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Abstract

The classification of Willmore two-spheres in the n-dimensional
sphere Sn is a long-standing problem, solved only when n = 3, 4
by Bryant, Ejiri, Musso and Montiel independently. In this paper
we give a classification when n = 5. There are three types of
such surfaces up to Möbius transformations: (1) superconformal
surfaces in S4; (2) minimal surfaces in R5; (3) adjoint transforms
of superconformal minimal surfaces in R5. In particular, Willmore
surfaces in the third class are not S-Willmore (i.e., without a dual
Willmore surface).

To show the existence of Willmore two-spheres in S5 of type
(3), we describe all adjoint transforms of a superconformal min-
imal surface in Rn and provide some explicit criterions on the
immersion property. As an application, we obtain new immersed
Willmore two-spheres in S5 and S6, which are not S-Willmore.

1. Introduction

Willmore surfaces immersed in a real space form Mn(c) of constant
sectional curvature c are critical surfaces with respect to the Willmore
functional ∫

(|H|2 −K + c)dA,

where H is the mean curvature vector, K is the Gauss curvature, and
dA is the area element with respect to the induced metric.

It is well-known that minimal surfaces in Mn(c) are special examples
of Willmore surfaces. Moreover, the Willmore functional is a confor-
mal invariant, which implies that Willmore surfaces form a conformally
invariant surface class. Thus Willmore surfaces are natural generaliza-
tions of minimal surfaces in Möbius geometry. In particular, Willmore
surfaces can always be regarded as located in Sn and the classification
is generally up to the action of the Möbius group on Sn.

Under the global assumption that the surface is a topological 2-sphere
S2, one can utilize the vanishing theorem of holomorphic forms on S2

to deduce many beautiful results, which has been demonstrated in the
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classical work by Hopf and Calabi. Comparing to the theory on minimal
2-spheres in Sn and in other symmetric spaces (see the seminal work of
Calabi [10], Chern [11], Uhlenbeck [37], Burstall and Guest [6], Burstall
and Rawnsley [9]), it is more difficult to classify Willmore two-spheres
in Sn. Concerning the cases n ≤ 4, a beautiful description has been
derived as below.

Theorem 1.1. [3, 16, 31, 32] A Willmore 2-sphere in S4 belongs to
one of the following two surface classes (up to a Möbius transformation):

1) Complete minimal surfaces in R4 with embedded flat ends;
2) The twistor projection image of rational curves in CP 3.

Moreover, the Willmore functional of them are all integer multiples of
4π ([3, 31]). In particular, in S3 we have only examples in the first
class.

For the case n > 4, there has been not much progress on this prob-
lem after 2000 [31] except that the first author introduced in 2005 the
so-called adjoint transforms of immersed Willmore surfaces [26]. The
thesis [26] suggested a procedure to reduce Willmore two-spheres to
Euclidean minimal surfaces by repeatedly applying some canonically
chosen adjoint transforms. The main difficulty is that generally such
adjoint transforms will produce branch points. If such branch points
appear, one need to deal with possible poles in the construction of holo-
morphic forms. Even worse, it seems doubtful whether one can continue
this sequence of adjoint transforms around such singularities.

In this paper, we overcome this difficulty for the case n = 5 and derive
a classification of all Willmore S2 in S5. The main theorem is stated as
below.

Theorem 1.2. A Willmore 2-sphere y : S2 → S5 is Möbius equiva-
lent to one surface in either of the following three classes:

1) Superconformal surfaces in S4 (coming from the twistor curves in
CP 3);

2) Minimal surfaces in R5 with genus 0 and embedded flat ends;
3) Adjoint transforms of some superconformal minimal surface of

genus 0 in R5.

Moreover, different from the first two cases, surfaces of the third class
are not S-Willmore.

To have a better understanding about this result, recall that a central
theme in the study of Willmore surfaces is to determine the infimum of
the Willmore functional among various immersions of the 2-sphere S2

and the torus T 2. When the genus g is arbitrary, Simon [36] and Kuwert
etc. [1, 22] has shown that the infimum is always attained by some
Willmore surfaces. In [21] such surfaces are conjectured to be Lawson’s
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minimal surfaces [23]. Along this way, the Willmore conjecture was,
finally, proved by Marques and Neves in 2012 (see [30]).

More generally, for any fixed integer g, it is desirable to give a general
construction and classification of closed oriented Willmore surfaces of
genus g, and to determine the values of their Willmore functional (the
possible critical values). Basic examples include complete Euclidean
minimal surfaces with embedded flat ends (compactified at the infinity
of Rn, see [3, 4, 20, 33]) and closed minimal surfaces in Sn [23], [21].
But there are much more examples other than minimal ones in space
forms, like the Willmore Hopf tori [34].

The genus zero case is the simplest case. From a retrospective view-
point, the successful classification of Willmore two-spheres in S3 by
Bryant [3] is based on the following crucial observations:

1) (Conformal Gauss map.) There is a so-called conformal Gauss
map into the de-Sitter space S41, which induces a Möbius invari-
ant metric for a surface in S3. Geometrically speaking, this map
corresponds to the mean curvature sphere, which is tangent to
the original surface at one point with the same mean curvature
(vector).

2) (Harmonic map.) An immersed surface M in S3 is Willmore if,
and only if, this conformal Gauss map is a harmonic map. This
reveals the connection between Willmore surfaces and integrable
systems.

3) (Duality Theorem.) Any Willmore surface f : M → S3 allows a

dual Willmore surface f̂ : M → S3 arising as the second envelope
of the mean curvature sphere congruence. When it does not de-

generate, f̂ envelops the same mean curvature sphere congruence
as f .

4) (Vanishing Theorem.) One can construct holomorphic forms on
the underlying Riemann surface; on S2 such forms always vanish
identically.

When the codimension is arbitrary, Ejiri generalized the construction
of the conformal Gauss map for surfaces in Sn (see [35] for a generaliza-
tion for submanifolds). The same as before, this map is harmonic if and
only if the original surface is Willmore. However, the duality theorem
fails in general, since the second envelope of the mean curvature spheres
might not exist [16, 5, 28]. Fortunately, in codimension-two case the
global assumption of being a 2-sphere guarantees the duality property.
So in S4 one can still use the same method to obtain a classification as
mentioned above.

Ejiri restricted to consider the subclass of Willmore surfaces in higher
codimensional space for which the duality theorem still holds. This class
is called S-Willmore surfaces (see Section 3.1 for the definition and
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examples). He established a classification of S-Willmore two-spheres in
Sn as below.

Theorem. [16] An immersed S-Willmore S2 in Sn is Möbius equiv-
alent to one of the following surfaces

1) a minimal surface in Rn with embedded flat ends,
2) a super-Willmore surface fully immersed in S2m (It corresponds

to a holomorphic, totally isotropic curve in an odd-dimensional
complex projective space CP 2m+1).

In the end of his 1988 paper [16], Ejiri asked whether a Willmore two-
sphere in Sn must always be S-Willmore. If this is true, the classification
of Willmore two-spheres is finished. This problem remained open for a
long time until a negative answer appeared in 2013 in [15].

Based on the celebrated DPW method for harmonic maps into non-
compact symmetric space, Dorfmeister and the third author [15] con-
structed a totally isotropic Willmore two-sphere in S6 explicitly, which is
full and not S-Willmore (see Section 5.1 in this paper for details). More-
over, in a follow-up work [38], [39], Wang provided a coarse classification
for all Willmore two-spheres in S6. According to their prediction, there
also exist Willmore two spheres in S5 which are not S-Willmore. But
the computation along this route is very complicated, which makes it
hard to derive an explicit expression or to discuss their global proper-
ties.

On the other hand, the adjoint transform mentioned above is defined
for any immersed Willmore surface in Sn [28]. Such transforms produce
new Willmore surfaces which always exist locally (however, not unique
in general). This is a natural generalization of the dual Willmore sur-
face as well as the 2-step Bäcklund transforms of Willmore surfaces in
S4 [5].

When the global assumption of being 2-sphere is imposed on a Will-
more surface which is not totally isotropic (see Section 3 for a precise
definition), it was noticed [26] that one can construct a sequence of
adjoint Willmore surfaces in a canonical way, with increasing isotropy
order. Then the sequence has to terminate with a Euclidean minimal
surface, whose next canonical adjoint transform degenerates to a single
point. This picture mimics the famous harmonic sequence construction
as well as the Willmore sequence produced by using Bäcklund trans-
forms [24]. By analyzing the behavior of their Willmore sequence, in
[24] Leschke and Pedit gave a new proof of the classification theorem
of Willmore tori in S4 with nontrivial normal bundle (which is quite
similar to the case of Willmore two-spheres in S4).

To overcome the aforementioned difficulty caused by the possible
branch points, we construct some new conformal minimal branched im-
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mersion ξ from S2 to the accompanied de Sitter space S6
1 . Then one

can use the following result [17].

Proposition 1.3. Any conformal harmonic map ξ : S2 → Sn
1 ⊂

Rn+1
1 is totally isotropic, i.e., 〈ξ(k)z , ξ

(l)
z 〉 ≡ 0, ∀ k, l ∈ Z+. It is located

in a subspace orthogonal to a non-zero light-like vector.

The proof of the classification theorem is divided into two cases,
treated separately in Sections 4 and 5, depending on whether the Hopf
differential is isotropic or not. Note that one still needs to deal with the
technical difficulty of singularities and to make sure that ξ : S2 → S6

1 is
globally defined. We address this problem in the Appendix. For Will-
more surfaces in S6 or higher codimension, it stays an open problem to
us how to guarantee the global existence of adjoint transforms.

The conformal harmonic map ξ to the de Sitter space as above is
similar to the conformal Gauss map first introduced in [3]. The main
difference here is that this harmonic map ξ is derived from an adjoint
transform operation. This map ξ also relates the geometry of Will-
more surfaces with the integrable system theory ([18], [5], [7], [15],
[38], [39]). A very interesting observation is that Willmore surfaces
are related with several harmonic maps into different spaces; see [18]
and [28], for examples. This might provide some insight for the future
work.

In this connection we would like to mention the quantization theorem
of the Willmore functionals. For an inner non-compact symmetric space
G/K, there always exists a compact dual symmetric space U/H, (see,
for example, Section 4.4 of [15]). In [15], Dorfmeister and Wang showed
that for every harmonic map from a Riemann surface M into G/K,
there exists a dual harmonic map into U/H. A basic observation of
Burstall [8] shows that the energy of these two harmonic maps differ by
an exact form. So when M is closed, these two harmonic maps share the
same energy. Applying to a Willmore two-sphere, its Willmore energy
is equal the energy of its conformal gauss map, which is mapped into
SO(1, n+1)/SO(1, 3)×SO(n−2). The dual compact symmetric space
of SO(1, n+1)/SO(1, 3)×SO(n− 2) is SO(n+2)/SO(4)×SO(n− 2).
So its Willmore energy is equal to the energy of some harmonic two-
sphere into SO(n + 2)/SO(4) × SO(n − 2). By [9], the energy of a
harmonic two-sphere into SO(n+2)/SO(4)×SO(n−2) is 2πk for some
k ∈ Z+ ∪ {0}. As a corollary, the Willmore functional of a Willmore
2-sphere in Sn is also 2πk for some k ∈ Z+ ∪ {0}. Till now, this result
cannot be derived from the method of adjoint transforms. We also point
out that in [31], Montiel showed that the energy of a Willmore 2-sphere
in S4 is 4πk, for some k ∈ Z+ ∪ {0} and all k can be achieved by some
Willmore immersion in S4. We conjecture that this result still holds in
Sn when n > 4. It seems that one need new insights to prove this.



250 X. MA, C. WANG & P. WANG

Another interesting question is whether there exist new examples in
the third class which are immersed (without any branch points). To
answer it, we find out explicitly all possible adjoint transforms of any
superconformal minimal surface in Rn in Section 6. Then, in Section 7,
we show how to guarantee the vanishing of branched points (including
a discussion of the end behavior). An interesting by-product is the re-
lationship with the classical construction of pedal surfaces, which also
appeared recently in the work of Dajczer and Vlachos [14] on supercon-
formal surfaces. Finally, in Section 8, we describe three examples of the
third class (immersed Willmore two-spheres which are not S-Willmore)
in details.

It is worth mentioning that adjoint transforms in Sn contrast sharply
with 2-step Bäcklund transforms in S4 in the following aspect. It has
been shown in [24] that the latter preserves the smoothness of confor-
mal Gauss map (the mean curvature sphere congruence). However, in
Section 7 (Remark 7.8), we will see that adjoint transforms may destroy
the smoothness of the conformal Gauss map when n ≥ 5.

This paper is organized as below. In Section 2, we review the surface
theory in Möbius geometry. The definition of S-Willmore surfaces and
the adjoint transforms are included in Section 3. The proof of the
classification theorem is divided into two cases, treated separately in
Sections 4 and 5, depending on whether the Hopf differential is isotropic
or not. In Section 6, we provide a concrete description of all adjoint
transforms of a superconformal minimal surface in Rn. Section 7 devotes
to the discussions of the immersion property of the adjoint surfaces,
which have a close relationship with the end behavior of the original
superconformal minimal surface in Rn. We end this paper by providing a
newWillmore two-sphere in S5 as an adjoint surface of a superconformal
minimal surface in R5 in Section 8 and proving a technical lemma in
the appendix.

Acknowledgments. The authors are grateful to NSFC for the contin-
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by NSFC No. 11471021; Changping Wang is supported by NSFC No.
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11571255. We thank F. Pedit for his interest in this work and for com-
municating to us the result of Burstall. The third named author is
thankful to F. Burstall, J. Dorfmeister and F. Pedit for communica-
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2. Surface theory in Möbius geometry

In this section, we will briefly review the surface theory in Möbius
geometry. For details see [7, 28].
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We identify the unit sphere Sn ⊂ Rn+1 with the projectivized light
cone via

Sn ∼= P(L) : y ↔ [(y�, 1)�] = [Y ],

where L ⊂ Rn+2
1 is the lightcone in the (n+2)-dimensional Lorentz space

with the quadratic form 〈Y, Y 〉 = −Y 2
n+2 +

∑n+1
i=1 Y 2

i and [(y�, 1)�] is
the homogeneous coordinate. Here all vectors are assumed to be column
vectors. The projective action of the Lorentz group on P(L) yields all
conformal diffeomorphisms of Sn. The following correspondence is well-
known:

• A point y ∈ Sn ↔ a lightlike line [Y ] ∈ P(L);
• A k-dim sphere σ ⊂ Sn ↔ a space-like (n − k)-dim subspace
Σ ⊂ Rn+2

1 ;
• The point y locates on the sphere σ ↔ Y⊥Σ.

For a conformal immersion y : M → Sn of a Riemann surface M , a local
lift is just a map Y from M into the light cone L such that the null line
spanned by Y (p) is y(p), p ∈ M . Taking derivatives with respect to a
local complex coordinate z, we see that 〈Yz, Yz〉 = 0 and 〈Yz, Yz̄〉 > 0,
since y is a conformal immersion.

Before describing a specific choice of the moving frame, we briefly
review the notion of mean curvature sphere. There is a 4-dimensional
Lorentz subspace of Rn+2

1 defined at every point of M given by

V = span{Y,Re(Yz), Im(Yz), Yzz̄},
which is independent of the choice of local lift Y and complex coordi-
nate z. Under the correspondence given above, V describes a Möbius
invariant geometric object, called the mean curvature sphere of y. This
name comes from the property that it is the unique 2-sphere tangent to
the surface and having the same mean curvature vector as the surface
at the tangent point when the ambient space is endowed with a metric
of some Euclidean space (or any other space form). The corresponding
map from M into the Grassmannian Gr3,1R

n+1,1 (which consists of 4-
dimensional Lorentz subspaces) is the so-called conformal Gauss map
[3, 16].

For a given local coordinate z, there is a canonical lift determined
by |dY |2 = |dz|2. We will always assume that Y is such a canonical lift
unless stated elsewhere. Then a canonical frame of V ⊗ C is given as

(2.1) {Y, Yz , Yz̄, N},
where we choose the unique N ∈ V with 〈N,N〉 = 0, 〈N,Y 〉 =
−1, 〈N,Yz〉 = 0. These frame vectors are orthogonal to each other
except that 〈Yz, Yz̄〉 = 1

2 , 〈Y,N〉 = −1. Let ξ ∈ Γ(V ⊥) be an arbitrary

section of the normal bundle V ⊥; D is the normal connection. The
structure equations are as below:
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(2.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Yzz = − s

2Y + κ,

Yzz̄ = −〈κ, κ̄〉Y + 1
2N,

Nz = −2〈κ, κ̄〉Yz − sYz̄ + 2Dz̄κ,

ξz = Dzξ + 2〈ξ,Dz̄κ〉Y − 2〈ξ, κ〉Yz̄ .

The first equation among them is a fundamental one, which defines
two basic Möbius invariants associated with the surface y : M → Sn.
The Schwarzian s is a complex valued function interpreted as a gen-
eralization of the usual Schwarzian derivative of a complex function.
The section κ ∈ Γ(V ⊥ ⊗ C) may be identified with the normal-valued
Hopf differential up to scaling. Later we will need the fact that κ van-

ishes exactly at the umbilic points, and that κdz2

|dz| is a globally defined

differential form. See [7] for more details.
The conformal Gauss, Codazzi and Ricci equations as integrability

conditions are

1
2sz̄ = 3〈Dz κ̄, κ〉 + 〈κ̄,Dzκ〉,(2.3)

Im(Dz̄Dz̄κ+ s̄
2κ) = 0,(2.4)

RD
z̄zξ := Dz̄Dzξ −DzDz̄ξ = 2〈ξ, κ〉κ̄ − 2〈ξ, κ̄〉κ.(2.5)

3. Willmore surfaces and adjoint transforms

There is a well-defined metric over M invariant under Möbius trans-
formations, which is also conformal to the original metric induced from
y : M → Sn, called the Möbius metric:

e2ω|dz|2 = 4〈κ, κ̄〉|dz|2.
It is well known that this metric is induced from the conformal Gauss
map. The area of M with respect to the Möbius metric

W (y) := 2i ·
∫
M
|κ|2dz ∧ dz̄

is exactly the famous Willmore functional. It coincides with the usual

definition W̃ :=
∫
M (H2 − K)dM for an immersed surface in R3 with

mean curvature H and Gauss curvature K. A critical surface with
respect to W is called a Willmore surface. In terms of the above in-
variants, Willmore surfaces are characterized by the Willmore equation
[7]:

(3.1) Dz̄Dz̄κ+
s̄

2
κ = 0.

Note that this is stronger than the Codazzi equation (2.4).

Remark 3.1. As mentioned in the introduction, another important
characterization of the Willmore surfaces is that the conformal Gauss
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map is harmonic [2, 3, 16]. This link motivated the study of Will-
more surfaces as an integrable system [18, 15]. Although we will not
pursue this line here, we would like to emphasize that in the proof of
Theorem 1.2, the key step is the construction of some new conformal
harmonic map ξ into the de-Sitter space S6

1 , which should be viewed as
derived from this harmonic conformal Gauss map.

Remark 3.2. Since Willmore surfaces satisfy an elliptic equation,
Morrey’s result (see [3] and Lemma 1.4 of [16]) guarantees that the
related geometric quantities are real analytical.

3.1. S-Willmore surfaces. In the codim-1 case, Bryant [3] noticed
that when y : M → S3 is Willmore, there is always a dual conformal

Willmore surface ŷ = [Ŷ ] : M → S3 enveloping the same mean cur-
vature spheres. Note that in this case, except the umbilic points, Dz̄κ
depends linearly on κ, thus locally there is a function μ such that

(3.2) Dz̄κ+
μ̄

2
κ = 0.

When the codimension is higher, Ejiri first noticed that (3.2) does not
hold for all Willmore surfaces. He observed, moreover, that a surface
satisfying (3.2) for some μ is automatically a Willmore surface with
a dual Willmore surface when this surface is not contained in any 3-
dimensional sphere. Conversely, the duality theorem holds true if the
first Willmore surface y satisfies (3.2) [16, 27]. So Willmore surfaces
satisfying (3.2) for some μ (locally defined, depending on the coordinate
z) provide exactly all Willmore surfaces having a dual surface. They
are called S-Willmore surfaces. This special class includes Willmore
surfaces in S3, superconformal surfaces in S4, and minimal surfaces in
space forms Rn, Sn,Hn.

Remark 3.3. Note that the above definition of S-Willmore surfaces
includes the codimension one Willmore surfaces. This is slightly differ-
ent from Ejiri’s original definition [16], for the purpose of including all
Willmore surfaces with dual surfaces.

The dual surface ŷ = [Ŷ ] : M → Sn may be written down explicitly
as

(3.3) Ŷ =
1

2
|μ|2Y + μ̄Yz + μYz̄ +N,

with respect to the frame {Y, Yz, Yz̄, N}. Calculation using (2.2), (3.1)
and (3.2) yields

(3.4) Ŷz =
μ

2
Ŷ + ρ

(
Yz +

μ

2
Y
)
, where ρ := μ̄z − 2〈κ, κ̄〉.
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Here ρ|dz|2 is a globally defined invariant associated with {y, ŷ} [28].
It follows

(3.5) 〈Ŷz, Ŷz〉 = 0, 〈Ŷz, Ŷz̄〉 = 1

2
|ρ|2.

It is straightforward to verify that ŷ share the same mean curvature
sphere as y, at the points where ŷ is immersed. By the characterization
mentioned in Remark 3.1, ŷ is also a conformal Willmore immersion
into Sn when ρ �= 0.

Remark 3.4. When ρ ≡ 0, by (3.4), we know Ŷ corresponds to a

fixed point [Ŷ ] in Sn. Up to a Möbius transformation we may assume

that [Ŷ ] is∞, the point at infinity of the Euclidean space Rn. Since the
mean curvature spheres of y = [Y ] always pass through this point, these
spheres are all planes. According to the geometric meaning of the mean
curvature spheres given before, the surface has mean curvature H = 0
everywhere in Rn. So y is Möbius equivalent to a Euclidean minimal
surface.

3.2. The adjoint transform. In higher dimensional sphere Sn, a Will-
more surface does not necessarily have a dual surface. Therefore, one
needs to generalize the notion of dual Willmore surfaces. In [26, 28]
the first author introduced adjoint transforms for arbitrary Willmore
surfaces.

Given a Willmore surface y : M → Sn, its adjoint transform is an-
other (branched) conformal immersion ŷ : M → Sn such that the cor-
responding point ŷ(z) locates on the same mean curvature sphere of y
at z, at the same time ŷ half-touches this sphere [26, 28].

Since the corresponding point ŷ = [Ŷ ] still locates on the same mean
curvature sphere as y, we have similar equations as (3.3) and (3.4),
depending on a local function μ:

(3.6) Ŷ =
1

2
|μ|2Y + μ̄Yz + μYz̄ +N,

(3.7) Ŷz =
μ

2
Ŷ + ρ

(
Yz +

μ

2
Y
)
+ 2η,

where

(3.8) ρ := μ̄z − 2〈κ, κ̄〉, η := Dz̄κ+
μ̄

2
κ.

To satisfy the half-touching condition and the conformal condition [28]
we require that

θ : = μz − 1

2
μ2 − s = 0,(3.9)

〈η, η〉 = μ̄2

4
〈κ, κ〉 + μ̄〈κ,Dz̄κ〉+ 〈Dz̄κ,Dz̄κ〉 = 0.(3.10)
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The formulas below [28] are useful later and easy to verify:

(3.11) Dz̄η =
μ̄

2
η, ρz̄ = μ̄ρ+ 4〈η, κ̄〉.

A basic fact about the adjoint transform is the following theorem.

Theorem 3.5. [28] The adjoint transform [Ŷ ] : M → Sn is a
Willmore surface. Conversely, the original Willmore surface [Y ] is an

adjoint transform of [Ŷ ].

As to the uniqueness problem of adjoint transforms, we define a 6-
form using the discriminant of the quadratic equation about μ̄ (3.10) as
below [26, 29]:

(3.12) Θ0 =
[〈Dz̄κ, κ〉2 − 〈Dz̄κ,Dz̄κ〉〈κ, κ〉

]
(dz)6.

It is straightforward to verify the independence to the choice of coordi-
nate z. Moreover, by the Willmore condition, this form is holomorphic.

In general, a surface is called superconformal if κ itself is isotropic; it
is called totally isotropic if κ and its derivatives are all isotropic. When
κ is isotropic, i.e., 〈κ, κ〉 ≡ 0, the Willmore condition (3.1) implies
〈κ,Dz̄κ〉 = 〈Dz̄κ,Dz̄κ〉 = 0. Therefore, Θ0 vanishes in this case. Now
we can state

Theorem 3.6. [28]

1) If 〈κ, κ〉 ≡ 0, then any solution to (3.9) defines an adjoint surface
of y via (3.6).

2) If 〈κ, κ〉 �≡ 0 and Θ0 �= 0, then there exists exactly two solutions to
(3.10). They provide two adjoint surfaces of y via (3.6). Moreover,
y is not S-Willmore.

3) If 〈κ, κ〉 �≡ 0 and Θ0 vanishes, then there exists exactly one solu-
tion to (3.10). There is a unique adjoint surface of y via (3.6).
Especially, if y is S-Willmore, then the unique adjoint surface is
its dual surface.

4. Superconformal Willmore two-spheres in S5

To prove the classification Theorem 1.2, we consider two cases sepa-
rately:

1) The Superconformal case: 〈κ, κ〉 ≡ 0 identically;
2) The Non-superconformal or Non-isotropic case: 〈κ, κ〉 �= 0 on an

open dense subset.

We may also restrict to consider only the case when it is a full immersion
in S5, i.e., the surface is not contained in any lower dimensional sphere.
This excludes the superconformal surfaces in S4.

Proposition 4.1. Any superconformal Willmore surface y : M → S5

is S-Willmore. Moreover:
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1) The dual Willmore surface Ỹ is also superconformal and
S-Willmore at its regular points.

2) If y is full in S5, then any other adjoint transform Ŷ of Y is not
S-Willmore and also non-superconformal.

The first conclusion of this proposition was contained in [13] by Da-
jczer and Vlachos. Here we give an independent and simple proof, which
makes the full picture more clear.

Proof. Differentiating 〈κ, κ〉 = 0 twice and using the Willmore condi-
tion, we know

〈κ,Dz̄κ〉 = 〈Dz̄κ,Dz̄κ〉 = 0.

In the non-trivial case κ �≡ 0, due to the restriction on the codimension,
the isotropic sub-bundle Span{κ,Dz̄κ} has complex rank 1. Hence,
Dz̄κ ‖ κ. So this is an S-Willmore surface.

The dual surface Ỹ of Y is defined in (3.3) by μ satisfying η = Dz̄κ+
μ̄
2κ ≡ 0. As a consequence, from (3.4), Ỹzz = 0 mod {Ỹ , Ỹz, κ}. Hence,
Ỹ is still superconformal. It is obviously an S-Willmore surface with a
dual Willmore surface Y .

For any other adjoint transform Ŷ , now η = Dz̄κ+ μ̄
2κ is not identi-

cally zero. η is parallel to κ since Y is S-Willmore. So Dzη is not paral-
lel to κ, otherwise Y will be contained in Span{Y, Yz, Yz̄, Yzz̄, κ, κ̄} and,
hence, not full in S5. Since the co-dimension is 3, we have 〈Dzη,Dzη〉 �=
0 on an open subset. By the same computation we see Ŷzz = Dzη

mod {Ŷ , Ŷz, η}. Hence, 〈Ŷzz, Ŷzz〉 �= 0. So the Hopf differential of Ŷ is
not isotropic.

From this fact and Theorem 3.6, Ŷ has a unique adjoint transform.

Since Y is an adjoint surface of Ŷ , Y is the unique one of Ŷ . If Ŷ
is S-Willmore, then its dual surface, as an adjoint transform, has to

coincide with Y . Thus {Y, Ŷ } forms a pair of dual Willmore surface.
This contradicts with the uniqueness of the dual Willmore surface and

the assumption that Ŷ �= Ỹ . q.e.d.

The result below follows directly from Proposition 4.1 and Ejiri’s
classification of S-Willmore two-spheres [16]. Here we provide an in-
dependent proof, not only for the sake of being self-contained, but also
because that the conformal harmonic map ξ : M → S6

1 appearing in this
proof is interesting in its own right. A similar construction, i.e., finding
out some globally defined conformal map ξ : M → S6

1 , plays a crucial
role in the discussion of the non-isotropic case in the next section.

Proposition 4.2. A full superconformal Willmore immersion y :
S2 → S5 must be Möbius equivalent to a superconformal minimal surface
in R5.
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Proof. By Proposition 4.1, y is an S-Willmore surface. We may write
Dz̄κ = − μ̄

2κ, and the dual Willmore surface is given by (3.3). Here we
have assumed that it is not totally umbilic.

By Lemma A.2 in the appendix (see also [16]), the holomorphic
isotropic line-bundle SpanC{κ} is defined on the whole S2. This fact
makes it possible to choose a real unit normal vector ξ such that

ξ ∈ V ⊥, ξ ⊥ κ, κ̄.

It is evident that ξ can be chosen globally and consistently. Notice that
〈Dzξ, κ̄〉 = −〈ξ,Dz κ̄〉 = 〈ξ, μ2 κ̄〉 = 0, 〈Dzξ, ξ〉 = 0, 〈ξ, κ〉 = 0. Then the
structure equation tells us that

ξz = Dzξ − 2〈ξ, κ〉(Yz̄ +
μ̄

2
Y ) = Dzξ = λκ̄,

for some function λ. It follows 〈ξz, ξz〉 = 0, i.e, ξ : S2 → S6
1 is a

conformal map.
Differentiating once more, one can show that ξzz̄ ∈ V ⊥ is a real

normal bundle section by the structure equations and 〈κ̄, κ̄〉 = 0 =
〈κ̄,Dzκ̄〉. Since ξzz̄ ⊥ ξz and ξz ‖ κ̄, there must be ξzz̄ ‖ ξ. Thus
ξ : S2 → S6

1 is a branched conformal harmonic map.
According to Proposition 1.3 [17], ξzzz must be isotropic on S2. Di-

rect computation shows

ξzz = (· · · )κ̄− 2〈ξz, κ〉(Yz̄ +
μ̄

2
Y ),

ξzzz = (· · · )κ̄+ (· · · )(Yz̄ +
μ̄

2
Y )− 〈ξz, κ〉(ρY + Ŷ ),

=⇒ 0 ≡ 〈ξzzz, ξzzz〉 = −2ρ〈ξz, κ〉2.
If 〈ξz, κ〉 = 0 on an open subset of S2, the real analytical property
forces it to be zero identically. Because ξz = λκ̄ and κ �= 0 on an open
dense subset, there follows ξz ≡ 0. So ξ is a constant unit vector in R7

1.
In this case the original surface y is a superconformal surface in S4, a
contradiction to the fullness assumption. The other possibility is ρ ≡ 0.
According to Remark 3.4, y is Möbius equivalent to a minimal surface
in R5. This finishes the proof. q.e.d.

5. Non-superconformal Willmore two-spheres in S5

The Classification Theorem 1.2 follows from Proposition 4.2 and
Proposition 5.1 below.

Proposition 5.1. Let y : S2 → S5 be a full Willmore immersion
with 〈κ, κ〉 �≡ 0. Then y belongs to one of the following two cases:

1) y is Möbius equivalent to a minimal surface in R5 when it is S-
Willmore;
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2) y is an adjoint transform of a superconformal minimal surface in
R5 (y is not S-Willmore).

We first recall the following theorem [26].

Theorem 5.2. Let y : S2 → Sn be a Willmore immersion and not
superconformal. Then its adjoint transform is unique and defined glob-
ally on S2 as a branched conformal immersion. When y is S-Willmore,
this adjoint transform is exactly the dual surface.

Proof. This is the direct corollary of case (3) of Theorem 3.6 and the
vanishing theorem of holomorphic forms on S2.

Here this unique adjoint transform is given by (3.6); the unique solu-
tion μ̄ is given by

(5.1) μ̄ = −〈κ, κ〉z̄〈κ, κ〉 ,

when 〈κ, κ〉 �= 0. Define η = Dz̄κ + μ̄
2κ as in (3.8) and also recall that

Dz̄η = μ̄
2η by the Willmore condition. Notice that even at a zero of

〈κ, κ〉, the limit of μ still exists according to Chern’s lemma (compare
also [16], [15]). To see this, set f1 = 〈κ, κ〉, f2 = 〈Dz̄κ, κ〉 and f3 =

〈Dz̄κ,Dz̄κ〉. So μ̄ = −2 f2
f1
. By (3.12), we see that Θ = (f22 − f1f3)dz

6

vanishes. So we have f2
f1

= f3
f2

except the zeros of f1 and f2. By the
Willmore condition, we obtain that⎧⎪⎪⎨⎪⎪⎩

f1z̄ = 2f2,

f2z̄ = − s̄

2
f1 + f3,

f3z̄ = −s̄f2.
By Chern’s Lemma [11], the common zeros of f1, f2, f3 are isolated and
at these points there exists a limit of f1 : f2 : f3. So at these points either
f1 : f2 �= 0 : 0 or f1 : f2 : f3 = 0 : 0 : a0 for some a0 ∈ C\{0}. In the latter
case f2 : f3 = 0 : a0 has a limit. So in all cases we have that μ either has
a finite limit or tends to ∞.

Thus the line spanned by Ŷ , which corresponds to a point in Sn, has
a well-defined limit. In particular, when the limit of μ is∞ at one point

of S2, the limit of the real line [Ŷ ] is nothing but [Y ]. As a conclusion,

the adjoint transform [Ŷ ] extends to a branched conformal immersion
S2 → Sn. q.e.d.

From the proof of Theorem 5.2, one observes that the adjoint sur-
face is the dual surface of y if and only if η ≡ 0. We consider two cases
separately depending on whether this holds true, which are treated sepa-
rately in Proposition 5.3 and Proposition 5.4. Note that Proposition 5.3
also follows from Ejiri’s classification theorem [16].
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Proposition 5.3. Let y : S2 → S5 be a full Willmore immersion and
non-superconformal. When it is S-Willmore, y is Möbius equivalent to
a minimal surface in R5.

Proof. We define μ̄ as above locally except the points 〈κ, κ〉 = 0. It
follows from (3.11) that ρz̄ = μ̄ρ. As a consequence, the 4-form

(5.2) Θ3 = ρ〈κ, κ〉(dz)4
is well-defined and holomorphic everywhere except the points 〈κ, κ〉 = 0.
We claim that Θ3 extends to the whole S2 as a holomorphic form,
i.e., the points 〈κ, κ〉 = 0 are, indeed, removable singularities of this
holomorphic form.

To show that, by Ejiri’s results or Lemma A.2, the line-bundle
spanned by κ is defined even at the zeros of 〈κ, κ〉 = 0. In fact, since
Dz̄κ‖κ, Dz̄(Dz̄)κ‖κ, so {κ,Dz̄κ} expands a holomorphic line-bundle on
S2. In a small neighborhood of any zero of κ, we can always take a
non-zero holomorphic section of this line-bundle locally. Denote it by ψ
and write κ = fψ. Obviously, this locally defined f is smooth without
any pole. It follows

μ̄ = −2fz̄
f
,

and μ̄f = −2fz̄ is regular. So the singular term of ρ〈κ, κ〉 is
μ̄z〈κ, κ〉 = μ̄z · f2〈ψ,ψ〉 = (μ̄f2)z − 2μ̄ffz = −2(fz̄f)z + 4fz̄fz.

The final expression shows that poles do not occur. So Θ3 is a holomor-
phic form defined on S2. It must vanish identically. By the assumption
that 〈κ, κ〉 �= 0 on an open dense subset, we know ρ ≡ 0. So the original
surface is Möbius equivalent to a minimal surface in R5. q.e.d.

Proposition 5.4. Let y : S2 → S5 be a full Willmore immersion
which is not S-Willmore. Then it is an adjoint transform of some su-
perconformal (branched) minimal surface in R5.

Proof. Since y is not S-Willmore, first we see that y is not supercon-
formal. Moreover, η is not identically zero.

We scale η to get another isotropic section η� without poles as below:

η� := 〈κ, κ〉η = 〈κ, κ〉Dz̄κ− 〈κ,Dz̄κ〉κ.
It follows from the Willmore condition (3.1) and Θ0 = 0 that

Dz̄η
� = Dz̄(〈κ, κ〉η) = 〈κ,Dz̄κ〉Dz̄κ− 〈Dz̄κ,Dz̄κ〉κ ‖ η�,

Dz̄Dz̄η
� = − s̄

2
η�.

Using Proposition A.2 once again, we know that η� spans an isotropic
complex line-bundle on the whole S2, which is also a holomorphic sub-
bundle of the complex normal bundle. η can be regarded as a (local)
section of this bundle on M0, the points with η �= 0. The real and
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imaginary parts of all such sections span a rank-2 subbundle of the
normal bundle, whose orthogonal complement has a well-defined global
section ξ on the whole S2. Regarded as a frame vector, on M0 it satisfies

ξ ⊥ η, η̄; 〈ξ, ξ〉 = 1.

We claim that ξ : S2 → S6
1 is a conformally harmonic map into the

de-sitter space, i.e., it is a conformal minimal immersion on an open
dense subset of S2.

To show this, we still use η, η̄, ξ as a local frame of the complex
normal bundle. It follows from the Ricci equation (2.5) and 〈ξ, η〉 = 0
that

(5.3) ξz = Dzξ − 2〈ξ, κ〉(Yz̄ +
μ̄

2
Y ).

Note that

〈Dzξ, ξ〉 = 0, 〈Dzξ, η̄〉 = −〈ξ,Dz η̄〉 = −〈ξ, μ
2
η̄〉 = 0, ⇒ Dzξ ‖ η̄.

Hence, the equation (5.3) can be re-written as

(5.4) ξz = λη̄ − 2〈ξ, κ〉(Yz̄ +
μ̄

2
Y ),

for some complex function λ locally. As a consequence,

ξz⊥Y, Yz̄, Ŷ , κ̄, η̄; 〈ξz, ξz〉 ≡ 0.

It follows that ξ is a conformal mapping to S6
1 .

To show that ξ is a minimal surface, we verify ξzz̄ ‖ ξ. First, since
〈η, κ〉 = 0, 〈η,Dz̄κ〉 = −〈Dz̄η, κ〉 = −〈 μ̄

2
η, κ〉 = 0,

we have ηz = Dzη from (2.2). Applying (2.2), (3.9) and (5.3), we obtain

ξzz̄ = (λη̄)z̄ − 2〈ξ, κ〉z̄(Yz̄ +
μ̄

2
Y )− 2〈ξ, κ〉(Yz̄ z̄ +

μ̄z̄

2
Y +

μ̄

2
Yz̄)

= λz̄η̄ + λDz̄ η̄ − 2〈ξ, κ〉κ̄ − 2(〈ξ, κ〉z̄ + μ̄

2
〈ξ, κ〉)(Yz̄ +

μ̄

2
Y ).

(5.5)

This shows that 〈ξzz̄, Y 〉 = 〈ξzz̄, Ŷ 〉 = 〈ξzz̄, Yz̄〉 = 〈ξzz̄, η̄〉 = 0. Since ξzz̄
is real vector-valued, we also have 〈ξzz̄, Yz〉 = 〈ξzz̄, η〉 = 0. Since

ξ⊥ = SpanC{Y, Yz, Yz̄, Ŷ , η, η̄} ⊇ SpanC{Y, Yz , Yz̄, Ŷ , ξz, ξz̄},
on M0, we see that ξzz̄‖ξ on M0. Since the subset S2 \M0 is open and
dense, after taking limit we know that ξzz̄ is parallel to ξ on the whole
S2. Thus we have proved the claim. The conclusion of Proposition 1.3
applies to branched conformal minimal surface ξ : S2 → S6

1 . In partic-
ular, the mapping ξ is orthogonal to a constant light-like vector Y ∗.

To relate ξ with some adjoint transform, we compute

ξzz mod {η̄, Yz̄ +
μ̄

2
Y },
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which should be isotropic:

ξzz = −2〈Dzξ, κ〉Yz̄ + 2〈Dzξ,Dz̄κ〉Y

− 2〈ξ, κ〉
(
1

2
N − 〈κ, κ̄〉Y +

μ̄

2
Yz +

μ̄z

2
Y

)
( mod η̄, Yz̄ +

μ̄

2
Y )

= (2〈Dzξ, η〉 − 〈ξ, κ〉ρ) Y − 〈ξ, κ〉Ŷ ( mod η̄, Yz̄ +
μ̄

2
Y )

= −2〈ξ,Dzη +
ρ

2
κ〉Y − 〈ξ, κ〉Ŷ + (· · · )η̄ + (· · · )

(
Yz̄ +

μ̄

2
Y
)
.

(5.6)

Note that 〈ξ, κ〉 is non-zero on an open dense subset (otherwise, suppose
〈ξ, κ〉 = 0 on an open subset, from κ⊥ξ, η, we deduce κ ‖ η, which
contradicts with the fact that 〈κ, κ〉 is not identically zero on any open
subset). Since ξzz is isotropic, the coefficient of Y in the expression
above must vanish. In particular,

(5.7) ξzz ∈ Span{η̄, Yz̄ +
μ̄

2
Y, Ŷ }, ⇒ 0 = 〈ξzz, Ŷ 〉 = −〈ξz, Ŷz〉.

With these preparations, now we are able to discuss the geometry of
the adjoint transform Ŷ . First, the mean curvature sphere of Ŷ is given
by

(5.8) Span{Ŷ , Ŷz, Ŷz̄, Ŷzz̄} ⊥ {ξ, ξz , ξz̄}.
It is clear Ŷ⊥ ξ, ξz, ξz̄. By (3.7) and (5.7) it follows Ŷz⊥ ξ, ξz̄, ξz. Finally,
based on the fact ξzz̄ ‖ ξ, the following orthogonality conditions hold:

〈Ŷzz̄, ξ〉 = −〈Ŷz̄, ξz〉 = −〈Ŷ , ξzz̄〉 = 0,

〈Ŷzz̄, ξz〉 = −〈Ŷz, ξzz̄〉 = 0.

As a consequence, the fixed light-like vector Y ∗, which is also orthog-
onal to the frames {ξ, ξz, ξz̄}, must be contained in the subspace

Span{Ŷ , Ŷz, Ŷz̄, Ŷzz̄},
on an open dense subset of S2. In other words, the mean curvature

spheres of [Ŷ ] pass through a fixed point [Y ∗]. Taking this [Y ∗] as

the point at infinity, [Ŷ ] is (Möbius equivalent to) a minimal surface

in an affine R5. The superconformality of Ŷ is a corollary of (2) and
(3) of Theorem 3.6. The original Willmore 2-sphere [Y ] is an adjoint
transform of this minimal surface by Theorem 3.5. This completes the
proof. q.e.d.

6. Adjoint transforms of superconformal minimal surfaces

in Rn

This section aims to derive all adjoint transforms of superconformal
minimal surfaces in Rn. To this end, we will take a conformal complex
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coordinate z and restrict to consider only local theory. Since for M =
S2 = C ∪ {∞} there always exists a local complex coordinate z, it is
easy to see how these discussions fit into global context.

For convenience, we use dot product to denote the Euclidean inner
product in Rn, and 〈 , 〉 to denote the Lorentz inner product of Rn+2

1 .
They are extended to C-bilinear products automatically when complex
vectors are involved.

Consider a conformally immersed minimal surface x : M → Rn. The
map x : M → Rn satisfies

xz · xz = 0, xzz̄ = 0, xz · xz̄ = 1

2
e2w.

Its classical normal valued Hopf differential is given by

(6.1) Q := xzz − 2wzxz = xzz − xzz · xz̄
xz · xz̄ xz.

The Gauss equation and Codazzi equation are

(6.2) e−2w|Q|2 = wzz̄, Dz̄Q = 0.

Taking the inverse stereographic projection and then lifting to the
lightcone, the canonical lift X of x has the form

(6.3) X = e−w

(
x�,

1− x · x
2

,
1 + x · x

2

)�

.

It is easy to check that

(6.4) Xz = −wzX + e−w
(
x�z ,−xz · x, xz · x

)�
,

and 〈Xz,Xz̄〉 = 1
2 . Direct computation also yields

Xzz̄ = (−wzz̄ − wzwz̄)X − wzXz̄ − wz̄Xz +
ew

2

(
0�,−1, 1

)�
,(6.5)

Xzz = (−wzz + (wz)
2)X + e−w

(
Q�,−Q · x,Q · x

)�
.(6.6)

Comparing with (2.2) we obtain

(6.7) s = 2wzz − 2(wz)
2, κ = e−w

(
Q�,−Q · x,Q · x

)�
,

and

1

2
N = Xzz̄ + 〈κ, κ̄〉X

= −wzwz̄X − wzXz̄ − wz̄Xz +
ew

2
(0�,−1, 1)�.

(6.8)

In particular, by the Codazzi equation (the second in (6.2)) we have

(6.9) Dz̄κ = −μ∗

2
κ, where μ∗ = 2wz.
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This confirms the fact that a Euclidean minimal surface is S-Willmore,
whose dual surface [X∗] degenerates to the single point [(0�,−1, 1)�],
where

(6.10) X∗ = N + μ∗Xz + μ∗Xz̄ +
|μ∗|2
2

X = ew(0�,−1, 1)�.

Remark 6.1. Note that this factor μ∗ is still defined on an umbilic
point (the zero of κ) of a minimal surface in Rn (even for those in Sn

or Hn). For umbilics of generic S-Willmore surfaces this property may
not hold true.

From now on we assume that the original minimal surface x is super-
conformal, i.e.,

0 = xzz · xzz = Q ·Q = 〈κ, κ〉.
As pointed out in Theorem 3.6, in this situation, an adjoint transform
of x corresponds to a solution μ of equation (3.9)

μz − 1

2
μ2 − s = 0,

where the coefficient function s is the previously defined Schwarzian
locally given by (6.7). Such a Riccati equation is well-known to be
related with another second order linear ordinary differential equation
on the unknown ζ:

(6.11) ζzz = −s

2
ζ.

The correspondence between solutions to these two equations is given
by

(6.12) μ =
−2ζz
ζ

.

That means we can find a solution μ to the first equation (3.9) from
a solution ζ of the second equation (6.11) using the formula (6.12);
conversely, any solution μ to (3.9) is constructed in this way. Thus the
problem is reduced to solve (6.11).

Note that there has been already a special solution ζ∗ = e−w to the
equation (6.11), corresponding to the known solution μ∗ = 2wz for (3.9).

As pointed out in [28], we can find all general solutions ζ to the
equation (6.11) if a special solution ζ∗ is known. Writing ζ = λζ∗, we
need only to find λ as the solution to a ∂-problem [28]:

λz = (ζ∗)−2.

Since (ζ∗)−2 = e2w = 2xz · xz̄ and xzz̄ = 0, locally any solution λ is the
following form:

λ = 2(x · xz̄ + ḡ), where g is locally some meromorphic function.
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Thus in terms of this auxiliary meromorphic function g, a general adjoint
transform [X̂] of x under a local coordinate z is given by

(6.13) ζ = λζ∗ = 2(x · xz̄ + ḡ)e−w;

(6.14) μ =
−2ζz
ζ

=
−2xz · xz̄
x · xz̄ + ḡ

+ 2wz =
−e2w

x · xz̄ + ḡ
+ μ∗;

X̂ = N + μ̄Xz + μXz̄ +
1

2
|μ|2X,

e−wX̂ =

⎛⎝ 0

−1
1

⎞⎠− 1

x·xz+g

⎛⎝ xz
−x·xz
x·xz

⎞⎠
− 1

x·xz̄+ḡ

⎛⎝ xz̄
−x·xz̄
x·xz̄

⎞⎠+
xz ·xz̄

|x·xz+g|2

⎛⎝ x
1−x·x

2
1+x·x

2

⎞⎠ .

(6.15)

In the final step we used (6.3), (6.4), (6.10) and μ∗ = 2wz . Then it is
crucial to notice

X̂ = ew
xz ·xz̄

|x · xz + g|2
(
x̂�,

1− x̂ · x̂
2

,
1 + x̂ · x̂

2

)�

,

with

(6.16) x̂ = x− x · xz̄ + ḡ

xz · xz̄ xz − x · xz + g

xz · xz̄ xz̄.

One immediately recognizes that after taking stereographic projection
back to the original Rn ⊃ x(M), the adjoint transform [X̂ ] is represented
by x̂ in the same affine space.

In summary, we have obtained

Theorem 6.2. Let x : M → Rn be a superconformal minimal sur-
face.

1) Let x̂ : M → Rn be an adjoint transform of x. Then x̂ is of the
form (6.16) for some meromorphic function g on M .

2) For any meromorphic function g on M , the map x̂ : M → Rn

given in (6.16) is an adjoint surface of x.

Remark 6.3.

1) If we only consider x̂ as a local adjoint transform of x, g is allowed
to have essential singularities. At the essential singularities of g,
the adjoint surface x̂ defined by (6.16) will have no definition.

2) Note that in (6.16), g is allowed to have poles. In particular, the
dual surface can be recovered by taking g ≡ ∞ (which means that
this holomorphic mapping to CP 1 degenerates to one point). From
the global viewpoint, in general we should regard this g in (6.16) as
a meromorphic 1-form on M . Conversely, from a superconformal
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Euclidean minimal surface x and its adjoint surface x̂ we can find
out this 1-form given by

(6.17) gdz = −x̂ · xzdz.
3) One can check that the surface given by (6.16) agrees with the

original geometric characterization of an adjoint transform (Sec-
tion 3.2). First, at any point p ∈ M , (6.16) implies that x̂(p)
is contained in the tangent plane Tpx(M) which is exactly the
mean curvature sphere of the minimal surface x(M) at p. Next,
differentiating (6.16) and simplifying the result, we get

(6.18) x̂z = −xz̄ · x+ ḡ

xz · xz̄

(
xzz − xzz · xz̄

xz · xz̄ xz

)
−
(
x · xz + g

xz · xz̄

)
z

xz̄.

This implies 〈x̂z, x̂z〉 = 0; hence, x̂ is also a conformal map from
M . Finally, by (6.18) we know 〈x̂z, xz̄〉 = 0, which verifies the
half-touching property (see Definition 3.1 in [28]). So x̂ and x
satisfy the characterization of a pair of adjoint surfaces.

7. The pedal surface and branch points

One special adjoint transform is given by taking g = 0 identically in
(6.16), i.e.,

(7.1) x̂ = x− x · xz̄
xz · xz̄ xz −

x · xz
xz · xz̄ xz̄.

This is exactly the classical construction of pedal surface, i.e., for any
p ∈ M , x̂(p) is exactly the foot of perpendicular from the origin 0 to
the tangent plane Tpx(M).

More generally, we can take any fixed point x0 ∈ Rn and consider the
holomorphic function g = −x0 · xz (which can be viewed as a combina-
tion of coordinate functions of the holomorphic tangent vector). Then
the corresponding x̂ is the pedal surface of x with respect to this fixed
x0 (called the pedal point). In summary, we have proved

Theorem 7.1. The pedal surfaces

(7.2) x̂ = x− x0 − (x− x0) · xz̄
xz · xz̄ xz − (x− x0) · xz

xz · xz̄ xz̄,

of a superconformal Euclidean minimal surface x : M → Rn are a family
of adjoint transforms of x, depending on the choice of the pedal point
x0 ∈ Rn, i.e., n real parameters.

For the purpose of constructing immersed examples, it is important
to answer the following question:

For a pedal surface given in (7.2), when will it be immersed without
any branch point?
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To this end, first notice that (6.1) and (6.18) tell us the information
of x̂z, which takes a simple form as below when g = 0:

(7.3) x̂z = − xz̄ · x
xz · xz̄Q−

Q · x
xz · xz̄ xz̄,

with
Q = xzz − xzz · xz̄

xz · xz̄ xz being the Hopf differential.

As a consequence, when Q = 0, x̂ has a branch point.
In the complement of those umbilic points, since xz �= 0 by the as-

sumption that x is an immersion, x̂z = 0 if and only if xzz ·x = xz ·x = 0
at one point. In general, for a pedal surface x̂ defined in (7.2) (with ref-
erence point x0), p is a branch point of x̂ if and only if

(7.4) xzz · (x− x0) = xz · (x− x0) = 0

holds at the point p.
Now we assert that if x has at most countably many umbilic points on

M , then for almost all x0 ∈ Rn, the pedal surface constructed in (7.2)
is immersed on M . For this purpose, we need to consider the dimension
of the subset

� =
⋃
p∈M

�p, where �p := {v ∈ Rn|x(p)− v ⊥ xz(p), xzz(p)} .

Lemma 7.2. If x has at most countably many umbilic points on M ,
then Rn \� is a dense subset of Rn.

Proof. Let M2 ⊂ M be the set of umbilic points of x and M1 =
M \M2. It is straightforward to see that

dim(�p) = n− 4, if p ∈M1; dim(�p) = n− 2, if p ∈M2.

Hence, ∪p∈M2
�p is measure zero set in Rn since M2 is a countable set.

We define a bundle E over M1 with fiber �p at every point p ∈ M1,
which is a subbundle of x∗TRn|M1

. So dim E = n − 2. Consider the
map ς : E → Rn, ς(vp) = vp for all vp ∈ Ep, p ∈ M1. ς(E) is a measure
zero set in Rn, because E can be the union of countably many compact
subsets. Since � = ς(E) ∪ (∪p∈M2

�p), we see that � is a measure zero
set and Rn\� is dense1 in Rn. q.e.d.

In summary, we have proved

Proposition 7.3. Let x : M → Rn be a superconformal minimal
surface of at most countably many umbilic points. Then for almost all
x0 ∈ Rn, the pedal surface x̂ : M → Rn of x defined in (7.2) has no
branch points on M1.

1This can be proved in another way. First it is direct to see that the image of any
smooth map from an m-dimensional compact manifold to an (m + k)-dimensional
manifold, k ≥ 1, is nowhere dense. See, for example, page 57 of [19]. Since E can be
the union of countable many compact subsets, the statement then follows.
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Since our aim is to produce immersed examples of Willmore two-
spheres using the construction of pedal surfaces as above, we turn to
the final possible source of branch points: the ends of x, i.e., the points
where x tends to ∞ and the Gauss map of x extends meromorphically.

Assume that M = D2 \ {0} with z = 0 being the end of x with its
Gauss map extending meromorphically to z = 0. Although x(M) may
not be able to be extended smoothly to this end when x is viewed as a
surface in Sn, for the pedal surface x̂ this still stays possible. To control
the behavior of x̂ at the end of x such that x̂ has not only a smooth
limit, but also is immersed when viewed as surfaces in Sn, we need to
analyze the Laurent expansion of x and x̂ at z = 0.

Lemma 7.4. Let x : D2 \ {0} → Rn be an superconformal minimal
surface and a full immersion of the punctured disk in Rn with n ≥ 5.
Assume that on D2 \ {0}, x is of the form

(7.5) x = 2Re

⎛⎝v−mz−m + vk−mzk−m +
+∞∑

j>k−m

vjz
j

⎞⎠ ,

where m,k are positive integers, and the coefficient vectors v−m,vk−m

are assumed to be C-linear independent. Then we have

(7.6) x̂ = 2Re

(
k

m

(
vk−m − v̄−m · vk−m

|v−m|2 v−m

)
zk−m + o(|z|k−m)

)
,

for the pedal surface x̂ defined in (7.1). Note that since x̂ is conformal,
we see that〈

vk−m − v̄−m · vk−m

|v−m|2 v−m,vk−m − v̄−m · vk−m

|v−m|2 v−m

〉
= 0,

which, in fact, comes from the superconformality of x.
Moreover, when k−m < 0, x̂ is immersed at z = 0 (after an inversion

in Rn) if only if k−m = −1. When k−m > 0, x̂ is immersed at z = 0
if and only if k − m = 1. When k − m = 0, the effect of adding the
vector v0 is adding a constant plus some quantity in the order o(|z|2),
which can be ignored; then it is reduced to the case k −m > 0.

Proof. By the conformal property xz · xz ≡ 0 there should be v−m ·
v−m = 0 = v−m · vk−m. The rest of this proof is just power series
expansion (with respect to the variables z and z̄), where one needs only
to keep track of the lowest and the second lowest order terms in (7.6).
We omit the details of this straightforward computation except the last
case k−m = 0. This case comes from the fact that if we have x1 = x+x0,
then

x̂1 = x̂+ x0 − x0 · xz̄
xz · xz̄ xz −

x0 · xz
xz · xz̄ xz̄

= x̂+ x0 − v̄−m · x0
|v−m|2 v−m − v−m · x0

|v−m|2 v̄−m + o(|z|2). q.e.d.
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Remark 7.5. We can always assume that the above expansion of
x satisfies v−mj

∦ vkj−mj
. Otherwise, suppose the Laurent series is

v−mj
(z−mj + a1z

1−mj + · · ·+ akj−1z
kj−1−mj ) + vkj−mj

zkj−mj + · · · for
some integer kj ,mj and v−mj

∦ vkj−mj
. We choose a new holomor-

phic coordinate z̃ suitably so that z̃−mj = z−mj + a1z
1−mj + · · · +

ak−1z
kj−1−mj . The local existence of such a z̃ is easy to prove by a

standard argument. Then the Laurent expansion of x(z̃) has the de-
sired form.

Notice that the case k−m = −1 is similar to the flat ends of a minimal
surface discussed by Bryant (on pages 47–48 of [3]). It is easy to show
that around such a flat end, x̂ extends smoothly to an immersed regular
surface in Sn. This can be stated as a more general result as below
whose proof is straightforward. (When k −m < −1, after inversion we
will get a branch point at this end.)

Proposition 7.6. Let x̂ : D2 \ {0} → Rn be a conformally immersed
real analytic surface. Assume that at z = 0 it has the expansion x̂ =
2Re(v1z ) + h(z, z̄) where h(z, z̄) denotes a convergent power series in
(z, z̄) in a small neighborhood of z = 0 and v1 is an non-zero null vector
of Cn. Then I ◦ x̂ extends smoothly to z = 0 where I is an inversion
with respect to an arbitrary hyper-sphere in Rn.

Proof. The proof is basically the same as the proof of Bryant since
the immersion property of I ◦ x̂ at z = 0 is independent of the mini-
mal property of x̂. To show this, first we notice that x̂z = −v1

z2
+ hz.

Choose, for example, I ◦ x̂ = 1
|x̂|2

x̂. Since |x̂|2 = 2|v1|2r−2 +O(r−1) and

|x̂z|2|dz|2 =
(|v1|2r−4 +O(r−2)

) |dz|2 when r = |z| → 0, we have

|(I ◦ x̂)z |2 =
∣∣|x̂|−2x̂z − 2(x̂ · x̂z)|x̂|−4x̂

∣∣2 = |x̂|−4|x̂z|2

=
1

4
(|v1|−2 + o(r)),

when r = |z| → 0. This indicates that I ◦ x̂ can extends smoothly to
z = 0 and stay immersed at z = 0. q.e.d.

We summarize the above conclusions as below. This will be used
later in the construction of Willmore two-spheres in S5.

Theorem 7.7. Let x : M = M \ {p1, · · · , pk} → Rn be a complete
superconformal minimal surface defined on a compact Riemann surface
M with ends {p1, · · · , pk}. Suppose:

1) x is immersed;
2) x has no umbilic points, i.e., xzz ∦ xz for any local complex coor-

dinate z;
3) xzz · x and xz · x never vanish simultaneously at one point;
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4) At each end pj, if we take a coordinate with z(pj) = 0, then x has
the following expansion

x = 2Re

(
v−m

1

zm
+ v

1

z
+O(1)

)
,

or

x = 2Re

(
v−m

1

zm
+ v0 + vz +O(|z|2)

)
,

where m ≥ 2, and v−m,v ∈ Cn are linearly independent over C (thus
both are non-zero).

Then the pedal surface x̂ given by (7.1) extends to the whose M
2
as

a closed Willmore surface conformally immersed in Sn. In particular,
the condition 3) can always be achieved by a re-choice of the pedal point
(the origin).

Remark 7.8. Lemma 7.4 provides a negative answer to a problem
mentioned in the end of the introduction:

If the original Willmore surface is smooth and analytic, can we expect
the adjoint transform being good enough so that the conformal Gauss
map still extends smoothly to those possible singularities?

A counterexample of such a pair of adjoint Willmore surfaces can
be constructed as below using Lemma 7.4. Let x be a superconformal
Euclidean minimal surface, and x̂ its adjoint transform; p is taken to be
the point z = 0 and assume m ≥ 2, k = m− 1. Set

x = 2Re

(
v−m

1

zm
+ v−1

1

z
+O(1)

)
,

x̂ = 2Re

(
(· · · )1

z
+O(1)

)
.

(7.7)

In this example, x̂ has a flat end in Rn which can be compactified
smoothly in Sn with a smooth conformal Gauss map around z = 0 by
Proposition 7.6. On the contrary, for the minimal surface x (which is
also an adjoint transform of x̂), its mean curvature spheres, i.e., those
tangent planes, do not have a limit when z → 0, since x does not have
an asymptotic 2-plane at this end. A standard example is Example 1
of Section 8.1. The minimal surface x in Example 1 has two ends z = 0
and z = ∞. z = 0 is an embedded planar end and z = ∞ is an end
having no asymptotic 2-plane.

This phenomenon shows an interesting difference from the codim-2
case. For a Willmore surface in S4, the adjoint transform is essentially
equivalent to the 2-step Bäcklund transform (which is just a suitable
composition of two 1-step Bäcklund transforms) introduced in [5]. It
has been showed in [24] that the mean curvature sphere congruences of
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1-step Bäcklund transforms always extend smoothly across the possible
branch points.

8. Examples of immersed Willmore two-spheres in S5 and S6

which are not S-Willmore

In this section, we will derive new examples of Willmore two spheres in
S5 and S6 by constructing pedal surfaces from suitable minimal surfaces
in R5 or R6.

The first subsection shows the concrete construction and explicit ex-
pressions of a minimal surface x in R6 together with its adjoint Willmore
surface x̂, where x̂ is an immersion in S6 and it is not S-Willmore. Both
x and x̂ are totally isotropic in S6. x has a branched point at infinity.

In subsection 8.2, we begin from a superconformal minimal surface x
in Rn, which is not totally isotropic and has 3 ends. For its pedal surfaces
to be immersed, one needs n ≥ 6. This way, we obtain a Willmore two-
sphere full in S6, which is not S-Willmore and has non-isotropic Hopf
differential.

In subsection 8.3, we, finally, obtain a Willmore two-sphere x̂ in S5,
which is not S-Willmore and has non-isotropic Hopf differential. It is a
pedal surface of a superconformal minimal surface x in R5, where x has
4 ends.

8.1. Example 1. Below we describe a minimal surface x in R6, together
with one adjoint surface x̂, defined on C using the coordinate z, which
is first derived in [40]:

(8.1) x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i
4 (z − z̄)
−1

4 (z + z̄)
− i

2

(
1
z̄ − 1

z

)
1
2

(
1
z̄ + 1

z

)
i
6

(
z2 − z̄2

)
−1

6

(
z2 + z̄2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(8.2) x̂ =
1

1 + r4

4 + 4r6

9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 + r6

9

)
i
2 (z − z̄)

−
(
1 + r6

9

)
1
2 (z + z̄)(

r2

4 + r4

3

)
i (z̄ − z)(

r2

4 + r4

3

)
(z̄ + z)(

1− r4

12

)
i
2

(
z2 − z̄2

)(
1− r4

12

)
−1
2

(
z2 + z̄2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Obviously, x is a totally isotropic conformal minimal surface. Denote
r2 = |z|2. We compute
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(8.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x · x =
1

r2

(
1 +

r4

4
+

r6

9

)
,

xz · x =
(x · x)z

2
=
−1
2zr2

(
1− r4

4
− 2r6

9

)
,

xzz · x = (xz · x)z = z̄2
(1
9
+

1

r6

)
�= 0,

xz · xz̄ = (xz · x)z̄ =
1

2r4

(
1 +

r4

4
+

4r6

9

)
> 0.

Then it is easy to verify that x̂ is the pedal surface of x with pedal point
0 ∈ R6 using (7.1). In particular, x̂ is also totally isotropic.

The Willmore two-sphere x̂ first appeared in Section 5.3 of [15] by J.
Dorfmeister and P. Wang, as the first example of Willmore two-sphere
in S6 which is not S-Willmore. Using the celebrated DPW method and
a simplest choice of meromorphic potential, they were able to find this
x̂ : C → R6 as an immersed Willmore surface which extends to z = ∞
smoothly in S6. This provided the first example of a Willmore 2-sphere
in Sn which is not S-Willmore. Note that in [15] this example was
represented in S6 and denoted by xλ with λ = 1, where λ ∈ S1 is the
parameter of a loop in the theory of loop groups.

The pair of the adjoint surfaces x and x̂ are derived in the same spirit
via another harmonic map related with Willmore surfaces, which was
discovered by Hélein [18] and Xiang Ma [28] in different approaches.
We refer to [40] for details.

Claim 1. x̂ is an immersion from C ∪ {∞} to S6.

This can be checked directly using (8.2). For x̂ one can find a local
lift, written as a column vector:

(8.4) X̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i (z − z̄)
(
1 + r6

9

)
− (z + z̄)

(
1 + r6

9

)
i (z̄ − z)

(
r2

2 + 2r4

3

)
(z̄ + z)

(
r2

2 + 2r4

3

)
i
(
z2 − z̄2

) (
1− r4

12

)
− (

z2 + z̄2
) (

1− r4

12

)
1− r2 − 3r4

4 + 4r6

9 − r8

36

1 + r2 + 5r4

4 + 4r6

9 + r8

36

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Computation shows

1

2
〈X̂z , X̂z̄〉 = 1 + 4r2 +

r4

4
+

2r6

9
+

4r8

9
+

r10

36
+

r12

81
> 0.



272 X. MA, C. WANG & P. WANG

Hence,

ŷ =
1

x8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1

1 + r2 + 5r4

4 + 4r6

9 + r8

36

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
gives a conformal immersion of C into S6(1). Take a new coordinate
z̃ = 1/z at z =∞. The induced metric of ŷ is

〈ŷz, ŷz̄〉|dz|2 ∼= 362

r16
〈X̂z, X̂z̄〉|dz|2 ∼= 32

|dz|2
r4

= 32|dz̃|2.

So y extends to be an immersion C ∪ {∞} → S6.
Alternatively, we can verify this claim using Theorem 7.7. The con-

ditions (1)–(3) hold true on C \ {0} by (8.3). As to condition (4), x
has the desired form at both ends. In view of Lemma 7.4, here m = 1,
k−m = 1 at z = 0, and m̃ = 2, k̃− m̃ = −1 at z̃ = 1

z = 0 (i.e., z =∞).
Then our claim follows.

Claim 2. x̂ is not S-Willmore.

In [15], this was a part of Theorem 5.12, which follows from Theo-
rem 3.10 and Corollary 3.13 in that paper, and depended on the fact
that the corresponding normalized potential B̂1 has rank 2.

Here we need only to check that the subspace spanned by frame
vectors

{X̂, X̂z , X̂z̄, X̂zz̄, X̂zz, X̂zzz̄}
has dimension 6, i.e., the corresponding matrix is of full rank, when
z = 0. Using (8.4) which is itself a vector-valued polynomial, we check
that this matrix at z = 0 is given by

(X̂, X̂z, X̂z̄ , X̂zz̄, X̂zz, X̂zzz̄)|z=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i −i 0 0 0
0 −1 −1 0 0 0
0 0 0 0 0 −i
0 0 0 0 0 1
0 0 0 0 2i 0
0 0 0 0 −2 0
1 0 0 −1 0 0
1 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The rank is 6. Thus the Hopf differential of x̂, denoted by κ̂, is linearly
independent to D̂z̄κ̂, at least in a neighborhood of z = 0. By the real
analytical property of Willmore surfaces, x̂ is not S-Willmore in an open
dense subset. Claim 2 is proved.
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8.2. Example 2. To find more examples of Willmore two-spheres which
are not S-Willmore, we have reduced the problem to constructing su-
perconformal minimal surfaces in Rn using rational functions on C. The
general procedure is prescribing the number of ends and the end behav-
ior, then solving the coefficient vectors so that x satisfies

(8.5) xz · xz = xzz · xzz = 0.

This amounts to solving an algebraic equation system. When the num-
ber of ends is small, usually we find only trivial solutions, corresponding
to totally isotropic examples which exist only in even-dimensional space.

Here we try to construct a superconformal minimal surface x in Rn

with genus 0 and three ends, satisfying the formula (7.7). It is always
possible to assign these three ends at z = 0, 1,∞ (up to a suitable
fraction linear transformation on C). The simplest candidate surfaces
are of the form

(8.6) xz =
u3

z3
+

u2

z2
+

v3

(z − 1)3
+

v2

(z − 1)2
+w2 +w3z.

For these surfaces, we have the following result.

Proposition 8.1. There exists a conformal minimal surface x in
Rn, n ≥ 6, defined by (8.6) on the complex plane, which is supposed
to be superconformal (1-isotropic) but not 2-isotropic, i.e., xzz · xzz ≡
0, xzzz · xzzz �≡ 0. Moreover, we have the following conclusions.

1) All such examples lie in a unique associated family of minimal sur-
faces in an affine subspace Rm (up to rigid motions and dilations),
6 ≤ m ≤ 12.

2) It has an adjoint surface x̂ which extends to be an immersed Will-
more 2-sphere in Sm. x̂ is not superconformal.

Remark 8.2. Although this example cannot be contained in R5 as
we originally expected, compared with Example 1, this is the new type
of examples (NOT totally isotropic) as predicted in [15] (see their dis-
cussions in Section 5.3).

Proof. It follows from (8.6) that

(8.7) xzz =
−3u3

z4
+
−2u2

z3
+

−3v3

(z − 1)4
+

−2v2

(z − 1)3
+w3.

As usual, the conformal condition xz · xz ≡ 0 immediately implies

(8.8) 0 = ujuk = vjvk = wjwk, 1 ≤ j, k ≤ 2.

Note that ujuk stands for the C-linear extension of the Euclidean in-
ner product between uj and uk; the dot · is omitted. The 1-isotropic
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condition 0 ≡ xzz · xzz = f(z)
z4(z−1)4

then implies

0 = f(z) = 9u3v3 + 6u3v2(z − 1) + 6u2v3z + 4u2v2z(z − 1)

− 3u3w3(z − 1)4 − 2u2w3z(z − 1)4 − 3v3w3z
4 − 2v2w3z

4(z − 1).

The coefficients must all vanish. Solving this linear equation system is
easy: depending on two arbitrary complex parameters a, b, the solutions
are

(8.9)

u2w3 = u3w3 = v3w3 = −v2w3 = a,

u2v2 =
5

2
a, u3v2 = −u2v3 = b, u3v3 =

2

3
b+

1

3
a.

Inserting (8.6) into xz · xz ≡ 0 and using (8.8), (8.9), similarly, we find
(8.10)

b = −2a, and u2w2 = −a

2
, u3w2 = a, v3w2 = −2a, v2w2 =

a

2
.

Denote (e1, · · · , e6) = (u3,u2,v3,v2,w3,w2). Then the inner product
matrix is given by

(8.11) A6×6 = (eiej) = a ·

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 −1 −2 1 1
0 0 2 5/2 1 −1/2
−1 2 0 0 1 −2
−2 5/2 0 0 −1 1/2
1 1 1 −1 0 0
1 −1/2 −2 1/2 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since we have assumed that x is not totally isotropic, a �= 0. Without
loss of generality, we may assume a = 1. (Any other solution xa is
one member in the associated family of this minimal surface x up to a
dilation.)

To find out x we have to find a 6 × n matrix B6×n consisting of the
row vectors {ei} so that

BB� = A,

where A6×6 is given as above. It is easy to verify rank(A) = 6. Because
A is a non-singular symmetric real matrix, there exists a 6×n matrix B
such that B ·B� = A if and only if n ≥ 6. Suppose this is the case, then
corresponding row vectors {u3,u2,v3,v2,w3,w2} span a 6-dimensional
complex subspace C6. Any other solution B′ differs from the previous
B by B′ = BP where P ∈ O(n,C) is an orthogonal matrix.

Moreover, since A is real symmetric non-singular matrix, the eigen-
values of A are all non-zero real numbers (indeed, the signature is
(3, 3)), and all eigenvectors are real. This guarantees that it is pos-
sible that the real and imaginary parts of {u3,u2,v3,v2,w3,w2} span
an m-dimensional real subspace Rm, for some m, 6 ≤ m ≤ 12. In-
serting them into (8.6) and taking integration, we know x is located in
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an m-dimensional affine subspace. This finishes the proof to the first
conclusion.

The second conclusion follows immediately by taking a pedal surface
with a suitable chosen pedal point and using Theorem 7.7. By construc-
tion this is a 1-isotropic but not totally isotropic surface in Rm. We can
verify the conditions of Theorem 7.7 for x one by one:

1) It is an immersion since xz never vanishes at any point by (8.6)
and the linear independence of {u3,u2,v3,v2,w3,w2}.

2) xzz is always linearly independent to xz by using (8.6) and (8.7).
3) This condition is satisfied for generic choice of x0.
4) Its end behavior is as desired.

This completes the proof. q.e.d.

8.3. Example 3. This subsection aims to derive a superconformal min-
imal surface with it ends satisfying the conditions of Theorem 7.7, which
indicates that Case 3 of the classification Theorem 1.2 does occur.

To be concrete, using the same idea as the previous section, we will
construct a 1-isotropic minimal surface defined on

C ∪ {∞} \ {0, ε1, ε2, ε3}, where εk = e2kπi/3, k = 1, 2, 3.

Set E1 = (1, i, 0, 0, 0)t , E2 = (0, 0, 1, i, 0)t , e5 = (0, 0, 0, 0, 1)t , and

x = x0 + 2Re

[
1 + 32z3

2(z3 − 1)2z2
E1 +

1− 2z3

12(z3 − 1)2
Ē1

+
8z − 5z4

(z3 − 1)2
E2 − 1

6(z3 − 1)2
Ē2 −

√
30z2

2(z3 − 1)2
e5

]
.

(8.12)

We have that xz =
Φ

(z3−1)3z3
, with

Φ =(1− 20z3 − 80z6)E1 +
z8

2
Ē1

− (8z3 + 20z6 − 10z9)E2 + z5Ē2 +
√
30(z4 + 2z7)e5,

(8.13)

and

Φz =(−60z2 − 480z5)E1 + 4z7Ē1

− (24z2 + 120z5 − 90z8)E2 + 5z4Ē2 +
√
30(4z3 + 14z6)e5.

It is easy to see that x is an immersed minimal surface on C\{0, ε1, ε2, ε3}.
From the coefficients of Ē1 and Ē2 we see that Φ and Φz are linear inde-
pendent on C\{0}. Hence, x has no umbilic points on C\{0, ε1, ε2, ε3}.

It is straightforward to compute out the coefficient vectors{
a3 =

(z − ε1)
3Φ

(z3 − 1)3z3
|z=ε1 ,a2 =

(
(z − ε1)

3Φ

(z3 − 1)3z3

)
z

|z=ε1

}
,{

b3 =
(z − ε2)

3Φ

(z3 − 1)3z3
|z=ε2 ,b2 =

(
(z − ε2)

3Φ

(z3 − 1)3z3

)
z

|z=ε2

}
,
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c3 =

(z − ε3)
3Φ

(z3 − 1)3z3
|z=ε3 , c2 =

(
(z − ε3)

3Φ

(z3 − 1)3z3

)
z

|z=ε3

}
,

and verify that each pair of them are linearly independent to each other.
On the other hand, at the end z = 0, using (8.13) we see xz = − 1

z3
E1+

17E1 + 8E2 + o(1).
Thus the conditions of Theorem 7.7 are satisfied, except that x has

a branch point of order 1 at z = ∞. Taking a pedal surface x̂ with a
suitable choice of the pedal point x0, we get a desirable example if only
we can check that x̂ is still immersed at z =∞.

This final step is easy. Taking a new coordinate w = 1/z, we read
from (8.13) that

xw =
10w

(w3 − 1)3
E2 +

w2

2(w3 − 1)3
Ē1 + · · · = −10wE2 − w2

2
Ē1 + o(w2),

in a neighborhood of w = 0. We compute the Hopf differential Q (with
respect to this coordinate w) using this formula and (7.3) as below:

xww = −10E2−wĒ1+ o(w), Q = xww− xww · xw̄
xw · xw̄ xw =

−w
2

Ē1+ o(|w|).

Substituting these into (7.3) we obtain

x̂w = − xw̄ · x
xw · xw̄Q− Q · x

xw · xw̄ xw̄

=
−1
40

[(
Ē2 · x(0)

)
Ē1 +

(
Ē1 · x(0)

)
Ē2

]
+ o(|w|).

Similar to the discussion of Section 7, it is easy to make a choice of
the pedal point x0 so that when w = 0, x(0) is not parallel to e5 =
(0, 0, 0, 0, 1)t . Then x̂ is also immersed when w = 0, i.e., z = 1/w =∞.
We state the conclusion as below.

Proposition 8.3. There exists an adjoint surface x̂ of the minimal
surface x in (8.12), such that by conformally embedding R5 into S5, x̂
becomes a global immersion from S2 into S5. Moreover, x̂ is neither
superconformal nor S-Willmore (by Proposition 4.1).

With this example, we see that Case 3 of the classification Theo-
rem 1.2 does occur.

Remark 8.4. The basic idea to construct x are as follows. First, we
see from (8.13) that Φ = Φ(z) =

∑10
j=0 vjz

j should be a vector-valued
polynomial of degree no more than 10. The vanishing of all residues is
equivalent to

(8.14) v6 = 20v0 + 5v3 + 2v9, v7 = 14v1 + 2v4 + 5v10.

Together with the isotropic conditions xz · xz = 0 = xzz · xzz, we obtain
a system of linear equations on the coefficients of the inner products
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λjk = vj · vk, which can be solved using Maple. The general solutions
depend on 6 parameters. If we put the Ansatz

(8.15) λj,10 = 0, ∀ j; λ08 = 1,

then almost all coefficients vanish except

(8.16) λ08 = 1, λ35 = −16, λ38 = −20, λ44 = 30, λ59 = 20.

Substitute these into (λjk)
11×11 and use (8.14). The result is a matrix of

rank 5, which can be realized as inner products λjk = vjvk for vectors
vj in a 5-dimensional space. The example then follows by suitable choice
of vj as above.

Appendix A.

One crucial step in our proof of the classification theorem is that:
A holomorphic sub-bundle spanned by some sections is still well-

defined at the possible singularities where these sections are no longer
linear independent if some suitable conditions are satisfied.

This depends on the following well-known result.

Lemma A.1. [11] Let {ψi(z), i = 1, · · · ,m} be complex-valued func-
tions which satisfy the differential system

∂ψi

∂z̄
=
∑
j

aijψj , 1 ≤ i, j ≤ m,

in a neighborhood of z = 0, where {aij} are complex-valued C1-functions.
Suppose the functions {ψi(z)} do not vanish identically in a neighbor-
hood of z = 0. Then

1) The common zeros of {ψi, i = 1, · · · ,m} are isolated;
2) At a common zero of {ψi}, the ratio [ψ1 : · · · : ψm] tends to a

limit.

By Chern’s lemma we can prove the following result used in the proof
of the main theorem.

Lemma A.2. Given a holomorphic vector bundle V of rank-m over
a connected Riemann surface M with a ∂̄-operator. Let ψ be a section
such that ∂̄2ψ = λψ everywhere for a C1 function λ. We also suppose
that ψ is non-zero on an open dense subset of M . Then the holomorphic
sub-bundle U = SpanC{ψ, ∂̄ψ} is well defined on the whole Riemann
surface.

Proof. By the assumption, ψ ∧ ∂̄ψ is a holomorphic section of the
associated bundle ∧2V . Therefore, either ∂̄ψ, ψ are always linearly de-
pendent, or they depend on each other only at several isolated points
of M .
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In the first case, U = SpanC{ψ, ∂̄ψ} is defined with rank-1 on the
subset where either ψ or ∂̄ψ is non-zero. The possible exceptional points
are the common zeros of {ψ, ∂̄ψ}.

In the second case, U is defined with rank-2 almost everywhere on
M . The possible exceptions are those isolated zeros of ψ ∧ ∂̄ψ (with
finite order).

We will show that any possible singularity p is isolated in either case,
and U extends continuously to be defined at p.

For this purpose, notice that we always take a small neighborhood
Ωp of p such that V has a local trivialization Ωp × Cm (which is a
holomorphic equivalence). With respect to this trivialization above,
denote

ψ = (ψ1, · · · , ψm), ∂̄ψ = (ψm+1, · · · , ψ2m).

By assumption we have

∂ψi

∂z̄
= ψm+i,

∂ψm+i

∂z̄
= λψi, i = 1, · · · ,m.

In the first case, by Lemma A.1, the common zeros of ψ, ∂̄ψ are
isolated, which are the only possible exceptional points. Take such
a point p as a common zero of {ψ1(z), · · · , ψ2m(z)}. By the second
conclusion of Lemma A.1, the ratio [ψ1 : · · · : ψm : ψm+1 : ψ2m] has
a well-defined limit [c1 : · · · : cm : cm+1 : c2m] ∈ CP 2m−1. Either
(c1, · · · , cm) or (cm+1, · · · , c2m) is a non-zero vector in Cm. If both of
them are non-zero, then as the limit of parallel vectors, they are also
parallel. This provides the desired extension of the line sub-bundle to p.

In the second case, let p be an isolated zero (of order k > 0) of ψ∧ ∂̄ψ
and suppose the local coordinate is taken so that z(p) = 0. With respect
to a basis {v1, · · · , vm} of Cm, we may write

ψ ∧ ∂̄ψ = zk ·
∑

cijvi ∧ vj , (1 < i < j < m),

in a neighborhood of z = 0, where {cij} are holomorphic functions, and
at least one of them is non-zero at z = 0. These coefficients are exactly
the classical Plücker coordinates

[zkc12 : · · · : zkcij : · · · ] = [c12 : · · · : cij : · · · ],
of the corresponding subspace U in ∧2Cm. This also gives the Plücker
embedding of the Grassmannian Gr(2,Cm) into CPm(m−1)/2−1 as a
closed submanifold. Thus it is obvious that ψ ∧ ∂̄ψ can be extended
continuously to the isolated singularity p. q.e.d.
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