continuous op-

erator. Let D � X be an open local coordinate patch of X with local
coordinates x = (x1, . . . , x2n−1) and let η = (η1, . . . , η2n−1) be the dual
variables of x. We write

Q ≡ 0 at Σ− ∩ T ∗D ,

if for every D′ � D,

Q(x, y) ≡
∫

ei〈x−y,η〉q(x, η)dη on D′,

where q(x, η) ∈ S0
1,0(T

∗D′, T ∗0,qX � T ∗0,qX) and there exist M > 0

and a conic open neighborhood Λ− of Σ− such that for every (x, η) ∈
T ∗D′ ∩ Λ− with |η| ≥ M , we have q(x, η) = 0. We define similarly
Q ≡ 0 at Σ+ ∩ T ∗D and Q ≡ 0 at Σ ∩ T ∗D.

3. Microlocal Hodge decomposition theorems for �
(q)
b

In this section, we review some results in [44] about the existence of
a microlocal Hodge decomposition of the Kohn Laplacian on an open
set of a CR manifold where the Levi form is non-degenerate.

Theorem 3.1, Theorem 3.2 and Theorem 3.4 are proved in chapter 6,
chapter 7 and chapter 8 of part I in [44]. In [44] the existence of the
microlocal Hodge decomposition is stated for compact CR manifolds,
but the construction and arguments used are essentially local. Let D ⊂
X be an open set. We recall the notation A ≡ B onD (see the discussion
before (2.1)).

Theorem 3.1. We assume that the Levi form is non-degenerate
of constant signature (n−, n+) at each point of an open set D � X.
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Let q �= n−, n+. Then, there is a properly supported operator A ∈
L−11

2
, 1
2

(D,T ∗0,qD � T ∗0,qD) such that �
(q)
b A ≡ I on D.

Let p0(x, ξ) ∈ C∞(T ∗X) be the principal symbol of �
(q)
b . Note that

p0(x, ξ) is a polynomial of degree 2 in ξ. Recall that the characteristic

manifold of �
(q)
b is given by Σ = Σ+ ∪Σ−, where Σ+ and Σ− are given

by (2.14).

Theorem 3.2. We assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X. Let
q = n− or n+. Then there exist properly supported continuous operators
A ∈ L−11

2
, 1
2

(D,T ∗0,qD�T ∗0,qD), S−, S+ ∈ L0
1

2
, 1
2

(D,T ∗0,qD�T ∗0,qD), such

that

�
(q)
b A+ S− + S+ = I on D,

�
(q)
b S− ≡ 0 on D, �

(q)
b S+ ≡ 0 on D,

A ≡ A∗ on D, S−A ≡ 0 on D, S+A ≡ 0 on D,

S− ≡ S∗− ≡ S2
− on D,

S+ ≡ S∗+ ≡ S2
+ on D,

S−S+ ≡ S+S− ≡ 0 on D,

(3.1)

where A∗, S∗− and S∗+ are the formal adjoints of A, S− and S+ with
respect to ( · | · ), respectively, and S−(x, y) satisfies

S−(x, y) ≡
∫ ∞

0
eiϕ−(x,y)ts−(x, y, t)dt on D,

with a symbol s−(x, y, t) ∈ Sn−1
cl

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
as in

(2.16), (2.17) and phase function ϕ− such that ϕ = ϕ− satisfies

ϕ ∈ C
∞(D ×D), Imϕ(x, y) ≥ 0,

ϕ(x, x) = 0, ϕ(x, y) �= 0 if x �= y,

dxϕ(x, y)
∣∣
x=y

= −ω0(x), dyϕ(x, y)
∣∣
x=y

= ω0(x),

ϕ(x, y) = −ϕ(y, x).

(3.2)

Moreover, there is a function f ∈ C∞(D ×D) such that

(3.3) p0(x, ϕ
′
x(x, y))− f(x, y)ϕ(x, y)

vanishes to infinite order at x = y. Similarly,

S+(x, y) ≡
∫ ∞

0
eiϕ+(x,y)ts+(x, y, t)dt on D,

with s+(x, y, t) ∈ Sn−1
cl

(
D × D × R+, T

∗0,q
y X � T ∗0,qx X

)
as in (2.16),

(2.17) and −ϕ+(x, y) satisfies (3.2) and (3.3). Moreover, if q �= n+,
then s+(x, y, t) vanishes to infinite order at x = y. If q �= n−, then
s−(x, y, t) vanishes to infinite order at x = y.
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The operators S+, S− are called approximate Szegő kernels.

Remark 3.3. With the notations and assumptions used in Theo-
rem 3.2, assume that q = n− �= n+. Since s+(x, y, t) vanishes to infinite
order at x = y, we have S+ ≡ 0 on D. Similarly, if q = n+ �= n−. then
S− ≡ 0 on D.

The following result describes the phase function in local coordinates.

Theorem 3.4. We assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X. For
a given point x0 ∈ D, let {Wj}n−1j=1 be an orthonormal frame of T 1,0X
in a neighborhood of x0 such that the Levi form is diagonal at x0, i.e.,
Lx0

(Wj ,W s) = δj,sμj, j, s = 1, . . . , n − 1. We take local coordinates
x = (x1, . . . , x2n−1), zj = x2j−1 + ix2j , j = 1, . . . , n − 1, defined on
some neighborhood of x0 such that ω0(x0) = dx2n−1, x(x0) = 0, and for
some cj ∈ C, j = 1, . . . , n− 1 ,

Wj =
∂

∂zj
− iμjzj

∂

∂x2n−1
− cjx2n−1

∂

∂x2n−1
+O(|x|2), j = 1, . . . , n− 1 .

Set y = (y1, . . . , y2n−1), wj = y2j−1 + iy2j , j = 1, . . . , n − 1. Then, for
ϕ− in Theorem 3.2, we have

(3.4) Imϕ−(x, y) ≥ c

2n−2∑
j=1

|xj − yj|2 , c > 0,

in some neighborhood of (0, 0) and

ϕ−(x, y) = −x2n−1 + y2n−1 + i
n−1∑
j=1

|μj| |zj − wj|2

+
n−1∑
j=1

(
iμj(zjwj − zjwj) + cj(−zjx2n−1 + wjy2n−1)

+ cj(−zjx2n−1 + wjy2n−1)
)
+ (x2n−1 − y2n−1)f(x, y) +O(|(x, y)|3),

(3.5)

where f is smooth and satisfies f(0, 0) = 0, f(x, y) = f(y, x).

The following formula for the leading term s0− on the diagonal follows
from [44, §8], its calculation being local in nature. For a given point
x0 ∈ D, let {Wj}n−1j=1 be an orthonormal frame of (T 1,0X, 〈 · | · 〉) near
x0, for which the Levi form is diagonal at x0. Put

(3.6) Lx0
(Wj ,W �) = μj(x0)δj� , j, � = 1, . . . , n − 1 .
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We will denote by

(3.7) detLx0
=

n−1∏
j=1

μj(x0) .

Let {Tj}n−1j=1 denote the basis of T ∗0,1X, dual to {W j}n−1j=1 . We assume

that μj(x0) < 0 if 1 ≤ j ≤ n− and μj(x0) > 0 if n− + 1 ≤ j ≤ n − 1.
Put

N (x0, n−) :=
{
cT1(x0) ∧ . . . ∧ Tn−(x0); c ∈ C

}
,

N (x0, n+) :=
{
cTn−+1(x0) ∧ . . . ∧ Tn−1(x0); c ∈ C

}
,

(3.8)

and let

τx0,n− : T ∗0,qx0
X → N (x0, n−) , τx0,n+

: T ∗0,qx0
X → N (x0, n+)(3.9)

be the orthogonal projections onto N (x0, n−) and N (x0, n+) with re-
spect to 〈 · | · 〉, respectively. We recall that m(x) is the given smooth
2n − 1 form on X and v(x) is the volume form induced by 〈 · | · 〉, see
the discussion after (2.5).

Theorem 3.5. We assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X. If
q = n−, then for the leading term s0−(x, y) of the expansion (2.17) of
s−(x, y, t), we have

(3.10) s0−(x0, x0) =
1

2
π−n |detLx0

| v(x0)
m(x0)

τx0,n− , x0 ∈ D.

Similarly, if q = n+, then for the leading term s0+(x, y) of the expansion
(2.17) of s+(x, y, t), we have

(3.11) s0+(x0, x0) =
1

2
π−n |detLx0

| v(x0)
m(x0)

τx0,n+
, x0 ∈ D.

4. Microlocal spectral theory for �
(q)
b

In this section, we will apply the microlocal Hodge decomposition

theorems for �
(q)
b from Section 3 in order to study the singularities for

the kernel Π
(q)
≤λ(x, y) on the non-degenerate part of the Levi form. The

section ends with the proof of Theorem 1.7.
For any λ > 0, it is clear that there is a continuous operator

N
(q)
λ : L2

(0,q)(X)→ Dom�
(q)
b ,

such that

�
(q)
b N

(q)
λ +Π

(q)
≤λ = I on L2

(0,q)(X),

N
(q)
λ �

(q)
b +Π

(q)
≤λ = I on Dom�

(q)
b .

(4.1)

Let us formulate a detailed version of Theorem 1.5.
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Theorem 4.1. With the notations and assumptions used above, as-
sume that the Levi form is non-degenerate of constant signature (n−, n+)
at each point of an open set D � X. If q /∈ {n−, n+}, then there is an
A ∈ L−11

2
, 1
2

(D,T ∗0,qX � T ∗0,qX), such that for any λ > 0, we have

Π
(q)
≤λ ≡ 0 and N

(q)
λ ≡ A on D.

If q ∈ {n−, n+}, then for any λ > 0, we have

Π
(q)
≤λ ≡ S− + S+ and N

(q)
λ ≡ G on D,

where G ∈ L−11

2
, 1
2

(D,T ∗0,qX � T ∗0,qX), S−, S+ ∈ L0
1

2
, 1
2

(D,T ∗0,qX �

T ∗0,qX) are independent of λ and the kernels of S− and S+ satisfy

S±(x, y) ≡
∫ ∞

0
eiϕ±(x,y)ts±(x, y, t)dt on D,

with symbols s±(x, y, t) ∈ Sn−1
cl

(
D × D × R+ , T ∗0,qy X � T ∗0,qx X

)
as in

(2.16), (2.17), s− = 0 if q �= n−, s+ = 0 if q �= n+, where s0−(x, x) and
s0+(x, x) are given by (4.2), and phase functions ϕ± such that ϕ = ϕ−
and ϕ = −ϕ+ satisfy (3.2), (3.3) (see Theorem 4.2 and Theorem 4.4,
for more properties of the phases ϕ±).

Since s−(x, y, t) = 0 if q �= n−, S− ≡ 0 on D if q �= n−. Similarly,
S+ ≡ 0 on D if q �= n+. The following result describes the phase
function in local coordinates.

Theorem 4.2. The function ϕ− from Theorem 4.1 fulfills the esti-
mates (3.4) and (3.5) in local coordinates near a point of D, chosen as
in Theorem 3.4.

Definition 4.3. With the assumptions and notations used in The-
orem 4.1, let ϕ1, ϕ2 ∈ C∞(D × D). We assume that ϕ1 and ϕ2 sat-
isfy (3.2) and (3.4). We say that ϕ1 and ϕ2 are equivalent on D if

for any b1(x, y, t) ∈ Sn−1
cl

(
D × D × R+, T

∗0,q
y X � T ∗0,qx X

)
we can find

b2(x, y, t) ∈ Sn−1
cl

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
such that∫ ∞

0
eiϕ1(x,y)tb1(x, y, t)dt ≡

∫ ∞

0
eiϕ2(x,y)tb2(x, y, t)dt on D,

and vise versa.

We characterize now the phase ϕ− (see Section 8).

Theorem 4.4. With the assumptions and notations used in Theo-
rem 4.1, let ϕ1 ∈ C∞(D ×D). We assume that ϕ1 satisfies (3.2) and
(3.4). The functions ϕ1 and ϕ− are equivalent on D in the sense of
Definition 4.3 if and only if there is a function h ∈ C∞(D × D) such
that ϕ1(x, y)− h(x, y)ϕ−(x, y) vanishes to infinite order at x = y.
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The proof of Theorem 4.4 is essentially the same as the proof of
Theorem 5.4 and, therefore, will be omitted.

We give the formulas of the leading terms of the asymptotic expan-
sions of the symbols s±(x, y) from Theorem 4.1.

Theorem 4.5. With the assumptions and notations used in Theo-
rem 4.1, and the notations (3.6), (3.8), (3.9), we have for a given point
x0 ∈ D,

s0−(x0, x0) =
1

2
π−n |detLx0

| v(x0)
m(x0)

τx0,n− , for q = n− ,

s0+(x0, x0) =
1

2
π−n |detLx0

| v(x0)
m(x0)

τx0,n+
, for q = n+ .

(4.2)

Recall that Π
(q)
≤λ is given by (2.12). Let λ ≥ 0. From the spectral

theory for self-adjoint operators (see Davies [25]), it is well-known that

Π
(q)
≤λ : L2

(0,q)(X)→ Dom�
(q)
b , Π

(q)
≤λ�

(q)
b = �

(q)
b Π

(q)
≤λ on Dom�

(q)
b ,

and Π
(q)
≤λ�

(q)
b : Dom�

(q)
b → L2

(0,q)(X) is continuous. Since Dom�
(q)
b is

dense in L2
(0,q)(X), we can extend Π

(q)
≤λ�

(q)
b continuously to L2

(0,q)(X) in

the standard way. Similarly, for everym ∈ N, we can extend Π
(q)
≤λ(�

(q)
b )m

continuously to L2
(0,q)(X) and we have

(�
(q)
b )mΠ

(q)
≤λ = Π

(q)
≤λ(�

(q)
b )m on L2

(0,q)(X),

(�
(q)
b )mΠ

(q)
≤λ = Π

(q)
≤λ(�

(q)
b )m : L2

(0,q)(X)→ Dom�
(q)
b is continuous.

(4.3)

Now, we fix λ > 0. It is clear that there is a continuous operator

N
(q)
λ : L2

(0,q)(X)→ Dom�
(q)
b ,

such that

�
(q)
b N

(q)
λ +Π

(q)
≤λ = I on L2

(0,q)(X),

N
(q)
λ �

(q)
b +Π

(q)
≤λ = I on Dom�

(q)
b .

(4.4)

Until further notice, we assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X and we
work on D. We need

Theorem 4.6. With the assumptions and notations used above, let
q = n− or n+. We have

�
(q)
b Π

(q)
≤λ ≡ 0 on D.
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Proof. In view of (3.1), we see that

(4.5) A∗�
(q)
b + S∗− + S∗+ = I on D.

Note that A∗, S∗−, S
∗
+, A, S− and S+ are properly supported. We recall

that

A∗, A : Hs
comp (D,T ∗0,qX)→ Hs+1

comp (D,T ∗0,qX), ∀s ∈ Z,

A∗, A : Hs
loc (D,T ∗0,qX)→ Hs+1

loc (D,T ∗0,qX), ∀s ∈ Z,

S∗−, S−, S
∗
+, S+ : Hs

comp (D,T ∗0,qX)→ Hs
comp (D,T ∗0,qX), ∀s ∈ Z,

S∗−, S−, S
∗
+, S+ : Hs

loc (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ Z.

(4.6)

From (4.5), we have

(4.7) A∗(�
(q)
b )2Π

(q)
≤λ + (S∗− + S∗+)�

(q)
b Π

(q)
≤λ = �

(q)
b Π

(q)
≤λ.

Since (S∗− + S∗+)�
(q)
b ≡ 0 on D, we have

(4.8)

(S∗− + S∗+)�
(q)
b Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0.

From (4.3) and (4.6), we see that

(4.9) A∗(�
(q)
b )2Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ H1
loc (D,T ∗0,qX).

From (4.9), (4.8) and (4.7), we conclude that

(4.10) �
(q)
b Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ H1
loc (D,T ∗0,qX).

Similarly, we can repeat the procedure above and deduce that

(4.11) (�
(q)
b )2Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ H1
loc (D,T ∗0,qX).

From (4.11) and (4.6), we get

(4.12) A∗(�
(q)
b )2Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ H2
loc (D,T ∗0,qX).

Combining (4.12), (4.8) with (4.7), we obtain

(4.13) �
(q)
b Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ H2
loc (D,T ∗0,qX).

Continuing in this way, we deduce that

(4.14) �
(q)
b Π

(q)
≤λ : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0.

Since �
(q)
b Π

(q)
≤λ = Π

(q)
≤λ�

(q)
b ,

(4.15) Π
(q)
≤λ�

(q)
b : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0.

By taking adjoint in (4.15), we conclude that

(4.16) �
(q)
b Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H0
loc (D,T ∗0,qX), ∀s ∈ N0.
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Similarly, we can repeat the procedure above and deduce that for every
m ∈ N,

(�
(q)
b )mΠ

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H0
loc (D,T ∗0,qX), ∀s ∈ N0,

(�
(q)
b )mΠ

(q)
≤λ : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0.

(4.17)

Now, from (4.4), we have

(4.18) (S∗− + S∗+)�
(q)
b N

(q)
λ + (S∗− + S∗+)Π

(q)
≤λ = S∗− + S∗+.

Since (S∗−+ S∗+)�
(q)
b ≡ 0 on D, from (4.18), it is easy to see that for all

s ∈ N0,
(4.19)

(S∗− + S∗+)− (S∗− + S∗+)Π
(q)
≤λ : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX).

From (4.5), we have

(4.20) A∗�
(q)
b Π

(q)
≤λ + (S∗− + S∗+)Π

(q)
≤λ = Π

(q)
≤λ.

From (4.6), (4.17), (4.20) and (4.19), it is not difficult to see that
(4.21)

(S∗− + S∗+)−Π
(q)
≤λ : H0

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0,

and, hence,
(4.22)

(S− + S+)−Π
(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H0
loc (D,T ∗0,qX), ∀s ∈ N0.

Combining (4.22) with (4.6), we deduce that for any s ∈ N0 we can

extend Π
(q)
≤λ to the space H−s

comp (D,T ∗0,qX), and we have

(4.23) Π
(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H−s
loc (D,T ∗0,qX), ∀s ∈ N0.

From (4.23) and note that (S∗− + S∗+)�
(q)
b ≡ 0 on D, we have

(4.24)

(S∗− + S∗+)�
(q)
b Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ Hs
loc (D,T ∗0,qX), ∀s ∈ N0.

From (4.24), (4.17), (4.7) and (4.6), we obtain

(4.25) �
(q)
b Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H1
loc (D,T ∗0,qX), ∀s ∈ N0.

Similarly, we can repeat the procedure above and deduce that

(4.26) (�
(q)
b )2Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H1
loc (D,T ∗0,qX), ∀s ∈ N0.

From (4.26) and (4.6), we get
(4.27)

A∗(�
(q)
b )2Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H2
loc (D,T ∗0,qX), ∀s ∈ N0.

Combining (4.27), (4.24) with (4.7), we obtain

�
(q)
b Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H2
loc (D,T ∗0,qX), ∀s ∈ N0.
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Continuing in this way, we deduce that

�
(q)
b Π

(q)
≤λ : H−s

comp (D,T ∗0,qX)→ H�
loc (D,T ∗0,qX), ∀s, � ∈ N0.

Hence, �
(q)
b Π

(q)
≤λ ≡ 0 on D. The theorem follows. q.e.d.

Now, we can prove one of the main results of this work.

Theorem 4.7. We assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X. Let
q = n− or n+. Then, for any λ > 0, we have

(4.28) Π
(q)
≤λ ≡ S− + S+ and N

(q)
λ ≡ A on D,

where N
(q)
λ is given by (4.4), S−, S+ and A are as in Theorem 3.2.

Proof. Fix λ > 0. From (4.5), we have

A∗�
(q)
b Π

(q)
≤λ + (S∗− + S∗+)Π

(q)
≤λ = Π

(q)
≤λ on D.

In view of Theorem 4.6, we see that

(4.29) (S∗− + S∗+)Π
(q)
≤λ = Π

(q)
≤λ − F1 on D,

where

F1 = A∗�
(q)
b Π

(q)
≤λ,

F1 ≡ 0 on D.
(4.30)

On the other hand, from (4.4), we have

N
(q)
λ �

(q)
b (S− + S+) + Π

(q)
≤λ(S− + S+) = S− + S+.

Since �
(q)
b (S− + S+) ≡ 0 on D, we conclude that

S− + S+ = Π
(q)
≤λ(S− + S+) +N

(q)
λ F,

S∗− + S∗+ = (S∗− + S∗+)Π
(q)
≤λ + F ∗N

(q)
λ ,

(4.31)

where F ≡ 0 on D and F ∗ is the adjoint of F . Note that F and F ∗ are
properly supported on D. From (4.29) and (4.31), we deduce that

S− + S+ + F ∗1 = Π
(q)
≤λ +N

(q)
λ F,

S∗− + S∗+ + F1 = Π
(q)
≤λ + F ∗N

(q)
λ ,

(4.32)

where F ∗1 is the adjoint of F1. From (4.32), we have(
S∗− + S∗+ + F1 −Π

(q)
≤λ

)(
S− + S+ + F ∗1 −Π

(q)
≤λ

)
= F ∗(N

(q)
λ )2F on H0

comp (D,T ∗0,qX).
(4.33)

Since

F ∗(N
(q)
λ )2F : E

′(D,T ∗0,qX)→ Ω0,q
0 (X) ⊂ L2

(0,q)(X)→ Ω0,q(X),
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we have F ∗(N
(q)
λ )2F ≡ 0 on D. From this observation and (4.33), we

obtain

(4.34)
(
S∗− + S∗+ + F1 −Π

(q)
≤λ

)(
S− + S+ + F ∗1 −Π

(q)
≤λ

)
≡ 0 on D.

Now,

(
S∗− + S∗+ + F1 −Π

(q)
≤λ

)(
S− + S+ + F ∗1 −Π

(q)
≤λ

)
= (S∗− + S∗+)(S− + S+) + (S∗− + S∗+)F

∗
1 − (S∗− + S∗+)Π

(q)
≤λ

+ F1(S− + S+) + F1F
∗
1 − F1Π

(q)
≤λ −Π

(q)
≤λ(S− + S+)−Π

(q)
≤λF

∗
1 +Π

(q)
≤λ.

(4.35)

Since F1 ≡ 0 on D and S−, S+ are properly supported on D, it is clear
that F1(S− + S+) and (S∗− + S∗+)F

∗
1 are well-defined and

(4.36) F1(S− + S+) ≡ 0 , (S∗− + S∗+)F
∗
1 ≡ 0 on D.

From (4.30) and Theorem 4.6, we see that

(4.37) F1Π
(q)
≤λ = A∗�

(q)
b (Π

(q)
≤λ)

2 = A∗�
(q)
b Π

(q)
≤λ ≡ 0 on D,

and, hence,

(4.38) Π
(q)
≤λF

∗
1 ≡ 0 on D.

From (4.30), we see that F1F
∗
1 = A∗(�

(q)
b )2Π

(q)
≤λA. Since A is properly

supported, F1F
∗
1 is well-defined as a continuous operator

F1F
∗
1 : Ω0,q

0 (D)→ D
′(D,T ∗0,qX).

Moreover, from the proof of Theorem 4.6, we see that (�
(q)
b )2Π

(q)
≤λ ≡ 0

on D. Thus,

(4.39) F1F
∗
1 = A∗(�

(q)
b )2Π

(q)
≤λA ≡ 0 on D.

From (4.29), (4.35), (4.36), (4.37), (4.38) and (4.39), it is straightforward
to see that (

S∗− + S∗+ + F1 −Π
(q)
≤λ

)(
S− + S+ + F ∗1 −Π

(q)
≤λ

)
≡ (S∗− + S∗+)(S− + S+)−Π

(q)
≤λ on D.

(4.40)

From (4.40) and (4.34), we conclude that

(4.41) (S∗− + S∗+)(S− + S+) ≡ Π
(q)
≤λ on D.

From (3.1), it is not difficult to see that (S∗−+S∗+)(S−+S+) ≡ S−+S+

on D. Combining this observation with (4.41), we get

(4.42) S− + S+ ≡ Π
(q)
≤λ on D.
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The first formula in (4.28) follows. We now prove the second formula
in (4.28). We first claim that

(4.43) (S∗− + S∗+)N
(q)
λ (S− + S+) ≡ 0 on D.

From (4.32), (4.30) and notice that N
(q)
λ Π

(q)
≤λ = Π

(q)
≤λN

(q)
λ = 0, we have

N
(q)
λ (S− + S+) = (N

(q)
λ )2F,

and, hence,

(4.44) (N
(q)
λ )2(S− + S+) = (N

(q)
λ )3F.

From (4.32), (4.30) and (4.44), we have

(S∗− + S∗+)N
(q)
λ (S− + S+) = (Π

(q)
≤λ + F ∗N

(q)
λ − F1)N

(q)
λ (S− + S+)

= F ∗(N
(q)
λ )2(S− + S+)

= F ∗(N
(q)
λ )3F ≡ 0 on D.

(4.45)

The claim (4.43) follows. On D, we have

(4.46) N
(q)
λ = (A∗�

(q)
b +S∗−+S∗+)N

(q)
λ = A∗(I−Π

(q)
≤λ)+(S∗−+S∗+)N

(q)
λ ,

and

(4.47) N
(q)
λ = N

(q)
λ (�

(q)
b A+S−+S+) = (I −Π

(q)
≤λ)A+N

(q)
λ (S−+S+).

From (4.46) and (4.47), we have

N
(q)
λ

= (I −Π
(q)
≤λ)A+N

(q)
λ (S− + S+)

= A−Π
(q)
≤λA+

(
A∗(I −Π

(q)
≤λ) + (S∗− + S∗+)N

(q)
λ

)(
S− + S+

)
= A−Π

(q)
≤λA+A∗(I −Π

(q)
≤λ)(S− + S+) + (S∗− + S∗+)N

(q)
λ (S− + S+).

(4.48)

From (4.43), (4.42) and noting that (S− + S+)A ≡ 0 on D, A∗(S− +
S+) ≡ 0 on D, we conclude that

−Π(q)
≤λA+A∗(I −Π

(q)
≤λ)(S−+S+)+ (S∗−+S∗+)N

(q)
λ (S−+S+) ≡ 0 on D.

From this and (4.48), we get the second formula in (4.28). The theorem
follows. q.e.d.

By using Theorem 3.1, we can repeat the proof of Theorem 4.7 and
conclude the following.



108 C.-Y. HSIAO & G. MARINESCU

Theorem 4.8. We assume that the Levi form is non-degenerate of
constant signature (n−, n+) at each point of an open set D � X. As-
sume that q /∈ {n−, n+}. Then, for any λ > 0, we have

(4.49) Π
(q)
≤λ ≡ 0 and N

(q)
λ ≡ A on D,

where N
(q)
λ is given by (4.4), and A is as in Theorem 3.1.

From Theorem 4.7 and Theorem 4.8, Theorem 4.1 follows.

Definition 4.9. Let H be a Hilbert space and Q be a closed densely
defined operator Q : DomQ ⊂ H → RanQ ⊂ H, with closed range. By
the partial inverse of Q, we mean the bounded operator M : H → H
such that Q ◦M = π2, M ◦ Q = π1 on DomQ, where π1, π2 are the
orthogonal projections in H such that Ran π1 = (KerQ)⊥, Ran π2 =
RanQ. In other words, for u ∈ H, let π2u = Qv, v ∈ (KerQ)⊥∩DomQ.
Then, Mu = v.

From Theorem 4.7 and Theorem 4.8, we deduce:

Corollary 4.10. Let q ∈ {0, 1, . . . , n− 1}. Assume that �
(q)
b has L2

closed range and let N (q) : L2
(0,q)(X) → Dom�

(q)
b be the partial inverse

of �
(q)
b . We assume that the Levi form is non-degenerate of constant

signature (n−, n+) at each point of an open set D � X. If q /∈ {n−, n+},
then

Π(q) ≡ 0 and N (q) ≡ A on D,

where A is as in Theorem 3.1. If q ∈ {n−, n+}, then
Π(q) ≡ S− + S+ and N (q) ≡ A on D,

where S−, S+ and A are as in Theorem 3.2.

By using Corollary 1.6 and some standard argument in functional

analysis, we can establish the spectral theory of �
(q)
b when the Levi

form is non-degenerate of constant signature on X.

Proof of Theorem 1.7. Let 0 < μ < μ1 < ∞. We claim that

Spec�
(q)
b ∩ [μ, μ1] is a discrete subset of R. We assume that Spec�

(q)
b ∩

[μ, μ1] is not a discrete subset of R. Then, we can find fj ∈ E([μ, μ1]),
j = 1, 2, . . ., with ( fj | f� ) = δj,�, for all j, � = 1, 2, . . . . Take 0 < λ1 <
μ < μ1 < λ2 <∞. Then, we have

(4.50) fj = Π
(q)
(λ1,λ2]

fj, j = 1, 2, . . . .

In view of Corollary 1.6, we know that Π
(q)
(λ1,λ2]

is a smoothing operator

on X and, hence, Π
(q)
(λ1,λ2]

is a compact operator on L2
(0,q)(X). By Rel-

lich’s theorem, we can find a subsequence {fsk}∞k=1 of {fj}∞j=1, where

1 < s1 < s2 < . . ., such that fsk → f in L2
(0,q)(X) as k → ∞, for some
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f ∈ L2
(0,q)(X). But ( fsk | fs� ) = 0 if k �= �, we get a contradiction.

We conclude that Spec�
(q)
b ∩ [μ, μ1] is a discrete subset of R, for any

0 < μ < μ1 < ∞. Thus, for any μ > 0, Spec�
(q)
b ∩ [μ,∞) is a discrete

subset of R.
Let ν ∈ Spec�

(q)
b with ν > 0. Since Spec�

(q)
b ∩ [μ, μ1] is discrete,

where 0 < μ < ν < μ1, we have

�
(q)
b − ν : Dom�

(q)
b ⊂ L2

(0,q)(X)→ L2
(0,q)(X)

has L2 closed range. Hence, if �
(q)
b − ν is injective, then Range (�

(q)
b −

ν) = L2
(0,q)(X) and �

(q)
b − ν has a bounded inverse (�

(q)
b − ν)−1 :

L2
(0,q)(X) → L2

(0,q)(X). Thus, ν is a resolvent if �
(q)
b − ν is injective.

We conclude that �
(q)
b − ν is not injective, that is, ν is an eigenvalue of

�
(q)
b . Take 0 < λ1 < ν < λ2 <∞. We have

H
(q)
b,ν (X) = Π

(q)
(λ1,λ2]

H
(q)
b,ν (X) =

{
Π

(q)
(λ1,λ2]

f ; f ∈ Hq
b,ν(X)

}
.

Since Π
(q)
(λ1,λ2]

is a smoothing operator onX, we conclude thatH
(q)
b,ν (X) ⊂

Ω0,q(X). Moreover, from Rellich’s theorem, we see that dimH
(q)
b,ν (X) <

∞. The theorem follows. q.e.d.

5. Szegő kernel asymptotic expansions

In this section, we will apply Theorem 3.1 and Theorem 3.2 to estab-
lish Szegő kernel asymptotic expansions on the non-degenerate part of
the Levi form under certain local conditions.

In view of Theorem 1.5, we see that if �
(q)
b has L2 closed range, then

Π(q) admits a full asymptotic expansion on the non-degenerate part

of the Levi form. But in general, it is difficult to see if �
(q)
b has L2

closed range. We then impose the condition of local L2 closed range, cf.

Definition 1.8. It is clear that if �
(q)
b has L2 closed range then �

(q)
b has

local L2 closed range on every open set D with respect to the identity
map I.

We now prove the following precise version of Theorem 1.9.

Theorem 5.1. Let X be a CR manifold of dimension 2n− 1, whose
Levi form is non-degenerate of constant signature (n−, n+) at each point
of an open set D � X. Let q ∈ {0, 1, . . . , n− 1} and let Q : L2

(0,q)(X)→
L2
(0,q)(X) be a continuous operator and let Q∗ be the L2 adjoint of Q

with respect to ( · | · ). Suppose that �
(q)
b has local L2 closed range on D

with respect to Q and QΠ(q) = Π(q)Q on L2
(0,q)(X) and

Q−Q0 ≡ 0 at Σ
⋂

T ∗D,
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where Q0 ∈ L0
cl (D,T ∗0,qX � T ∗0,qX). Then,

(5.1) Q∗Π(q)Q ≡ 0 on D if q /∈ {n−, n+},
and if q ∈ {n−, n+}, then

(Q∗Π(q)Q)(x, y)

≡
∫ ∞

0
eiϕ−(x,y)ta−(x, y, t)dt +

∫ ∞

0
eiϕ+(x,y)ta+(x, y, t)dt on D,

(5.2)

where ϕ±(x, y) ∈ C∞(D ×D) are as in Theorem 4.1 and

a−(x, y, t), a+(x, y, t) ∈ Sn−1
cl

(
D ×D ×R+, T

∗0,q
y X � T ∗0,qx X

)
satisfy

a−(x, y, t) = 0 if q �= n− or Q ≡ 0 at Σ− ∩ T ∗D,

a+(x, y, t) = 0 if q �= n+ or Q ≡ 0 at Σ+ ∩ T ∗D.
(5.3)

(See Definition 2.4 for the meaning of Q ≡ 0 at Σ−
⋂

T ∗D.) Moreover,
assume that q = n−, then the leading term a0−(x, y) of the expansion
(2.17) of a−(x, y, t) satisfies

a0−(x, x)

=
1

2
π−n

v(x)

m(x)
|detLx| τx,n−q∗(x,−ω0(x))q(x,−ω0(x))τx,n− , ∀x ∈ D,

(5.4)

where detLx is the determinant of the Levi form defined in (3.7), v(x)
is the volume form on X induced by 〈 · | · 〉, q(x, η) ∈ C∞(T ∗D) is the

principal symbol of Q, q∗(x, η) is the adjoint of q(x, η) : T ∗0,qx X →
T ∗0,qx X with respect to 〈 · | · 〉 and τx,n− is as in (3.9).

To prove Theorem 5.1 we need a series of results, starting with the
following.

Theorem 5.2. In the conditions of Theorem 5.1 we have (5.1) and

(5.5) Q∗Π(q)Q ≡ (S∗− + S∗+)Q
∗Q(S− + S+) on D if q ∈ {n−, n+},

where S− and S+ are as in Theorem 3.2.

Proof. We first assume that q ∈ {n−, n+}. Put S = S− + S+, where
S− and S+ are as in Theorem 3.2 and let S∗ be the adjoint of S. From
(3.1), we have

(5.6) 1DΠ
(q) = (A∗�

(q)
b + S∗)1DΠ

(q) = S∗1DΠ
(q),

and, hence,

(5.7) Π(q)1D = Π(q)1DS on D.
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Fix D′ � D. Let u ∈ Ω0,q
0 (D′). Since �

(q)
b has local L2 closed range on

D with respect to Q, we have for every s ∈ Z,

(5.8)
∥∥∥Q(I −Π(q))Su

∥∥∥ ≤ CD′,s

√∥∥∥(�(q)
b )pSu

∥∥∥
s
‖u‖−s, ∀u ∈ Ω0,q

0 (D′),

where CD′,s > 0, p ∈ N are constants independent of u and ‖·‖s denotes
the usual Sobolev norm of order s on D′. Since (�

(q)
b )pS ≡ 0 on D, for

every s ∈ N0, there is a constant Cs > 0 such that

(5.9)
∥∥∥(�(q)

b )pSu
∥∥∥
s
≤ Cs ‖u‖−s , ∀u ∈ Ω0,q

0 (D′).

From (5.9) and (5.8), we can extend Q(I − Π(q))S = QS −QΠ(q)(here
we used (5.7)) to H−s

comp,(D,T ∗0,qX), ∀s ∈ N0 and we have
(5.10)

QS −QΠ(q) : H−s
comp (D,T ∗0,qX)→ L2

(0,q)(X) is continuous, ∀s ∈ N0.

By taking adjoint in (5.10), we get
(5.11)

S∗Q∗ −Π(q)Q∗ : L2
(0,q)(X)→ Hs

loc (D,T ∗0,qX) is continuous, ∀s ∈ N0.

From (5.10) and (5.11), we conclude that for any s ∈ N0 the map

(S∗Q∗ −Π(q)Q∗)(QS −QΠ(q)) : H−s
comp (D,T ∗0,qX)→ Hs

loc (D,T ∗0,qX)

is continuous. Hence,

(5.12) (S∗Q∗ −Π(q)Q∗)(QS −QΠ(q)) ≡ 0 on D.

Now,

(S∗Q∗ −Π(q)Q∗)(QS −QΠ(q))

= S∗Q∗QS − S∗Q∗QΠ(q) −Π(q)Q∗QS +Π(q)Q∗QΠ(q)

= S∗Q∗QS − S∗Π(q)Q∗Q−Q∗QΠ(q)S +Q∗QΠ(q)

= S∗Q∗QS −Π(q)Q∗QΠ(q).

(5.13)

Here we used QΠ(q) = Π(q)Q, Q∗Π(q) = Π(q)Q∗, (5.6) and (5.7). From
(5.13) and (5.12), (5.5) follows. By using Theorem 3.1, we can repeat
the procedure above and obtain (5.1). We omit the details. q.e.d.

In the rest of this section, we will study the kernel (S∗−+S∗+)Q
∗Q(S−+

S+)(x, y). We will use the notations and assumptions used in Theo-
rem 5.2 and until further notice we assume that q = n−. Let ϕ−(x, y) ∈
C∞(D × D), ϕ+(x, y) ∈ C∞(D × D) be as in Theorem 3.2. We need
the following result, which is essentially well-known and follows from
the stationary phase formula of Melin–Sjöstrand [60] (see also [44, p.
76–77] for more details).
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Lemma 5.3. There is a complex valued phase function ϕ ∈ C∞(D×
D) with ϕ(x, x) = 0, dxϕ(x, y)|x=y = −ω0(x), dyϕ(x, y)|x=y = ω0(x)
and ϕ(x, y) satisfies (3.4) such that for any properly supported operators
B,C : D ′(D,T ∗0,qX)→ D ′(D,T ∗0,qX),

B =

∫ ∞

0
eiϕ−(x,y)tb(x, y, t)dt, C =

∫ ∞

0
eiϕ−(x,y)tc(x, y, t)dt,

with b(x, y, t), c(x, y, t) ∈ Sn−1
cl (D×D×R+, T

∗0,qX � T ∗0,qX), we have

B ◦ C ≡ ∫∞
0 eiϕ(x,y)td(x, y, t)dt on D,

where d(x, y, t) ∈ Sn−1
cl (D ×D × R+, T

∗0,qX � T ∗0,qX) and the leading
term d0(x, y) of the expansion (2.17) of d(x, y, t) satisfies

(5.14) d0(x, x) = 2πnm(x)

v(x)
|detLx|−1 b0(x, x)c0(x, x), ∀x ∈ D,

where b0(x, y), c0(x, y) denote the leading terms of the expansions (2.17)
of b(x, y, t), c(x, y, t), respectively.

We postpone the proof of the following theorem for Section 8.

Theorem 5.4. With the notations and assumptions used above, there
is a g(x, y) ∈ C∞(D ×D) with g(x, x) = 1 such that

(5.15) ϕ(x, y)− g(x, y)ϕ−(x, y) vanishes to infinite order at x = y.

From Lemma 5.3 and Theorem 5.4, we deduce

Corollary 5.5. In the conditions of Lemma 5.3 we have

B ◦ C ≡ ∫∞
0 eiϕ−(x,y)te(x, y, t)dt on D,

where e(x, y, t) ∈ Sn−1
cl (D ×D × R+, T

∗0,qX � T ∗0,qX) and the leading
term e0(x, y) of the expansion (2.17) of e(x, y, t) satisfies (5.14).

Similarly, we can repeat the proof of Corollary 5.5 and conclude that

Theorem 5.6. With the notations and assumptions used in The-
orem 5.2, let q = n+. For any properly supported operators B, C :
D ′(D,T ∗0,qX)→ D ′(D,T ∗0,qX),

B =

∫ ∞

0
eiϕ+(x,y)tb(x, y, t)dt, C =

∫ ∞

0
eiϕ+(x,y)tc(x, y, t)dt,

with b(x, y, t), c(x, y, t) ∈ Sn−1
cl (D×D×R+, T

∗0,qX � T ∗0,qX), we have

B ◦ C ≡ ∫∞
0 eiϕ+(x,y)tf(x, y, t)dt on D,

where f(x, y, t) ∈ Sn−1
cl (D ×D × R+, T

∗0,qX � T ∗0,qX) and the leading
term f0(x, y) of the expansion (2.17) of f(x, y, t) satisfies (5.14).

We also need the following.
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Lemma 5.7. With the notations and assumptions used in Theo-
rem 5.2, let q = n+ = n−. For any properly supported operators
B, C : D ′(D,T ∗0,qX)→ D ′(D,T ∗0,qX),

B =

∫ ∞

0
eiϕ+(x,y)tb(x, y, t)dt, C =

∫ ∞

0
eiϕ−(x,y)tc(x, y, t)dt,

where b(x, y, t), c(x, y, t) ∈ Sn−1
cl (D×D×R+, T

∗0,qX�T ∗0,qX), we have

B ◦ C ≡ 0 and C ◦ B ≡ 0 on D.

Proof. We first notice that B ◦ C is smoothing away x = y. We also
write w = (w1, . . . , w2n−1) to denote local coordinates on D. We have

B ◦ C(x, y) =

∫
σ>0,t>0

eiϕ+(x,w)σ+iϕ−(w,y)tb(x,w, σ)c(w, y, t)dσm(w)dt

=

∫
s>0,t>0

eit(ϕ+(x,w)s+ϕ−(w,y))tb(x,w, st)c(w, y, t)dsm(w)dt.

(5.16)

Take χ ∈ C∞0 (R, [0, 1]), χ = 1 on [−1
2 ,

1
2 ], χ = 0 on ]−∞,−1]⋃[1,∞[.

From (5.16), we have

B ◦ C(x, y) = Iε + IIε,

Iε =

∫
s>0,t>0

eit(ϕ+(x,w)s+ϕ−(w,y))χ

( |x− w|2
ε

)
× tb(x,w, st)c(w, y, t)dsm(w)dt,

IIε =

∫
s>0,t>0

eit(ϕ+(x,w)s+ϕ−(w,y))

(
1− χ

( |x− w|2
ε

))
× tb(x,w, st)c(w, y, t)dsm(w)dt,

(5.17)

where ε > 0 is a small constant. Since ϕ+(x,w) = 0 if and only if x = w,
we can integrate by parts with respect to s and conclude that IIε is
smoothing. Since B ◦ C is smoothing away x = y, we may assume that
|x− y| < ε. Since dw(ϕ+(x,w)s+ϕ−(w, y))|x=y=w = −ω0(x)(s+1) �= 0,
if ε > 0 is small, we can integrate by parts with respect to w and
conclude that Iε ≡ 0 on D. We get B ◦ C ≡ 0 on D. Similarly, we can
repeat the procedure above and conclude that C ◦ B ≡ 0 on D. The
lemma follows. q.e.d.

Recalling Definition 2.4 we see that Theorem 5.5, Theorem 5.6 and
Lemma 5.7 yield:

Theorem 5.8. With the notations and assumptions used in Theo-
rem 5.2, let q ∈ {n−, n+}. Then,
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(S∗− + S∗+)Q
∗Q(S− + S+)(x, y)

≡
∫ ∞

0
eiϕ−(x,y)ta−(x, y, t)dt +

∫ ∞

0
eiϕ+(x,y)ta+(x, y, t)dt on D,

(5.18)

where ϕ±(x, y) ∈ C∞(D × D) are as in Theorem 4.1, a±(x, y, t) ∈
Sn−1
cl

(
D ×D × R+, T

∗0,q
y X � T ∗0,qx X

)
,

a−(x, y, t) = 0 if q �= n− or Q ≡ 0 at Σ− ∩ T ∗D,

a+(x, y, t) = 0 if q �= n+ or Q ≡ 0 at Σ+ ∩ T ∗D .
(5.19)

Moreover, assume that q = n−, then, for the leading term a0−(x, y) of
the expansion (2.17) of a−(x, y, t) satisfies

a0−(x, x)

=
1

2
π−n

v(x)

m(x)
|detLx| τx,n−q∗(x,−ω0(x))q(x,−ω0(x))τx,n− , ∀x ∈ D,

(5.20)

where detLx is the determinant of the Levi form defined in (3.7), v(x)
is the volume form on X induced by 〈 · | · 〉, q(x, η) ∈ C∞(T ∗D) is the

principal symbol of Q, q∗(x, η) is the adjoint of q(x, η) : T ∗0,qx X →
T ∗0,qx X with respect to 〈 · | · 〉 and τx,n− is as in (3.9).

Proof of Theorem 1.9. From Theorem 5.2 and Theorem 5.8, we get
Theorem 5.1 and Theorem 1.9. q.e.d.

Proof of Theorem 1.10. Fix p ∈ D, let {Wj}n−1j=1 be an orthonormal

frame of T 1,0X in a neighborhood of p such that the Levi form is
diagonal at p. We take local coordinates x = (x1, . . . , x2n−1), zj =
x2j−1 + ix2j , j = 1, . . . , n − 1, defined on some neighborhood of p such
that ω0(x0) = dx2n−1, x(p) = 0, and for some cj ∈ C, j = 1, . . . , n− 1 ,

Wj =
∂

∂zj
− iμjzj

∂

∂x2n−1
− cjx2n−1

∂

∂x2n−1
+O(|x|2), j = 1, . . . , n− 1 .

For x = (x1, x2, . . . , x2n−1), we write x′ = (x1, x2, . . . , x2n−2). Take
χ ∈ C∞0 (]− ε0, ε0[), χ = 1 near 0, χ(t) = χ(−t), where ε0 > 0 is a small
constant. Take ε0 > 0 small enough so that D′×] − ε0, ε0[� D, where
D′ is an open neighborhood of 0 ∈ R

2n−2. For each k > 0, we consider
the operator

Ek : u ∈ C
∞
0 (D′)→ (Q∗Π(0)Q)(e−iky2n−1χ(y2n−1)u(y

′)) ∈ C
∞(X).

From the stationary phase formula of Melin–Sjöstrand [60], we can
check that Ek is smoothing and the kernel of Ek satisfies

(5.21) Ek(x, y
′) ≡ eikΦ(x,y′)g(x, y′, k) mod O(k−∞),
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where g(x, y′, k) ∈ C∞, g(x, y′, k) ∼
∞∑
j=0

gj(x, y
′)kn−1−j in Sn−1

loc (1),

gj(x, y
′) ∈ C∞, j = 0, 1, 2, . . ., g0(x, x

′) �= 0, Φ ∈ C∞, ImΦ ≥ 0,
Φ(x, x′) = 0 and

Φ(x, y′) = −x2n−1 + i
n−1∑
j=1

μj |zj − wj |2

+
n−1∑
j=1

(
iμj(zjwj − zjwj)− cjzjx2n−1 − cjzjx2n−1

)

+ x2n−1f(x, y
′) +O(

∣∣(x, y′)∣∣3),
f ∈ C

∞, f(0, 0) = 0, wj = y2j−1 + iy2j , j = 1, . . . , n− 1.

(5.22)

(See Section 8 for the details and the precise meanings of A ≡ B
mod O(k−∞) and Sn−1

loc (1).) Put

(5.23) uk(x) := Ek(χ(ky1)χ(ky2) . . . χ(ky2n−2)k
2n−2).

Then uk(x) is a global smooth CR function on X. From (5.21) and
(5.22), we can check that

lim
k→∞

k−n
∂uk

∂x2n−1
(0)

= lim
k→∞

k−n
∫

eikΦ(0,y′)(−ik)g(0, y′, k)χ(ky1) . . . χ(ky2n−2)k2n−2dy′

= (−i)g0(0, 0)
∫

χ(y1) . . . χ(y2n−2)dy
′,

lim
k→∞

k−n
∂uk
∂xt

(0) = 0, t = 1, 2, . . . , 2n− 2.

(5.24)

For any s ∈ {1, 2, . . . , n− 1}, put
(5.25) usk(x) := Ek(k(y2s−1 + iy2s)χ(ky1)χ(ky2) . . . χ(ky2n−2)k

2n−2).

Then usk(x) is a global smooth CR function on X, s = 1, 2, . . . , n − 1.

From (5.21), (5.22) and notice that ∂bu
s
k = 0, s = 1, 2, . . . , n−1, we can

check that

lim
k→∞

k−n+1∂u
s
k

∂zs
(0)

= lim
k→∞

k−n+1

∫
eikΦ(0,y′)2k2μs |y2s−1 + iy2s|2 g(0, y′, k)

× χ(ky1) . . . χ(ky2n−2)k
2n−2dy′(5.26)

= 2μsg0(0, 0)

∫
|y2s−1 + iy2s|2 χ(y1) . . . χ(y2n−2)dy′,
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lim
k→∞

k−n+1∂u
s
k

∂zt
(0) = 0, t = 1, 2, . . . , n− 1,

and for t �= s, t ∈ {1, 2, . . . , n − 1}, we have

lim
k→∞

k−n+1∂u
s
k

∂zt
(0)

= lim
k→∞

k−n+1

∫
eikΦ(0,y′)2k2μt(y2t−1 − iy2t)(y2s−1 + iy2s)g(0, y

′, k)

× χ(ky1) . . . χ(ky2n−2)k
2n−2dy′

= 2μtg0(0, 0)

∫
(y2t−1 − iy2t)(y2s−1 + iy2s)χ(y1) . . . χ(y2n−2)dy

′ = 0.

(5.27)

From (5.24), (5.26) and (5.27), it is not difficult to check that for k
large, the differential of the CR map

x ∈ X → (uk(x), u
1
k(x), . . . , u

n−1
k (x)) ∈ C

n

is injective at p. Thus, near p, the map

x ∈ X → (uk(x), u
1
k(x), . . . , u

n−1
k (x)) ∈ C

n

is a CR embedding. Theorem 1.10 follows. q.e.d.

6. Szegő projections on CR manifolds with transversal CR S1

actions

In this section, we will apply Theorem 1.9 to establish Szegő kernel
asymptotic expansions on compact CR manifolds with transversal CR
S1 actions under certain Levi curvature assumptions. As an application,
we will show that if X is a 3-dimensional compact strictly pseudocon-
vex CR manifold with a transversal CR S1 action, then X can be CR
embedded into C

N , for some N ∈ N. We introduce some notations first.
Let (X,T 1,0X) be a CR manifold. Let assume that X admits an S1

action S1 ×X → X, (eiθ, x) �→ eiθx. Let T ∈ C∞(X,TX) be the real
vector field given by

(6.1) Tu =
∂

∂θ
u(eiθx)

∣∣∣
θ=0

, u ∈ C
∞(X).

We call T the global vector field induced by the S1 action or the infini-
tesimal generator of the action.

Definition 6.1. We say that the S1 action eiθ is CR if[
T,C∞(X,T 1,0X)

] ⊂ C
∞(X,T 1,0X)

and is transversal if for every point x ∈ X,

CT (x)⊕ T 1,0
x X ⊕ T 0,1

x X = CTxX.
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Until further notice, we assume that (X,T 1,0X) is a CR manifold
with a transversal CR S1 action and we let T be the global vector field
induced by the S1 action. For x ∈ X, we say that the period of x is 2π

�
,

� ∈ N, if eiθ ◦ x �= x, for every 0 < θ < 2π
�

and ei
2π
� ◦ x = x. For each

� ∈ N, put

(6.2) X� =
{
x ∈ X; the period of x is 2π

�

}
,

and let p = min {� ∈ N; X� �= ∅}. It is well-known that ifX is connected,
then Xp is an open and dense subset of X. In this work, we assume
that p = 1 and we denote Xreg := Xp = X1. We call x ∈ Xreg a regular
point of the S1 action.

Fix θ0 ∈ [0, 2π[. Let deiθ0 : CTxX → CTeiθ0xX denote the differential
of the map eiθ0 : X → X.

Definition 6.2. Let U ⊂ X be an open set and let V ∈ C∞(U,CTX)
be a vector field on U . We say that V is T -rigid if deiθ0V (x) =
V (x), ∀x ∈ eiθ0U ∩ U , for every θ0 ∈ [0, 2π[ with eiθ0U ∩ U �= ∅.

We also need

Definition 6.3. Let 〈 · | · 〉 be a Hermitian metric on CTX. We say
that 〈 · | · 〉 is T -rigid if for T -rigid vector fields V and W on U , where
U ⊂ X is any open set, we have

〈V (x) |W (x) 〉 = 〈 deiθ0V (eiθ0x) | deiθ0W (eiθ0x) 〉, ∀x ∈ U, θ0 ∈ [0, 2π[.

The following result was established in [46, Theorem 9.2].

Theorem 6.4. There is a T -rigid Hermitian metric 〈 · | · 〉 on CTX
such that T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X⊕T 0,1X), 〈T |T 〉 = 1 and 〈u |v 〉
is real if u, v are real tangent vectors.

Until further notice, we fix a T -rigid Hermitian metric 〈 · | · 〉 on CTX
such that T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1 and
〈u |v 〉 is real if u, v are real tangent vectors and we take m(x) to be the
volume form induced by the given T -rigid Hermitian metric 〈 · | · 〉. We
will use the same notations as before. We need the following result due
to Baouendi–Rothschild–Treves [3, Section 1]

Theorem 6.5. For every point x0 ∈ X, there exists local coordinates
x = (x1, . . . , x2n−1) = (z, θ) = (z1, . . . , zn−1, θ), zj = x2j−1 + ix2j ,
j = 1, . . . , n − 1, θ = x2n−1, defined in some small neighborhood U of
x0 such that

T =
∂

∂θ
, Zj =

∂

∂zj
+ i

∂φ

∂zj
(z)

∂

∂θ
, j = 1, . . . , n − 1,(6.3)

where Zj(x), j = 1, . . . , n − 1, form a basis of T 1,0
x X, for each x ∈ U ,

and φ(z) ∈ C∞(U,R) is independent of θ.
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Let x = (x1, . . . , x2n−1) = (z, θ) = (z1, . . . , zn−1, θ), zj = x2j−1+ ix2j ,
j = 1, . . . , n − 1, θ = x2n−1, be canonical coordinates of X defined in
some open set D � X. It is clear that{

dzj1 ∧ . . . ∧ dzjq ; 1 ≤ j1 < j2 < . . . < jq ≤ n− 1
}

is a basis for T ∗0,qx X, for every x ∈ D. Let u ∈ Ω0,q(X). On D, we write

u =
∑

1≤j1<j2<...<jq≤n−1

uj1,...,jqdzj1 ∧ . . . ∧ dzjq , uj1,...,jq ∈ C
∞(D) .

On D, we define

(6.4) Tu :=
∑

1≤j1<j2<...<jq≤n−1

(Tuj1,...,jq)dzj1 ∧ . . . ∧ dzjq .

Let y = (y1, . . . , y2n−1) = (w, γ), wj = y2j−1 + iy2j , j = 1, . . . , n − 1,
γ = y2n−1, be another canonical coordinates on D. Then,

T =
∂

∂γ
, Z̃j =

∂

∂wj
+ i

∂φ̃

∂wj
(w)

∂

∂γ
, j = 1, . . . , n− 1,(6.5)

where Z̃j(y), j = 1, . . . , n − 1, form a basis of T 1,0
y X, for each y ∈ D,

and φ̃(w) ∈ C∞(D,R) independent of γ. From (6.5) and (6.3), it is not
difficult to see that on D, we have

w = (w1, . . . , wn−1) = (H1(z), . . . ,Hn−1(z)) = H(z), Hj(z) ∈ C
∞, ∀j,

γ = θ +G(z), G(z) ∈ C
∞,

(6.6)

where for each j = 1, . . . , n − 1, Hj(z) is holomorphic. From (6.6), we
can check that

(6.7) dwj =

n−1∑
l=1

∂Hj

∂zl
dzl, j = 1, . . . , n − 1.

From (6.7), it is straightforward to check that the definition (6.4) is
independent of the choice of canonical coordinates. We omit the details
(see also [45, Section 5]). Thus, Tu is well-defined as an element in
Ω0,q(X).

For m ∈ Z, put

(6.8) B0,q
m (X) :=

{
u ∈ Ω0,q(X); Tu = −imu

}
,

and let B0,q
m (X) ⊂ L2

(0,q)(X) be the completion of B0,q
m (X) with respect

to ( · | · ). It is easy to see that for any m,m′ ∈ Z, m �= m′,

(6.9) (u | v) = 0, ∀u ∈ B0,q
m (X), v ∈ B0,q

m′ (X).

We have actually an orthogonal decomposition of Hilbert spaces

L2
(0,q)(X) =

⊕̂
m∈Z

B0,q
m (X) .
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For m ∈ Z, let

(6.10) Q(q)
m : L2

(0,q)(X)→ B0,q
m (X)

be the orthogonal projection with respect to ( · | · ). Moreover, it is not
difficult to see that for every m ∈ Z, we have

Q(q)
m : Ω0,q(X)→ B0,q

m (X),

TQ(q)
m = −imQ(q)

m u, ∀u ∈ L2
(0,q)(X),∥∥∥TQ(q)

m u
∥∥∥ = |m|

∥∥∥Q(q)
m u

∥∥∥ , ∀u ∈ L2
(0,q)(X).

(6.11)

Since the Hermitian metric 〈 · | · 〉 is T -rigid, it is straightforward to see
that (see [45, Section 5])

�
(q)
b Q

(q)
m = Q

(q)
m �

(q)
b on Ω0,q

0 (X, ), ∀m ∈ Z,

∂bQ
(q)
m = Q

(q+1)
m ∂b on Ω0,q

0 (X), ∀m ∈ Z, q = 0, 1, . . . , n− 2,

∂
∗
bQ

(q)
m = Q

(q−1)
m ∂

∗
b on Ω0,q

0 (X), ∀m ∈ Z, q = 1, . . . , n− 1.

(6.12)

Now, we assume that X is compact. By using elementary Fourier anal-
ysis, it is straightforward to see that for every u ∈ Ω0,q(X),

lim
N→∞

N∑
m=−N

Q
(q)
m u = u in the C∞ topology,

N∑
m=−N

∥∥∥Q(q)
m u

∥∥∥2 ≤ ‖u‖2 , ∀N ∈ N0.

(6.13)

Thus, for every u ∈ L2
(0,q)(X),

lim
N→∞

N∑
m=−N

Q
(q)
m u = u in L2

(0,q)(X,Lk),

N∑
m=−N

∥∥∥Q(q)
m u

∥∥∥2 ≤ ‖u‖2 , ∀N ∈ N0.

(6.14)

For m ∈ Z, put

Q
(q)
≤m : L2

(0,q)(X)→ L2
(0,q)(X), u �−→ lim

N→∞

N∑
j=0

Q
(q)
m−ju,(6.15)

and

Q
(q)
≥m : L2

(0,q)(X)→ L2
(0,q)(X), u �−→ lim

N→∞

N∑
j=0

Q
(q)
m+ju.(6.16)

In view of (6.13) and (6.14), we see that (6.15) and (6.16) are well-
defined.

The following is straightforward and we omit the proof.
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Theorem 6.6. Let m ∈ Z, we have

Q
(q)
≥m, Q

(q)
≤m : Ω0,q(X)→ Ω0,q(X),

i(TQ
(q)
≥mu |u) ≥ m ‖u‖ , ∀u ∈ Ω0,q(X),

i(TQ
(q)
≤mu |u) ≤ m ‖u‖ , ∀u ∈ Ω0,q(X),

Q
(q)
≥m, Q

(q)
≤m : Dom ∂b → Dom ∂b,

Q
(q)
≥m∂b = ∂bQ

(q)
≥m on Dom ∂b,

Q
(q)
≤m∂b = ∂bQ

(q)
≤m on Dom ∂b,

Q
(q)
≥m, Q

(q)
≤m : Dom ∂

∗
b → Dom ∂

∗
b ,

Q
(q)
≥m∂

∗
b = ∂

∗
bQ

(q)
≥m on Dom ∂

∗
b ,

Q
(q)
≤m∂

∗
b = ∂

∗
bQ

(q)
≤m on Dom ∂

∗
b ,

Q
(q)
≥m, Q

(q)
≤m : Dom�

(q)
b → Dom�

(q)
b ,

Q
(q)
≥m�

(q)
b = �

(q)
b Q

(q)
≥m on Dom�

(q)
b ,

Q
(q)
≤m�

(q)
b = �

(q)
b Q

(q)
≤m on Dom�

(q)
b ,

Q
(q)
≥mΠ(q) = Π(q)Q

(q)
≥m on L2

(0,q)(X),

Q
(q)
≤mΠ(q) = Π(q)Q

(q)
≤m on L2

(0,q)(X).

(6.17)

To continue, put for m ∈ Z,

B0,q
≥m(X) :=

{
Q

(q)
≥mu; u ∈ L2

(0,q)(X)
}
,

B0,q
≤m(X) :=

{
Q

(q)
≤mu; u ∈ L2

(0,q)(X)
}
.

(6.18)

Note that (Q
(q)
≤m)2 = Q

(q)
≤m, (Q

(q)
≥m)2 = Q

(q)
≥m. From this observation and

(6.17), we see that

Dom�
(q)
b ∩ B0,q

≤m =
{
Q

(q)
≤mu; u ∈ Dom�

(q)
b

}
,

Dom�
(q)
b ∩ B0,q

≥m =
{
Q

(q)
≥mu; u ∈ Dom�

(q)
b

}
,

and

�
(q)
b : Dom�

(q)
b ∩ B0,q

≥m(X)→ B0,q
≥m(X),

�
(q)
b : Dom�

(q)
b ∩ B0,q

≤m(X)→ B0,q
≤m(X).

(6.19)

Thus, it is quite interesting to study the behavior of �
(q)
b in the spaces

B0,q
≥m and B0,q

≤m. We recall now the condition Z(q) of Hörmander.
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Definition 6.7. Given q ∈ {0, . . . , n − 1}, the Levi form is said
to satisfy condition Z(q) at p ∈ X, if Lp has at least n − q positive
eigenvalues or at least q + 1 negative eigenvalues.

Usually, the condition Z(q) is introduced for a smooth domain D
with boundary X = ∂D in a complex manifold M .Then condition Z(q)
implies subelliptic estimates for the ∂-Neumann problem on D, cf. [23,
34]. Note that the condition Z(q) is related to the choice of sign of ω0

in Section 2.2. Let’s explain what the choice is when X = ∂D. Assume
that

X =
{
r ∈ C∞(M ′,R); r = 0

}
,

where M ′ is a complex manifold and dr �= 0 on X. Suppose ‖dr‖ = 1
on X. Then, the condition Z(q) for X is defined by taking ω0 = J(dr),
where J : T ∗M ′ → T ∗M ′ is the complex structure map.

If one wants to obtain subelliptic estimates on X, one cannot dis-
tinguish whether X is the boundary of D or X is the boundary of the
complement of D. Thus, one assumes that condition Z(q) holds on both
D and its complement M \D. Note that condition Z(q) on M \ D is
equivalent to condition Z(n − q − 1) on D. However, we show in the
next theorem, that condition Z(q) (resp. Z(n− q−1)) yields subelliptic
estimates on a CR manifold with S1 action, by projecting the forms

with Q
(q)
≤0, (resp. Q

(q)
≥0).

Theorem 6.8. With the notations and assumptions above, assume
that Z(q) holds at every point of X. Then, for every s ∈ N0, there is a
constant Cs > 0 such that

(6.20)
∥∥∥Q(q)

≤0u
∥∥∥
s+1

≤ Cs

(∥∥∥�(q)
b Q

(q)
≤0u

∥∥∥
s
+

∥∥∥Q(q)
≤0u

∥∥∥), ∀u ∈ Ω0,q(X),

where ‖·‖s denotes the usual Sobolev norm of order s on X.
Similarly, if Z(n − 1 − q) holds at every point of X, then for every

s ∈ N0, there is a constant Cs > 0 such that

(6.21)
∥∥∥Q(q)

≥0u
∥∥∥
s+1

≤ Cs

(∥∥∥�(q)
b Q

(q)
≥0u

∥∥∥
s
+

∥∥∥Q(q)
≥0u

∥∥∥), ∀u ∈ Ω0,q(X).

Proof. If we go through Kohn’s L2 estimates (see [23, Theorem 8.4.2],
[34, Proposition 5.4.10], [50]), we see that:
(I) If Z(q) holds at every point of X, then, for every s ∈ N0, there is a
constant Cs > 0 such that for all u ∈ Ω0,q(X) with i(Tu |u ) ≤ 0, we
have

‖u‖s+1 ≤ Cs

( ∥∥∥�(q)
b u

∥∥∥
s
+ ‖u‖

)
.

(II) If Z(n−1−q) holds at every point ofX, then, for every s ∈ N0, there

is a constant C̃s > 0 such that for all u ∈ Ω0,q(X) with i(Tu |u ) ≥ 0,
we have

‖u‖s+1 ≤ C̃s

( ∥∥∥�(q)
b u

∥∥∥
s
+ ‖u‖

)
.
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We notice that

i(TQ
(q)
≤0u |Q(q)

≤0u ) ≤ 0, i(TQ
(q)
≥0u |Q(q)

≥0u ) ≥ 0, ∀u ∈ Ω0,q(X).

From this observation and (I) and (II), the theorem follows. q.e.d.

For every s ∈ Z, let Hs
−(X,T ∗0,qX) and Hs

+(X,T ∗0,qX) denote the

completions of B0,q
≤0(X) ∩ Ω0,q(X) and B0,q

≥0(X) ∩ Ω0,q(X) with respect

to ‖·‖s, respectively. Let D ′
−(X,T ∗0,qX) and D ′

+(X,T ∗0,qX) denote the

dual spaces of B0,q
≤0(X) ∩ Ω0,q(X) and B0,q

≥0(X) ∩ Ω0,q(X), respectively.

From Theorem 6.8, we can repeat the method of Kohn (see [23,
Chapter 8], [34], [50]) and deduce the following.

Theorem 6.9. With the notations and assumptions above, assume

that Z(q) holds at every point of X. Then �
(q)
b : Dom�

(q)
b ∩B0,q

≤0(X)→
B0,q
≤0(X) has closed range. Let

N
(q)
− : B0,q

≤0(X)→ Dom�
(q)
b ∩ B0,q

≤0(X)

be the associated partial inverse and let

Π
(q)
− : B0,q

≤0(X)→ Ker�
(q)
b

be the orthogonal projection. Then, we have

�
(q)
b N

(q)
− +Π

(q)
− = I on B0,q

≤0(X),

N
(q)
− �

(q)
b +Π

(q)
− = I on B0,q

≤0(X) ∩Dom�
(q)
b ,

N
(q)
− : Hs

−(X,T ∗0,qX)→ Hs+1
− (X,T ∗0,qX), ∀s ∈ Z,

Π
(q)
− : Hs

−(X,T ∗0,qX)→ Hs+N
− (X,T ∗0,qX), ∀s ∈ Z and N ∈ N.

(6.22)

Moreover, N
(q)
− and Π

(q)
− can be continuously extended to D′−(X,T ∗0,qX)

and we have

Π
(q)
− : D

′
−(X,T ∗0,qX)→ B0,q

≤0(X)
⋂

Ω0,q(X),

N
(q)
− : D

′
−(X,T ∗0,qX)→ D

′
−(X,T ∗0,qX),

�
(q)
b N

(q)
− +Π

(q)
− = I on D ′

−(X,T ∗0,qX),

N
(q)
− �

(q)
b +Π

(q)
− = I on D ′

−(X,T ∗0,qX).

(6.23)

Theorem 6.10. With the notations and assumptions above, assume
that Z(n− 1− q) holds at every point of X. Then,

�
(q)
b : Dom�

(q)
b ∩ B0,q

≥0(X)→ B0,q
≥0(X)

has closed range. Let

N
(q)
+ : B0,q

≥0(X)→ Dom�
(q)
b ∩ B0,q

≥0(X)
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be the associated partial inverse and let

Π
(q)
+ : B0,q

≥0(X)→ Ker�
(q)
b

be the orthogonal projection. Then, we have

�
(q)
b N

(q)
+ +Π

(q)
+ = I on B0,q

≥0(X),

N
(q)
+ �

(q)
b +Π

(q)
+ = I on B0,q

≥0(X) ∩Dom�
(q)
b ,

N
(q)
+ : Hs

+(X,T ∗0,qX)→ Hs+1
+ (X,T ∗0,qX), ∀s ∈ Z,

Π
(q)
+ : Hs

+(X,T ∗0,qX)→ Hs+N
+ (X,T ∗0,qX), ∀s ∈ Z and N ∈ N.

(6.24)

Moreover, N
(q)
+ and Π

(q)
+ can be continuously extended to D′+(X,T ∗0,qX)

and we have

Π
(q)
+ : D

′
+(X,T ∗0,qX)→ B0,q

≥0(X)
⋂

Ω0,q(X),

N
(q)
+ : D

′
+(X,T ∗0,qX)→ D

′
+(X,T ∗0,qX),

�
(q)
b N

(q)
+ +Π

(q)
+ = I on D ′

+(X,T ∗0,qX),

N
(q)
+ �

(q)
b +Π

(q)
+ = I on D ′

+(X,T ∗0,qX).

(6.25)

Our next goal is to prove that if Z(q) fails but Z(q− 1) and Z(q+1)
hold at every point of X, then,

�
(q)
b : Dom�

(q)
b ∩ B0,q

≤0(X)→ B0,q
≤0(X)

has closed range. Until further notice, we assume that Z(q) fails but

Z(q− 1) and Z(q+1) hold at every point of X. Let N
(q−1)
− and N

(q+1)
−

be as in Theorem 6.9. We first need the following.

Lemma 6.11. Let u ∈ B0,q
≤0(X). We have

(6.26) ∂
∗
b∂bN

(q+1)
− ∂bu = 0,

and

(6.27) ∂b∂
∗
bN

(q−1)
− ∂

∗
bu = 0.

Proof. Let u ∈ B0,q
≤0(X). Take uj ∈ B0,q

≤0(X) ∩ Ω0,q(X), j = 1, 2, . . .,

so that uj → u in L2
(0,q)(X) as j → ∞. Then, ∂

∗
b∂bN

(q+1)
− ∂buj →

∂
∗
b∂bN

(q+1)
− ∂bu in D ′

−(X,T ∗0,qX) as j → ∞. Fix j = 1, 2, . . . . From
(6.22), we have

∂
∗
b∂bN

(q+1)
− ∂buj = N

(q+1)
− �

(q+1)
b ∂

∗
b∂bN

(q+1)
− ∂buj

= N
(q+1)
− ∂

∗
b∂b�

(q+1)
b N

(q+1)
− ∂buj
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= N
(q+1)
− ∂

∗
b∂b(I −Π

(q+1)
− )∂buj

= N
(q+1)
− ∂

∗
b∂

2
buj = 0.

Hence, ∂
∗
b∂bN

(q+1)
− ∂bu = 0. (6.26) follows. The proof of (6.27) is essen-

tially the same. q.e.d.

Lemma 6.12. The following operators are continuous:

∂bN
(q−1)
− ∂

∗
b : B0,q

≤0(X)→ B0,q
≤0(X),

∂
∗
bN

(q+1)
− ∂b : B0,q

≤0(X)→ B0,q
≤0(X).

(6.28)

Moreover, for every u ∈ B0,q
≤0(X),

(6.29) u−(∂bN
(q−1)
− ∂

∗
b + ∂

∗
bN

(q+1)
− ∂b)u ∈ ker�

(q)
b ∩ B0,q

≤0(X).

Proof. Let u ∈ B(0,q)
≤0 ∩ Ω0,q(X). We have∥∥∥∂∗bN (q+1)

− ∂bu
∥∥∥2

= ( ∂
∗
bN

(q+1)
− ∂bu | ∂∗bN (q+1)

− ∂bu ) = ( ∂b∂
∗
bN

(q+1)
− ∂bu |N (q+1)

− ∂bu )

= (�
(q+1)
b N

(q+1)
− ∂bu |N (q+1)

− ∂bu ) (here we used (6.26))

= ( ∂bu |N (q+1)
− ∂bu ) = (u | ∂∗bN (q+1)

− ∂bu )

≤ ‖u‖
∥∥∥∂∗bN (q+1)

− ∂bu
∥∥∥ .

Hence, ∥∥∥∂∗bN (q+1)
− ∂bu

∥∥∥ ≤ ‖u‖ , ∀u ∈ B0,q
≤0(X) ∩ Ω0,q(X).

Thus, ∂
∗
bN

(q+1)
− ∂b can be continuously extended to

∂
∗
bN

(q+1)
− ∂b : B0,q

≤0(X)→ B0,q
≤0(X).

Similarly, we can repeat the procedure above and conclude that

∂bN
(q−1)
− ∂

∗
b : B0,q

≤0(X)→ B0,q
≤0(X) is continuous.

(6.28) follows.

Let u ∈ B0,q
≤0(X)∩Ω0,q(X) and set v = u−(∂bN

(q−1)
− ∂

∗
b+∂

∗
bN

(q+1)
− ∂b)u.

We have

∂bv = ∂bu− ∂b∂
∗
bN

(q+1)
− ∂bu

= ∂bu−�
(q+1)
b N

(q+1)
− ∂bu (here we used (6.26))

= ∂bu− ∂bu = 0.

Similarly, we have ∂
∗
bv = 0. Thus,

u−(∂bN
(q−1)
− ∂

∗
b + ∂

∗
bN

(q+1)
− ∂b)u ∈ Ker�

(q)
b ,
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for every u ∈ B0,q
≤0(X) ∩ Ω0,q(X). Since

I − ∂bN
(q−1)
− ∂

∗
b − ∂

∗
bN

(q+1)
− ∂b : B0,q

≤0(X)→ B0,q
≤0(X)

is continuous, (6.29) follows. q.e.d.

Let ∂
∗,f
b : Ω0,q+1(X) → Ω0,q(X) be the formal adjoint of ∂b with

respect to ( · | · ). That is, ( ∂bf | g ) = ( f | ∂∗,fb g ), for all f ∈ Ω0,q(X),
g ∈ Ω0,q+1(X). We need

Lemma 6.13. Let u ∈ L2
(0,q)(X). If ∂

∗,f
b u ∈ L2

(0,q−1)(X), then u ∈
Dom ∂

∗
b and ∂

∗
bu = ∂

∗,f
b u.

Proof. Let g ∈ Dom ∂b ⊂ L2
(0,q−1)(X). From Friedrichs’ lemma [23,

Corollary D.2], we can find gj ∈ Ω0,q−1(X), j = 1, 2, . . ., such that

gj → g in L2
(0,q−1)(X) as j →∞ and ∂bgj → ∂bg in L2

(0,q)(X) as j →∞.

We have

(u | ∂bg) = lim
j→∞

(u | ∂bgj) = lim
j→∞

( ∂
∗,f
b u | gj) = ( ∂

∗,f
b u | g).

Thus, u ∈ Dom ∂
∗
b and ∂

∗
bu = ∂

∗,f
b u. The lemma follows. q.e.d.

Lemma 6.14. We have

(6.30) ∂
∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ Dom�
(q)
b ∩ B0,q

≤0(X),

and

(6.31) ∂b(N
(q−1)
− )2∂

∗
b : B0,q

≤0(X)→ Dom�
(q)
b ∩ B0,q

≤0(X).

Proof. In view of (6.22), we see that

∂
∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ B0,q
≤0(X) is continuous.

Let u ∈ B0,q
≤0(X) ∩ Ω0,q(X). We have

∥∥∥∂b∂
∗
b(N

(q+1)
− )2∂bu

∥∥∥2 = ( ∂b∂
∗
b(N

(q+1)
− )2∂bu | ∂b∂

∗
b(N

(q+1)
− )2∂bu )

= ( ∂
∗
b∂b∂

∗
b(N

(q+1)
− )2∂bu | ∂∗b(N (q+1)

− )2∂bu )

= ( ∂
∗
b�

(q+1)
b (N

(q+1)
− )2∂bu | ∂∗b(N (q+1)

− )2∂bu )

= ( ∂
∗
bN

(q+1)
− ∂bu | ∂∗b(N (q+1)

− )2∂bu )

≤
∥∥∥∂∗bN (q+1)

− ∂bu
∥∥∥ ∥∥∥∂∗b(N (q+1)

− )2∂bu
∥∥∥ .

(6.32)

From (6.28) and (6.32), we see that there is a constant C > 0 such that∥∥∥∂b∂
∗
b(N

(q+1)
− )2∂bu

∥∥∥ ≤ C ‖u‖ , ∀u ∈ B0,q
≤0(X) ∩ Ω0,q(X).
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Thus, ∂b∂
∗
b(N

(q+1)
− )2∂b can be extended continuously to B0,q

≤0(X) and we
have

∂b∂
∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ B0,q+1
≤0 (X) is continuous.

Hence,

(6.33) ∂
∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ Dom ∂b ∩ B0,q
≤0(X).

Let u ∈ B0,q
≤0(X) ∩ Ω0,q(X). We have

∂
∗,f
b ∂b∂

∗
b(N

(q+1)
− )2∂bu = ∂

∗
b∂b∂

∗
b(N

(q+1)
− )2∂bu

= ∂
∗
b�

(q+1)
b (N

(q+1)
− )2∂bu

= ∂
∗
bN

(q+1)
− ∂bu.

(6.34)

From (6.28) and (6.34), we see that there is a constant C1 > 0 such that∥∥∥∂∗,fb ∂b∂
∗
b(N

(q+1)
− )2∂bu

∥∥∥ ≤ C1 ‖u‖ , ∀u ∈ B0,q
≤0(X) ∩ Ω0,q(X).

Thus, ∂
∗,f
b ∂b∂

∗
b(N

(q+1)
− )2∂b can be extended continuously to B0,q

≤0(X) and
we have

(6.35) ∂
∗,f
b ∂b∂

∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ B0,q
≤0(X) is continuous.

From (6.35) and Lemma 6.13, we conclude that

(6.36) ∂b∂
∗
b(N

(q+1)
− )2∂b : B0,q

≤0(X)→ Dom ∂
∗
b ∩ B0,q+1

≤0 (X).

Moreover, it is easy to see that for u ∈ B0,q
≤0(X), ∂

∗
b(N

(q+1)
− )2∂bu ∈

Dom ∂
∗
b and

(∂
∗
b)

2(N
(q+1)
− )2∂bu = 0.

From this observation, (6.36) and (6.33), (6.30) follows.
The proof of (6.31) is essentially the same. q.e.d.

Theorem 6.15. With the notations above, assume that Z(q) fails
but Z(q − 1) and Z(q + 1) hold at every point of X. Then,

�
(q)
b : Dom�

(q)
b ∩ B0,q

≤0(X)→ B0,q
≤0(X)

has closed range.

Proof. Let �
(q)
b uj = vj , uj ∈ Dom�

(q)
b ∩ B0,q

≤0(X), vj ∈ B0,q
≤0(X),

j = 1, 2, . . ., with vj → v ∈ B0,q
≤0(X) as j → ∞. We are going to prove

that there is a g ∈ Dom�
(q)
b ∩B0,q

≤0(X) such that �
(q)
b g = v. Let N

(q−1)
−

and N
(q+1)
− be as in Theorem 6.9. Put

gj =
(
∂
∗
bN

(q+1)
− ∂b + ∂bN

(q−1)
− ∂

∗
b

)
uj, j = 1, 2, . . . .
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In view of (6.28), we see that gj ∈ B0,q
≤0(X). Moreover, from (6.29), we

have

uj−
(
∂
∗
bN

(q+1)
− ∂b+∂bN

(q−1)
− ∂

∗
b

)
uj ∈ Ker�

(q)
b ⊂ Dom�

(q)
b , j = 1, 2, . . . .

Hence,

gj ∈ Dom�
(q)
b ∩ B0,q

≤0(X), j = 1, 2, . . . ,

�
(q)
b gj = �

(q)
b uj = vj, j = 1, 2, . . . .

(6.37)

We claim that for each j,

gj =
(
∂
∗
bN

(q+1)
− ∂b + ∂bN

(q−1)
− ∂

∗
b

)
uj

=
(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b

)
�

(q)
b uj

=
(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b

)
vj.

(6.38)

Fix j = 1, 2, . . .. Let fs ∈ B0,q
≤0(X) ∩ Ω0,q(X), s = 1, 2, . . ., with fs → uj

in B0,q
≤0(X) as s→∞. We have

(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b

)
�

(q)
b fs

→(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b

)
�

(q)
b uj in D ′

−(X,T ∗0,qX) as s→∞.

(6.39)

We can check that

(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b

)
�

(q)
b fs

= ∂
∗
b(N

(q+1)
− )2�

(q+1)
b ∂bfs + ∂b(N

(q−1)
− )2�

(q−1)
b ∂

∗
bfs

= ∂
∗
bN

(q+1)
− (I −Π

(q+1)
− )∂bfs + ∂bN

(q−1)
− (I −Π

(q−1)
− )∂

∗
bfs

= ∂
∗
bN

(q+1)
− ∂bfs + ∂bN

(q−1)
− ∂

∗
bfs

→(
∂
∗
bN

(q+1)
− ∂b + ∂bN

(q−1)
− ∂

∗
b

)
uj = gj in D ′

−(X,T ∗0,qX) as s→∞.

(6.40)

From (6.39) and (6.40), (6.38) follows. Since vj → v ∈ B0,q
≤0(X) and

∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b : B0,q

≤0(X)→ B0,q
≤0(X) is continuous

(see (6.22)), we conclude that

gj → g :=
(
∂
∗
b(N

(q+1)
− )2∂b + ∂b(N

(q−1)
− )2∂

∗
b)v ∈ B0,q

≤0(X),

and �
(q)
b g = v in D ′

−(X,T ∗0,qX). In view of Lemma 6.14, we see that

g ∈ Dom�
(q)
b ∩ B0,q

≤0(X). The theorem follows. q.e.d.

We can repeat the proof of Theorem 6.15 and deduce the following.
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Theorem 6.16. With the notations above, assume that Z(n− 1− q)
fails but Z(n− 2− q) and Z(n− q) hold at every point of X. Then,

�
(q)
b : Dom�

(q)
b ∩ B0,q

≥0(X)→ B0,q
≥0(X)

has closed range.

Now, we can prove:

Theorem 6.17. With the notations above, assume that Z(q) fails

but Z(q−1) and Z(q+1) hold at every point of X. Then, �
(q)
b has local

L2 closed range on X with respect to Q
(q)
≤0 in the sense of Definition 1.8.

Proof. From Theorem 6.15, we see that there is a constant C > 0
such that

(6.41)
∥∥∥(I −Π

(q)
− )u

∥∥∥ ≤ C
∥∥∥�(q)

b u
∥∥∥ , ∀u ∈ B0,q

≤0 ∩Dom�
(q)
b .

Let f ∈ Ω0,q(X). Then, Q
(q)
≤0f ∈ B0,q

≤0 ∩Ω0,q(X). We claim that

(6.42) Q
(q)
≤0Π

(q)f = Π
(q)
− Q

(q)
≤0f.

Note that Q
(q)
≤0Π

(q)f = Π(q)Q
(q)
≤0f . Thus,

(Q
(q)
≤0Π

(q)f |Q(q)
≤0(I −Π(q))f ) = (Π(q)Q

(q)
≤0f | (I −Π(q))Q

(q)
≤0f ) = 0.

We have the orthogonal decompositions

Q
(q)
≤0f = Q

(q)
≤0Π

(q)f +Q
(q)
≤0(I −Π(q))f,

Q
(q)
≤0f = Π

(q)
− Q

(q)
≤0f + (I −Π

(q)
− )Q

(q)
≤0f.

(6.43)

Hence,

(6.44) Q
(q)
≤0Π

(q)f −Π
(q)
− Q

(q)
≤0f = (I −Π

(q)
− )Q

(q)
≤0f −Q

(q)
≤0(I −Π(q))f.

From (6.44), we have

(Q
(q)
≤0Π

(q)f −Π
(q)
− Q

(q)
≤0f |Q(q)

≤0Π
(q)f −Π

(q)
− Q

(q)
≤0f )

= (Q
(q)
≤0Π

(q)f −Π
(q)
− Q

(q)
≤0f | (I −Π

(q)
− )Q

(q)
≤0f −Q

(q)
≤0(I −Π(q))f )

= 0,

(6.45)

since Q
(q)
≤0Π

(q)f −Π
(q)
− Q

(q)
≤0f ∈ Ker�

(q)
b ∩ B0,q

≤0. Hence,

Q
(q)
≤0Π

(q)f = Π
(q)
− Q

(q)
≤0f.

The claim (6.42) follows. Note that Q
(q)
≤0 : Dom�

(q)
b ∩ L2

(0,q)(X) →
Dom�

(q)
b ∩B0,q

≤0(X) and Q
(q)
≤0 : Ω

0,q(X)→ B0,q
≤0(X)∩Ω0,q(X) . From this
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observation, (6.42) and (6.41), we obtain∥∥∥Q(q)
≤0(I −Π(q))u

∥∥∥
=

∥∥∥(I −Π
(q)
− )Q

(q)
≤0u

∥∥∥ ≤ C
∥∥∥�(q)

b Q
(q)
≤0u

∥∥∥ = C
∥∥∥Q(q)

≤0�
(q)
b u

∥∥∥
≤ C

∥∥∥�(q)
b u

∥∥∥ , ∀u ∈ Ω0,q(X),

where C > 0 is a constant. The theorem follows. q.e.d.

Similarly, we can repeat the proof of Theorem 6.17 and deduce

Theorem 6.18. With the notations above, assume that Z(n− 1− q)
fails but Z(n − 2 − q) and Z(n − q) hold at every point of X. Then,

�
(q)
b has local L2 closed range on X with respect to Q

(q)
≥0 in the sense of

Definition 1.8.

Let D ⊂ Xreg be a canonical coordinate patch and let

x = (x1, . . . , x2n−1)

be canonical coordinates on D as in Theorem 6.5. We identify D with
W×]−π, π[⊂ R

2n−1, where W is some open set in R
2n−2. Until further

notice, we work with canonical coordinates x = (x1, . . . , x2n−1). Let
η = (η1, . . . , η2n−1) be the dual coordinates of x. It is clear that there
is a conic neighborhood Λ of Σ such that

(6.46) |η2n−1| ≥ 1

2
ε0 |η| , ∀(x, η) ∈ Λ

⋂
T ∗D,

where ε0 > 0 is a small constant. Let α(x2n−1) ∈ C∞(R, [0, 1]) with
α = 1 on [12 ,∞[, α = 0 on ]−∞, 14 ]. Let χ ∈ C∞0 (R), χ = 1 on [−1, 1].
We recall Definition 2.4. We need

Lemma 6.19. With the notations above,

Q
(q)
≤0(x, y) ≡ 1

(2π)2n−1

∫
ei〈x−y,η〉(1− χ(|η|2))α(η2n−1

ε0|η|
)dη at Σ− ∩ T ∗D,

Q
(q)
≤0(x, y) ≡ 0 at Σ+ ∩ T ∗D,

(6.47)

and

Q
(q)
≥0(x, y)

≡ 1

(2π)2n−1

∫
ei〈x−y,η〉(1− χ(|η|2))α(−η2n−1

ε0 |η| )dη at Σ+ ∩ T ∗D,

Q
(q)
≥0(x, y) ≡ 0 at Σ− ∩ T ∗D.

(6.48)
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Proof. It is easy to see that on D,
(6.49)

Q
(q)
≤0u(y) =

1

2π

∑
m∈Z,m≥0

eimy2n−1

∫ π

−π
e−imtu(y′, t)dt, ∀u ∈ Ω0,q

0 (D),

where y′ = (y1, . . . , y2n−2). Fix D′ � D and let χ(y2n−1) ∈ C∞0 (]−π, π[)
such that χ(y2n−1) = 1 for every (y′, y2n−1) ∈ D′. Let β(x2n−1) ∈
C∞(R, [0, 1]) with β = 1 on [−1

4 ,∞[, β = 0 on ] − ∞,−1
2 ]. Let R :

Ω0,q
0 (D′)→ Ω0,q(D′) be the continuous operator given by

u �→ 1

(2π)2

∑
m∈Z

∫
|t|≤π

ei〈x2n−1−y2n−1,η2n−1〉β(η2n−1)(1− χ(y2n−1))

eimy2n−1e−imtu(x′, t)dtdη2n−1dy2n−1,

(6.50)

where x′ = (x1, . . . , x2n−2). Moreover, we can integrate by parts with
respect to η2n−1 and conclude that

(6.51) R ≡ 0 at Σ− ∩ T ∗D′, R ≡ 0 at Σ+ ∩ T ∗D′.

Now, we claim that

(6.52) Q
(q)
≤0(x, y) = R(x, y) +

1

(2π)2n−1

∫
ei〈x−y,η〉β(η2n−1)dη on D′.

Let u ∈ Ω0,q
0 (D′). From Fourier inversion formula, it is straightforward

to see that

1

(2π)2n−1

∫
ei〈x−y,η〉β(η2n−1)u(y)dη

=
1

(2π)2

∑
m∈Z

∫
|t|≤π

ei〈x2n−1−y2n−1,η2n−1〉β(η2n−1)

× χ(y2n−1)e
imy2n−1e−imtu(x′, t)dtdη2n−1dy2n−1.

(6.53)

From (6.50) and (6.53), we have

1

(2π)2n−1

∫
ei〈x−y,η〉β(η2n−1)u(y)dη +Ru(x)

=
1

(2π)2

∑
m∈Z

∫
|t|≤π

ei〈x2n−1−y2n−1,η2n−1〉β(η2n−1)

× eimy2n−1e−imtu(x′, t)dtdη2n−1dy2n−1.

(6.54)

From Fourier inversion formula and notice that for every m ∈ Z,∫
eimy2n−1e−iy2n−1η2n−1dy2n−1 = 2πδm(η2n−1),

where the integral above is defined as an oscillatory integral and δm is
the Dirac measure at m (see Chapter 7.2 in Hörmander [42]), (6.54)
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becomes

1

(2π)2n−1

∫
ei〈x−y,η〉β(η2n−1)u(y)dη +Ru(x)

=
1

2π

∑
m∈Z

β(m)eix2n−1m

∫
|t|≤π

e−imtu(x′, t)dt

=
1

2π

∑
m∈Z,m≥0

eix2n−1m

∫
|t|≤π

e−imtu(x′, t)dt

= Q
(q)
≤0u(x).

(6.55)

Here we used (6.49). The claim (6.52) follows. From (6.52) and (6.51),
we conclude that

Q
(q)
≤0(x, y)− 1

(2π)2n−1

∫
ei〈x−y,η〉β(η2n−1)dη ≡ 0 at Σ− ∩ T ∗D′,

Q
(q)
≤0(x, y) ≡ 0 at Σ+ ∩ T ∗D′.

Moreover, it is straightforward to see that

1

(2π)2n−1

∫
ei〈x−y,η〉

(
(1− χ(|η|2))α(η2n−1

ε0 |η| )− β(η2n−1)
)
dη

≡ 0 at Σ− ∩ T ∗D.

From this observation, (6.47) follows. The proof of (6.48) is essentially
the same as the proof of (6.47). q.e.d.

From Theorem 6.17, Theorem 6.18, Lemma 6.19 and Theorem 5.1,
we get the following two results.

Theorem 6.20. Let (X,T 1,0X) be a compact CR manifold of di-
mension 2n − 1, n ≥ 2, with a transversal CR S1 action and let T ∈
C∞(X,TX) be the real vector field induced by this S1 action. We fix
a T -rigid Hermitian metric 〈 · | · 〉 on CTX such that T 1,0X ⊥ T 0,1X,
T ⊥ (T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1 and 〈u |v 〉 is real if u, v are real
tangent vectors and we take m(x) to be the volume form induced by
the given T -rigid Hermitian metric 〈 · | · 〉. Assume that Z(q) fails but
Z(q − 1) and Z(q + 1) hold at every point of X. Suppose that the
Levi form is non-degenerate of constant signature (n−, n+) on an open

canonical coordinate patch D � Xreg . Let Q
(q)
≤0 : L2

(0,q)(X) → L2
(0,q)(X)

be as in (6.15). Then,

(6.56) Q
(q)
≤0Π

(q)Q
(q)
≤0 ≡ 0 on D if q �= n−,

and

(6.57) Q
(q)
≤0Π

(q)Q
(q)
≤0(x, y) ≡

∫ ∞

0
eiϕ−(x,y)ta(x, y, t)dt on D if q = n− ,
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where ϕ− ∈ C∞(D×D) is as in Theorem 4.1 and a(x, y, t) ∈ Sn−1
cl

(
D×

D × R+, T
∗0,q
y X � T ∗0,qx X

)
where with notations as in (3.7), (3.9), the

leading term a0(x, y) of the expansion (2.17) of a(x, y, t) satisfies

a0(x, x) =
1

2
π−n |detLx| τx,n−, ∀x ∈ D.

Similarly, we obtain the following.

Theorem 6.21. Under the hypotheses of Theorem 6.20 assume that
Z(n− 1− q) fails but Z(n− 2− q) and Z(n− q) hold at every point of
X. Suppose that the Levi form is non-degenerate of constant signature
(n−, n+) on an open canonical coordinate patch D � Xreg . Let

Q
(q)
≥0 : L

2
(0,q)(X)→ L2

(0,q)(X)

be as in (6.16). Then,

(6.58) Q
(q)
≥0Π

(q)Q
(q)
≥0 ≡ 0 on D if q �= n+,

and

(6.59) Q
(q)
≥0Π

(q)Q
(q)
≥0(x, y) ≡

∫ ∞

0
eiϕ+(x,y)tb(x, y, t)dt on D if q = n+ ,

where ϕ+ ∈ C∞(D×D) is as in Theorem 4.1 and b(x, y, t) ∈ Sn−1
cl

(
D×

D × R+, T
∗0,q
y X � T ∗0,qx X

)
, where with notations as in (3.7), (3.9), the

leading term b0(x, y) of the expansion (2.17) of b0(x, y, t) satisfies

b0(x, x) =
1

2
π−n |detLx| τx,n+

, ∀x ∈ D.

Kohn proved that if X is any compact CR manifold and Y (q) fails

but Y (q − 1) and Y (q + 1) hold on X then �
(q)
b has L2 closed range

(see [23]). By using Theorem 6.9, Theorem 6.10, Theorem 6.15 and
Theorem 6.16, we can improve Kohn’s result if X admits a transversal
CR S1 action.

Definition 6.22. Given q ∈ {0, . . . , n − 1}, the Levi form is said to
satisfy condition W (q) at p ∈ X, if one of the following condition holds:
(I)Y (q) holds at p. (II) Z(q), Z(n − 2 − q) and Z(n − q) hold at p.
(III)Z(q − 1), Z(q + 1) and Z(n− 1− q) hold at p. (IV) Y (q − 1) and
Y (q + 1) hold.

It is straightforward to see that if the Levi form is non-degenerate
of constant signature on X then for every q ∈ {0, 1, . . . , n − 1}, W (q)
holds at every point of X. It is clear that if Y (q− 1) and Y (q+1) hold
at p ∈ X, or Y (q) holds at p, then W (q) holds at p. But it can happen
that W (q) holds at p but Y (q) fails at p and Y (q−1) or Y (q+1) fail at
p. For example, if the Levi form is non-degenerate of constant signature
(n−, n+) at p and n+ = n−+1, then for q = n−, Z(q− 1), Z(q+1) and
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Z(n − 1 − q) hold at p. Thus, W (q) holds at p but Y (q) and Y (q + 1)
fail at p.

Theorem 6.23. Let (X,T 1,0X) be a compact CR manifold of di-
mension 2n − 1, n ≥ 2, with a transversal CR S1 action and let T ∈
C∞(X,TX) be the real vector field induced by this S1 action. We fix
a T -rigid Hermitian metric 〈 · | · 〉 on CTX such that T 1,0X ⊥ T 0,1X,
T ⊥ (T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1 and 〈u |v 〉 is real if u, v are real
tangent vectors and we take m(x) to be the volume form induced by the
given T -rigid Hermitian metric 〈 · | · 〉. Assume that W (q) holds at every

point of X. Then, �
(q)
b : Dom�

(q)
b → L2

(0,q)(X) has L2 closed range. In

particular, if the Levi form is non-degenerate of constant signature on

X, then �
(q)
b : Dom�

(q)
b → L2

(0,q)(X) has L2 closed range.

Proof. Since W (q) holds at every point of X, from Theorem 6.9, The-
orem 6.10, Theorem 6.15 and Theorem 6.16, we see that the operators

�
(q)
b : Dom�

(q)
b ∩ B0,q

≤0 → B0,q
≤0 , �

(q)
b : Dom�

(q)
b ∩ B0,q

≥0 → B0,q
≥0

have closed range. It is not difficult to see that this implies that �
(q)
b :

Dom�
(q)
b → L2

(0,q)(X) has L2 closed range. We leave the details to the

reader. q.e.d.

Corollary 6.24. Under the same notations and assumptions used in

Theorem 6.23, let N (q) : L2
(0,q)(X) → Dom�

(q)
b be the partial inverse

of �
(q)
b . We assume that the Levi form is non-degenerate of constant

signature (n−, n+) at each point of an open set D � X. If q /∈ {n−, n+},
then

Π(q) ≡ 0 and N (q) ≡ A on D,

where A ∈ L−11

2
, 1
2

(D,T ∗0,qX � T ∗0,qX) is as in Theorem 4.1. If q ∈
{n−, n+}, then

Π(q) ≡ S− + S+ and N (q) ≡ G on D,

where S−, S+ ∈ L0
1

2
, 1
2

(D,T ∗0,qX � T ∗0,qX) and G ∈ L−11

2
, 1
2

(D,T ∗0,qX �

T ∗0,qX) are as in Theorem 4.1.
In particular, for any CR submanifold in CP

N of the form (1.1), the
associated Szegő kernel admits a full asymptotic expansion.

For hypersurfaces of type (1.1) of signature (1, N − 3), Biquard [8]
studied the filling problem for small deformations of the CR structure.

From Corollary 6.24 and Theorem 6.23, we establish the global em-
beddability for three dimensional compact strictly pseudoconvex CR
manifolds with transversal CR S1 actions (Theorem 1.13).
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Theorem 6.25. Let (X,T 1,0X) be a compact strictly pseudoconvex
CR manifold of dimension three with a transversal CR S1 action. Then
X can be CR embedded into C

N , for some N ∈ N.

Proof. Let T ∈ C∞(X,TX) be the real vector field induced by the
given transversal CR S1 action on X and we fix a T -rigid Hermitian
metric 〈 · | · 〉 on CTX such that T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X),
〈T |T 〉 = 1 and 〈u |v 〉 is real if u, v are real tangent vectors and we
take m(x) to be the volume form induced by the given T -rigid Hermitian
metric 〈 · | · 〉. We will use the same notations as before. From Theo-

rem 6.23, we know that �
(0)
b : Dom�

(q)
b → L2(X) has closed range.

Let N (0) : L2(X) → Dom�
(q)
b be the partial inverse of �

(q)
b . From

Corollary 6.24, we have

�
(0)
b N (0) +Π(0) = I on L2(X),

N (0)�
(0)
b +Π(0) = I on Dom�

(0)
b ,

N (0) ∈ L−11

2
, 1
2

(X), Π(0) ∈ L0
1

2
, 1
2

(X).

(6.60)

From Kohn’s result [52], in order to prove that X can be CR embed-
ded into C

N , for some N ∈ N, we only need to prove that ∂b : Dom ∂b ⊂
L2(X) → L2

(0,1)(X) has closed range. Let ∂buj = vj, uj ∈ Dom ∂b,

vj ∈ L2
(0,1)(X), j = 1, 2, . . . , with vj → v ∈ L2

(0,1)(X) as j →∞. We are

going to prove that there is a g ∈ Dom ∂b such that ∂bg = v. We claim
that for every j = 1, 2, . . . ,

(6.61) N (0)∂
∗,f
b vj ∈ L2

(0,1)(X) and (I −Π(0))uj = N (0)∂
∗,f
b vj ,

where ∂
∗,f
b is the formal adjoint of ∂b (acting on distributions). Since

N (0) ∈ L−11

2
, 1
2

(X), it is clear that N (0)∂
∗,f
b vj ∈ L2(X), ∀j. Fix j ∈ N. Let

fs ∈ C∞(X), s ∈ N, with fs → uj in D ′(X) as s → ∞. From (6.60),
we have

N (0)∂
∗,f
b ∂bfs

= N (0)�
(0)
b fs = (I −Π(0))fs → (I −Π(0))uj in D

′(X) as j →∞.

(6.62)

Note that N (0)∂
∗,f
b ∂bfs → N (0)∂

∗,f
b ∂buj = N (0)∂

∗,f
b vj in D ′(X) as j →

∞. From this observation and (6.62), the claim (6.61) follows. Since

N (0) ∈ L−11

2
, 1
2

(X),

(6.63) N (0)∂
∗,f
b : L2

(0,1)(X)→ L2(X) is continuous.

From (6.61) and (6.63), we conclude that

(I −Π(0))uj = N (0)∂
∗,f
b vj → N (0)∂

∗,f
b v =: u in L2(X).
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Thus, ∂bu = v in the sense of distribution. Since v ∈ L2
(0,1)(X), u ∈

Dom ∂b. We have proved that ∂b : Dom ∂b ⊂ L2(X) → L2
(0,1)(X) has

closed range. The theorem follows. q.e.d.

Example 6.26 (Grauert tube). Let M be a compact complex man-
ifold endowed with a Hermitian metric Θ and associated Riemann-
ian metric gTM . We consider a Hermitian holomorphic line bundle
(L, hL) on M . The Grauert tube associated to (L, hL) is the disc bun-
dle G = {u ∈ L∗, |u|hL∗ < 1}, with defining function 	 : L∗ → R,
	 = |u|2

hL∗ − 1. The boundary X = ∂G = {u ∈ L∗, |u|hL∗ = 1} is the
unit circle bundle in L∗. The Grauert tube was introduced by Grauert
[35], one important application being the Kodaira embedding theorem
for singular spaces.

Let ∇L be the Chern connection on (L, hL) and let RL = (∇L)2

be the Chern curvature. The Levi form of 	 restricted to the com-
plex tangent plane of X coincides with the pull-back of ω =

√−1RL

through the canonical projection ρ : X → M . Therefore, the signature
of the Levi form of 	 coincides with the signature of the curvature form√−1RL.

Note that ρ : X → M is an S1-principal bundle and there exists a
canonical S1 action on X. The connection ∇L on L induces a connection
on this S1-principal bundle. Let THX ⊂ TX be the corresponding
horizontal bundle. Let us introduce the Riemannian metric gTX =
ρ∗(gTM )⊕ dϑ2 on TX = THX ⊕ TS1. We will denote by ∂

∗
b the formal

adjoint of ∂b with respect to this metric and form the Kohn–Laplacian

�b. The operators ∂b, ∂
∗
b and �

(q)
b commute with the action of S1

on X.
Consider the space C∞(X)p of smooth functions f on Y which trans-

form under the action (y, ϑ) �→ eiϑy of S1 according to the law

(6.64) f(eiϑy) = eipϑf(y).

Then C∞(X)p = B0,0
−p(X), where B0,q

m (X) were defined in (6.8). Let

us endow Ω•,•(M,Lp) with the L2 inner product induced by Θ and hL.
There exists a natural isometry

B0,0
−p(X) = C

∞(X)p ∼= Ω0,0(M,Lp).

More generally, consider the space of sections Ω0,k(X)p which transform

under the action of S1 according to (6.64). Then Ω0,k(X)p = B0,k
−p (X)

is naturally isometric to the space Ω0,k(X,Lp). In this way we obtain

an interpretation of the spaces B0,q
−p(X), B0,q

−p(X) and of the projectors
Q≤0, Q≥0 in terms of the sections of Lp. For more details on the relation
of the Szegő projection and the Bergman kernel of Lp one can consult
[56, §1.5], [58, §3.2].
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7. Szegő kernel asymptotic expansion on weakly

pseudoconvex CR manifolds

By using Theorem 1.9, we establish Szegő kernel asymptotic expan-
sions on some weakly pseudoconvex CR manifolds. We will consider
in Section 7.1 the case of boundaries of weakly pseudoconvex domains
(corresponding to Corollary 1.15 (i)). We also give an application to the
asymptotics of the Bergman kernel of a semi-positive line bundle. In
Section 7.2 we study some non-compact weakly pseudoconvex domains.

7.1. Compact pseudoconvex domains. Let G be a relatively com-
pact, weakly pseudoconvex domain, with smooth boundary X, in a
complex manifold G′ of dimension n. Then X is a compact weakly
pseudoconvex CR manifold of dimension 2n − 1 with CR structure
T 1,0X := T 1,0G′ ∩ CTX.

Theorem 7.1. Let G be a relatively compact domain in a complex
manifold G′ of dimension n, such that G has smooth boundary X = ∂G,
which is everywhere weakly pseudoconvex and strictly pseudoconvex on
an open subset D ⊂ X. Fix D0 � D. Assume that there exist a smooth
strictly plurisubharmonic function defined in a neighborhood of X. Let
φ ∈ C∞(G′) be a defining function of G, let 〈 · | · 〉 be a Hermitian metric
on G′ and let v(x) be the induced volume form on X. Let m(x) be a
volume form on X and consider the corresponding space L2(X). Then,
the kernel of the Szegő projector Π(0) : L2(X)→ ker ∂b has the form

(7.1) Π(0)(x, y) ≡
∫ ∞

0
eiϕ(x,y)ts(x, y, t)dt on D0,

where ϕ(x, y) ∈ C∞(U × U) is an almost analytic extension of φ as in
(1.3) to some neighborhood U be of D0 in G′, and s(x, y, t) ∈ Sn−1

cl

(
D×

D × R+

)
. Moreover, the leading term s0(x, y) of the expansion (2.17)

of s0(x, y, t) satisfies

s0(x, x) =
1

2
π−n

v(x)

m(x)
|detLx| , ∀x ∈ D0,

where Lx is the restriction of Lx(φ) to the tangent space T (1,0)X,

|detLx| = |μ1(x)| . . . |μn−1(x)| ,
with μ1(x), . . . , μn−1(x) the eigenvalues of Lx with respect to 〈 · | · 〉.

Proof. By a theorem of Kohn [52, p. 543] we know that if G meets

the conditions in statement above, then Kohn’s Laplacian �
(0)
b has L2

closed range. For boundaries of pseudoconvex domains in C
n the closed

range property was shown in [10, 63]. By Theorem 1.14 we deduce that

Π(0) is a complex Fourier integral operator on D0 and Π(0)(x, y) has the
form (7.1) with a phase function as in (3.2).
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Fix p ∈ D0 and take local coordinates x = (x1, x2, . . . , x2n−1) of X
defined in a small neighborhood of p in D0 such that x(p) = 0 and

ω0(p) = dx2n−1. It is easy to see that ∂ϕ
∂y2n−1

(0, 0) = 1 = ∂ϕ−
∂y2n−1

(0, 0),

where ϕ− is as in Theorem 4.1. From the Malgrange preparation theo-
rem [42, Theorem 7.57], we conclude that in some small neighborhood
of (p, p) in D0 ×D0, we can find f(x, y), f1(x, y) ∈ C∞ such that

ϕ−(x, y) = f(x, y)(y2n−1 + h(x, y′)),

ϕ(x, y) = f1(x, y)(y2n−1 + h1(x, y
′)),

in a small neighborhood of (p, p) in D0×D0, where y
′ = (y1, . . . , y2n−2),

h, h1 ∈ C∞. It is not difficult to see that y2n−1+h(x, y′), y2n−1+h1(x, y
′)

satisfy (3.4), (3.5) and

∂b(y2n−1 + h(x, y′)) , ∂b(y2n−1 + h1(x, y
′))

vanish to infinite order on x = y. From this observation, it is straight-
forward to check that h(x, y′) − h1(x, y

′) vanishes to infinite order on
x = y. We conclude that ϕ and ϕ− are equivalent. The theorem follows.

q.e.d.

Theorem 7.2. Let M be a projective manifold and let L → M be
an ample line bundle. Let hL be a smooth Hermitian metric on L such
that

√−1RL is semipositive. Consider the Grauert tube G = {v ∈ L∗ :
|v|hL∗ < 1}, X = ∂G and ρ : X → M the projection. Then the Szegő

projector Π(0) : L2
(0,0)(X) → ker ∂b is a Fourier integral operator with

complex phase on the set ρ−1(M(0)), where M(0) ⊂M is the set where√−1RL is positive.

Proof. Since L is ample, there exists a Hermitian metric hL0 on L
with positive curvature. The Levi form of the function 	0 : L∗ → R,
	 = |u|2

hL∗

0

is positive definite on the complex tangent space of any level

set 	0 = c > 0. It is easy to see that given any compact set K ⊂ L∗\0 we
can modify 	 to construct a strictly plurisubharmonic on K. Therefore,
the Grauert tube G fulfills the hypothesis of Theorem 7.1. q.e.d.

Theorems 7.1 and 7.2 are based on closed range property for ∂b. Note
that Donnelly [27] gave an example of a semipositive line bundle L→M
which is positive at some point (i. e. M(0) �= ∅), whose Grauert tube
doesn’t have the closed range property for ∂b.

An important application of the asymptotics of the Szegő kernel of
the Grauert tube is the asymptotics of the Bergman kernel of the tensor
powers of the bundle L. This was first achieved by Catlin [21] and
Zelditch [66] for a positively curved metric hL. We exemplify here such
an application of Theorem 7.2.

Consider a Hermitian metric Θ on M and introduce the L2 inner
product on C∞(M,Lp) induced by the volume element Θn/n! and the
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metric hL
p

and denote by L2(M,Lp) the corresponding L2 space. Let
Pp : L2(M,Lp) → H0(M,Lp) be the orthogonal projection, called
Bergman projection. Its kernel Pp( · , ·) is called the Bergman ker-
nel. The restriction to the diagonal of Pp( · , ·) is denoted Pp(·) and
is called the Bergman kernel function (or density). We refer the reader
to the book [57] and to the survey [55] for a comprehensive study of
the Bergman kernel and its applications.

Corollary 7.3. Let M be a projective manifold of dimension n and
let L → M be an ample line bundle. Let hL be a smooth Hermitian
metric on L such that

√−1RL is semipositive. Then the Bergman kernel
function Pp( · ) has the asymptotic expansion

(7.2) Pp(x) ∼
∞∑
j=0

pn−jb
(0)
j (x) locally uniformly on M(0),

where b
(0)
j ∈ C∞(M(0)), j = 0, 1, 2, . . . .

Proof. The Bergman kernel Pp and the Szegő kernel Π(0) are linked
by the formula

(7.3) Pp(x) =
1

2π

∫
S1

Π(0)(eiϑy, y)e−ipϑ dϑ ,

where x ∈ M and y ∈ X satisfy ρ(y) = x, that is, Pp(x) represent

the Fourier coefficients of the distribution Π(0)(y, y). Since Π(0) is a
Fourier integral operator on ρ−1(M(0)) by Theorem 7.2, we deduce the
asymptotics (7.2) exactly as in [21, 66] by applying the stationary phase
method. q.e.d.

Corollary 7.3 was obtained by different methods by Berman [5] in the
case of a projective manifold M and in [48, Theorem 1.10] for a general
Hermitian manifold M .

7.2. Non-compact pseudoconvex domains. Now, we consider non-
compact cases. By using Theorem 1.9, we will establish Szegő kernel
asymptotic expansions on some non-compact CR manifolds. Let Γ be
a strictly pseudoconvex domain in C

n−1, n ≥ 2. Consider X := Γ× R.
Let (z, t) be the coordinates of X, where z = (z1, . . . , zn−1) denote the
coordinates of Cn−1 and t is the coordinate of R. We write zj = x2j−1+
ix2j , j = 1, . . . , n − 1. We also write (z, t) = x = (x1, . . . , x2n−1) and
let η = (η1, . . . , η2n−1) be the dual variables of x. Let μ(z) ∈ C∞(Γ,R).
We define T 1,0X to be the space spanned by{ ∂

∂zj
+ i

∂μ

∂zj

∂

∂t
, j = 1, . . . , n− 1

}
.

Then (X,T 1,0X) is a non-compact CR manifold of dimension 2n − 1.
We take a Hermitian metric 〈 · | · 〉 on the complexified tangent bundle
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CTX such that{ ∂

∂zj
+ i

∂μ

∂zj

∂

∂t
,

∂

∂zj
− i

∂μ

∂zj

∂

∂t
, T :=

∂

∂t
; j = 1, . . . , n− 1

}
is an orthonormal basis. The dual basis of the complexified cotangent
bundle CT ∗X is{
dzj , dzj , −ω0 := dt+

∑n−1
j=1 (−i ∂μ

∂zj
dzj + i ∂μ

∂zj
dzj); j = 1, . . . , n− 1

}
.

The Levi form Lp of X at p ∈ X is given by

Lp =

n−1∑
j,�=1

∂2μ

∂zj∂z�
(p)dzj ∧ dz�.

Now, we assume that

(7.4)

(
∂2μ

∂zj∂z�
(z)

)n−1

j,�=1

≥ 0, ∀z ∈ Γ,

and take

(7.5) m(x) := e−2|z|
2

dx1dx2 . . . dx2n−1

to be the volume form on X. Thus, X is a weakly pseudoconvex CR
manifold.

Take τ ∈ C∞(R, [0, 1]) with τ = 0 on ]−∞, 14 ], τ = 1 on [12 ,∞[. We

also write θ to denote the t variable. Let Q(0) : C∞0 (X) → C∞(X) be
the operator given by

Q(0)u(z, t)

:=
1

2π

∫
ei〈t−θ,η〉u(z, θ)τ(η)dηdθ ∈ C

∞(X), u(z, t) ∈ C
∞
0 (X).

(7.6)

We can extend Q(0) to L2(X) such that

Q(0) : L2(X)→ L2(X) is continuous,∥∥∥Q(0)u
∥∥∥ ≤ ‖u‖ , ∀u ∈ L2(X),

Q(0) ≡ 0 at Σ+ ∩ T ∗D, ∀D � X.

(7.7)

We will prove that �
(0)
b has local L2 closed range property on X with

respect to Q(0) under certain assumptions. More precisely, we have the
following.

Theorem 7.4. Let Γ = C
n−1 or Γ be a bounded strictly pseudoconvex

domain in C
n−1. Let μ ∈ C∞(Γ′), where Γ′ is an open neighborhood of

Γ (if Γ = C
n−1 this means just that μ ∈ C∞(Cn−1)). When Γ = C

n−1,
we assume that μ ≥ 0. Then

(7.8)
∥∥∥Q(0)(I −Π(0))u

∥∥∥2 ≤ C0

∥∥∂bu
∥∥2 , ∀u ∈ C

∞
0 (X),
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where C0 > 0 is a constant independent of u. In particular, �
(0)
b has

local L2 closed range on X with respect to Q(0).

From Theorem 1.9, (7.7) and Theorem 7.4, we deduce

Theorem 7.5. With the notations and assumptions of Theorem 7.4,

suppose that the matrix
(

∂2μ
∂zj∂z�

(x)
)n−1

j,�=1
is positive definite on an open

set D � X. Then,

(7.9) Q(0)Π(0)Q(0)(x, y) ≡
∫ ∞

0
eiϕ−(x,y)ta(x, y, t)dt , on D,

where ϕ−(x, y) ∈ C∞(D ×D) is as in Theorem 4.1 and

a(x, y, t) ∈ Sn−1
cl

(
D ×D × R+

)
,

a(x, y, t) ∼
∞∑
j=0

aj(x, y)t
n−1−j in Sn−1

1,0

(
D ×D × R+

)
,

a0(x, x) =
1

2
π−ndet

(
∂2μ

∂zj∂z�
(x)

)n−1

j,�=1

, ∀x ∈ D.

We first introduce the partial Fourier transform F and the operator
Q(q). Let u ∈ Ω0,q

0 (X). Put

(7.10) (Fu)(z, η) =
∫
R

e−iηtu(z, t)dt.

From Parseval’s formula, we have
(7.11)

‖Fu‖2 =
∫
X

|(Fu)(z, η)|2 dηdv(z) = 2π

∫
X

|u(z, t)|2 dtdv(z) = 2π ‖u‖2 ,

where dv(z) = e−2|z|
2

dx1dx2 . . . dx2n−2. Thus, we can extend the oper-
ator F to L2

(0,q)(X) and

F : L2
(0,q)(X)→ L2

(0,q)(X) is continuous,

‖Fu‖ =
√
2π ‖u‖ , ∀u ∈ L2

(0,q)(X).
(7.12)

For u ∈ L2
(0,q)(X), we call Fu the partial Fourier transform of u with

respect to t.
Take τ ∈ C∞(R, [0, 1]) with τ = 0 on ]−∞, 14 ], τ = 1 on [12 ,∞[. We

also write θ to denote the t variable. Let Q(q) : Ω0,q
0 (X) → Ω0,q(X) be

the operator given by

Q(q)u(z, t)

:=
1

2π

∫
ei〈t−θ,η〉u(z, θ)τ(η)dηdθ ∈ Ω0,q(X), u(z, t) ∈ Ω0,q

0 (X).

(7.13)
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From Parseval’s formula and (7.11), we have∥∥∥Q(q)u
∥∥∥2 = 1

4π2

∫
X

∣∣∣∣
∫

ei〈t−θ,η〉u(z, θ)τ(η)dηdθ

∣∣∣∣2 dv(z)dt
=

1

4π2

∫
X

∣∣∣∣
∫

ei〈t,η〉(Fu)(z, η)τ(η)dη
∣∣∣∣2 dv(z)dt

=
1

2π

∫
|(Fu)(z, η)|2 |τ(η)|2 dηdv(z)

≤ 1

2π

∫
|(Fu)(z, η)|2 dηdv(z) = ‖u‖2 ,

(7.14)

where u ∈ Ω0,q
0 (X). Thus, we can extend Q(q) to L2

(0,q)(X) and

Q(q) : L2
(0,q)(X)→ L2

(0,q)(X) is continuous,∥∥∥Q(q)u
∥∥∥ ≤ ‖u‖ , ∀u ∈ L2

(0,q)(X).
(7.15)

We need

Lemma 7.6. Let u ∈ L2
(0,q)(X). Then,

(7.16) (FQ(q)u)(z, η) = (Fu)(z, η)τ(η).
Proof. Let uj ∈ Ω0,q

0 (X), j = 1, 2, . . ., with limj→∞ ‖uj − u‖ = 0.
From (7.15) and (7.12), we see that

(7.17) FQ(q)uj → FQ(q)u in L2
(0,q)(X) as j →∞.

From Fourier inversion formula, we have

(7.18) (FQ(q)uj)(z, η) = (Fuj)(z, η)τ(η), j = 1, . . . .

Note that (Fuj)(z, η)τ(η) → (Fu)(z, η)τ(η) in L2
(0,q)(X) as j → ∞.

From this observation, (7.18) and (7.17), we obtain (7.16). q.e.d.

The following is straightforward. We omit the proofs.

Lemma 7.7. We have

Q(q) : Dom ∂b → Dom ∂b, q = 0, 1, . . . , n− 1,

Q(q+1)∂b = ∂bQ
(q) on Dom ∂b, q = 0, 1, . . . , n− 2,

(7.19)

and

(7.20) Q(q)Π(q) = Π(q)Q(q) on L2
(0,q)(X).

Moreover, for u ∈ Ω0,q
0 (X), we have

(7.21) ∂z

(
(Fu)(z, η)eημ(z))e−ημ(z) = (F∂bu)(z, η), ∀(z, η) ∈ X,

where μ ∈ C∞(Γ,R) is as in the beginning of Section 7.
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We will study now the local L2 closed range property for �
(0)
b with

respect to Q(0). We pause and introduce some notations. Let Ω0,q(Γ)

be the space of all smooth (0, q) forms on Γ and let Ω0,q
0 (Γ) be the

subspace of Ω0,q(Γ) whose elements have compact support in Γ. We
take the Hermitian metric 〈 · | · 〉 on T ∗0,qΓ the bundle of (0, q) forms of
Γ so that

{dzj1 ∧ dzj2 ∧ . . . ∧ dzjq ; 1 ≤ j1 < j2 . . . < jq ≤ n− 1}
is an orthonormal basis. Let Υ ∈ C∞(Γ,R) and let ( · | ·)Υ be the L2

inner product on Ω0,q
0 (Γ) given by

(f | g )Υ =

∫
〈 f | g 〉e−2Υ(z)dλ(z), f, g ∈ Ω0,q

0 (Γ),

where dλ(z) = dx1dx2 . . . dx2n−2. Let L2
(0,q)(Γ,Υ) denote the comple-

tion of Ω0,q
0 (Γ) with respect to the inner product (· | · )Υ. We write

L2(Γ,Υ) := L2
(0,0)(Γ,Υ). Put

H0(Γ,Υ) :=
{
f ∈ L2(Γ,Υ); ∂f = 0

}
.

From now on, we assume that

(7.22)

(
∂2μ

∂zj∂z�
(z)

)n−1

j,�=1

≥ 0, ∀z ∈ Γ,

and take

m(x) := e−2|z|
2

dx1dx2 . . . dx2n−2dt = e−2|z|
2

dλ(z)dt

be the volume form on X.
Now, suppose Γ = C

n−1 or Γ is a bounded strictly pseudoconvex
domain in C

n−1.

Proof of Theorem 7.4 for Γ = C
n−1. Let u ∈ C∞0 (X). We consider

Q(0)(I −Π(0))u.

In view of (7.20), we see that Q(0)(I −Π(0))u = (I −Π(0))Q(0)u. Put

(7.23) v(z, η) = FQ(0)(I −Π(0))u(z, η)eημ(z) .

From (7.15), (7.12) and (7.16), we see that∫
|v(z, η)|2 e−2ημ(z)−2|z|2dλ(z)dη <∞,

and v(z, η) = 0 if η /∈ Supp τ(η). From Fubini’s Theorem and some
elementary real analysis, we know that for every η ∈ R, v(z, η) is
a measurable function of z and for almost every η ∈ R, v(z, η) ∈
L2(Γ, ημ(z) + |z|2) and for every z ∈ Γ, v(z, η) is a measurable function
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of η and for almost every z ∈ Γ,
∫ |v(z, η)|2 dη < ∞. Moreover, let

β ∈ L2(Γ, |z|2), then the function

f(η) := η �→
∫

v(z, η)β(z)e−2ημ(z)−2|z|
2

dλ(z)

is measurable and f(η) is finite for almost every η ∈ R, f(η) = 0 if
η /∈ Supp τ(η) and f(η) ∈ L2(R). We claim that

For almost every η ∈ R+, v(z, η) ∈ L2(Γ, ημ(z) + |z|2) and
( v(z, η) |β )ημ+|z|2 = 0, ∀β ∈ H0(Γ, ημ(z) + |z|2).(7.24)

From the discussion after (7.23), we know that there is a measurable
set A0 in R+ with |A0| = 0 such that for every η /∈ A0, v(z, η) ∈
L2(Γ, ημ(z) + |z|2), where |A0| denote the Lebesgue measure of A0.

Since μ ≥ 0,
{
zα; α ∈ N

n−1
0

}
is a basis for H0(Cn−1, ημ(z) + |z|2), for

every η ≥ 0. Fix α ∈ N
n−1
0 . We consider

fα(η) =

∫
v(z, η)zαe−2ημ(z)−2|z|

2

dλ(z).

From the discussion after (7.23), we know that fα(η) ∈ L2(R). Fix
n ∈ N, put hn(η) := fα(η)1[0,n](η). Then,∫ n

0
|fα(η)|2 dη =

∫
fα(η)hn(η)dη

=

∫
v(z, η)zαhn(η)e

−2ημ(z)−2|z|2dλ(z)dη.

(7.25)

Let β� ∈ C∞0 (X), � = 1, 2, . . ., such that β� → (I − Π(0))u in L2(X) as
�→∞. From (7.12), (7.15), (7.16) and (7.25), we see that
(7.26)

lim
�→∞

∫
FQ(0)β�(z, η)z

αhn(η)e
−ημ(z)−2|z|2dλ(z)dη →

∫ n

0
|fα(η)|2 dη.

From (7.16) and Parseval’s formula, we can check that

∫
FQ(0)β�(z, η)z

αhn(η)e
−ημ(z)−2|z|2dλ(z)dη

=

∫
Fβ�(z, η)τ(η)zαhn(η)e−ημ(z)−2|z|

2

dλ(z)dη

=

∫
β�(z, t)(

∫
zαhn(η)τ(η)e

−ημ(z)−iηtdη)e−2|z|
2

dλ(z)dt

→
∫

(I −Π(0))u(z, t)(

∫
zαhn(η)τ(η)e

−ημ(z)−iηtdη)e−2|z|
2

dλ(z)dt,

as �→∞.

(7.27)
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It is straightforward to check that the function∫
zα(z)hn(η)τ(η)e

−ημ(z)+iηtdη ∈ Ker ∂b ∩ L2(X).

Thus,
(7.28)∫

(I −Π(0))u(z, t)(

∫
zαhn(η)τ(η)e

−ημ(z)−iηtdη)e−2|z|
2

dλ(z)dt = 0.

From (7.28), (7.27) and (7.26), we conclude that fα(η) = 0 almost
everywhere. Thus, there is a measurable set Aα ⊃ A0 in R+ with
|Aα| = 0 such that for every η /∈ Aα we have ( v(z, η) | zα )ημ+|z|2 = 0.

Put A =
⋃

α∈Nn−1

0

Aα. Then, |A| = 0. We conclude that for every

η /∈ A, η ≥ 0,

( v(z, η) |β )
ημ+|z|2 = 0, ∀β ∈ H0(Γ, ημ + |z|2).

The claim (7.24) follows.
Now, we can prove (7.8). Let u ∈ C∞0 (X). From (7.19) and (7.21),

we have

∂bQ
(0)(I −Π(0))u = Q(1)∂bu,

(FQ(1)∂bu)(z, η) = ∂z(FQ(0)u(z, η)eημ(z))e−ημ(z).
(7.29)

As before, we put v(z, η) = FQ(0)(I −Π(0))u(z, η)eημ(z) and set

∂z

(
FQ(0)(I −Π(0))u(z, η)eημ(z)

)
= ∂zv(z, η) =: g(z, η).

It is easy to see that

∂zg(z, η) = 0,

g(z, η) = 0 if η /∈ Supp τ(η),∫
|g(z, η)|2 e−2ημ(z)−2|z|2dλ(z) <∞, ∀η ∈ Supp τ(η).

(7.30)

From (7.22), we see that there is a C > 0 independent of η ∈ Supp τ(η)
such that

n−1∑
j,�=1

∂2(|z|2 + ημ(z))

∂zj∂z�
(z)wjw�

≥ C

n−1∑
j=1

|wj|2 ,∀(w1, . . . , wn−1) ∈ C
n−1, z ∈ Γ, η ∈ Supp τ(η).

(7.31)

From (7.31) and Hörmander’s L2 estimates [41, Lemma 4.4.1], we
conclude that for every η ∈ Supp τ(η), we can find a

βη(z) ∈ L2
(0,1)(Γ, ημ(z) + |z|2),
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such that

(7.32) ∂zβη(z) = g(z, η),

and
(7.33)∫

|βη(z)|2 e−2ημ(z)−2|z|
2

dλ(z) ≤ C

∫
|g(z, η)|2 e−2ημ(z)−2|z|2dλ(z).

In view of (7.24), we see that there is a measurable set A in R+ with
Lebesgue measure zero in R such that for every η /∈ A, η ≥ 0, v(z, η) ⊥
H0(Γ, ημ(z) + |z|2). Thus, for every η /∈ A, η ≥ 0, v(z, η) has the
minimum L2 norm with respect to ( · | · )ημ+|z|2 of the solutions ∂α =

∂zv(z, η) = g(z, η). From this observation and (7.33), we conclude that
∀η /∈ A,
(7.34)∫

|v(z, η)|2 e−2ημ(z)−2|z|2dλ(z) ≤ C

∫ ∣∣∂zv(z, η)
∣∣2 e−2ημ(z)−2|z|2dλ(z).

Thus, ∫
|v(z, η)|2 e−2ημ(z)−2|z|2dλ(z)dη

≤ C

∫ ∣∣∂zv(z, η)
∣∣2 e−2ημ(z)−2|z|2dλ(z)dη.(7.35)

From the definition of v(z, η), (7.12), (7.29) and (7.15), it is straightfor-
ward to see that∫

|v(z, η)|2 e−2ημ(z)−2|z|2dλ(z)dη

= (2π)

∫ ∣∣∣Q(0)(I −Π(0))u(z, t)
∣∣∣2 e−2|z|2dλ(z)dt,(7.36)

and ∫ ∣∣∂zv(z, η)
∣∣2 e−2ημ(z)−2|z|2dλ(z)dη

= (2π)

∫ ∣∣∣Q(1)∂bu(z, t)
∣∣∣2 e−2|z|2dλ(z)dt

≤ (2π)

∫ ∣∣∂bu(z, t)
∣∣2 e−2|z|2dλ(z)dt.

(7.37)

From (7.35), (7.36) and (7.37), we conclude that∥∥∥Q(0)(I −Π(0))u
∥∥∥2 = ∫ ∣∣∣Q(0)(I −Π(0))u(z, t)

∣∣∣2 e−2|z|2dλ(z)dt
≤ C

∫ ∣∣∂bu(z, t)
∣∣2 e−2|z|2dλ(z)dt = C

∥∥∂bu
∥∥2 .

Theorem 7.4 for Γ = C
n−1 follows. q.e.d.
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Now, we consider the case when Γ is a bounded strictly pseudoconvex
domain in C

n−1.

Proof of Theorem 7.4. (For Γ a bounded strictly pseudoconvex do-
main in C

n−1.) Let u ∈ C∞0 (X). We have

∂bQ
(0)(I −Π(0))u = Q(1)∂bu,

(FQ(1)∂bu)(z, η) = ∂z(FQ(0)u(z, η)eημ(z))e−ημ(z).
(7.38)

As before, we put v(z, η) = FQ(0)(I −Π(0))u(z, η)eημ(z) and set

∂z(FQ(0)(I −Π(0))u(z, η)eημ(z)) = ∂zv(z, η) =: g(z, η).

Then,

∂zg(z, η) = 0,

g(z, η) = 0 if η /∈ Supp τ(η),∫
|g(z, η)|2 e−2ημ(z)−2|z|2dλ(z) <∞, ∀η ∈ Supp τ(η).

(7.39)

From (7.31) and Hörmander’s L2 estimates [41, Lemma 4.4.1], we
conclude that for every η ∈ Supp τ(η), we can find a

βη(z) ∈ L2
(0,1)(Γ, ημ(z) + |z|2),

such that

(7.40) ∂zβη(z) = g(z, η),

and
(7.41)∫

|βη(z)|2 e−2ημ(z)−2|z|
2

dλ(z) ≤ C

∫
|g(z, η)|2 e−2ημ(z)−2|z|2dλ(z),

where C > 0 is a constant independent of η, g(z, η) and βη(z). Moreover,
since g(z, η) is smooth, it is well-known that βη(z) can be taken to be
dependent smoothly on η and z (see the proof of [6, Lemma 2.1]). Take
χ(η) ∈ C∞(R, [0, 1]) with χ = 0 if |η| ≥ 1 and χ = 1 if |η| ≤ 1

2 . For
j = 1, 2, . . ., set χj(η) = χ(η

j
). Put

αj(z, t) =
1

2π

∫
βη(z)χj(η)e

−ημ(z)eiηtdη ∈ C
∞(X).

From (7.41), we have

‖αj − αk‖2
(7.42)

=
1

4π2

∫ ∣∣∣∣
∫

βη(z)
(
χj(η)− χk(η)

)
e−ημ(z)eiηt(η)dη

∣∣∣∣2 e−2|z|2dλ(z)dt
≤ 1

4π2

∫ ∫
|βη(z)|2 |χj(η)− χk(η)|2 e−2ημ(z)−2|z|

2

dλ(z)dη
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≤ C0

∫ ∫
|g(z, η)|2 |χj(η)− χk(η)|2 e−2ημ(z)−2|z|

2

dλ(z)dη

→ 0 as j, k →∞,

where C0 > 0 is a constant independent of j, k, βη(z) and g(z, η). Thus,
αj → α in L2(X), for some α ∈ L2(X). Moreover, we can repeat the
procedure above with minor change and deduce that

‖α‖2 ≤ C0

∫ ∫
|g(z, η)|2 e−2ημ(z)−2|z|2dλ(z)dη

≤ C0(2π)
∥∥∥Q(1)∂bu

∥∥∥2 ≤ C1

∥∥∂bu
∥∥2 ,(7.43)

where C0 > 0 is the constant as in (7.42) and C1 = C0(2π). Further-
more, it is straightforward to see that

∂bα(z, t) = Q(1)∂bu(z, t).(7.44)

From (7.43) and (7.44), we conclude that ∂bα(z, t) = Q(1)∂bu(z, t) and

‖α‖2 ≤ C1

∥∥∂bu
∥∥2. Since (I −Π(0))Q(0)u has the minimum L2 norm of

the solutions of ∂bf = Q(1)∂bu(z, t), we conclude that∥∥∥(I −Π(0))Q(0)u
∥∥∥2 = ∥∥∥Q(0)(I −Π(0))u

∥∥∥2 ≤ ‖α‖2 ≤ C1

∥∥∂bu
∥∥2 .

Theorem 7.4 follows. q.e.d.

Proof of Theorem 7.5. Recall that ω0 = −dt +
∑n−1

j=1 (i
∂μ
∂zj

dzj −
i ∂μ
∂zj

dzj). Thus,

Σ+ =
{
(x, η) ∈ T ∗X;

η = −λdx2n−1 + λ

n−1∑
j=1

( ∂μ

∂x2j
(z)dx2j−1 − ∂μ

∂x2j−1
(z)dx2j

)
, λ > 0

}
,

Σ− =
{
(x, η) ∈ T ∗X;

η = −λdx2n−1 + λ

n−1∑
j=1

( ∂μ

∂x2j
(z)dx2j−1 − ∂μ

∂x2j−1
(z)dx2j

)
, λ < 0

}
.

(7.45)

Note that

Q(0)(x, y) =

∫
ei〈x−y,η〉τ(η2n−1)dη,

where τ ∈ C∞(R, [0, 1]) with τ = 0 on ]−∞, 14 ], τ = 1 on [12 ,∞[. From
this observation and (7.45), we conclude that

(7.46) Q(0) ≡ 0 at Σ+ ∩ T ∗D, ∀D � X.

From Theorem 1.9, Theorem 7.4 and (7.46), we get Theorem 7.5. q.e.d.
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8. Proof of Theorem 5.4

We introduce some notations from semi-classical analysis.

Definition 8.1. Let W be an open set in R
N . We define the space

of symbols

S(1) = S(1;W )

=
{
a ∈ C

∞(W );∀α ∈ N
N
0 ∃Cα > 0 : |∂α

x a(x)| ≤ Cα on W
}
.

If a = a(x, k) depends on k ∈]1,∞[, we say that a(x, k) ∈ Sloc (1;W ) =
Sloc (1) if χ(x)a(x, k) uniformly bounded in S(1) when k varies in ]1,∞[,
for any χ ∈ C∞0 (W ). For m ∈ R, we put Sm

loc(1;W ) = Sm
loc(1) =

kmSloc (1). If aj ∈ S
mj

loc (1), mj ↘ −∞, we say that a ∼ ∑∞
j=0 aj in

Sm0

loc (1) if a−
∑N0

j=0 aj ∈ S
mN0+1

loc (1) for every N0. For a given sequence
aj as above, we can always find such an asymptotic sum a and a is
unique up to an element in S−∞loc (1) = S−∞loc (1;W ) := ∩mSm

loc (1). We
say that a(x, k) ∈ Sm0

loc (1) is a classical symbol on W of order m0 if
(8.1)
a(x, k) ∼∑∞

j=0 k
m0−jaj(x) in Sm0

loc (1), aj(x) ∈ Sloc (1), j = 0, 1 . . . .

The set of all classical symbols on W of order m0 is denoted by

Sm0

loc ,cl (1) = Sm0

loc ,cl (1;W ).

Let E be a vector bundle over a smooth paracompact manifold Y .
We extend the definitions above to the space of smooth sections of E
over Y in the natural way and we write Sm

loc (1;Y,E) and Sm
loc ,cl (1;Y,E)

to denote the corresponding spaces.

A k-dependent continuous operator Ak : C∞0 (W,E) → D ′(W,F ) is
called k-negligible (on W ) if Ak is smoothing and the kernel Ak(x, y)

of Ak satisfies
∣∣∣∂α

x ∂
β
yAk(x, y)

∣∣∣ = O(k−N ) locally uniformly on every

compact set in W ×W , for all multi-indices α, β and all N ∈ N. Ak is
k-negligible if and only if

Ak = O(k−N
′

) : Hs
comp (W,E)→ Hs+N

loc (W,F ) ,

for all N,N ′ ≥ 0 and s ∈ Z. Let Ck : C∞0 (W,E)→ D ′(W,F ) be another
k-dependent continuous operator. We write Ak ≡ Ck mod O(k−∞)
(on W ) or Ak(x, y) ≡ Ck(x, y) mod O(k−∞) (on W ) if Ak − Ck is
k-negligible on W .

Now, we prove Theorem 5.4. We will use the same notations and
assumptions in Theorem 5.4. Fix p ∈ D. Take local coordinates x =
(x1, . . . , x2n−1) defined in some small neighborhood of p such that x(p) =
0 and ω0(p) = dx2n−1. Since dyϕ(x, y)|x=y = dyϕ−(x, y)|x=y = ω0(x),

we have ∂ϕ
∂y2n−1

(p, p) = ∂ϕ−
∂y2n−1

(p, p) = 1. From this observation and the
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Malgrange preparation theorem [42, Theorem 7.57], we conclude that
in some small neighborhood of (p, p), we can find

f(x, y), f1(x, y) ∈ C
∞,

such that

ϕ−(x, y) = f(x, y)(y2n−1 + h(x, y′)),

ϕ(x, y) = f1(x, y)(y2n−1 + h1(x, y
′)),

(8.2)

in some small neighborhood of (p, p), where y′ = (y1, . . . , y2n−2). For
simplicity, we assume that (8.2) hold on D×D. It is clear that ϕ−(x, y)
and y2n−1+h(x, y′) are equivalent in the sense of Melin–Sjöstrand [60],
ϕ(x, y) and y2n−1+h1(x, y

′) are equivalent in the sense of [60], we may
assume that ϕ−(x, y) = y2n−1+h(x, y′) and ϕ(x, y) = y2n−1+h1(x, y

′).
Fix x0 ∈ D. We are going to prove that h(x, y′)− h1(x, y

′) vanishes to
infinite order at (x0, x0). Note that S−◦S− ≡ S−. From this observation
and Lemma 5.3, it is straightforward to see that∫ ∞

0
ei(y2n−1+h(x,y′))ts−(x, y, t)dt

≡
∫ ∞

0
ei(y2n−1+h1(x′,y))ta(x, y, t)dt on D,

(8.3)

where s−(x, y, t), a(x, y, t) ∈ Sn−1
cl (D × D × R+, T

∗0,qX � T ∗0,qX) are
as in (2.16). Put

x0 = (x10, x
2
0, . . . , x

2n−1
0 ), x′0 = (x10, . . . , x

2n−2
0 ).

Take τ ∈ C∞0 (R2n−1), τ1 ∈ C∞0 (R2n−2), χ ∈ C∞0 (R) so that τ = 1
near x0, τ1 = 1 near x′0, χ = 1 near x2n−10 and Supp τ � D, Supp τ1 ×
Suppχ � D′× Suppχ � D, where D′ is an open neighborhood of x′0 in
R
2n−2. For each k > 0, we consider the distributions

Ak : u �→
∫ ∞

0
ei(y2n−1+h(x,y′))t−iky2n−1τ(x)s−(x, y, t)

× τ1(y
′)χ(y2n−1)u(y

′)dydt,

Bk : u �→
∫ ∞

0
ei(y2n−1+h1(x,y′))t−iky2n−1τ(x)a(x, y, t)

× τ1(y
′)χ(y2n−1)u(y

′)dydt,

(8.4)

for u ∈ C∞0 (D′, T ∗0,qX). By using the stationary phase formula of
Melin–Sjöstrand [60], we can show that (cf. the proof of [48, Theorem
3.12]) Ak and Bk are smoothing operators and

Ak(x, y
′) ≡ eikh(x,y

′)g(x, y′, k) mod O(k−∞),

(8.5)

Bk(x, y
′) ≡ eikh1(x,y′)b(x, y′, k) mod O(k−∞),

g(x, y′, k), b(x, y′, k) ∈ Sn−1
loc ,cl (1;D

′ ×D,T ∗0,qX � T ∗0,qX),
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g(x, y′, k)

∼∑∞
j=0 gj(x, y

′)kn−1−j in Sn−1
loc (1;D′ ×D,T ∗0,qX � T ∗0,qX),

b(x, y′, k)

∼∑∞
j=0 bj(x, y

′)kn−1−j in Sn−1
loc (1;D′ ×D,T ∗0,qX � T ∗0,qX),

gj(x, y
′), bj(x, y

′) ∈ C
∞(D ×D′, T ∗0,qy′ X � T ∗0,qx X), j = 0, 1, . . . ,

g0(x0, x
′
0) �= 0, b0(x0, x

′
0) �= 0.

Since∫ ∞

0
ei(y2n−1+h(x,y′))ts−(x, y, t)dt−

∫ ∞

0
ei(y2n−1+h1(x,y′))ta(x, y, t)dt

is smoothing, by using integration by parts with respect to y2n−1, it is
easy to see that Ak−Bk ≡ 0 mod O(k−∞) (see [48, Section 3]). Thus,

eikh(x,y
′)g(x, y′, k) = eikh1(x,y′)b(x, y′, k) + Fk(x, y

′),

Fk(x, y
′) ≡ 0 mod O(k−∞).

(8.6)

Now, we are ready to prove that h(x, y′)− h1(x, y
′) vanishes to infinite

order at (x0, x
′
0). We assume that there exist α0 ∈ N

2n−1
0 , β0 ∈ N

2n−2
0 ,

|α0|+ |β0| ≥ 1 such that

∂α0

x ∂β0

y′ (ih(x, y
′)− ih1(x, y

′))
∣∣∣
(x0,x

′
0
)
= Cα0,β0

�= 0,

and

∂α
x ∂

β
y′(ih(x, y

′)− ih1(x, y
′))

∣∣∣
(x0,x

′
0
)
= 0 if |α|+ |β| < |α0|+ |β0|.

From (8.6), we have

∂α0

x ∂β0

y

(
eikh(x,y

′)−ikh1(x,y′)g(x, y′, k)− b(x, y, k)
)∣∣∣

(x0,x
′
0
)

= − ∂α0

x ∂β0

y

(
e−ikh1(x,y′)Fk(x, y)

)∣∣∣
(x0,x

′
0
)
.

(8.7)

Since h1(x0, x
′
0) = −x2n−10 and Fk(x, y

′) ≡ 0 mod O(k−∞), we have

(8.8) lim
k→∞

k−n ∂α0

x ∂β0

y

(
e−ikh1(x,y′)Fk(x, y

′)
)∣∣∣

(x0,x0)
= 0.

On the other hand, we can check that

lim
k→∞

k−n ∂α0

x ∂β0

y

(
eikh(x,y

′)−ikh1(x,y′)g(x, y′, k)− b(x, y′, k)
)∣∣∣

(x0,x
′
0
)

= Cα0,β0
g0(x0, x

′
0) �= 0,

(8.9)

since g0(x0, x
′
0) �= 0. From (8.7), (8.8) and (8.9), we get a contradiction.

Thus, h(x, y′)− h1(x, y
′) vanishes to infinite order at (x0, x

′
0). Since x0

is arbitrary, the theorem follows.
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action and extendability of CR functions, Invent. math. 83 (1985), 359–396,
MR0809720, Zbl 0598.32019.

[4] D. Barrett, A remark on the global embedding problem for three-dimensional
CR manifolds, Proc. Amer. Math. Soc. 102 (1988), 888–892, MR0934861, Zbl
0648.32011.

[5] R. Berman, Bergman kernels and equilibrium measures for line bundles over
projective manifolds, Amer. J. Math. 131 (2009), no. 5, 1485–1524, MR2559862,
Zbl 1191.32008.

[6] B. Berndtsson, Subharmonicity properties of the Bergman kernel and some other
functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56
(2006), no. 6, 1633–1622, MR2282671, Zbl 1120.32021

[7] O. Biquard, Métriques autoduales sur la boule, Invent. Math. 148 (2002), no. 3,
545–607, MR1908060, Zbl 1040.53061.

[8] O. Biquard, Sur des variétés de Cauchy–Riemann dont la forme de Levi a une
valeur propre positive, Math. Z. 249 (2005), no. 2, 411–425, MR2115451, Zbl
1072.32024.

[9] J. Bland and T. Duchamp, Moduli for pointed convex domains, Invent. Math.
104 (1991), 61–112, MR1094047, Zbl 0731.32010.

[10] H. P. Boas and M. C. Shaw, Sobolev estimates for the Lewy operator on weakly
pseudoconvex boundaries, Math. Ann. 274 (1986) 221–231, MR0838466, Zbl
0588.32023.

[11] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of
Kähler manifolds and gl(N), N −→∞ limits, Comm. Math. Phys. 165 (1994),
281–296, MR1301849, Zbl 0813.58026.

[12] D. Borthwick and A. Uribe, Nearly Kählerian embeddings of symplectic mani-
folds, Asian J. Math. 4 (2000), no. 3, 599–620, MR1796696, Zbl 0990.53086.

[13] D. Borthwick and T. Paul and A. Uribe, Semiclassical spectral estimates for
Toeplitz operators, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 4, 1189–1229,
MR1656013, Zbl 0920.58059.
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no. 2, 351–387, MR2096677, Zbl 1072.32014.

[55] X. Ma, Geometric quantization on Kähler and symplectic manifolds, Proceedings
of the international congress of mathematicians (ICM 2010), Hyderabad, India,
August 19–27, 2010, vol. II, 785–810, MR2827819, Zbl 1229.53088.

[56] X. Ma and G. Marinescu, The first coefficients of the asymptotic expansion of
the Bergman kernel of the spinc Dirac operator, Internat. J. Math. 17 (2006),
no. 6, 737–759, MR2246888, Zbl 1106.58018.

[57] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels,
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