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POSITIVE RICCI CURVATURE ON HIGHLY

CONNECTED MANIFOLDS

Diarmuid Crowley & David J. Wraith

Abstract

For k ≥ 2, let M4k−1 be a closed (2k−2)-connected manifold.
If k ≡ 1 mod 4 assume further that M is (2k−1)-parallelisable.
Then there is a homotopy sphere Σ4k−1 such that M�Σ admits a
Ricci positive metric. This follows from a new description of these
manifolds as the boundaries of explicit plumbings.

1. Introduction

The results of this paper arise from a synthesis of ideas coming from
Geometric Topology on the one hand and Riemannian Geometry on the
other. We present our main results in Section 1.1 below. In order to
place these results in the correct context, in Section 1.2 we carefully
outline the geometric background from which the questions we address
in this paper have emerged.

In this paper all manifolds will be smooth, oriented, connected and
compact (unless stated otherwise), and all Riemannian metrics will be
complete.

1.1. Main results. Understanding the implications of curvature hav-
ing a definite sign is a fundamental problem in Riemannian Geometry.
We can ask about the topological implications for a manifold if it ad-
mits a metric satisfying such a curvature assumption, or conversely ask
whether it is possible to deduce from a set of topological data whether
or not such a metric exists. In some situations, including positive Ricci
curvature, we suffer from a lack of examples. Thus a basic and difficult
task is to look for methods which are capable of generating new metrics
on new manifolds.

The primary aim of this paper is to greatly extend the collection of
examples of closed manifolds M known to admit metrics of positive
Ricci curvature. We achieve this by topological means, with the geo-
metric input coming from a result of the second author (see Theorem
1.1 below). The manifolds in question are so called ‘highly connected
manifolds’. We shall call a manifold highly connected if it has dimension
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2n or 2n+1 and is (n− 1)-connected. Such manifolds were studied ex-
tensively from a topological point-of-view in the 1950s, 1960s and 1970s
by Smale, Kervaire and Milnor, Wall and others (see, for example, [Sm],
[K-M], [Wall1], [Wall4], [Wi2]). Despite their topological simplicity,
highly-connected manifolds constitute a rich class of manifolds. As an
illustration of this fact note that in every dimension n = 4k−1 ≥ 7, ev-
ery finitely generated abelian group can arise as the integral cohomology
group H2k(M) of such a manifold.

The group of diffeomorphism classes of homotopy n-spheres, Θn, de-
fines a very special class of highly connected manifolds. Homotopy n-
spheres are manifolds Σn which have the homotopy type of the standard
sphere Sn. For n ≥ 5 Kervaire and Milnor showed that Θn is finite. In
fact it was the study of highly connected manifolds which led Milnor to
the discovery of exotic spheres in the 1950s.

As a result of the techniques we use, we will be particularly interested
in highly connected manifolds in dimensions 4k− 1 ≥ 7, and in order to
make the topology a little more tractable we further assume that these
manifolds are (2k−1)-parallelisable: something which is automatic un-
less k ≡ 1 mod 4. (A manifold is said to be j-parallelisable if the tangent
bundle restricted to some j-skeleton is trivial.) Even though these man-
ifolds have been studied intensively from the topological point of view,
to the best of our knowledge much less is known about these manifolds
from a geometric perspective. Our first main theorem addresses this
issue.

Theorem A. Let k ≥ 2, and let M4k−1 be a (2k−2)-connected man-
ifold. If k ≡ 1 mod 4 assume further that M is (2k−1)-parallelisable.
Then there is a homotopy sphere Σ4k−1 such that M�Σ admits a metric
of positive Ricci curvature.

From the refined version of Theorem A, Theorem A′ below, we obtain
the following special cases:

Theorem B. All 2-connected 7-manifolds and all 4-connected 11-
manifolds admit Ricci positive metrics.

We can give a more precise reformulation of Theorem A using the
language of bordism. Let BO〈2k〉 → BO be the (2k−1)-connected cover
of the classifying space BO: for example BO〈2〉 = BSO and BO〈4〉 =

BSpin. There are associated bordism groups, denoted Ω
O〈2k−1〉
∗ ; see

Section 5.1. If M4k−1 as above is (2k−1) parallelisable then M admits
a lift of its stable normal bundle to a map M → BO〈2k〉, unique up to
equivalence, and hence M defines an bordism class

[M ] ∈ Ω
O〈2k−1〉
4k−1 .

In particular, every homotopy (4k−1)-sphere Σ defines such a bordism
class [Σ], and there is an induced homomorphism
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Θ4k−1 → Ω
O〈2k−1〉
4k−1 , Σ �→ [Σ],

which is onto; see Theorem 5.2. We also recall that in dimensions
4k−1 ≥ 7, Brumfiel [Bru1] defined for each homotopy sphere Σ, an
invariant f(Σ) ∈ bP4k, where bP4k is the group of homotopy (4k−1)-
spheres bounding parallelisable manifolds; see Theorem 5.1. We can
now reformulate and refine Theorem A:

Theorem A′. Let k ≥ 2 and let M4k−1 be a closed (2k−2)-connected

manifold which is (2k−1)-parallelisable. If [M ] = 0 ∈ Ω
O〈2k−1〉
4k−1 , then M

admits a metric of positive Ricci curvature. Moreover if [M ] 	= 0 ∈

Ω
O〈2k−1〉
4k−1 , then there is a homotopy sphere Σ with vanishing Brumfiel

invariant f(Σ) such that [M�Σ] = 0 ∈ Ω
O〈2k−1〉
4k−1 .

So far, two important technical difficulties have arisen in trying to
construct positive Ricci curvature metrics on highly connected mani-
folds. Topologically these objects decompose in a natural way into a
connected sum of indecomposable pieces. The first problem arises from
the connected sum construction: in general, positive Ricci curvature
cannot be extended across such sums. The second problem is the more
subtle issue of dealing with the torsion linking form on middle dimen-
sional cohomology for each of the indecomposable pieces. For the mani-
folds under consideration we manage to resolve both of these problems.

The key to proving the above theorems is a new topological descrip-
tion of highly connected manifolds, which involves a construction tech-
nique known as ‘plumbing’. This is a classic technique which goes back
(at least) to Milnor in 1958 [Mi1]. It involves the gluing together of
collections of disc bundles. (We give a full description of this technique
in Section 2.) The classic plumbing scenario involves plumbing disc
bundles with fibre Dj over spheres Sj . The relevance of plumbing to
questions of positive Ricci curvature is given by the following theorem:

Theorem 1.1 ([Wr1]). The boundary of any simply-connected
plumbing of n-disc bundles (n ≥ 3) over Sn admits a metric of pos-
itive Ricci curvature.

In the light of the above theorem, it is reasonable to ask which man-
ifolds can arise as the boundary of a simply-connected manifold con-
structed by plumbing collections of Dj-bundles over Sj. For example,
it was shown in [Wr1] that all exotic spheres which bound a paral-
lelisable manifold arise in this way. Our next main result provides a
complete answer to this question when j = 2k ≥ 4:

Theorem C. For k ≥ 2, the set of manifolds which arise as bound-
aries of simply-connected manifolds constructed by plumbing collections
of D2k-bundles over S2k coincides with the set of boundaries of handle-
bodies constructed by adding 2k-handles to D4k. Moreover, for every
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(2k−2)-connected manifold M4k−1 which is (2k−1)-parallelisable, there
is a homotopy sphere Σ4k−1 with f(Σ) = 0 such that M�Σ belongs to
this class.

It is clear that Theorem A follows immediately by combining The-
orem C with Theorem 1.1. The reformulation Theorem A′ is proven
by combining Theorem 5.2 and Theorem 1.1. Theorem B follows from
Theorem 1.1 by showing that in dimensions 7 and 11, all highly con-
nected manifolds are boundaries of simply-connected plumbings. (This
is Corollary 5.4.)

In order to prove Theorem C, we employ the following strategy. We
first show that for any (2k−2)-connected (2k−1)-parallelisable (4k−1)-
manifold M, there is a homotopy sphere Σ for which M�Σ is the bound-
ary of a handlebody which comprises some number of 2k-handles added
to D4k. (This is Theorem 5.2 (2).) We then show that the set of bound-
aries of such handlebodies coincides with the set of boundaries of simply-
connected plumbings involving D2k-bundles over S2k (Theorem 5.2 (3)).
Establishing this last step turns out to be the major task in this paper.
The problem easily reduces to the special case of handlebody bound-
aries which are rational homotopy spheres. These in turn are classified
up to almost diffeomorphism (that is, up to connected sum with a ho-
motopy sphere) by their ‘extended quadratic linking form’ in Theorem
5.9. (Extended quadratic linking forms are introduced and discussed
from an algebraic perspective in Section 3.2, and the way in which they
arise in a topological context is explained in Section 5.2.) It then suf-
fices to show that all extended quadratic linking forms can be realised
by boundaries of simply-connected plumbings of D2k-bundles over S2k.
In order to do this we observe that any such linking form can be ex-
pressed as a sum of indecomposables. In Section 6 we show that each
of the three families of indecomposables can be realised by the bound-
ary of a simply-connected plumbing of the required type. As a sum of
indecomposables corresponds topologically to a connected sum of the
plumbing boundaries, it remains to show that such a connected sum
can be realised as the boundary of a single plumbing (see Theorems 2.4
or 4.4).

This last point is perhaps of independent interest. In dimension 3,
it was already known that the connected sum of the boundaries of
plumbings was again the boundary of a plumbing: this is implicit in
early work of Waldhausen [Wald], and appears explicitly in work of
Neumann [Ne, Proposition 2.1]. Theorem 2.4 extends this result to
higher dimensions, providing general conditions under which a family
of plumbing boundaries is closed under the connected sum operation.
From a topological point of view the connected sum operation is basic
for constructing new manifolds from old. Moreover, from a geometric
perspective, there is the hope that Theorem 2.4, when combined with
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suitable adaptations of Theorem 1.1 could be used to establish even
wider families of Ricci positive examples. For further discussion, see
Section 1.2 below. Note that the proof of Theorem 2.4 is by explicit
construction.

Although we are primarily concerned with manifolds of dimension
4k−1 in this paper, we can also use our approach to say something
about dimensions 4k+1 (see Section 7.1):

Theorem D. When k ≥ 1, for every (2k−1)-connected manifold
M4k+1 which is 2k-parallelisable and has torsion-free (integer coeffi-
cient) cohomology, there is a homotopy sphere Σ4k+1 such that M�Σ
admits a metric of positive Ricci curvature.

This paper is laid out as follows. After sketching the relevant geo-
metric background to our results in 1.2, we turn our attention to the
plumbing construction in Section 2, paying special attention to creat-
ing connected sums via this technique. Section 3 is a purely algebraic
section in which we study extended quadratic forms and extended qua-
dratic linking forms. These algebraic objects arise as topological in-
variants of the (4k−1)-dimensional manifolds we consider (in the case
of extended quadratic linking forms) and of 4k-dimensional bounding
manifolds (extended quadratic forms). Topologically there is a close re-
lationship between the linking form on the boundary and the quadratic
form on the bounding manifold. Mirroring this, there is a purely al-
gebraic ‘boundary’ construction which we describe in Section 3.3. We
also introduce ‘treelike’ forms (in Section 3.4) which are the extended
quadratic forms that arise from simply-connected plumbings. In Sec-
tion 4 we discuss handlebodies, especially those which consist of some
number of 2k-handles added to D4k. We describe Wall’s classification of
this family of handlebodies, and point out the connection with plumbing
manifolds.

In Section 5 we consider (2k−1)-parallelisable (2k−2)-connected
(4k−1)-manifoldsM and state our main topological result, Theorem 5.2,
which is a more detailed version of Theorem C. The proof of Theorem 5.2
is based on the classification of (2k−1)-parallelisable (2k−2)-connected
(4k−1)-manifolds which are rational homotopy spheres, Theorem 5.9,
which is due to Wall and the first author. The results in Section 5 re-
duce the proof of Theorem C to showing that every quadratic linking
form on a finite abelian group can be presented as the ‘algebraic bound-
ary’ of an even symmetric bilinear treelike form. The novelty here is
the word ‘treelike’, since Wall [Wall2] has proven this fact for general
even symmetric bilinear forms. We prove this algebraic result in Section
6. This means that after the connected sum with a homotopy sphere,
every (2k−1)-parallelisable (2k−2)-connected (4k−1)-manifold can be
presented as the boundary of an explicit simply-connected plumbing
manifold.
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In Section 7 we consider treelike plumbings of dimensions 4k+2 and
prove Theorem D. We also briefly discuss treelike plumbings in dimen-
sion 4. Finally, Section 8 is a purely algebraic section, where we discuss
an algebraic consequence of our work, Theorem 8.1, which shows that
treelike forms are in the appropriate sense, generic amongst even sym-
metric bilinear forms.
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1.2. Geometric background. We begin this section with a few words
about curvature for the benefit of readers whose background is not in
Riemannian Geometry. For a more detailed summary of this issue, see
[J-W] and the references therein.

Any Riemannian manifold admits a wide range of Riemannian met-
rics – inner products on each of the tangent spaces which vary smoothly
across the manifold. Each such metric endows the manifold with geom-
etry, and in particular with curvature. As we will explain in more detail
later, we are primarily interested in forms of positive curvature: this is
special insofar as it is somewhat rare. There are three main measures
of curvature: the sectional curvature, the Ricci curvature and the scalar
curvature. The sectional curvature, which is a smooth real-valued func-
tion on the set of tangent 2-planes, is the strongest of the three measures
of curvature. However, the main geometric focus of this paper is on the
Ricci curvature. Loosely speaking, this can be viewed as ‘curvature at
a given point in a given tangent direction’: indeed the Ricci curvature
(precisely, the Ricci curvature of unit tangent vectors) is an average of
sectional curvatures over tangent planes containing the given direction.
In contrast, the scalar curvature is a smooth function on the manifold
– in fact an average of Ricci curvatures – whose value at any point
represents an overall measure of the curvature in an arbitrarily small
neighbourhood of that point.

Despite the weakness of the scalar curvature, positive scalar curvature
has profound topological implications. In fact our understanding of
these topological implications is increasingly complete: see, for example,
[Ro] for a survey of recent results. An early landmark in this area was a
theorem of Gromov and Lawson [G-L] (proved independently by Schoen
and Yau [Sc-Y]). This asserts that if a manifold M admits a positive
scalar curvature metric, any manifold constructed from M via a surgery
of codimension at least 3 will also admit a positive scalar curvature
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metric. (Note that the codimension 3 condition here is sharp.) This
result led to a rapid development of our understanding of the topology
of positive scalar curvature manifolds, and perhaps most famously to the
classification of simply-connected positive scalar curvature manifolds in
dimensions at least 5: see [Stz2].

Given the success of surgery results for positive scalar curvature, it is
reasonable to ask if similar results hold for other curvature conditions.
Unfortunately there is no hope of proving such results for positive sec-
tional curvature, as this curvature condition is simply too rigid to be
amenable to this kind of topological modification. To date, all existence
results for positive sectional curvature have arisen through the exploita-
tion of symmetry. Roughly speaking, given a manifold which admits an
effective Lie group action which in some sense is ‘large’, we might hope
to use this symmetry group to reduce the problem of finding positive
sectional curvature metrics to a problem which could be tractable. In
practice this is not so easy, and progress has been slow. As a stark
illustration, the only simply-connected manifolds in dimensions greater
than 24 known to admit positive sectional curvature metrics are rank-
one symmetric spaces, see, for example, [Z].

Sitting between positive sectional and positive scalar curvature, one
might hope to exploit both symmetry-based and surgery-based tech-
niques to investigate the existence of metrics with positive Ricci cur-
vature. Indeed both approaches have proved effective. For instance,
taking a symmetry-based approach it has been possible to prove that
all compact homogeneous spaces ([Be]) and all compact cohomogeneity
one spaces ([G-Z]) admit Ricci positive metrics if and only if the funda-
mental group is finite. More recently, families of Ricci positive manifolds
have been constructed in higher cohomogeneities ([B-W], etc.) See also
[S-W] for a new approach to finding Ricci positive manifolds with sym-
metry. On the topological side, one of the earliest major results about
the existence of Ricci positive metrics was due to Nash [Na], who showed
that a compact fibre-bundle will admit a Ricci positive metric if both
its base and fibre admit such metrics, and the structural group is a Lie
group which acts by isometries on the fibre. As an immediate corollary,
we see that many exotic spheres in dimensions 7 and 15 admit Ricci
positive metrics.

There are surgery results for positive Ricci curvature, which, while
more limited than their counterparts in positive scalar curvature, are
nonetheless strong enough to have proved useful in various situations.
(The basic difference between the two kinds of surgery results is that
for positive Ricci curvature we need to make some assumption about
the form of the metric in a neighbourhood of the surgery, whereas for
positive scalar curvature a codimension condition suffices.) The first
major result proved using Ricci positive surgery was due to Sha and
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Yang [S-Y]: they proved that for n,m ≥ 2, any connected sum �ki=1S
n×

Sm admits a Ricci positive metric. This was significant since it showed
that an upper bound on Betti numbers proved by Gromov for manifolds
with a lower sectional curvature bound fails to hold in a Ricci positive
context. (See also [B-G3] where some of the Sha–Yang examples are
shown to admit Ricci positivity using Sasakian geometry.) This result
was extended in [Wr3], where connected sums between products of
pairs of spheres with possibly differing factor dimensions were shown to
admit Ricci positive metrics. It is interesting to note that the problem of
whether general connected sums between products of spheres involving
more than two factors is completely open, and similarly for connected
sums between products of other Ricci positive manifolds. The connected
sum operation is basic in topology, and as a result it would be good to
understand the extent to which Ricci positive (or other kinds of metric)
can be extended across connected sums. Unfortunately, the connected
sum is not so natural for positive Ricci curvature. It follows from Myers’
Theorem [My] that a connected sum between two non-simply connected
manifolds cannot admit a Ricci positive metric, even if the individual
manifolds are Ricci positive, since the resulting fundamental group must
be infinite by the Seifert–Van Kampen theorem. On the other hand,
it is an open question whether a connected sum between two simply-
connected Ricci positive manifolds admits such a metric.

A further major application of Ricci positive surgery is in the study of
exotic spheres. In [Wr2], a Ricci positive surgery theorem was proved
which is applicable to surgeries using any trivialization of the normal
bundle. (This was not the case for the Sha–Yang surgery result.) In
[Wr1] this enhanced surgery result was crucial in establishing that all
exotic spheres which bound parallelisable manifolds admit Ricci pos-
itive metrics. (This result was subsequently re-proved using Sasakian
geometry in [B-G-N].) This is a large family of exotic spheres, with the
number of examples growing more than exponentially with dimension.
The same surgery techniques also show that a number of exotic spheres
which do not bound a parallelisable manifold also admit such metrics.
However, to put this in context, it was shown by Hitchin [Hit] that
there are exotic spheres in dimensions 1 and 2 modulo 8 (beginning in
dimension 9) which admit no metric of positive scalar curvature. Such
manifolds clearly cannot support positive Ricci curvature! These exotic
spheres do not bound any parallelisable manifold, and it is open ques-
tion which exotic spheres in this category admit or do not admit Ricci
positive metrics. For a survey on the curvature of exotic spheres, see
[J-W].

It is philosophically reasonable to wonder – especially based on the
initial examples one learns – if topological simplicity in some sense might
facilitate the existence of Ricci positive metrics. However, the above
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examples of Hitchin’s ‘bad’ exotic spheres show that one should be cau-
tious. These are clearly simple from the point of view of continuous
topology, even if they remain somewhat mysterious from the point of
view of smooth topology. Further caution still is required in dimensions
n = 4k: there is for example a Bott manifold B8, a highly connected
manifold with Â(B8) = 1, which has the property that neither B8 nor
B8�Σ admit positive scalar curvature, where Σ is the unique exotic 8-
sphere. (In contrast, Σ admits positive Ricci curvature, see [Wr1] page
645.)

Even though they form a rich class of examples, highly connected
manifolds are by definition topologically simple. So it is tempting in
the light of Theorems A and D to conjecture that every highly con-
nected manifold which admits a positive scalar curvature metric also
admits a Ricci positive metric. Indeed, while there is no known ob-
struction to positive scalar curvature manifolds with finite fundamental
group admitting positive Ricci curvature, see [Wei, Section 6], there is
a conjecture of Stolz [Stz1, Conjecture 1.1], and independently Höhn,
a special case of which we now state:

If M4k is a highly connected manifold with k > 2 which admits a
metric with positive Ricci curvature, then the Witten genus of M van-
ishes.

Here the Witten genus of M is a certain power series whose coeffi-
cients are characteristic numbers of M : see [Stz1, §2]. Extrapolating
from the above conjecture, Stolz suggested that there may even be ex-
otic spheres (necessarily with vanishing Witten genus, since they are
stably parallelisable) which admit metrics of positive scalar curvature,
but which do not admit metrics of positive Ricci curvature [Stz1, 6.9].
Hence we are lead to formulate the following:

Conjecture 1.2. Let M be a highly connected manifold which ad-
mits a positive scalar curvature metric and whose Witten genus van-
ishes. Then there is a homotopy sphere Σ such that M�Σ admits a
Ricci positive metric.

Remark 1.3. Theorems A and D prove Conjecture 1.2 for highly
connected manifolds M in all dimensions 4k−1 ≥ 7, (provided M is also
(2k−1)-parallelisable if k ≡ 1 mod 4), and in all dimensions 4k+1 ≥ 5,
provided that TH2k+1(M) = 0 and also that M is 2k-parallelisable.

Note that our use of plumbing in this paper as a means to estab-
lish the existence of Ricci positive metrics is essentially a surgery-based
approach. (See section 2 for details.)

For the sake of completeness, we should mention the work of Boyer
and Galicki on 1-connected 5-manifolds [B-G1] (but see also [B-G2]).
These objects were classified by Barden [Bar] (following earlier work
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Smale [Sm]). The classification falls into spin and non-spin cases. Us-
ing Sasakian geometry, Boyer and Galicki were able to establish the
existence of Ricci positive metrics on most (but not all) of the spin fam-
ily. In contrast, only two non-spin simply-connected 5-manifolds are
known to admit Ricci positive metrics, though conjecturally all might
be expected to display such metrics.

In conclusion let us give some indication why positive, as opposed
to negative Ricci curvature conditions are particularly interesting. By
work of Lohkamp ([L1], [L2], [L3]) it turns out that negative scalar
and negative Ricci curvatures are in some sense generic: any manifold
– either compact or non-compact – of dimension at least 3 admits a
complete metric or negative Ricci (and, therefore, negative scalar) cur-
vature. Moreover, such negatively curved metrics are C0-dense in the
space of all Riemannian metrics. Thus there is a significant asymmetry
between the negative and positive cases, and in particular negative Ricci
and scalar curvatures have no topological implications.

2. Plumbing

Plumbing is a construction which creates compact manifolds with
boundary W by gluing together a collection of disc bundles over closed
manifolds. In Section 2.1 we review the construction of plumbing man-
ifolds, as well as the surgery description of the boundaries of plumbing
manifolds. We then describe the relevance of plumbing to the construc-
tion of Ricci positive metrics on the boundaries of plumbing manifolds.

A feature of the plumbing construction is that while the disjoint union
of plumbing manifolds W0 and W1 is by definition a plumbing manifold,
it is by no means clear that the boundary connected sum W0�W1 admits
the structure of a plumbing manifold. However, in Section 2.2 we show
that the situation with boundary manifolds is often different. Theorem
2.4 describes general conditions for when the connected sum ∂W0�∂W1

is the boundary of a plumbing manifold. This will be a key input to our
arguments in Section 5.

While techniques for constructing Ricci positive metrics via plumbing
on n-manifolds only hold for n ≥ 5, in dimension n = 3, the boundaries
of plumbing manifolds, as we define them below, are a special case of
graph manifolds. It has long been known that the connected sum of
two graph manifolds is again a graph manifold: this follows by applying
[Ne, Proposition 2.1] to the move splitting R6 [Ne, p. 305]. Hence
Theorem 2.4 below can be viewed as an extension of a part of theory
of graph manifolds in dimensions 3 to higher dimensions. For a further
brief discussion of 4-dimensional plumbings and their boundaries, see
Section 7.2.

2.1. Plumbing arrangements. We begin by recalling the construc-
tion of plumbing manifolds as described by Browder [Bro, V §2]. Let
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p and q be positive integers and set m := p+ q. Consider oriented disc
bundles Dp ↪→ E1 → Bq

1 and Dq ↪→ E2 → Bp
2 , with the fibres, base

and total space of each bundle oriented compatibly. Now select points
x ∈ B1 and y ∈ B2. Restricting E1 and E2 to disc neighbourhoods
Dq

x ⊂ B1, D
p
y ⊂ B2 about the chosen points, we have a local product

structure giving rise to diffeomorphisms π−11 (Dq
x) ∼= Dq

x × Dp, respec-

tively, π−12 (Dp
y) ∼= Dp

y ×Dq, where πi denotes the projection map of Ei

onto its base. Fixing these local trivializations, we next choose orienta-
tion preserving (reversing) diffeomorphisms φ+ : Dq → Dp

y (respectively,
φ− : Dp → Dp

y), and θ+ : Dq
x → Dq (respectively, θ− : Dq

x → Dq). From
these we construct diffeomorphisms

I+ = (φ+, θ+) : D
p ×Dq

x → Dp
y ×Dq;

I− = (φ−, θ−) : D
p ×Dq

x → Dp
y ×Dq.

Using either I+ or I− together with the local trivializations, we can
identify the two local bundle neighbourhoods to create a single manifold
with boundary. It is easy to see that we can smooth this manifold near
the site of the identification. This (smooth) manifold is the plumbing
of E1 and E2, which we will denote E1�E2. Note that if one of p or q
is even then E1�E2 is compatibly oriented with E1 and E2, whereas if
p and q are both odd, E1�E2 is compatibly oriented with E1 and −E2.

In general, a plumbing manifold W is a manifold constructed by a
finite sequence of plumbings which can be described as follows. Let
(γ1, . . . , γr) be an ordered set of oriented smooth disc bundles Dri ↪→
Em

i → Bsi where (ri, si) = (p, q) or (q, p). We then choose Ei1 and Ei2

with opposite fibre and base dimensions, and plumb them together using
either I+ or I−. We say we plumb with sign +1 if we use I+, and sign
−1 if we use I−. We continue in this manner a finite number of times –
being careful to plumb on disjoint discs if we use the same bundle more
than once. This plumbing arrangement for W can be represented by a
labelled graph,

g =
(
(V, E), (γ1, . . . , γr)

)
,

which consists of a graph (V, E) with ordered vertex set V = (v1, . . . , vr)
and a set of directed edges E with signs ε(e) = ±1 for each e ∈ E ,
together with an r-tuple of labels (γ1, . . . , γr) with the label γi being
associated to vertex vi. The label γi will represent the bundle with total
space Ei. A directed edge e in the graph from vi to vj with sign ε(e)
then corresponds to plumbing Ei to Ej with sign ε(e). Thus a plumbing
of disc bundles can be completely described by such a labelled graph.
Since we do not consider plumbing bundles with themselves, there are no
edges from vi to itself. Multiple edges from vi to vj will then represent
multiple plumbings of Ei with Ej.

The labelled plumbing graph g determines the plumbing manifold
W = W (g) up to diffeomorphism. Except in Sections 2.2 and 7.1, at
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least one of p or q will be even, and in this situation we will always
assume that our plumbing arrangements are constructed using the map
I+. Moreover, when one of p or q is even, the ordering of edges is not
important and so in this case we omit both the signs and the ordering
of edges from the plumbing graph. When p and q are both odd, we
will assume for simplicity that our plumbing graphs give rise to ori-
entable plumbing manifolds W which are oriented compatibly with the
total space of the bundle Ei with smallest value of i in each connected
component.

The case of plumbing most relevant for this paper is where p = q =
j ≥ 2 and B1 = B2 = Sj. Oriented Dj-bundles over Sj are classified
by the homotopy class of their clutching maps, that is, by elements of
πj−1(SO(j)) ∼= πj(BSO(j)).

Definition 2.1. A 2j-dimensional plumbing manifold W = W (g)
is a manifold obtained from a plumbing arrangement described by the
labelled tree g =

(
(V, E), (α1, . . . αr)

)
, αi ∈ πj−1(SO(j)). We let P2j

denote the set of diffeomorphism class plumbing manifolds:

P2j := {W (g)}.

It is easy to see that (each component of) a plumbing manifold
W = W (g) created by plumbing Dj-bundles over Sj has the homotopy
type of a wedge of 1-spheres and j-spheres, with one j-sphere for each
bundle. Moreover, the 1-skeleton of W has the same homotopy type
as the plumbing graph (V, E). Thus W is simply-connected if and only
if the plumbing graph is simply-connected: i.e., if and only if (V, E)
is a tree. In this case we shall call W a treelike plumbing manifold.
We see immediately that a treelike plumbing W is (j − 1)-connected
and that there is a homotopy equivalence W � ∨r

i=1S
j , since the base

spheres of the plumbed bundles generate the homology group in dimen-
sion j. In particular Hj(W ) ∼= Zr. Moreover, if j ≥ 3, then applying
van Kampen’s theorem to the boundary ∂W , we see that ∂W is simply
connected.

Definition 2.2. We let T P2j denote the set of diffeomorphism class
of treelike plumbing manifolds:

T P2j := {W (g) |(V, E) is a tree} ⊂ P2j .

We next turn our attention to the case j = 2k and to the intersec-
tion of middle-dimensional homology classes. The intersection number
between any two distinct homology classes represented by base spheres
is simply the number of plumbings between the corresponding bundles
(assuming the identification map I+ is used for all plumbings). In par-
ticular, in the treelike case, this number will either be 1 or 0. The
intersection number between a homology class represented by the base
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sphere of Ei and itself is just the self-intersection number of the zero-
section within the bundle in question, and this is well-known to be equal
to the Euler number of the bundle Ei. (See, for example, [Bro, V.1.5].)
Expressing the intersection form with respect to this natural homology
basis, we obtain a symmetric integer matrix A with Euler numbers on
the diagonal and non-negative numbers off the diagonal. Notice that
the matrix A and the bundles Ei completely determine the plumbing
arrangement. We thus obtain following result which can be found in
[Bro, V.2.1]:

Theorem 2.3. Let (α1, . . . , αr) be a an r-tuple of homotopy classes
αi ∈ π2k−1(SO(2k)) with Euler numbers ai = e(αi), and let A be an
(r × r)-symmetric integer matrix with diagonal entries Aii = ai and
non-negative off-diagonal entries. Then for k ≥ 1 there is a plumbing
manifold W 4k and a basis for H2k(W ), such that with respect to this
basis A is the matrix of the intersection form H2k(W )⊗H2k(W )→ Z.

We conclude this subsection by discussing the boundaries of plumbing
manifolds from the point of view of surgery and positive Ricci curvature.
It is not difficult to see that given bundles Dp ↪→ E1 → Sq, Dq ↪→ E2 →
Sp together with balls Dq

1 ⊂ Sq and Dp
2 ⊂ Sp, we have

∂(E1�E2) = (∂E1 − π−11 (Dq
1)) ∪ (∂E2 − π−12 (Dp

2)),

where π1 and π2 are the projection maps for the sphere bundles ∂E1,
∂E2. The union is formed using a certain diffeomorphism of the bound-
aries, which arises from choices of local trivializations for π−11 (Dq

1) and

π−12 (Dp
2). We claim that this boundary construction can be viewed as

a surgery performed on a fibre sphere of ∂E1. To see this, we need
to look at the gluing diffeomorphism in more detail. First, fix a local
trivialization

ι : π−11 (Dq
1)→ Sp−1 ×Dq.

Such a trivialization is unique up to composition with a ‘twisting map’
T : Sp−1 × Dq → Sp−1 × Dq, defined in terms of a smooth map τ :
Sp−1 → SO(q) by T (x, y) := (x, τ(x)y). Next, we will view the bundle
∂E2 as

∂E2 = (Dp
N × Sq−1) ∪ψ (Dp

S × Sq−1),

where Dp
N , Dp

S denote ‘northern’ and ‘southern’ hemispheres of the base
sphere Sp, and ψ is a clutching map

ψ : ∂Dp
N × Sq−1 → ∂Dp

S × Sq−1.

We now observe that we can compose ψ with the induced boundary
map

∂ι : ∂(π−11 (Dq
1))→ Sp−1 × Sq−1
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(after canonically identifying ∂Dp
N × Sq−1 with Sp−1 × Sq−1) to obtain

a diffeomorphism

ψ ◦ ∂ι : ∂(π−11 (Dq
1))→ ∂Dp

S × Sq−1,

and this composition is precisely the gluing map if we view ∂(E1�E2)
as

∂(E1�E2) =
(
∂E1 − π−11 (Dq

1)
)
∪ (Dp

S × Sq−1).

This construction is clearly surgery on a fibre sphere of ∂E1, as claimed.
Notice that the clutching map ψ takes the form ψ(x, y) = (x, τ(x)y)
for some smooth map τ : Sp−1 → SO(q). We can extend ψ to a map
T : Sp−1 × Dq → Sp−1 × Dq in the obvious way, and then regard the
gluing map ψ◦∂ι as the boundary map induced by the composition T ◦ι.
So this surgery is precisely surgery on a fibre sphere of ∂E1 using the
normal bundle trivialization T ◦ ι. Thus the structure of the bundle E2

is encoded into the trivialization needed for the surgery. Of course, we
could equally regard the boundary effect of this plumbing as a certain
surgery on a fibre sphere of ∂E2.

From a geometric perspective, plumbing is useful for constructing
metrics with positive Ricci curvature. Its relevance is due to its close
relationship with surgery, as described above. There are various results
which show how, under the right conditions, surgery can be performed
on a Ricci positive manifold in such a way that the Ricci positive metric
can be extended across the surgery (see, for example, [S-Y], [Wr2]).
Roughly speaking, one needs a product metric in a neighbourhood of
the surgery, where the factors of the product are a round sphere and
a round normal disc. Moreover, one needs the radius of the sphere to
be very small compared to the radius of the normal disc. This is the
opposite situation to that usually encountered, and is a major reason
why Ricci positive surgery results are difficult to apply. One situation
where the right conditions are easily arranged is performing surgery on
a fibre sphere of a sphere bundle over a Ricci positive base manifold.
Since the boundary effect of plumbing two disc bundles over spheres is
precisely such a surgery, it is not difficult to deduce that many manifolds
plumbed from disc bundles over spheres according to a simply connected
plumbing graph have a boundary which supports a Ricci positive metric
(see Theorem 1.1 from the Introduction). Thus plumbing descriptions
for bounding manifolds can be used as blueprints for constructing man-
ifolds via a sequence of surgeries (starting from a sphere-bundle over a
sphere), all of which are of the correct type to apply a Ricci positive
surgery result. This can be an effective way of constructing Ricci pos-
itive manifolds, not least because the topology of plumbing manifolds
and their boundaries is relatively easy to identify.

2.2. Connected sums via plumbing. In this subsection we prove a
connected sum theorem for boundaries of plumbings. Since the theorem
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holds for general plumbing manifolds, where the bases of the bundles
can be any connected closed smooth manifold, we first generalise the
notation from Section 2.1.

Let p, q be positive integers, let m = p+q and let Cr, r = p, q, be a set
of closed smooth oriented r-manifolds such that Sr ∈ Cr. We are now
interested in m-manifolds W which are obtained by plumbing smooth
oriented bundles Dq → Em

i → Bp
i and Dp → Em

j → Bq
j where Bp

i ∈ C
p

and Bq
j ∈ C

q. As in Section 2.1, the plumbing arrangement for each

W can be described by a labelled graph g =
(
(V, E), (γ1, . . . γr)

)
where

the labels γi now label isomorphism classes of bundles Dq → Em
i →

Bp
i or Dp → Em

j → Bq
j , and we can only connect vertices which are

labelled by bundles of complementary dimensions. We call manifolds
W constructed in this way (Cp−Cq)-plumbing manifolds, and we define

Pm(Cp, Cq) := {W (g)},

the set of diffeomorphism classes of (Cp, Cq)-plumbing manifolds. With
this notation the set P2j of Definition 2.1 is P2j = P2j({Sj}, {Sj}).

As in Section 2.1, we call a plumbing manifold W ((V, E), (γ1, . . . , γr))
treelike if the graph (V, E) is a tree and we define

T Pm(Cp, Cq) ⊂ Pm(Cp, Cq),

to be the set of diffeomorphism classes of treelike (Cp− Cq)-plumbings.
We also define

∂T Pm(Cp, Cq) ⊂ ∂Pm(Cp, Cq),

to be the set of diffeomorphism classes of manifolds which are the bound-
aries of treelike (Cp− Cq)-plumbings, respectively, the boundaries of
(Cp− Cq)-plumbings.

Theorem 2.4. The sets ∂T Pm(Cp, Cq) and ∂Pm(Cp, Cq) are closed
under connected sum.

Remark 2.5. For p = q = 2 and C2 = {S2} Theorem 2.4 follows
from results in [Sc]: see the move denoted RIII, [N-W, p. 73]. For C2

the set of all surfaces, Theorem 2.4 follows from [Ne, Proposition 2.1]
applied to the splitting move R6 [Ne, p. 305].

The rest of this subsection is devoted to the proof of Theorem 2.4.
Let W∞ be the plumbing manifold obtained by plumbing the trivial
bundles Dq ×Sp and Dp×Sq. If 0r, r = p, q, denotes the trivial bundle
over Sr, then W∞ has plumbing graph

�������	0p �������	0q .

We observe that W∞ is diffeomorphic to the manifold obtained by re-
moving a small open disc from Sp × Sq, so that ∂W∞

∼= Sm−1. To see
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this, simply write Sp = Dp
+ ∪Dp

− and Sq = Dq
+ ∪Dq

−, and identify Dm

with Dp
− ×Dq

−. Thus

W∞ = (Dp
+ ×Dq

+) ∪ (Dp
+ ×Dq

−) ∪ (Dp
− ×Dq

+),

which simplifies to

W∞ = (Sp ×Dq
+) ∪D

p
+×D

q
+
(Dp

+ × Sq),

which is easily seen to be the plumbing of two trivial bundles as claimed.
Given two bundles Dp-bundles γ1 and γ2 over q-dimensional bases, we
form the treelike plumbing manifold Y with the following plumbing
graph, where the + labels on the edges indicate that we plumb with
sign +1.

(1) �������	0q

�������	γ1

+
��

��
��

��
�

�������	γ2

+
��
��
��
��
�

�������	0p

Proposition 2.6. If γ1 and γ2 are Dp-bundles over q-dimensional
bases with total spaces E1 and E2, then the treelike plumbed manifold
Y obtained by plumbing E1 and E2 to W∞ as above in (1) is such that
∂Y = ∂E1�∂E2.

Remark 2.7. The reader can compare (1) and Proposition 2.6 with
the move RIII [N-W, p. 73] and also the splitting move R6 of [Ne,
p. 305] and [Ne, Proposition 2.1].

Proof of Theorem 2.4 assuming Proposition 2.6. It suffices to consider
two connected plumbing manifolds W1 and W2. Suppose in the first
case that the plumbing arrangements for each Wi contain a Dp-bundle
with total space Ei and q-dimensional base Bq

i , i = 1, 2. Hence we can
write Wi = (Wi−Ei)∪Ei, i = 1, 2. We consider the disjoint union W1�
W∞�W2 and then plumb the bundles Ei ⊂Wi to W∞ according to the
diagram (1), that is, we incorporate Ei into the plumbing arrangement of
Proposition 2.6. This has the overall effect of creating a new connected
plumbed manifold W given by

W = (W1 − E1) ∪ Y ∪ (W2 −E2).

Clearly, plumbing a bundle in one treelike plumbing manifold to a bun-
dle in a disjoint treelike plumbing manifold by a single plumbing creates
a new treelike manifold. Applying this observation twice, we see that
W is treelike if the Wi are treelike. It is now straightforward to see that

∂W = ∂(W1 −E1) ∪ ∂E1�∂E2 ∪ ∂(W2 −E2),
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and this expression simplifies to ∂W = ∂W1�∂W2 as required.
The above argument covers all situations except the case where at

least one of W1 or W2 is a Dq-bundle over a p-dimensional base. Now
recall that Sm−1 is the boundary of W∞ = (Sp × Sq)− int(Dm), which
is the plumbing of the trivial Dp-bundle over Sq with the trivial Dq-
bundle over Sp. We now apply the argument of the previous paragraph
to Wi and W∞ to show that ∂Wi

∼= ∂Wi�S
m−1 is the boundary of a

plumbing manifold W ′
i (treelike if Wi is treelike), where the plumbing

involves a Dp-bundle over a q-dimensional base. Thus the argument
of the previous paragraph can be applied again to the new plumbing
manifolds W ′

i to yield a final plumbing manifold W (treelike if W1 and
W2 are treelike) with boundary ∂W ∼= ∂W ′

1�∂W
′
2
∼= ∂W1�∂W2. q.e.d.

For the proof of Proposition 2.6 we require three lemmas. For the
statement of Lemma 2.8 below, we recall some basic terms of surgery.
Let N be a compact n-manifold, either with boundary or closed, let
n = s + t − 2 and let φ : Ss−1 ×Dt−1 → N be an embedding into the
interior of N . Then the trace of surgery on φ is the manifold

Wφ := (N × I) ∪φ (Ds ×Dt−1),

(suitably smoothed) where we regard Ss−1 = ∂Ds and Ss−1 ×Dt−1 ⊂
∂(Ds × Dt−1) as the domain of φ, with the union taking place at one
end of the product N × I. The outcome of surgery on φ is the manifold

N ′ := (N \ φ(Ss × Int(Dt−1))) ∪Ss−1×St−2 (Ds × St−2),

again, suitably smoothed. In particular, the trace of surgery on φ is a
manifold with boundary

∂Wφ = N ∪ (∂N × I) ∪N ′.

For the statement of the following lemma, let iε : [−ε, ε] → [−1, 1] be
the standard inclusion.

Lemma 2.8. Let N be a closed n-manifold for n = s+t−2. Suppose
that surgery on an embedding φ : Ss−1×Dt−1 → N has outcome N ′ and
trace Wφ. Consider performing surgery on the embedding φ× iε : S

s−1×
Dt−1×[−ε, ε]→ N×[−1, 1]. The outcome of this is the manifold Wφ∪N ′

Wφ and has trace Wφ × [−1, 1].

Proof. Suppose that the trace Wφ is formed from the original man-
ifold by forming the product with an interval J = [j0, j1], and then
adding a handle to the ‘end’ of the product corresponding to j1. Hence
Wφ = (N × J) ∪ (Ds ×Dt−1 × {j1}).

Suppose that the surgery on N × [−1, 1] involves cutting out the
interior of the image of φ× iε. The trace of this surgery will clearly be
diffeomorphic to the trace created where the Dt-factor of the handle
Ds ×Dt contains all of [−1, 1]. This latter trace is

(N × [−1, 1] × J) ∪ (Ds ×Dt−1 × [−1, 1] × {j1}).
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By a simple rearrangement of terms, this is easily seen to be Wφ× I as
claimed.

To identify the result of the surgery on N× [−1, 1], recall that ∂Wφ =
N � N ′. Since ∂(Wφ × [−1, 1]) = (∂Wφ × [−1, 1]) ∪ (Wφ × {−1, 1}) we
have

∂(Wφ × [−1, 1]) = ((N �N ′)× [−1, 1]) ∪ (Wφ × {−1}) ∪ (Wφ × {1})

= (N × [−1, 1])

∪
[
(N ′ × [−1, 1]) ∪ (Wφ × {−1}) ∪ (Wφ × {1})

]
.

The outcome of the surgery on N× [−1, 1] is then the ‘other’ part of the
boundary ∂(Wφ× I), namely (N ′× [−1, 1])∪ (Wφ×{−1})∪ (Wφ×{1}).
Up to diffeomorphism this is Wφ ∪N ′ Wφ as claimed. q.e.d.

Lemma 2.9. Suppose we perform surgery on φ : Sq−1 × Dp−1 ×
[−ε, ε] → Sq−1 × Sp−1 × [−1, 1], where φ is the product of the identity
map, the inclusion Dp−1 ⊂ Sp−1 and iε. The outcome of this surgery is
(Dq × Sp−1)�(Dq × Sp−1).

Proof. The effect of surgery on Sq−1 ×Dp−1 ⊂ Sq−1 × Sp−1 is

(Sq−1 × Sp−1 \ Sq−1 ×Dp−1
+ ) ∪ (Dq × Sp−2)

= Sq−1 ×Dp−1
− ∪Dq × Sp−2 = Sp+q−2,

where we have written the Sp−1 factor as Dp−1
+ ∪Dp−1

− , with Dp−1
+ taken

to be the normal bundle of the surgery sphere. Thus we see that the
trace W of this surgery is

W = (Sq−1 × Sp−1 × J) ∪ (Dq ×Dp−1
+ × {j1}),

where as in the previous lemma we assume the interval J is [j0, j1]. If

we were to form the union of W with Dq ×Dp−1
− × {j1} ∼= Dp+q−1 we

would obtain

(Sq−1 × Sp−1 × J) ∪ (Dq × Sp−1 × {j1}),

which can be viewed as the union of Dq×Sp−1 with a collar neighbour-
hood of its boundary. Up to diffeomorphism this is Dq×Sp−1, and thus
we conclude that

W = Dq × Sp−1 \ intDp+q−1.

By Lemma 2.8 we see that the result of performing the surgery on φ is
W ∪Sp+q−2 W, that is,

(Dq × Sp−1 \ intDp+q−1) ∪Sp+q−2 (Dq × Sp−1 \ intDp+q−1),

and this is just (Dq × Sp−1)�(Dq × Sp−1) as claimed. q.e.d.

Now let E1 and E2 be Dp-bundles with base dimension q.
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Lemma 2.10. Plumb both E1 and E2 to a trivial disc bundle E3 :=
Dq × Sp. Call the resulting plumbing manifold X. Then ∂X is the fibre
connected sum of ∂E1 and ∂E2.

Proof. The boundary effect of plumbing is well known (e.g., [Bro],
page 118). In particular the boundary ∂X can be decomposed as the
following union:

(∂E1 \D
q × Sp−1) ∪ (E3 \

2∐
j=1

Sq−1 ×Dp
j ) ∪ (∂E2 \D

q × Sp−1),

where the identification at the various boundaries is made in the ob-
vious way. But the middle component in the above decomposition is
diffeomorphic to Sq−1×Sp−1× [−1, 1], and so ∂X is nothing other than
the fibre connected sum of E1 and E2 as claimed. q.e.d.

Proof of Proposition 2.6. LetX denote the plumbedmanifold in Lemma
2.10. Consider a further plumbing of a trivial disc bundle E4 := Sq×Dp

to E3 in the plumbing arrangement for X. Call the resulting plumbing
manifold Y . We claim that ∂Y = ∂E1�∂E2. To see this, first note that
the boundary effect of plumbing this trivial bundle is precisely a surgery
on a fibre sphere of the bundle ∂E3, or more accurately a surgery on a
fibre sphere of

∂E3 \

2∐
j=1

Sq−1 ×Dp
j .

In order to investigate the topological effect of such a surgery we will
work locally in the first instance, and consider ∂E3 \

∐2
j=1 S

q−1 × Dp
j

in isolation. With this local point of view, our surgery is equivalent
to surgery on an Sq−1 factor of the product Sq−1 × Sp−1 × [−1, 1]. By
Lemma 2.9, the outcome of this surgery is

(Dq × Sp−1)� (Dq × Sp−1).

Thus returning to a global perspective, the boundary of the plumbing
Y using all four bundles must be

(∂E1 \D
q × Sp−1) ∪ (Dq × Sp−1)�(Dq × Sp−1) ∪ (∂E2 \D

q × Sp−1),

which is clearly just ∂E1�∂E2 as claimed. q.e.d.

3. Extended quadratic forms and extended quadratic linking

forms

In this algebraic section we establish basic facts from the theory of
extended quadratic forms and their boundaries, which are extended qua-
dratic linking forms. Extended quadratic forms are complete invariants
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of the handlebodies appearing in Section 4 and extended quadratic link-
ing forms are important invariants of the odd-dimensional manifolds
appearing Section 5.

3.1. Extended quadratic forms over πn−1{SO(n)}. Let SO(n) de-
note the group of orientation preserving orthogonal motions of Rn. We
start with the homotopy group πn−1(SO(n)) which we regard as the set
of isomorphism classes of oriented vector bundles over Sn. There are
two important homomorphisms involving πn−1(SO(n)):

h : πn−1(SO(n))→ Z, ξ �→ e(ξ)

and
p: Z→ πn−1(SO(n)), k �→ k · τSn .

The homomorphism h associates to each bundle its Euler number and
the homomorphism p maps 1 ∈ Z to τSn , the tangent bundle of Sn. The
homomorphisms h and p are such that hph = 2h and php = 2p, since
e(τSn) = 2 if n is even and e(τSn) = 0 if n is odd. The quadruple

πn−1{SO(n)} :=
(
πn−1(SO(n)),Z,h,p

)
is a quadratic module as defined in [Bau, Definition 8.1]; see also [R,
§10]. Let ε := (−1)n. A bilinear form is said to be ε-symmetric if it is
symmetric in the case ε = 1 and skew-symmetric in the case ε = −1.

Definition 3.1. An extended quadratic form over πn−1{SO(n)} is
triple (H,λ, μ) where H is a finitely generated free abelian group, λ is
an ε-symmetric bilinear form

λ : H ×H → Z,

and μ : H → πn−1(SO(n)) is a function which for all x, y ∈ H satisfies

(2) μ(x+ y) = μ(x) + μ(y) + p(λ(x, y)),

and

(3) h(μ(x)) = λ(x, x).

There are obvious notions of isomorphism and orthogonal sum of
extended quadratic forms.

In this paper we are mostly interested in the symmetric case when n =
2k is even. In this case extended quadratic forms over π2k−1{SO(2k)}
simplify as follows. Let S : π2k−1(SO(2k))→ π2k−1(SO) be the suspen-
sion homomorphism. By Bott periodicity,

π2k−1(SO) ∼= Z, Z/2, Z, 0 as k ≡ 0, 1, 2, 3 mod 4.

Given an extended quadratic form (H,λ, μ), let

α : H → πn−1(SO)

be the stabilisation of μ, that is, the composition S ◦ μ. Since S(τSn) =
0, it follows from (2) that α is a homomorphism. Wall identified the
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properties of the pair (λ, α) as follows. (Note that Wall uses α to denote
what we call μ and Sα to denote what we call α.)

Lemma 3.2 ([Wall1, p. 171]). For every extended quadratic form
(H,λ, μ) over π2k−1{SO(2k)}, μ(x) is uniquely determined by λ(x, x) ∈
Z and α(x) ∈ π2k−1(SO). In addition,

1) for k = 2, 4, λ(x, x) ≡ α(x) mod 2, (i.e., α is characteristic for
λ),

2) for k 	= 2, 4, λ(x, x) ∈ 2Z (and α and λ are not related).

In the light of Lemma 3.2, we shall identify the extended quadratic
form (H,λ, μ) with the triple (H,λ, α). We define

F4k := {(H,λ, α)}

to be the set of isomorphism classes of extended quadratic forms over
π2k−1{SO(2k)}.

3.2. Extended quadratic linking forms. In this subsection we de-
fine extended quadratic linking forms over π2k−1{SO(2k)}. Given an
extended quadratic form over π2k−1{SO(2k)} there is a corresponding
‘algebraic boundary’ (discussed in Section 3.3). This algebraic bound-
ary is an extended linking form. Such extended linking forms can be
viewed as the torsion analogues of extended quadratic forms.

Let G be a finite abelian group. A nonsingular symmetric linking
form of G is a bilinear function

b : G×G→ Q/Z,

such that for all x, y ∈ G,

1) b(x, y) = b(y, x),
2) b(x, y) = 0 for all y ∈ G if and only if x = 0.

Example 3.3. Let N be a closed (4k−1) manifold and let TH2k(N)
denote the torsion subgroup of H2k(N). Poincaré duality for N gives
rise to a linking form bN : TH2k(N) × TH2k(N) → Q/Z. See Section
5.2.

A quadratic refinement of a linking form b is a function

q : G→ Q/Z,

such that for all x, y ∈ G

q(x+ y)− q(x)− q(y) = b(x, y).

For any such linking form b, a corresponding q exists [C1, Lemma
2.30]. The function q has further properties, depending on k. If k = 2, 4
then

q(x)− q(−x) = b(x, β),
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for some β ∈ 2 ·G: The element β is called the homogeneity defect of q.
If k 	= 2, 4, then

q(x) = q(−x),

in which case q is homogeneous.

Definition 3.4. An extended quadratic linking form over
π2k−1{SO(2k)} is a quadruple (G, b, q, β) where

1) G is a finite abelian group;
2) b : G×G→ Q/Z is a nonsingular symmetric linking form on G;
3) An element β where

β ∈

{
(2 ·G)⊗ π2k−1(SO) if k = 2, 4,

G⊗ π2k−1(SO) if k 	= 2, 4;

4) q : G→ Q/Z is a quadratic refinement of b which is homogeneous
if k 	= 2, 4 and which has homogeneity defect β if k = 2, 4.

There are obvious notions of isomorphism and orthogonal sum of
extended quadratic linking forms. We define

Q4k−1 = {(G, b, q, β)}

to be the set of isomorphism classes of extended quadratic linking forms
over π2k−1{SO(2k)}.

The classification of linking forms and their quadratic refinements is
a tractable if delicate problem. For more on these topics, see [Wall2,
K-K, C1].

3.3. The boundaries of nondegenerate extended quadratic

forms. We first identify two important subsets of F4k. The adjoint
homomorphism of the symmetric form (H,λ) is the homomorphism

λ̂ : H → H∗, x �→ (y �→ λ(x, y)),

where H∗ := Hom(H,Z) is the dual of H. A bilinear form (H,λ) is

called nonsingular if λ̂ is an isomorphism and nondegenerate if λ̂ lies in
a short exact sequence

(4) 0 −→ H
λ̂
−−→ H∗ π

−−→ G→ 0,

where G := coker(λ̂) is a finite group, since it is a quotient of a finitely
generated abelian group by a subgroup of the same rank. We call an
extended quadratic form (H,λ, α) nondegenerate, respectively, nonsin-
gular, if (H,λ) is nondegenerate, respectively, nonsingular. We define

F4k
nd := {(H,λ, α) | (H,λ) is nondegenerate} ⊂ F4k,

and
F4k
ns := {(H,λ, α) | (H,λ) is nonsingular} ⊂ F4k

nd

to be the set of isomorphism classes of nondegenerate, respectively, non-
singular, extended quadratic forms over π2k−1{SO(2k)}.
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Henceforth we assume that (H,λ, α) ∈ F4k
nd . If we tensor the short

exact sequence (4) with the rationals then, since G is finite, we obtain
an isomorphism

λ̂Q : H ⊗Q ∼= H∗ ⊗Q.

In particular λ̂Q is invertible with inverse (λ̂Q)
−1 which induces a non-

degenerate form on H∗ by pulling back λQ, the extension of λ to H⊗Q.
We denote this form by λ−1:

λ−1 : H∗ ×H∗ → Q.

Explicitly, λ−1 is the composition

H∗ ×H∗ (id⊗1,id⊗1)
−−−−−−−−→ (H∗ ⊗Q)× (H∗ ⊗Q)

(λ̂Q)
−1×(λ̂Q)

−1

−−−−−−−−−−→ (H ⊗Q)× (H ⊗Q)
λQ
−→ Q.

To define the algebraic boundary of (H,λ, α), we must distinguish
the cases k = 2, 4, when α is characteristic for λ (in the sense that it
determines λ by Lemma 3.2), from the cases k 	= 2, 4 when λ is even and
α and λ are not related. Notice that α ∈ H∗ if k is even, α ∈ H∗ ⊗ Z2

if k ≡ 1 mod 4, and α = 0 if k ≡ 3 mod 4.

Definition 3.5. Let (H,λ, α) ∈ F4k
nd . The boundary of (H,λ, α) is

the quadruple

∂(H,λ, α) = (G, b, q, β),

where G := coker(λ̂) and b, q and β are defined as follows:

1) For all k,

b : G×G→ Q/Z, (π(x), π(y)) �−→ λ−1(x, y) mod Z,

where π : H∗ → G is the map from (4).
2) If k = 2, 4 then

q : G→ Q/Z, π(x) �−→
λ−1(x, x) + λ−1(x, α)

2
mod Z,

and β := π(α) ∈ G.
3) If k 	= 2, 4, then

q : G→ Q/Z, π(x) �−→
λ−1(x, x)

2
mod Z,

and β := π(α) ∈ G if k is even, β := π ⊗ idZ2(α ⊗ 1) ∈ G ⊗ Z2 if
k ≡ 1 mod 4, and β := 0 if k ≡ 3 mod 4.

It is immediate from Definition 3.5 that the isomorphism class of
∂(H,λ, α) is an isomorphism invariant of (H,λ, α). That is, an isomor-
phism B : (H0, λ0, α0) ∼= (H1, λ1, α1) induces an isomorphism

∂B : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1).
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Hence there is a well defined function

(5) ∂ : F4k
nd → Q4k−1, (H,λ, α) �→ ∂(H,λ, α).

Recall that F4k
ns ⊂ F

4k
nd is the set of isomorphism classes of nonsingular

extended quadratic forms over π2k−1(SO(2k)). By definition,

(H,λ, α) ∈ F4k
ns ⇐⇒ ∂(H,λ, α) = (0, 0, 0, 0).

It follows that if we add a nonsingular form (H0, λ0, α0) to a nondegen-
erate form (H1, λ1, α1), we do not change the boundary:

∂
(
(H0, λ0, α0)⊕ (H1, λ1, α1)

)
= ∂(H1, λ1, α1).

We shall call two nondegenerate extended quadratic forms (H0, λ0, α0)
and (H1, λ1, α1) stably isomorphic if they become isomorphic after the
addition of nonsingular forms. It is clear that stably isomorphic forms
have isomorphic boundaries.

Theorem 3.6. Let (H0, λ0, α0) and (H1, λ1, α1) ∈ F
4k
nd .

1) For every isomorphism A : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1), there are
nonsingular extended quadratic forms (H2, λ2, α2) and (H3, λ3, α3)
and an isomorphism

B : (H0, λ0, α0)⊕ (H2, λ2, α2) ∼= (H1, λ1, α1)⊕ (H3, λ3, α3),

such that ∂B = A.
2) (H0, λ0, α0) and (H1, λ1, α1) are stably isomorphic if and only if

there is an isomorphism ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1).

Proof. For k ≡ 3 mod 4, a nondegenerate extended quadratic form
(H,λ, α) is just a nondegenerate even symmetric bilinear form (H,λ)
since α = 0. In this case, the theorem is proven by Wall [Wall5,
Theorem p. 156]. In the case where k ≡ 0 mod 2 this is proved in
[C1, Lemma 3.12]. For the remaining case, k ≡ 1 mod 4, an extended
quadratic form (H,λ, α) is an even form (H,λ) and a homomorphism
α : H → Z2. The arguments from [C1, Lemma 3.12] for the case k ≡
0 mod 2 but k 	= 2, 4 can be easily adapted. q.e.d.

We conclude this section with an important lemma for computing the
algebraic boundary ∂(H,λ, α) in concrete cases. Recall the short exact
sequence (4)

0 −→ H
λ̂
−−→ H∗ π

−−→ G→ 0.

We shall need to determine both the order of the finite group G and the
inverse form (H∗, λ−1).

Lemma 3.7. Let A be the (integral) matrix of the adjoint map λ̂ with
respect to some basis for H and the corresponding dual basis for H∗.

1) The matrix of the form λ−1Q : H∗ ⊗Q×H∗ ⊗Q→ Q with respect

to the induced dual basis on H∗ is A−1.
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2) |det(A)| = |G|.

Proof. (1) The map λ−1Q is the composition

(H∗ ⊗Q)× (H∗ ⊗Q)
(λ̂Q)

−1×(λ̂Q)
−1

−−−−−−−−−−→ (H ⊗Q)× (H ⊗Q)
λQ
−→ Q.

Therefore, given elements v∗ ⊗ q and w∗ ⊗ q′ in H∗ ⊗Q we have

λ−1Q (v∗ ⊗ q, w∗ ⊗ q′) = λQ((λ̂Q)
−1(v∗ ⊗ q), (λ̂Q)

−1(w∗ ⊗ q′))(6)

= λ̂Q((λ̂Q)
−1(v∗ ⊗ q))((λ̂Q)

−1(w∗ ⊗ q′))(7)

= (v∗ ⊗ q)((λ̂Q)
−1(w∗ ⊗ q′)).(8)

Expressing v∗⊗q and w∗⊗q′ with respect to the given basis for H∗⊗Q,
we have

λ−1Q (v∗ ⊗ q, w∗ ⊗ q′) = (v∗ ⊗ q)(A−1(w∗ ⊗ q′)).

Thus the matrix of λ−1Q with respect to the specified basis is precisely

A−1 as claimed.
(2) Given any Z-linear map Zn → Zn, we can choose bases for

each copy of Zn so that the corresponding matrix is in Smith Nor-
mal Form, that is, the matrix is diagonal with each non-zero diagonal
entry dividing the next. In our case, this amounts to choosing uni-
modular matrices P and Q such that PAQ = diag{a1, ..., an}. We have
|detA| = det(PAQ) = Πn

i=1ai.
By re-choosing the bases for H and H∗ if necessary, we can now

re-express the above short exact sequence as

0 −→ Zn λ′
−−→ Zn π′

−−→ Za1 × · · · × Zan −→ 0,

where λ′ has matrix diag{a1, ..., an} and π′ is reduction modulo ai on
the ith factor of Zn for each i. By exactness and the first isomorphism
theorem for groups we have

G ∼= Zn/im(λ′) ∼= Za1 × · · · × Zan .

We, therefore, have

|G| = Πn
i=1ai = |detA|,

as claimed. q.e.d.

3.4. Treelike forms. In this subsection we define the set of treelike
extended quadratic forms, T F4k, which is the algebraic analogue of the
set of treelike plumbings T P4k; see Lemma 4.5.

Let a = (a1, . . . , ar) be an r-tuple of integers. A Z-labelled tree t =(
(V, E), a

)
is a tree (V, E) with ordered vertex set V = (v1, . . . , vr) and

an integer ai assigned to each vertex vi ∈ V. Since (V, E) is a tree the
set of edges between vi and vj , Ei,j , is either empty or contains one
edge: |Ei,j | = 0, 1. From a Z-labelled tree t =

(
(V, E), a

)
we obtain a
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symmetric bilinear form λt on Ht, the free abelian group with basis V,
by setting

(9) λt(vi, vj) =

{
|Ei,j| if i 	= j,
ai ∈ Z if i = j,

and extending linearly to all of Ht. For example, if a = {a1, a2, . . . , ar},
the Z-labelled tree

(10) d(a) := a1 a2 . . . ar

defines the bilinear form (Hd(a), λd(a)) with matrix

(11) Ad(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 0 . . . 0 0
1 a2 1 . . . 0 0
0 1 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ar−1 1
0 0 0 . . . 1 ar

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with respect to the obvious basis of Hd(a).

Definition 3.8. A symmetric bilinear form (H,λ) is called treelike
if and only if

(H,λ) ∼= (Ht, λt),

for some Z-labelled tree t. Such a form will be called ‘even’ if the
diagonal entries of the corresponding matrix are all even. We define the
subset T F4k ⊂ F4k,

T F4k := {(H,λ, α) | (H,λ) is treelike}

to be the set of extended quadratic forms over π2k−1{SO(2k)} with
treelike symmetric form (H,λ).

In general, it seems to be a difficult problem to decide if a given
symmetric bilinear from (H,λ) is treelike, and Lemma 6.4 in Section 8
gives examples of forms which are not treelike. Also, we do not know if
the set of treelike extended quadratic forms T F4k is closed under direct
sum. However, for the hyperbolic form H+(Z) := (Hd(0,0), λd(0,0)) with
matrix

(12)

(
0 1
1 0

)
,

if we add the extended form (H,λ, α) = (H+(Z), 0) to a sum of treelike
forms, we obtain a treelike form.

Lemma 3.9. For any j ≥ 0, if (Hi, λ,αi) ∈ T F
4k, then

⊕j
i=1(Hi, λi,

αi)⊕ (H+(Z), 0) ∈ T F
4k.
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Proof. The property of being treelike only depends on the underlying
symmetric form. The following sequence of diagrams illustrates the
basis change needed when j = 2. We start from the disjoint union of
two Z-labelled trees:

�������	a1

��
��

��
��

��
�������	b1

... �������	a4 �������	a2 �������	b3 �������	b4

���������

��
��

��
��

�
...

�������	a3

���������� �������	b2

We then introduce a disjoint “hyperbolic component” with labels (0, 0):

�������	a1

��
��

��
��

�

������0 �������	b1

... �������	a4 �������	a2 �������	b3 �������	b4

���������

��
��

��
��

�
...

�������	a3

��������� 
������0 �������	b2

If the labels (a1, a2, a3, a4), (b1, b2, b3, b4) and (0, 0) correspond to bases
{x1, x2, x3, x4}, {y1, y2, y3, y4} and {z1, z2}, we introduce the basis
change

x2 �−→ x2 + z1, y3 �−→ y3 + z1,

leaving all other basis elements fixed. The corresponding graph is the
following tree:

�������	a1

��
��

��
��

�

������0 �������	b1

... �������	a4 �������	a2

��
��

��
��

�
�������	b3 �������	b4

���������

��
��

��
��

�
...

�������	a3

��������� 
������0
									 �������	b2

In the general case, we simply choose a basis element xi ∈ Hi and
make the basis change xi �→ xi + z1. The outcome is then a treelike

basis for
⊕j

i=1(Hi, λi)⊕H+(Z). q.e.d.
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4. Handlebodies

In this section we recall Wall’s classification of (n− 1)-connected 2n-
manifolds with simply connected boundary, n ≥ 3, by their extended
intersection forms. We then show that treelike plumbings in dimension
4k are precisely those handlebodies with treelike extended intersection
forms. This allows us to give a second proof of a special case of Theorem
2.4.

4.1. The classification of handlebodies. Recall that Smale [Sm, §1]
identified H(n), the set diffeomorphism classes manifolds W which are
obtained by attaching a finite number of n-handles to D2n. That is, we
identify Dn×Sn−1 = Dn× ∂Dn as a codimension-0 submanifold of the
boundary of an n-handle Dn×Dn, we take an embedding φ : �r

i=1D
n×

Sn−1 → S2n−1 and then form W by attaching r n-handles Dn ×Dn to
D2n along the embedding φ:

W := D2n ∪φ (�r
i=1D

n ×Dn).

Such manifolds are examples of handlebodies. Since we shall work in the
oriented category, henceforth all manifolds are assumed to be oriented
and all diffeomorphisms are assumed orientation preserving. Modifying
Smale’s notation we let

H2n = {W |W ∼= D2n ∪φ (�r
i=1D

n ×Dn)}

denote the set of (oriented) diffeomorphism classes of (oriented) han-
dlebodies obtained from D2n by attaching a finite number of n-handles.
Up to homotopy, adding an n-handle to a manifold with boundary is
equivalent to adding an n-cell. Thus manifolds in H2n have the homo-
topy type of a wedge of n-spheres. In particular this means that Hn(W )
is free and Hi(W ) = 0 for any 0 < i < n.

Theorem 4.1 ([Sm, Theorem 1.2]). Let n ≥ 3 and let W 2n be an
(n−1)-connected manifold with (n−2)-connected boundary. Then W ∈
H2n.

Remark 4.2. Notice that if n ≥ 3 and the boundary of W , ∂W , in
Theorem 4.1 is simply connected, then ∂W is indeed (n− 2)-connected.

This is because Poincaré duality for W shows that H̃∗(∂W ) = 0 for
∗ ≤ n−2, from which the connectedness of the boundary follows by the
Hurewicz theorem.

For n ≥ 3, the classification of the manifolds W ∈ H2n was given by
Wall [Wall1]. We present an equivalent, cohomological version of Wall’s
classification: see Baues [Bau] for a similar discussion using homology.
The intersection form of W is a bilinear pairing

λW : Hn(W,∂W ) ×Hn(W,∂W )→ Z,
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which can be algebraically defined using the connecting homomorphism
j : Hn(W,∂W ) → Hn(W ) coming from the homology long exact se-
quence of the pair (W,∂W ) together with the Poincaré duality isomor-
phism PD: Hn(W ) ∼= Hn(W,∂W ). We have

(13) λ(x, y) := 〈PD(j(x)), y〉.

Geometrically, the intersection form can be computed via the inter-
section of oriented submanifolds which are Poincaré duals to classes
x1, x2 ∈ Hn(W,∂W ). Suppose that x̂1 and x̂2 are n-dimensional ho-
mology classes which are dual to x1 and x2 and which can be repre-
sented by compact oriented submanifolds N1 and N2. Without loss of
generality, suppose that N1 and N2 are in general position with respect
to each other. This means that the submanifolds intersect transversally
in a finite collection of points. There is a notion of sign which can be
associated to such an intersection, depending on the orientations of the
submanifolds and the global orientation of W . It can be shown that the
cohomological intersection of x1 and x2 defined in (13) above is equal
to the number of (geometric) intersection points of N1 and N2 counted
with sign. For more details, see [Bro, V §1].

In addition to the intersection form of W , Wall identifies an extra
invariant

μW : Hn(W,∂W )→ πn−1(SO(n)), x �→ νx̂.

Here x̂ ∈ Hn(W ) is Poincaré dual to x and νx̂ is the isomorphism class
of the normal bundle of an embedding

fx̂ : S
n →W

representing x̂: as in Section 3.1, we identify the homotopy group
πn−1(SO(n)) with the set of isomorphism classes of oriented rank n vec-
tor bundles over Sn. By the Hurewicz theorem πn(W ) ∼= Hn(W ) and by
Haefliger’s classification of embeddings [Ha, Théorèm d’approximation],
the homology class x̂ is represented by an embedding fx̂ which is unique
up to isotopy: hence the isomorphism class of the bundle νx̂ is well-
defined. Wall [Wall1, Lemma 2] shows that the function μW is a qua-
dratic refinement of λW in the sense that together μW and λW sat-
isfy equations (2) and (3) from Section 3.1 above. Hence the triple
(Hn(W,∂W ), λW , μW ) is an extended quadratic form over πn−1{SO(n)},
called the extended intersection form of W .

We now assume that n = 2k is even. Recall from Section 3.1 that
the stabilisation of μW is a homomorphism αW = S ◦ μW : H2k(W ) →
π2k−1(SO) and that the pair (λW , αW ) determines the pair (λW , μW ).
Hence when n = 2k, we shall use the equivalent triple

(H2k(W,∂W ), λW , αW ),



216 D. CROWLEY & D. J. WRAITH

for the extended intersection form of W . Wall’s arguments in [Wall1]
prove that a diffeomorphism of handlebodies f : W0

∼= W1 induces an
isomorphism of their extended quadratic forms:

f∗ : (Hn(W1, ∂W1), λW1 , αW1)
∼= (Hn(W0, ∂W0), λW0 , αW0).

We now state the cohomological version of Wall’s classification of han-
dlebodies in the case n = 2k is even.

Theorem 4.3 ([Wall1, p. 168]). For all k ≥ 2, the assignment of its
extended intersection form to a handlebody defines a bijection,

H4k ≡ F4k, W �→ (H2k(W,∂W ), λW , αW ),

which maps the boundary connected sum of handlebodies to the orthog-
onal sum of forms;

W0�W1 �→ (H2k(W0, ∂W0), λW0 , αW0)⊕ (H2k(W1, ∂W1), λW1 , αW1).

Moreover, every isomorphism of extended intersection forms,

A : (H2k(W1, ∂W1), λW1 , αW1)
∼= (H2k(W0, ∂W0), λW0 , αW0),

is realised by a diffeomorphism fA : W0
∼= W1.

4.2. Treelike plumbings. In Section 2.1, we introduced the set of
diffeomorphism classes of treelike plumbing manifolds T P4k and the set
of diffeomorphism classes of boundaries of treelike plumbings

∂T P4k = {∂W |W ∈ T P4k−1}.

Since each treelike plumbingW is (2k−1)-connected we see that T P4k ⊂
H4k and Wall’s Theorem 4.3 applies. In Section 3.4 we introduced the
set treelike extended quadratic forms T F4k. In Lemma 4.5 below we
prove that a handlebody W ∈ H4k is a treelike plumbing if an only if
its extended intersection form is treelike. We then use this fact to prove
the following special case of Theorem 2.4.

Theorem 4.4. If M0,M1 ∈ ∂T P4k then M0�M1 ∈ ∂T P4k.

Lemma 4.5. If W ∈ H4k, then W ∈ T P4k if and only if (H2k(W,
∂W ), λW , αW ) ∈ T F4k.

Proof. If (H2k(W,∂W ), λW , αW ) ∈ T F4k, we choose a Z-labelled tree
t = ((V, E), (ai)) with vertex set V = (v1, . . . , vr) and an isomorphism

θ : (Ht, λt) ∼= (H2k(W,∂W ), λW ).

We define the bundles αi := μW (θ(vi)) ∈ π2k−1(SO(2k)), and con-
sider the plumbing arrangement determined by the labelled tree u :=
((V, E), (αi)) and form the plumbing manifold W (u). By construction,
the extended intersection forms of W and W (u) are isomorphic. By
Theorem 4.3 there is a diffeomorphism W ∼= W (g) and so W ∈ T P4k.
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Conversely, if W ∈ T P4k then W ∼= W (u), u = ((V, E), (αi)), is
realised via a plumbing arrangement with a treelike graph (V, E). By
the discussion prior to Theorem 2.3, the intersection form of W (u) is
treelike, and so by definition, the extended quadratic form of W is
treelike. q.e.d.

Now consider the handlebody

W∞ := (S2k × S2k − int(D4k)),

which has extended intersection form (H+(Z), 0).

Proposition 4.6. Suppose that W0,W1 ∈ T P
4k. Then W0�W∞�W1∈

T P4k.

Proof. By Lemma 3.9, the extended intersection form of W0�W∞�W1

is treelike. Hence by Lemma 4.5, W0�W∞�W1 is treelike. q.e.d.

Proof of Theorem 4.4. Suppose that Mi = ∂Wi for Wi ∈ T P
4k, i = 0, 1.

Then
M0�M1 = M0�S

4k−1�M1 = ∂(W0�W∞�W1).

By Lemma 4.6, W0�W∞�W1 ∈ T P
4k and so M0�M1 ∈ ∂T P4k−1. q.e.d.

5. (2k−1)-parallelisable (2k−2)-connected (4k−1)-manifolds

We define

M
O〈n−1〉
2n−1,n−2

:= {M2n−1 |M is (n − 2)-connected and (n− 1)-parallelisable},

to be the set of diffeomorphism classes of closed (n− 2)-connected and
(n−1)-parallelisable manifolds of dimension 2n−1. For questions about

positive Ricci curvature, an important subset of M
O〈n−1〉
2n−1,n−2 is made up

of those manifolds M which are the boundaries of handlebodies. Hence
we define

∂H2n := {M |M = ∂W and W ∈ H2n} ⊂ M
O〈n−1〉
2n−1,n−2.

Recall also that ∂T P2n is the set of diffeomorphism classes of mani-
folds which are the boundaries of treelike plumbings. Evidently we have
inclusions

∂T P2n ⊂ ∂H2n ⊂M
O〈n−1〉
2n−1,n−2.

Another important subset ofM
O〈n−1〉
2n−1,n−2 is Θ2n−1, the set of oriented

diffeomorphism classes of manifolds Σ which are homotopy equivalent
to S2n−1:

Θ2n−1 := {Σ |Σ � S2n−1}.

The set Θ2n−1 forms a group under connected sum which was famously
first studied by Kervaire and Milnor [K-M]. We now briefly recall the
structure of the group Θ2n−1, and an important addition of Brumfiel
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when n = 2k. Let Ωfr
m denote the framed bordism group of stably framed

m-manifolds and let

Jm : πm(SO)→ Ωfr
m, γ �→ [Sm, γ · F0]

be the homomorphism obtained by using a homotopy class γ : Sm → SO
to reframe the standard, nullbordant framing F0, of Sm, and taking
the framed bordism class of the resulting manifold. The Pontrjagin–
Thom isomorphism identifies Ωfr

m, with πS
m, the stable m-step of ho-

motopy classes of maps between spheres of dimensions differing by m
[B-tD][Satz 3.1 and 4.9]. By a Theorem of Serre [Se], πS

m is finite
if m > 0 and hence the cokernel of the J-homomorphism, Coker(Jm)
is finite. Kervaire and Milnor [K-M, Theorem 3.1] proved that every
homotopy sphere Σ is stably parallelisable and then defined the homo-
morphism

η : Θm → Coker(Jm), Σ �→ [Σ, F ],

by choosing a stable framing F for a homotopy sphere Σ, taking the
framed bordism class of (Σ, F ), and then modding out by the possible
choices of stable framing.

By definition, the kernel of η is bPm+1 ⊂ Θm, the subgroup of ho-
motopy spheres which bound parallelisable manifolds, and Kervaire and
Milnor proved that bPm+1 is a finite cyclic group. When m = 4k − 1,
Brumfiel [Bru1] gave a splitting of the inclusion bP4k ⊂ Θ4k−1 by show-
ing that every homotopy sphere Σ ∈ Θ4k−1 bounds a spin manifold W
with vanishing decomposable Pontrjagin numbers and signature σ(W )
divisible by 8 [Bru1, Theorems 1.5 and 1.6]. Brumfiel then defined the
homomorphism

f : Θ4k−1 → bP4k, f(Σ) :=
σ(W )

8
∈ Z/|bP4k| ∼= bP4k.

Theorem 5.1 ([K-M, Theorem 6.6], [Bru1, Theorem 1.4]). For all
2n− 1 ≥ 5, there is a short exact sequence

0→ bP2n → Θ2n−1 → Coker(J2n−1)→ 0.

When n = 2k is even, this sequence is split by the Brumfiel invariant
f : Θ4k−1 → bP4k.

Now recall BO〈n〉 → BO, the (n − 1)-fold connected covering of

BO. In Section 5.1 below, we define the bordism groups of Ω
O〈n−1〉
∗ of

BO〈n〉-manifolds and Lemma 5.5 (3) shows that every M ∈ M
O〈n−1〉
2n−1,n−2

defines a unique bordism class [M ] ∈ Ω
O〈n−1〉
∗ . When n = 2k ≥ 4, we

have following theorem, the third part of which is the main topological
result of this paper.

Theorem 5.2. Let k ≥ 2 and M ∈ M
O〈2k−1〉
4k−1,2k−2.

1) M ∈ ∂H4k if and only if [M ] = 0 ∈ Ω
O〈2k−1〉
4k−1 .
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2) There is a homotopy sphere Σ with f(Σ) = 0 such that M�Σ ∈
∂H4k.

3) If M ∈ ∂H4k, then M ∈ ∂T P4k. Consequently, ∂H4k = ∂T P4k.

Theorem 5.2 plays a central role in the proofs of our main results:
Theorem C is equivalent to the statement of Theorem 5.2 (3), and The-
orems A and A′ both follow by combining Theorem 1.1 with Theorem
5.2. Moreover, Theorem B follows from Theorem 1.1 when combined
with Corollary 5.4 below.

Remark 5.3. Part (2) of Theorem 5.2, without the extra condition
f(Σ) = 0, was proven in [Wall4, Theorem 8], which was written before
Brumfiel’s paper [Bru1].

In [K-M] it is shown that Θ7
∼= bP8 and Θ11

∼= bP12. The isomor-
phisms are given by the Brumfiel invariant f . Since all 2-connected
7-manifolds (respectively, 4-connected 11-manifolds) are automatically
spin (respectively, string) as a consequence of their connectedness, we
obtain the following corollary to Theorem 5.2 (2) and (3).

Corollary 5.4. MSpin
7,2 = ∂T P8 andMString

11,4 = ∂T P12. That is, ev-
ery 2-connected 7-manifold is diffeomorphic to the boundary of a treelike
plumbing W ∈ T P8, and every 4-connected 11-manifold is diffeomor-
phic to the boundary of a treelike plumbing W ∈ T P12.

The proofs of parts (1) and (2) of Theorem 5.2 are given in Section 5.1.
The proof of part (3) consists of two parts and runs as follows. In
Section 5.2 we present the classification of rational homotopy spheres
M ∈ ∂H4k up to connected sum with homotopy spheres and we reduce
Theorem 5.2 (3) to the completely algebraic Theorem 5.12. We prove
Theorem 5.12 in Section 6.

5.1. BO〈n〉-bordism. In this subsection we prove Theorem 5.2 (1)

and (2). We begin by defining the bordism groups Ω
O〈n−1〉
∗ . Recall that

a BO〈n〉-structure on a compact manifold X is an equivalence class of
diagrams

BO〈n〉

��
X

ν̄
��








 ν �� BO,

where ν : X → BO classifies the stable normal bundle of X. Two closed
BO〈n〉-manifolds (N0, ν̄0) and (N1, ν̄1) are BO〈n〉-bordant if there is
a compact BO〈n〉-manifold (X, ν̄X) with boundary the disjoint union
(N0, ν̄0) and (N1,−ν̄1), where −ν̄1 is the BO〈n〉-structure induced on
N1 × {0} ⊂ N1 × I from a BO〈n〉-structure on N1 × I which restricts
to ν̄1 on N1×{1}. We have the bordism group of closed m-dimensional
BO〈n〉-manifolds

ΩO〈n〉
m := {(N, ν̄) | (N, ν̄) is a closed BO〈n〉-manifold}/BO〈n〉-bordism,
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where addition is given by disjoint union and −[N, ν̄] = [N,−ν̄]. For
more details about the definition of the BO〈n〉-bordism groups, we refer
the reader to [Sto, Chapter II].

For the statement of the following lemma, we recall that a manifold
X is called (n − 1)-parallelisable if its tangent bundle is trivial when
restricted to every (n− 1)-skeleton of X.

Lemma 5.5. 1) A manifold X admits a BO〈n〉-structure ν̄ : X →
BO〈n〉 if and only if X is (n− 1)-parallelisable.

2) Every manifold M ∈ ∂H2n is (n− 1)-parallelisable.
3) Every connected (n− 2)-connected (n − 1)-parallelisable manifold

X admits precisely two equivalence classes of BO〈n〉-orientation
which are determined by the orientation they induce on X.

Proof. (1) Let X(n−1) be an (n − 1)-skeleton for X. Since BO〈n〉
is (n − 1)-connected, if X admits a BO〈n〉-structure ν̄, then ν̄|X(n−1)

is null-homotopic, hence ν|X(n−1) is null-homotopic. From this we de-

duce that the tangent bundle of X restricted to X(n−1) is stably trivial,
since ν|X(n−1) is a KO-theory inverse for the stable tangent bundle over

X(n−1). Lemma 3.5 of [K-M] states that a vector bundle over a complex
where the fibre dimension exceeds the base dimension is trivial if and
only if it is stably trivial. As this is precisely the situation for TX|X(n−1)

we conclude that X is (n− 1)-parallelisable.
To argue in the other direction, we note that by definition, there is

a fibration Pn−2(O) → BO〈n〉 → BO where Pn−2(O) is the (n − 2)nd

Postnikov stage of O: see [Wh, IX Theorem 2.8] for the definition of
Pn−2(O). The obstructions to lifting ν : X → BO〈n〉 lie in the group
H∗(X;π∗−1(Pn−2(O))) [Wh, VI Theorem 6.2], which vanishes for ∗ >
n − 2. Since the restriction homomorphism H∗(X;π∗−1(Pn−2(O))) →

H∗(X(n−1);π∗−1(Pn−2(O))) is an isomorphism, we see that these ob-
structions vanish if X is (n− 1)-parallelisable.

(2) Let M = ∂W , for W ∈ H2n. Since W is (n − 1)-connected, it
follows that W is (n−1)-parallelisable. Since the classifying map of the
stable normal bundle of M , ν : M → BO factors through the inclusion
M → W , it follows that M is (n− 1)-parallelisable.

(3) Let ν+ : X → BSO be an orientation of the stable normal bun-
dle of X and let ν̄i, i = 0, 1 be two BO〈n〉-structures on X com-
patible with ν+. We now work with the (n − 1)-connective covering
over BSO, BO〈n〉 → BSO, and consider maps fν̄i : X → BO〈n〉,
i = 0, 1, covering ν+, representing the two BO〈n〉-structures ν0 and
ν1 on X. We may assume that both fν̄0 and fν̄1 are lifts of the same
map fν+ : X → BSO, representing ν+. The obstructions to finding a
vertical homotopy over BO〈n〉 → BSO between fν̄0 and fν̄1 lie in the
groups H∗(X;π∗(Pn−2(SO))), see [Wh, VI Theorem 6.12], and these
groups vanish since Pn−2(SO) is connected and X is (n− 2)-connected.
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(Note that a vertical homotopy is a homotopy between maps into the
total space of a fibration which projects to the same map on the base
independent of the homotopy parameter.) It follows that ν̄0 and ν̄1 are
equivalent BO〈n〉-structures on X. q.e.d.

Proof of Theorem 5.2 (1) and (2). (1) One direction is clear: if M ∈
∂H4k, then by definitionM = ∂W whereW ∈ H4k and so by Lemma 5.5
W is a BO〈2k〉-manifold, i.e., a BO〈2k〉 null-bordism ofM . Thus [M ] =

0 ∈ Ω
O〈2k−1〉
4k−1 . Conversely, suppose that W0 is a BO〈2k〉-null bordism of

M . Then by [Mi2, Theorem 3], we may perform surgeries on the interior
of W0 to obtain an (2k − 1)-connected manifold W with boundary M .
By Theorem 4.1, W ∈ H4k and hence M ∈ ∂H4k.

(2) Let M ∈ M
O〈2k−1〉
4k−1 . It suffices to show that M is bordant

over BO〈2k〉 to some homotopy sphere Σ with f(Σ) = 0, for then

[M�(−Σ)] = 0 ∈ Ω
O〈2k−1〉
4k−1 , and by part (1) M�(−Σ) ∈ ∂H4k. Moreover,

f(−Σ) = 0. Let ν̄ : M → BO〈2k〉 be a lift of the classifying map of the
stable normal bundle of M . We consider the problem of doing surgery
on the normal map ν̄ : M → BO〈2k〉 until it is an isomorphism on all
homotopy groups πi for i ≤ 2k − 1. We see that the arguments of Ker-
vaire and Milnor [K-M] can be used in this situation and that there is
no obstruction. Hence M is bordant over BO〈2k〉 to a homotopy sphere
Σ0 → BO〈2k〉. Now there is a homotopy sphere Σ1 ∈ bP4k such that
f(Σ1) = −f(Σ0). We set Σ2 := Σ1�Σ0, so that f(Σ2) = 0. Since Σ1

bounds a parallelisable manifold, it bounds over BO〈2k〉, and so

[M ] = [Σ0] = [Σ0�Σ1] = [Σ2] ∈ Ω
O〈2k−1〉
4k−1 .

Thus choosing a homotopy sphere Σ so that [Σ] = −[Σ2] ∈ Ω
O〈2k−1〉
4k−1

means that f(Σ) = 0 and [M�Σ] = 0 ∈ Ω
O〈2k−1〉
4k−1 . Thus by (1) above,

M�Σ ∈ ∂H4k. q.e.d.

5.2. Rational homotopy spheres. Let ∂H4k
Q−HS ⊂ ∂H4k be the set

of diffeomorphism classes of manifolds M which are the boundaries of
handlebodies and also rational homology spheres:

∂H4k
Q−HS = {M ∈ ∂H4k |H∗(M ;Q) ∼= H∗(S4k−1;Q)}.

When k = 1, H4k
Q−HS is actually a set of rational homotopy spheres.

However, we are mostly interested in the case k ≥ 2, and for the re-
mainder of this section we will assume k ≥ 2.

In this subsection we define the extended quadratic linking form of
M ∈ ∂H4k

Q−HS, which is closely related to the usual linking form of M ;

see (14) below. We then use the extended quadratic linking form to
give the diffeomorphism classification of manifolds in ∂H4k

Q−HS up to
connected sum with homotopy spheres.
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We begin by recalling the definition of the linking form of a closed
(2n − 1)-manifold N . Let THn(N) denote the torsion subgroup of
Hn(N) and let x, y ∈ THn(N). Since x maps to zero in Hn(N ;Q)
it has a preimage x ∈ Hn−1(N ;Q/Z) under the Bockstein for the coef-
ficient sequence Z→ Q→ Q/Z. We define

(14) bN : THn(N)× THn(N)→ Q/Z, (x, y) �→ 〈x ∪ y, [N ]〉 ∈ Q/Z.

The linking form bN is a well-defined nonsingular (−1)n-symmetric
pairing: see [D-K, Exercises 53–55]. As with the intersection form,
there is a well known geometric interpretation of the linking form. For
x, y ∈ THn(N) let x̂ = PD(x) and ŷ = PD(y). These are classes in
THn−1(N) which are represented by cycles cx̂ and cŷ. Choose a chain
wŷ ∈ Cn(N) such that ∂wŷ = kcŷ for some k ∈ Z. (Note that wŷ ex-
ists because ŷ is a torsion element of Hn−1(N).) The linking form of N
satisfies

bN (x, y) =
(cx̂, wŷ)

k
∈ Q/Z,

where ( , ) : Cn−1(N)× Cn(N)→ Z is the intersection form on chains.
In addition to the linking form, another important invariant of M ∈

∂H4k
Q−HS is the primary obstruction to the stable triviality of the tangent

bundle of M . This is a cohomology class

βM ∈ H2k(M ;π2k−1(SO)).

Note that by Bott-periodicity, π2k−1(SO) ∼= Z,Z/2,Z, 0 for k ≡ 0, 1, 2, 3
mod 4.

Remark 5.6. Although we do not use the following fact, we point
out that by [Ke], when k = 2j is even,

aj(2j − 1)!βM = pj(M),

where pj(M) is the jth Pontrjagin class of M and aj = (3− (−1)j)/2.

We now define the extended quadratic linking form of M ∈ ∂H4k

which extends and refines the triple (H2k(M), bM , βM ). We exploit
the fact that M = ∂W , for W a handlebody, and that handlebodies are
classified by their extended quadratic forms (H2k(W,∂W ), λW , αW ); see
Theorem 4.3. Since there is a homotopy equivalence W � ∨S2k and M
is a rational homotopy sphere, the cohomology long exact sequence of
the pair (W,M) contains the short exact sequence

0→ H2k(W,M)
λ̂W−−−→ H2k(W ) −→ H2k(M)→ 0.

Hence coker λ̂W = H2k(M) and it follows that (H2k(W ), λW , αW ) is
nondegenerate. We recall from Section 3.3 that a nondegenerate ex-
tended quadratic form (H2k(W,∂W ), λW , αW ) defines an extended qua-

dratic linking form on the finite abelian group G := coker(λ̂) = H2k(M),
and this is how we define the extended quadratic linking form of M .
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Definition 5.7. Given M ∈ ∂H4k
Q−HS, choose any handlebody W ∈

H4k with ∂W = M . The extended quadratic linking form of M is
defined to be the quadruple

(H2k(M), bM , qM , βM ) := ∂(H2k(W,M),−λW , αW ),

where the right-hand side is the algebraic boundary (Definition 3.5) of
the extended intersection form of −W (see Section 4.1).

Remark 5.8. A few words are needed concerning Definition 5.7.
Firstly, the sign of qM in Definition 5.7 differs from that given in [C1,
Definition 2.10]. This is because [C1, Definition 2.22] gave the wrong
sign for the linking of form bM . Indeed, the proof of [A-H-V, Theorem
2.1] shows that the linking form bM as defined in (14) above is the
negative of the linking form as defined in Definition 3.5 (1).

The fact that extended quadratic linking form of M is a well-defined
almost diffeomorphism invariant follows from the proof [Wall4, Theo-
rem 8] when k 	= 2, 4, and when k = 2, 4 this is this follows from [C1,
Lemma 2.15]: in both cases the signs must be changed (the proof of
[Wall4, Theorem 8] also uses the wrong sign for the linking form). For
the reader’s convenience, and the sake of a unified presentation, we give
the proof in Theorem 5.9 (1) below.

Recall that an almost diffeomorphism between closed m-manifolds
N0 and N1 is a diffeomorphism f : N0

∼= N1�Σ for some homotopy m-
sphere Σ. When working with almost diffeomorphisms, it is convenient
to regard N1 and N1�Σ as the same topological space. In particular
we identify H∗(N1) = H∗(N1�Σ). The following classification theorem
states that the extended quadratic linking form (H2k(M), bM , qM , βM )
is a complete almost diffeomorphism invariant of a rational homology
sphere M ∈ ∂H4k

Q−HS :

Theorem 5.9. Let k ≥ 2 and M0,M1 ∈ ∂H4k
Q−HS.

1) An almost diffeomorphism f : M0
∼= M1�Σ induces an isomor-

phism of extended quadratic linking forms:

f∗ : (H2k(M1); bM1 , qM1 , βM1)
∼= (H2k(M0); bM0 , qM0 , βM0).

2) For any isomorphism of extended quadratic linking forms

A : (H2k(M1); bM1 , qM1 , βM1)
∼= (H2k(M0); bM0 , qM0 , βM0),

there is a homotopy sphere Σ ∈ ∂H4k and a diffeomorphism
fA : M0

∼= M1�Σ such that

f∗A = A : H2k(M1) ∼= H2k(M0).

Remark 5.10. For k 	= 2, 4, the above classification result Theorem
5.9 (2) can also be deduced from [Wall4, Theorem 7]: see [Wall4, §14]
and the proof of [Wall4, Theorem 8].
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Proof of Theorem 5.9 We first note that by 5.2 (1) we have [M0] =

[M1] = 0 ∈ Ω
O〈2k−1〉
4k−1 . Given a diffeomorphism M0

∼= M1�Σ we see that

[M1�Σ] = 0 ∈ Ω
O〈2k−1〉
4k−1 also. From this we deduce that [Σ] = 0, and so

by 5.2 (1) again we have Σ ∈ ∂H4k. Hence there is a handlebody WΣ

with ∂WΣ = Σ, as well as handlebodies Wi with ∂Wi = Mi. At this
point we shall need the following theorem of Wilkens PhD thesis [Wi1]
which was restated with Wilkens’ proof in [C1].

Theorem 5.11 ([Wi1, Theorem 3.2], [C1, Theorem 2.24]). With
the notation above, there are additional handlebodies W2 and W3 with
boundaries the standard sphere and a diffeomorphism F such the fol-
lowing diagram commutes:

M0

��

f
�� M1�Σ

��
W0�W2

F �� W1�WΣ�W3.

Proof of Theorem 5.9 continued. Let W4 := W0�W2 and W5 :=
W1�WΣ�W3. Since ∂W2, ∂WΣ and ∂W3 are all homotopy spheres. It
follows that:

(H2k(M0), bM0 , qM0 , βM0) = ∂(H2k(W4, ∂W4),−λW4 , αW4),

and

(H2k(M1), bM1 , qM1 , βM1) = ∂(H2k(W5, ∂W5),−λW5 , αW5).

The diffeomorphism F in Theorem 5.11 induces an isomorphism of ex-
tended quadratic forms

F ∗ : (H2k(W5),−λW5 , αW5)
∼= (H2k(W4),−λW4 , αW4),

and hence f∗ = ∂F ∗ is an isomorphism of the extended quadratic linking
forms on the boundary, as required. This proves Theorem 5.9 (1).

Now suppose we are given A : H2k(M1) ∼= H2k(M0), an isomorphism
of extended quadratic linking forms. For i = 0, 1 there are handlebodies
Wi such that Mi = ∂Wi and

∂(H2k(Wi,Mi),−λWi
, αWi

) = (H2k(Mi), bMi
, qMi

, βMi
).

By Theorem 3.6 there are non-singular extended quadratic forms (H2,
λ2, α2), (H3, λ3, α3) and an isomorphism of extended quadratic forms

B : (H0,−λ0, α0)⊕ (H2,−λ2, α2) ∼= (H1,−λ1, α1)⊕ (H3,−λ3, α3),

where we have abbreviated (H2k(Wi, ∂Wi), λWi
, αWi

) = (Hi, λi, αi) for
i = 0, 1. Next, by Theorem 4.3 there are handlebodies W2, W3 with
extended intersection forms (H2, λ2, α2), (H3, λ3, α3). We claim that
the boundaries of these handlebodies are homotopy spheres. To see this,
recall that the algebraic boundary of a non-singular extended quadratic
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form is zero (as observed before Theorem 3.6). In particular this means
that the group G = H2k−1(∂Wi) = 0 for i = 2, 3, from which the claim
follows easily. Next, by Theorem 4.3 again, the isomorphism B above
is realised by a diffeomorphism fB : W0�W2

∼= W1�W3. Restricting fB
to the boundary, we obtain a diffeomorphism

∂fB : M0�Σ2
∼= M1�Σ3.

This entails that there is a diffeomorphism f : M0
∼= M1�Σ, where Σ =

Σ2�(−Σ1) ∈ ∂H4k. This proves Theorem 5.9 (2). q.e.d.

Now recall the boundary map ∂ : F4k
nd → Q4k−1 of (5), which asso-

ciates to every nondegenerate extended quadratic form the boundary
extended quadratic linking form. We define T F4k

nd ⊂ F4k
nd to be the

set of isomorphism classes of nondegenerate treelike extended quadratic
forms. The following theorem is the main algebraic result of this paper
and will be proven in Section 6.

Theorem 5.12. The boundary map ∂ : T F4k
nd → Q4k−1 is onto.

That is, for every extended quadratic linking form (G, b, q, β), there
is a nondegenerate treelike extended quadratic form (H,λ, α) such that
(G, b, q, β) is isomorphic to ∂(H,λ, α).

Proof of Theorem 5.2 (3). LetM be the boundary of a handlebodyW ∈
H4k. We must show that M is the boundary of a treelike plumbing. We
first reduce to the case where M is a rational homotopy sphere. By
[Wall4, Theorem 7], every M ∈ ∂H4k can be written as a connected
sum

M = MT �
(
�bi=1Mi

)
,

where MT is a rational homotopy sphere, b is the rank of H2k−1(M ;Q)
and each Mi is the total space of a (2k−1)-sphere bundle over S

2k. Since
each Mi clearly belongs to ∂T P2m, and by Theorem 2.4 or Theorem 4.4,
∂T P2m is closed under connected sums, it remains to show that MT ∈
∂T P4k.

Let MT have extended quadratic linking form (H2k(MT ), bMT
, qMT

,
βMT

). By Theorem 5.12, there is a nondegenerate treelike extended
quadratic form (H,λ, α) and an isomorphism

∂(H,λ, α) ∼= (H2k(MT ), bMT
, qMT

, βMT
).

By Lemma 4.5 there is a treelike plumbingW with extended intersection
form isomorphic to (H,−λ, α). Hence ∂W and MT have isomorphic
extended quadratic linking forms and so by Theorem 5.9 (2), there is
a homotopy sphere Σ ∈ ∂H4k and a diffeomorphism ∂W�Σ ∼= MT .
Now, ∂W and Σ both belong to ∂T P4k, and so by Theorem 2.4 or
Theorem 4.4, MT ∈ ∂T P4k. q.e.d.
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6. Realising linking forms as the boundaries of treelike forms

In this section we prove Theorem 5.12 which states that for every ex-
tended quadratic linking form (G, b, q, β) there is a nondegenerate tree-
like extended quadratic form (H,λ, α) such that (G, b, q, β) is isomor-
phic to ∂(H,λ, α). In this situation we shall say that (H,λ, α) presents
(G, b, q, β). We begin by outlining the strategy of the proof.

We call an extended quadratic linking form (G, b, q, β) decomposable
if it can be written as a nontrivial orthogonal sum, and indecomposable
otherwise. By Lemma 3.9, the image of the boundary map ∂ : T F4k →
Q4k−1 is closed under orthogonal sum. Hence it suffices to prove that
every indecomposable extended quadratic linking form (G, b, q, β) can
be presented by a nondegenerate treelike form (H,λ, α). We define

Q4k−1(G0, b0, q0) := {(G, b, q, β) | (G, b, q) ∼= (G0, b0, q0)} ⊂ Q
4k−1,

and

Q4k−1(G0, b0) := {(G, b, q, β) | (G, b) ∼= (G0, b0)} ⊂ Q
4k−1

to be the set of isomorphism classes of linking forms with a fixed isomor-
phism class of quadratic refinement, respectively, a fixed isomorphism
class of linking form. Recall that the quadratic refinement q determines
b and so Q4k−1(G0, b0, q0) ⊂ Q

4k−1(G0, b0).
The next result says that if an extended quadratic form (H,λ, α)

over π2k−1{SO(2k)} has boundary linking form (G0, b0) in the case
k = 2, 4, respectively, boundary linking form with quadratic refinement
(G0, b0, q0) in the case k 	= 2, 4, then we can present all possible extended
quadratic linking forms extending (G0, b0), respectively, (G0, b0, q0) as
the boundaries of treelike forms. In fact, in the former case we can pro-
duce all quadratic refinements of (G0, b0) and corresponding elements β
in this way, and in the latter case all possible elements β.

Lemma 6.1. Let (H0, λ0, α0) be a nondegenerate treelike extended
quadratic form.

1) If k = 2, 4 and ∂(H0, λ0, α0) ∈ Q
4k−1(G0, b0), then Q

4k−1(G0, b0)⊂
∂T F4k.

2) If k 	= 2, 4 and ∂(H0, λ0, α0) ∈ Q4k−1(G0, b0, q0), then
Q4k−1(G0, b0, q0) ⊂ ∂T F4k.

Proof. As α ∈ H∗⊗π2k−1(SO) varies over all possible values of α for
which (H0, λ0, α) ∈ F

4k, we look at the linking forms ∂(H0, λ0, α) which
arise. If k = 2, 4 then by the proof of [C1, Corollary 2.23 (2)], every
linking form (G, b, q, β) ∈ Q4k−1(G0, b0) arises in this way. If k 	= 2, 4
then α is independent of λ, by Lemma 3.2, and since π : H∗ → G is onto,
all possible values of β ∈ G⊗π2k−1(SO) arise from α ∈ H∗⊗π2k−1(SO).

q.e.d.
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Notice that every linking form (G, b) has a homogeneous quadratic
refinement q. This is axiomatic in the case k 	= 2, 4, (see Definition
3.4) and in the case k = 2, 4 this follows from Lemma 6.1 (1) by choos-
ing the homogeneity defect β to be 0. With this in mind, the above
discussion shows that it suffices to prove that every homogeneous qua-
dratic linking form (G, b, q) can be presented by an even treelike form
(H,λ) as in Lemma 3.5 (1). Recall from Section 3.4, that a Z-labelled
tree t = ((V, E), (a)) defines a symmetric bilinear from (Ht, λt) which
is even if and only if each ai ∈ a is even. We shall call a Z-labelled
tree with even labels an even labelled tree and we shall say that an even
labelled tree t presents a linking form (G, b, q) if the even symmetric
form (Ht, λt) presents (G, b, q). Note the significance of evenness here:
by Lemma 3.2 the bilinear form λ takes values in 2Z if k 	= 2, 4. (Even-
ness is not required in the case k = 2, 4, though assuming it does not
create an impediment.) We now give a list which contains all the in-
decomposable homogeneous quadratic linking forms on finite abelian
groups.

Theorem 6.2 ([Wall2, Theorems 4 and 5]). Let p be a prime,
let j ≥ 0 be an integer and let θ be an integer prime to p such that
−pj < θ < pj. Let x generate Zpj and let y, z generate Z2

pj
. Every in-

decomposable homogeneous quadratic linking form is isomorphic to one
of the following:

Cyclic : qθpj := (G, b, q) =

(
Zpj ,

(
θ

pj

)
, q(x) =

θ

2pj

)
;

Hyperbolic :

H(Z2j ) := (G, b, q) =

(
Z2
2j ,

(
0 2−j

2−j 0

)
, q(y) = 0 = q(z)

)
;

Pseudo-hyperbolic :

F (Z2j ) := (G, b, q) =

(
Z2
2j ,

(
21−j 2−j

2−j 21−j

)
, q(y) = 2−j = q(z)

)
.

To prove Theorem 5.12 it suffices to list even labelled trees which
present the quadratic linking forms listed in Theorem 6.2. This seems to
us to be a non-trivial task: Wall [Wall2, Theorem 6] lists the rational
inverses of the intersection matrices of even forms which present the
quadratic linking forms in Theorem 6.2. In the cyclic case it is not
obvious that the corresponding integral even forms are treelike and in
Section 6.1 below we show that Wall’s forms in the hyperbolic and
pseudo-hyperbolic case are not treelike.

In Section 6.2 we modify Wall’s arguments to find even labelled trees
presenting all indecomposable cyclic linking forms; see Lemma 6.7. In
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Sections 6.3 and 6.4 we find even labelled trees which present all inde-
composable hyperbolic and pseudo-hyperbolic quadratic linking forms;
see Lemmas 6.9 and 6.10. Theorem 6.2 and Lemmas 3.9, 6.7, 6.9 and
6.10 combine to prove Theorem 5.12.

6.1. Non-treelike forms. In this subsection we consider symmetric
bilinear forms (H,λ) which are not assumed to be even. The bound-
ary linking form of (H,λ) as defined in Lemma 3.5 (1) will be denoted
∂(H,λ). We shall show that there are many non-treelike symmetric
forms by applying the following simple observation, which gives a crite-
rion for finding non-treelike symmetric forms.

Lemma 6.3. Let (H,λ) be a nondegenerate symmetric bilinear form
and suppose that there is an integer k > 1 such that (H,λ) ∼= (H, kλ0)
for some other nondegenerate symmetric bilinear form λ0 on H. If
(H,λ) is treelike then the linking form ∂(H,λ) is isomorphic to a sum
of cyclic linking forms.

Proof. Let (h1, . . . , hr) be a treelike basis for (H,λ), let A and A0 be
the matrices of λ and λ0 with respect to this basis. Since (h1, . . . , hr) is a
treelike basis for (H,λ), it follows that the off-diagonal matrix elements
Aij are either zero or one. But Aij = kA0

ij, and so Aij = 0. It follows

that A is diagonal and hence ∂(H,λ) is a sum of cyclic linking forms.
q.e.d.

We next define some symmetric forms where we can apply Lemma 6.3.
Firstly, we let bH(Z2j ) and bF (Z2j ) be the linking forms underlying the
quadratic linking forms H(Z2j ) and F (Z2j ), respectively. Let H+(2

j)
denote the symmetric bilinear form on Z2 with intersection matrix(

0 2j

2j 0

)
.

The boundary linking form of H+(2
j) is bH(Z2j ) and clearly H+(2

j) =
2jH+(1).

In the pseudo-hyperbolic case, we define F+(2
j) to be the even sym-

metric bilinear form over Z4 as follows. Setting

aj :=
1

3
(2j − (−1)j) and bj := (−1)j−1,

with j ≥ 1, the form F+(2
j) = (Z4, λF+(2j )) is represented by the fol-

lowing matrix:

A(F+(2
j))

:=

⎛
⎜⎜⎝

2j+1(4ajbj − 1− 2jbj) −2
j(4ajbj − 1) 2j+1bj −2j

−2j(4ajbj − 1) 2j+1(4ajbj − 1) −2j+2bj 2j+1

2j+1bj −2j+2bj 6bj −12
−2j 2j+1 −12 12aj − 2j+1

⎞
⎟⎟⎠.
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One calculates that the boundary linking form of F+(2
j) is bF (Z2j ).

Indeed, Wall [Wall2, §7] writes down a symmetric matrix B(F2j ) over
Q4 whose inverse matrix is A(F+(2

j)) and whose quadratic boundary
is the pseudo-hyperbolic quadratic linking form F (Z2j ). It is clear that
(Z4, λF+(2j)) = (Z4, 2λ′

F+(2j )) for an integral form (Z4, 2λ′
F+(2j)).

Now let (G, b) = (G0, b0) ⊕ (G1, b1) where (G1, b1) is isomorphic to
either bH(Z2j ) or bF (Z2j ) and where 2j · G0 is an odd torsion group.
Then for all x ∈ G, there is an odd integer q such that q2j−1b(x, x) = 0.
It follows that (G, b) contains no cyclic orthogonal summand on Z2j and
in particular (G, b) is not isomorphic to a sum of cyclic linking forms.
Applying Lemma 6.3 to the above discussion we obtain:

Lemma 6.4. Fix a positive integer j and let (H, 2λ) be a nonde-

generate symmetric bilinear form such that 2j · coker(λ̂) is odd torsion.
Then the symmetric bilinear forms

(H, 2λ)⊕H+(2
j) and (H, 2λ)⊕ F+(2

j)

are not treelike. In particular for any positive integers is and jt, any
non-trivial sum of forms H+(2

is) and F+(2
jt) is not treelike.

6.2. Cyclic linking forms. In this subsection we show how to present
2-primary cyclic linking forms by 2Z-labelled treelike graphs. Our ar-
guments in this section are based on the proof of [Wall1, Theorem 6].
We shall require the follow lemma which is a simple consequence of the
classification of cyclic quadratic linking forms.

Lemma 6.5. Every linking form qθ
pj

is isomorphic to some qθ
′

pj
where

θ′ and p have the opposite parity.

Proof. In the case p = 2, note that both θ and θ′ must be odd. We
can, therefore, assume that p is odd. In this case, linking forms over Zpj

are determined up to isomorphism by whether θ mod p is a quadratic
residue or a quadratic non-residue [Wall2, Theorem 4]. Since 1 and 4
are both quadratic residues mod p for all p > 3, it follows that for such p
the set of quadratic residues and the set of quadratic non-residues both
contain even integers. Thus for any θ we can find an even θ′ such that
qθ
pj
∼= qθ

′

pj
. If p = 3, then for any admissible choice of θ we can take either

θ′ = −2 or θ′ = 2, since −2 is a quadratic residue and 2 is a non-residue.
q.e.d.

We will need the following specific version of the Euclidean algorithm.
We suppose that d1 and d2 are co-prime integers of opposite parity
and that |d1| > |d2|. We shall be interested in the situation where
(d1, d2) = (pj , θ). Since −θ

−pj
= θ

pj
, we shall have the freedom to change

the sign of both d1 and d2. We define even integers ai ∈ 2Z and integers
di ∈ Z, as follows. Starting from i = 1, let

(15) di = ai · di+1 − di+2,
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where 0 ≤ |di+2| < |di+1|. That is, we choose the even integer multiple
of di+1 which is closest to di, so that |di+2| < |di+1|. As in the usual
Euclidean algorithm, if di+2 divides di+1, then by induction di+2 divides
d1 and d2. Since we assume that d1 and d2 are coprime, we see that the
numbers |di| form a descending sequence of non-negative integers with
alternating parity and which must, therefore, finish with 1 and 0. Let
dn+2 = 0 so that dn+1 = ±1 and define the sequence {d′1, d

′
2, . . . , d

′
n+1}

by

d′i := dn+1 · di.

We note that the d′i also satisfy (15) and that if dn+1 = −1, then we
have changed the sign of both d1 and d2. Moreover, putting i = n − 1
and i = n into (15) above we obtain the equations,

d′n−1 = an−1 · d
′
n − 1 and d′n = an.

Setting a = (a1, . . . , an) we take the even labelled tree d(a) as defined
in (10) in Section 3.4.

Lemma 6.6. With the notation above, set (d1, d2) = (pj, θ), where θ
and p have opposite parity. The even labelled tree d(a) presents qθ

pj
.

Proof. Let (Hd(a), λd(a)) be the even symmetric form defined by d(a)
and let

(G, b, q) = ∂(Hd(a), λd(a)).

We wrote down the intersection matrix Ad(a) of λd(a) with respect to the
canonical basis of Hd(a) in (11) in Section 3.4. By induction, the last i
rows and columns of Ad(a) have determinant d′n−i+1. In particular, Ad(a)

has determinant d′1 = dn+1 · p
j and the submatrix M1,1(A) obtained by

deleting the first row and column of A has determinant d′2 = dn+1 · θ.
It follows that the (1, 1)-entry of A−1

d(a) is

A−1
d(a)(1, 1) =

d′2
d′1

=
θ

pj
.

The free abelian group Hd(a) is generated by the vertices {v1, ..., vn}
of the tree d(a), and we have the dual basis element v∗1 ∈ H∗. Since

|det(Ad(a))| = pj, we deduce from Lemma 3.7 (2) that G := coker(λ̂d(a))

has |G| = pj. Since A−1
d(a)(1, 1) = θ/pj we infer from Definition 3.5 (1)

and Lemma 3.7 (1), that if we set g := π(v∗1) ∈ G, we must have
q(g) = θ/2 · pj and hence b(g, g) = θ/pj. It follows from this that
G = 〈g〉, i.e., G ∼= Zpj . Thus (G, b, q) is an indecomposable cyclic linking

form on Zpj , and so is isomorphic to qθ
pj
. Thus d(a) presents qθ

pj
. q.e.d.

From Theorem 6.2 and Lemmas 6.6 and 6.5, we obtain:

Lemma 6.7. Every indecomposable cyclic linking form can be pre-
sented by an even labelled tree.
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6.3. Hyperbolic linking forms. In this subsection, we show how to
present the 2-primary hyperbolic linking forms H(Z2j ) by even labelled
trees. We begin with some general considerations which we shall also
use in the pseudo-hyperbolic case which follows in Section 6.4.

Consider the following situation. We let t = ((V, E), (ai)) be a Z-

labelled tree with distinguished vertex v0. We let t̂ be the labelled
subgraph obtained by removing v0 and of course all the edges containing
v0. Given a ∈ Z, we form a new labelled tree by adding new vertices
{v−1, . . . , v−m} each with label a and a single edge from each new vertex
to v0. We shall consider just the two labelled trees where m = 1, 2,

a− t := 
������a t ,

and 
������a
��

��
��

��
�

(a, a) − t := t .


������a
���������

Let A be the intersection matrix of λ(a,a)−t obtained from the basis
{v−2, v−1, v0, v1, . . . , vr} and let M−1,−2(A) be the submatrix of A ob-
tained by deleting the -1 row and -2 column from A.

Lemma 6.8. Let x = det(λt) and y = det(λ̂
t
). We adopt the con-

vention that if t̂ is the empty graph, then det(λ̂
t
) = 1. Then

1) det(λa−t) = ax− y,
2) det(λ(a,a)−t) = a2x− 2ay,
3) det(M−1,−2) = −y.

Proof. (1) Ordering the vertex set of a− t as (v−1, v0, . . . , vn) where
(v0, . . . vn) is the vertex set of X and v0 is the distinguished vertex where
we attached the new edge, we see that λa−t has intersection matrix⎛

⎜⎜⎜⎜⎜⎝

a 1 0 0 . . .
1 a0 a01 a02 . . .
0 a01 a1 a12 . . .
0 a02 a12 a2 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Using the first column expansion for the determinant of λa−t gives the
result.

(2) Follows by applying part (1) to λ(a,a)−t.
(3) We order the vertex set of (a, a)− t as {v−2, v−1, v0, . . . , vr} where

{v0, . . . vr} is the vertex set of t and v0 is the distinguished vertex where
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we attached the new edge. With respect to this basis, the intersection
matrix of λ(a,a)−t is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a 0 1 0 0 . . .
0 a 1 0 0 . . .
1 1 a0 a01 a02 . . .
0 0 a01 a1 a12 . . .
0 0 a02 a12 a2 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let M := M−1,−2(A) and consider the following matrices:

M =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 . . .
1 a0 a01 a02 . . .
0 a01 a1 a12 . . .
0 a02 a12 a2 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ , M1 =

⎛
⎜⎜⎜⎝

1 a01 a02 . . .
0 a1 a12 . . .
0 a12 a2 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

M2 =

⎛
⎜⎝

a1 a12 . . .
a12 a2 . . .
...

...
. . .

⎞
⎟⎠ .

Here M1 is a submatrix of M and M2 is a submatrix of M1 such that
the following hold:

1) M2 is the intersection matrix of λ̂
t
with respect to the basis

{v0, . . . , vr},
2) det(M) = − det(M1) = − det(M2) = −y. q.e.d.

Consider the even labelled tree

�������	2j

��
��

��
��

�

uj := 
������0 ��������−2j

�������	2j

���������

which has the intersection matrix:

(16) Auj =

⎛
⎜⎜⎝

2j 0 0 1
0 2j 0 1
0 0 −2j 1
1 1 1 0

⎞
⎟⎟⎠ .

Lemma 6.9. The even labelled tree uj presents the linking form
H(Z2j ).
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Proof. Let u′j be the labelled tree

u′j := 
������0 ��������−2j

with preferred vertex labelled by 0. Then uj = (2j , 2j) − u′j. Now

det(λu′j
) = −1 and det(λ

û′j
) = −2j . It follows by Lemma 6.8 (2) that

det(λuj ) = −2
2j + 22j+1 = 22j . If Auj is the intersection matrix of λuj ,

Lemma 6.8 (1) gives that the submatricesM−1,−1(Auj ) andM−2,−2(Auj )
satisfy

det(M−1,−1) = det(M−2,−2) = det(λ2j−u′j
) = −2j + 2j = 0.

By Lemma 6.8 (3), the submatrix M−1,−2 of Auj has

det(M−1,−2) = − det(λ
û′j
) = 2j .

It follows that A−1uj
contains the submatrix(

0 2−j

2−j 0

)
.

Let (G, b, q) = ∂(Huj , λuj ). Applying Definition 3.5 (3), we see that the
boundary of (Huj , λuj ) contains H(Z2j ) as a sublinking form. But since

det(Auj ) = 22j , it follows by Lemma 3.7 (2) that |G| = 22j , and thus
(G, b, q) ∼= H(Z2j ). That is, uj presents H(Z2j ). q.e.d.

6.4. Pseudo-hyperbolic quadratic linking forms. In this subsec-
tion we apply Lemma 6.8 to find an even labelled tree vj which presents
the pseudo-hyperbolic linking form F (Z2j ). We define εj = ±1 by set-
ting εj = 1 if j is odd and εj = −1 if j is even. We then consider the
even labelled tree

tj := 
������0 �������	rj 
������0 
������0 
������2 
������2
where rj :=

2(1−εj ·2
j−1)

3 ∈ 2Z. Choosing the left-most vertex of tj as the

preferred vertex v0, we then form the even labelled tree vj := (εj ·2
j , εj ·

2j)− tj , which can be written as follows:

������ !εj · 2
j

��
��

��
��

�

vj := 
������0 �������	rj 
������0 
������0 
������2 
������2

������ !εj · 2
j

���������
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Lemma 6.10. The labelled tree vj = (εj · 2
j , εj · 2

j)− tj presents the
linking form F (Z2j ).

Lemma 6.10 follows straight away from the following two lemmas.

Lemma 6.11. Let t be a labelled tree with preferred vertex v0 and
subgraph t̂ obtained by deleting v0. For ε = ±1, if det(λt) = 3 and
det(λ̂

t
) = ε · 2j , then the labelled graph vj := (ε · 2j , ε · 2j) − t presents

F (Z2j ).

Lemma 6.12. The labelled tree tj with preferred vertex the left-most
vertex satisfies

det(λtj ) = 3 and det(λ
t̂j
) = εj · 2

j .

Proof of Lemma 6.11. By Lemma 6.8 (2), det(vj) = ε2(3·22j−2·2j ·2j) =
22j . By Lemma 6.8 (1), if Avj is the intersection matrix of λvj , we see
that the submatrices M−2,−2 and M−1,−1 of Avj satisfy

det(M−1,−1) = det(M−2,−2) = det(λε·2j−tj ) = ε(3 · 2j − 2j) = ε · 2j+1.

By Lemma 6.8 (3), the submatrix M−1,−2 of Avj has

det(M−1,−2) = −ε · 2
j .

It follows that A−1vj
contains the submatrix:

ε ·

(
21−j 2−j

2−j 21−j

)
.

Let (G, b, q) = ∂(Hvj , λvj ). Applying Definition 3.5 (2), we see that
boundary of (Hvj , λvj ) contains a sublinking form isomorphic to F (Z2j ).

But since det(Avj ) = 22j , it follows Lemma 3.7 (2) that |G| = 22j and
thus (G, b, q) ∼= F (Z2j ). That is, vj presents F (Z2j ). q.e.d.

Proof of Lemma 6.12. Applying Lemma 6.8 (1) repeatedly from the left-
most vertex of tj , we see that det(tj) = 3. Choosing v0 as the left-most
vertex, then we have the even labelled tree:

t̂j = �������	rj 
������0 
������0 
������2 
������2 .

Again, applying Lemma 6.8 (1) repeatedly from the left-most vertex,
we see that

det(̂tj) = −3rj + 2 = εj · 2
j . q.e.d.

Remark 6.13. There is a paper by tom Dieck [tD] which com-
putes linking numbers for the linking forms of the boundaries of treelike
plumbings M ∈ ∂T P4k. Lemmas 6.6, 6.9 and 6.10 in Sections 6.2, 6.3
and 6.4 above can also be verified by applying [tD, Satz 1].
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7. Treelike plumbings and their boundaries in other

dimensions

In Section 4 and 5 we focused on treelike plumbings of dimension 4k,
k ≥ 2. In this section we consider other dimensions. In Section 7.1, we
look at the analogues of our results for plumbing manifolds of dimension
4k + 2 ≥ 6. In Section 7.2, we briefly consider plumbing manifolds of
dimension 4.

7.1. 2k-parallelisable (2k−1)-connected (4k+1)-manifolds. In this
subsection we work in dimension 4k+1 and consider the question of
which 2k-parallelisable (2k−1)-connected (4k+1)-manifolds M bound
treelike plumbings. The principal difference between dimensions 4k+1
and 4k−1 is the role of the torsion linking form. In dimensions 4k−1,
we have seen that the torsion linking form does not obstruct bounding
a plumbing manifold, but in dimensions 4k+1 any torsion in H2k+1(M)
prevents M from bounding a plumbing manifold. We begin our
discussion by stating the analogue of Theorem 5.2 in dimensions
4k+1.

Theorem 7.1. Let n = 4k + 2 ≥ 6 and let M ∈ M
O〈2k〉
4k+1,2k−1.

1) M ∈ ∂H4k+2 if and only if [M ] = 0 ∈ Ω
O〈2k〉
4k+1 .

2) There is a homotopy sphere Σ such that M�Σ ∈ ∂H4k+2.
3) If M ∈ ∂H4k+2, then M ∈ ∂T P4k+2 if and only if H∗(M) is

torsion free.

Theorem D follows immediately from Theorem 7.1 and Theorem 1.1.
The proof of part Theorem 5.2 (1) and (2) carries over to the proof

of Theorem 7.1 (1) and (2), except that for part (2), we do not worry
about the Brumfiel invariant. (For all dimensions 4k + 1 	= 2j − 3,
Brumfiel [Bru2] has defined an invariant which splits the Kervaire–
Milnor sequence of Theorem 5.1, but we shall not go into these subtleties
here.) Hence, it remains to prove Theorem 7.1 (3), and for this we need
to consider (4k + 2)-dimensional plumbing manifolds and the labelled
trees which describe them.

We begin by defining the intersection form of a labelled tree in the
skew-symmetric case. We define a skew 0-labelled tree g = ((V, E),
(0, . . . , 0)) to be a tree with ordered vertex set V = (v1, . . . vr) and
signed directed edge set E = {eij}. The set of directed edges from vi
to vj, Eij, is either empty or has one element eij , and if |Eij| = 1, then
|Eji| = 0. We define εij ∈ {−1, 0, 1} to be the sign of eij if Eij is non-
empty, and to be zero otherwise. A skew 0-labelled tree gives rise to
a skew-symmetric bilinear form λt on Ht, the free abelian group with
basis V, by defining

(17) λt(vi, vj) := εij |Eij| − εji|Eji|,
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and extending linearly to all of Ht. A skew-symmetric form (H,λ) is
called treelike if it is isomorphic to (Ht, λt) for some skew 0-labelled tree.
An extended quadratic form (H,λ, μ) over π2k{SO(2k+1)} is called
treelike if (H,λ) is treelike. We define

F4k+2 := {(H,λ, μ)}

to be the set of isomorphism classes of extended quadratic forms over
π2k{SO(2k+1)} and we define

T F4k ⊂ F4k+2

to be the set of isomorphism classes of treelike extended quadratic forms
over π2k{SO(2k+1)}. Lemma 4.5 and its proof carry over to dimensions
4k + 2 and so we have:

Lemma 7.2. If W ∈ H4k+2, then W ∈ T P4k+2 if and only if
(H2k+1(W,∂W ), λW , μW ) ∈ T F4k+2.

Now let H−(Z) be the skew-symmetric hyperbolic form on Z2 with
intersection matrix (

0 1
−1 0

)
,

and let H−(Z
s) := ⊕sH−(Z) be the s-fold orthogonal sum of H−(Z).

A fundamental, if elementary fact, is that every nonsingular skew-
symmetric form (H,λ) is isomorphic to H−(Z

s) for some s; see, for
example, [Mi2, Assertion p. 55]. We shall need the following two al-
gebraic results about skew-symmetric treelike forms. The first follows
since Lemma 3.9 and its proof carry over to the skew-symmetric case.
The second is the algebraic reason why torsion cannot appear in the
homology of the boundary of treelike plumbings.

Lemma 7.3. For any j ≥ 0, if (Hi, λ,αi) ∈ T F4k+2, then⊕j
i=1(Hi, λi, αi)⊕ (H−(Z), 0) ∈ T F

4k.

Proposition 7.4. Let (Ht, λt) be a skew-symmetric treelike form,
then (Ht, λt) is isomorphic to the orthogonal sum H−(Z

s) ⊕ (Zt, 0) for
some s, t.

Proof. We shall argue by induction on the number of vertices of t.
The Proposition is certainly true for the empty tree and for a tree with
one vertex. Let t have vertex set V = (v0, . . . , vr) and let vl be a leaf
of (V, E) so that there is a single edge e between vl and vk say, which
is incident with vl. We let s be subgraph of t obtained by removing vk,

vl and all edges involving vk and vl. The 0-labelled graph s = �j
i=1ti is

a disjoint union of 0-labelled trees ti, where each tree ti is connected to
vk via a single edge in t. Hence, by the proof of Lemma 3.9, (or rather
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its extension to the skew-symmetric case) the treelike form (Ht, λt) is
isomorphic to the orthogonal sum

(Ht, λt) ∼=

j⊕
i=0

(Hti , λti),

where t0 is the 0-labelled tree consisting of vk, vl and a single edge e
between them. Now (Ht0 , λt0)

∼= H−(Z), and by induction, for i > 0
each (Hti , λti) is isomorphic to the orthogonal sum of a nonsingular form
and a zero form. It follows that (Ht, λt) is isomorphic to the orthogonal
sum of a nonsingular form and a zero form. q.e.d.

Proof of Theorem 7.1 (3). Suppose that M = ∂W whereW is a treelike
plumbing. From the long exact sequence of the pair (W,M) and the fact
that W � ∨S2k+1, we obtain the short exact sequence

(18) 0→ H2k(M)→ H2k+1(W,M)→ H2k+1(W )→ H2k+1(M)→ 0.

By Lemma 7.2, the extended intersection form of W is treelike and by
Proposition 7.4, the intersection form of W is the sum of a zero form
and a nonsingular form. Since the homomorphism H2k+1(W,M) →
H2k+1(W ) is the adjoint of the intersection form of W , it follows that
H∗(M) is torsion free.

Now suppose that M = ∂W , W ∈ H4k+2 and that H∗(M) is torsion
free. Again we use the exact sequence (18) which still applies. Since
H2k(M) ∼= H2k+1(M) is torsion free, we conclude that the intersection
form of W , (H2k+1(W,∂W ), λW ) splits as an orthogonal sum (H,λ) ⊕
(F, 0) where (H,λ) is nonsingular and so (H,λ) ∼= H−(Z

s) for some
s. If we now take the connected sum W ′ := W�(S2k+1 × S2k+1), we
have M = ∂W ′ and that the intersection form of W ′ splits as (H,λ) ⊕
(F, 0) ⊕ H−(Z). Since (H,λ) ∼= H−(Z

s) is treelike, (F, 0) is a sum of
zero forms (Z, 0) and since (Z, 0) is treelike, by Lemma 7.3 we see that
(H2k+1(W ′), λW ′ , μW ′) is treelike. Hence by Lemma 7.2, W ′ ∈ T P4k+2

and so M ∈ ∂T P4k+2. q.e.d.

7.2. Tree-manifolds and 4-dimensional treelike plumbings. In
dimensions 3 and 4 treelike plumbings and their boundaries have been
intensively studied. Plumbings of D2-bundles over surfaces also arise in
the study of complex manifolds and complex singularities in complex
dimension two: see, for example, [Hir]. In the topological setting, von
Randow [vR] used the term “Baummannigfaltigkeit”, literally “tree-
manifold” to describe 3-manifolds M obtained by plumbing D2-bundles
over 2-spheres according to trees. In the terminology of this paper,
∂T P4 is precisely the set of oriented diffeomorphism classes of tree-
manifolds in von Randow’s sense. Tree-manifolds are in turn a special
case of graph manifolds where D2-bundles over general surfaces are al-
lowed, the same bundle can be plumbed to itself, and the pluming graph
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need not be a tree. Graph manifolds were the subject of early work of
Waldhausen [Wald] and a comprehensive calculus of graph manifolds
was given in [Ne].

The motivation for studying plumbing manifolds in dimension four
has so far largely arisen from questions in topology, complex surfaces
and complex singularities, and these are themes which are rather dif-
ferent from our motivation. In particular, the methods we use for con-
structing metrics of positive Ricci curvature on the boundaries of plumb-
ings, i.e., Theorem 1.1, do not apply to 3-dimensional manifolds. We
shall mention just two highlights of previous work on tree-manifolds.
The Poincaré conjecture was proven rather early for tree-manifolds:
[vR, Sc]. Generalising this work, Neumann and Weintraub [N-W,
Theorem p. 71] proved every W ∈ T P4 with boundary ∂W ∼= S3 is
diffeomorphic to one of the following connected sums: �s(S

2 × S2) or
�s(CP

2�(−CP 2)).
So far as we can tell, the question of which linking forms arise as the

linking forms of tree-manifolds may not have been completely answered
in the literature up until now. On the other hand, [K-K, Theorem 6.1]
states that every torsion linking form (G, b) is isomorphic to the linking
form of some 3-manifold. From our earlier results we deduce:

Proposition 7.5. Every isomorphism class of linking form (G, b) is
realised as the linking form a tree-manifold M ∈ ∂T P4.

Proof. It follows from Theorem 5.12 that every linking form (G, b)
arises as the boundary of an even symmetric treelike bilinear form
(H,λ). Applying the discussion before Theorem 2.3, (H,λ) is realised
as the intersection form of −W for some W ∈ T P4, and so the linking
form of ∂W is isomorphic to (G, b). q.e.d.

8. Symmetric forms are stably treelike

We conclude this paper with a purely algebraic implication of our re-
sults from Section 6. We consider even symmetric bilinear forms (H,λ):
for the general case, see Remark 8.3 below. Recall that an even labelled
tree t = ((V, E), a) defines an even symmetric form (Ht, λt) and that
an even symmetric form (H,λ) is treelike if it is isomorphic to some
treelike form (Ht, λt). In Section 6.1 we showed that there are infinite
families of even symmetric forms which are not treelike and remarked
that determining if a given form (H,λ) is treelike seems to be a hard
problem. In this direction, Newman [Ne] has show that every symmet-
ric bilinear form is “nearly treelike” in the sense that it can presented
as the intersection matrix of a Z-labelled connected graph (V, E) which
fails to be a tree only because there is a pair of vertices which may have
arbitrarily many edges between them.
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One theme in the study of symmetric forms is to consider them sta-
bly; i.e., to consider their properties under the addition of copies of
the standard hyperbolic form H+(Z), defined in (12). In this section
we show that even forms are stably treelike. Let H+(Z

s) = ⊕sH+(Z)
denote the s-fold orthogonal sum of the standard hyperbolic form. We
shall say that two even forms (H0, λ0) and (H1, λ1) are stably equivalent
if there are s, t ≥ 0 and an isomorphism

(H0, λ0)⊕H+(Z
s) ∼= (H1, λ1)⊕H+(Z

t).

Theorem 8.1. For every even symmetric bilinear form (H,λ) there
is an s ≥ 0 such that (H,λ)⊕H+(Z

s) is treelike.

Proof. Firstly we write (H,λ) = (H0, λ0)⊕ (F, 0) where (F, 0) is the
zero form and (H,λ0) is nondegenerate. By a theorem of Nikulin [Ni,
Corollary 1.13.4], two nondegenerate even forms (H0, λ0) and (H1, λ1)
are stably equivalent if and only if they have the same signature and
isomorphic boundary quadratic linking forms; ∂(H0, λ0) ∼= ∂(H1, λ1).
Moreover, by a theorem of Milgram, [M-H, Theorem, Appendix 4], the
signature of (Hi, λi) is determined mod 8 by ∂(Hi, λi).

We start with any nondegenerate even form (H0, λ0). By Theorem
6.2 and Lemmas 3.9, 6.7, 6.9 and 6.10, every quadratic linking form
is realised as the boundary of an even treelike form. Hence there is
a treelike form (Ht, λt) such that ∂(H,λ) ∼= ∂(Ht, λt). By Milgram’s
theorem the signatures of (H0, λ0) and (Ht, λt) agree modulo 8. Let E8

denote and Ê8 denote the symmetric forms with the following matrices:

E8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Ê8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is well known that E8 is nonsingular and has signature 8. Repeated

application of Lemma 6.8 (1) shows that Ê8 is nonsingular, and since
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Ê8 is negative definite, it follows that Ê8 has signature −8. Notice that

both E8 and Ê8 are even treelike forms. For an integer t, let ⊕tE8 denote
the |t|-fold orthogonal sum of E8, if t ≥ 0 and the |t|-fold orthogonal

sum of Ê8 if t < 0, so that ⊕tE8 has signature 8t. Applying Nikulin’s
result, [Ni, Corollary 1.13.4], we can find non-negative integers r, s, t
with s ≥ 1, and an isomorphism

(H0, λ0)⊕ (F, 0) ⊕H+(Z
r) ∼= (Ht, λt)⊕ (F, 0) ⊕H+(Z

s)⊕⊕tE8.

Now by Lemma 3.9, (Ht, λt)⊕ (F, 0)⊕H+(Z
s)⊕⊕tE8 is treelike, which

proves the theorem. q.e.d.

Remark 8.2. At present, we do not know precisely how many hyper-
bolics need to be added to a general even form until it becomes treelike.
Note that by [Ni, Corollary 1.13.4], if (H,λ) is nondegenerate, with H
having rank r and λ having signature σ, then (H,λ) ⊕ H+(Z) is the
unique even symmetric form with rank r+2, signature σ and boundary
quadratic linking form isomorphic to ∂(H,λ).

Remark 8.3. We point out that Theorem 8.1 has a symmetric ana-
logue in which the form H+(Z

s) is replaced by the s-fold sum of the
form 〈1〉 ⊕ 〈−1〉 where 〈ε〉 denotes the symmetric form (Z, ε), ε = ±1.
The proof is similar, except that one now uses the boundary linking
form and the fact that 〈ε〉 is treelike.
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