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ON THE NARASIMHAN-SESHADRI

CORRESPONDENCE FOR REAL AND

QUATERNIONIC VECTOR BUNDLES

Florent Schaffhauser

Abstract

Let (M,σ) be a compact Klein surface of genus g ≥ 2 and let
E be a smooth Hermitian vector bundle on M . Let τ be a Real or
Quaternionic structure on E and denote respectively by Gτ

C
and

G τ

E
the groups of complex linear and unitary automorphisms of E

that commute to τ . In this paper, we study the action of Gτ

C
on the

space A τ

E
of τ -compatible unitary connections on E and show that

the closure of a semi-stable Gτ

C
-orbit contains a unique G τ

E
-orbit of

projectively flat connections. We then use this invariant-theoretic
perspective to prove a version of the Narasimhan-Seshadri cor-
respondence in this context: S-equivalence classes of semi-stable
Real and Quaternionic vector bundes are in bijective correspon-
dence with equivalence classes of certain appropriate representa-
tions of orbifold fundamental groups of Real Seifert manifolds over
the Klein surface (M,σ).
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1. Introduction

1.1. Background on Klein surfaces. In this paper, a Klein surface
(or Real Riemann surface) is a pair (M,σ) whereM is a Riemann surface
and σ : M −→M is an anti-holomorphic involution (or Real structure).
A homomorphism f : (M1, σ1) −→ (M2, σ2) between two Klein surfaces
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is a holomorphic map f : M1 −→M2 such that f ◦σ1 = σ2 ◦f . We shall
always assume that M is connected. It is convenient to think of σ as the
non-trivial element of the group Σ := Gal(C/R) � Z/2Z, whose trivial
element will be denoted by 1Σ or sometimes simply by 1. In particular,
the group Σ acts on M and we will denote indifferently by M/σ or
M/Σ the orbit space of that action, endowed with the quotient topology.
Likewise, the fixed-point set of the Σ-action on M will be denoted by
Mσ or MΣ. The topological classification of compact Klein surfaces
(up to Σ-equivariant homeomorphism) is well-known and depends upon
three numbers:

• the genus g of M ,
• the number n ∈ {0; . . . ; g + 1} of connected components of Mσ,
• the number a ∈ {0; 1} which is non-zero if and only if the surface
M/σ is non-orientable.

The inequality n ≤ g+1 is called Harnack’s inequality and the invariants
(g, n, a) are subject to the following conditions:

• n = 0⇒ a = 1,
• n = (g + 1)⇒ a = 0,
• a = 0⇒ n ≡ (g + 1)mod 2.

The triple (g, n, a) will be called the topological type of the Klein surface
(M,σ).

1.2. Real and Quaternionic vector bundles. Atiyah initiated the
study of Real vector bundles over Real spaces in [Ati66]. Dupont then
introduced Symplectic vector bundles in [Dup69], which nowadays are
more commonly called Quaternionic vector bundles ([Har78]). Over a
Klein surface, the definition goes as follows.

Definition 1.1. Let (M,σ) be a Klein surface. A Real vector bundle
over (M,σ) is a pair (E , τ) where E −→ M is a holomorphic vector
bundle and τ : E −→ E is an anti-holomorphic map such that:

1) The following diagram commutes:

E
τ

−−−−→ E⏐⏐� ⏐⏐�
M

σ
−−−−→ M.

2) ∀v ∈ E , ∀λ ∈ C, τ(λv) = λτ(v).
3) τ2 = IdE .

A homomorphism between two Real vector bundles (E1, τ1) and (E2, τ2)
is a homomorphism of holomorphic vector bundles ϕ : E1 −→ E2 satis-
fying the additional condition ϕ ◦ τ1 = τ2 ◦ ϕ.

A Quaternionic vector bundle over (M,σ) is a pair (E , τ) as above
but satisfying τ2 = −IdE instead of τ2 = IdE . Homomorphisms of
Quaternionic vector bundles are defined as in the Real case.
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The stability condition for Real vector bundles was introduced in
[Wan96] then extended to the Quaternionic case in [Sch12]. Moduli
spaces of semi-stable Real and Quaternionic vector bundles were con-
structed using gauge theory in [BHH10] and [Sch12], where they were
related to the Real points of moduli spaces of semi-stable holomorphic
vector bundles, but the first instance of such a construction actually
goes back to Wang ([Wan93]). In the course of the paper, we will use
the following notation: MC(r, d) is the space of S-equivalence classes of
semi-stable holomorphic vector bundles of rank r and degree d ([Ses67])
and we denote byMR(r, d) (resp.MH(r, d)) the space of S-equivalence
classes of semi-stable Real (resp. Quaternionic) vector bundles of rank
r and degree d (see Definition 3.7). Likewise, we denote by NC(r, d)
the space of isomorphism classes of stable holomorphic vector bundles
of rank r and degree d ([Mum63]) and by NR(r, d) (resp. NH(r, d)) the
space of isomorphism classes of geometrically stable Real (resp. Quater-
nionic) vector bundles of rank r and degree d (see Definition 3.1 for

the notion of geometric stability). There is an action E �−→ (σ−1)∗E
of Σ = Gal(C/R) on MC(r, d), preserving the subset NC(r, d) and such
that the fixed point-set of the induced action is

(1.1) NC(r, d)
Σ � NR(r, d) � NH(r, d)

(see Propositions 3.8 and 3.9). We point out that, depending on the
topological type (g, n, a) of the Klein surface (M,σ), as well as of the
particular values of r and d, either NR(r, d) or NH(r, d), or even both
of them, might be empty: the proof of this is given in [Sch12] and uses
the following topological classification result of Biswas, Huisman and
Hurtubise in [BHH10] (see also [KW03] for Part (1)). We formulate
it for real and Quaternionic Hermitian vector bundles (E, τ), where τ is
now an isometry of the smooth Hermitian vector bundle E, otherwise
satisfying the same three conditions as in Definition 1.1. Note that, if
Mσ 
= ∅ and (E, τ) is Real, then Eτ −→ Mσ is a real vector bundle in
the ordinary sense (with fiber Rr) over a disjoint union of n circles, so Eτ

is determined up to isomorphism by its first Stiefel-Whitney class �w =
w1(E

τ ) ∈ H1(Mσ ;Z/2Z) � (Z/2Z)n. If n > 0, we set �w = (s1, . . . , sn) ∈
(Z/2Z)n and |�w| = s1+ . . .+sn and, if n = 0, we set �w = |�w| = 0. Also,
we denote by r the rank of a complex vector bundle E over M and by
d its degree.

Theorem 1.2 ([BHH10]). Let (M,σ) be a compact Klein surface
of topological type (g, n, a).

1) Two Real Hermitian vector bundles (E, τ) and (E′, τ ′) are iso-
morphic if and only if (r, d, �w) = (r′, d′, �w′). The triple (r, d, �w)
is called the topological type of (E, τ). A necessary and sufficient
condition for a Real Hermitian vector bundle of topological type
(r, d, �w) to exist is that |�w| = dmod 2. In particular, if Mσ = ∅,
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the degree of a Real vector bundle must be even and we simply write
(r, d) for (r, d, 0). If Mσ 
= ∅, there are 2n−1 possible topological
types of Real vector bundles of rank r and degree d.

2) Two Quaternionic Hermitian vector bundles (E, τ) and (E′, τ ′)
are isomorphic if and only if (r, d) = (r′, d′). The pair (r, d) is
called the topological type of (E, τ). A necessary and sufficient
condition for a Quaternionic Hermitian vector bundle of topologi-
cal type (r, d) to exist is that d+ r(g−1) ≡ 0 (mod 2). If Mσ 
= ∅,
the rank of a Quaternionic vector bundle must be even so the pre-
vious condition implies that its degree, too, must be even.

In what follows, it will be convenient to write (r, d, �w) for the topological
type of a Real or Quaternionic vector bundle (E, τ) and to interpret �w
as 0 and (r, d, �w) as (r, d) when Mσ = ∅ or τ2 = −IdE.

A first consequence of Theorem 1.2 is that, in the Real case, it is rel-
evant to introduce moduli spaces MR(r, d, �w) (resp. NR(r, d, �w)), con-
sisting of S-equivalence (resp. isomorphism) classes of semi-stable (resp.
geometrically stable) Real vector bundles of topological type (r, d, �w).
In particular, one has the following refinement of (1.1):

NC(r, d)
Σ �

( ⊔
�w | |�w|=dmod 2

NR(r, d, �w)
) ⊔

NH(r, d) ,

the point being that now each of the moduli spaces NR(r, d, �w) and
NH(r, d) is connected (see [Sch12] for a proof and a precise count of
the connected components of NC(r, d)

Σ according to the possible values
of (g, n, a) and (r, d)). For each topological type of Real or Quater-
nionic vector bundle, one can fix a Real or Quaternionic Hermitian vec-
tor bundle (E, τ) of that type and consider, instead of MR(r, d, �w) or
MH(r, d), the spaceM

ss(E, τ) of S-equivalence classes of τ -compatible
semi-stable holomorphic structures on it. This point of view is recalled
in detail in Section 3 (see in particular the gauge-theoretic construc-
tion ofMss(E, τ) in (3.9)) and exploited throughout the paper to prove
the Narasimhan-Seshadri correspondence (Theorem 1.3). The space
Mss(E, τ) is connected ([BHH10]).

1.3. The Narasimhan-Seshadri correspondence.

1.3.1. Position of the problem. The classical approach to under-
standing holomorphic vector bundles on a compact Riemann surface M
can be summarized as follows. Any holomorphic vector bundle over
M admits a (unique) Harder-Narasimhan filtration ([HN75]) so is, in a
canonical way, a successive extension of finitely many semi-stable vector
bundles (with strictly increasing slopes). Subsequently, any semi-stable
vector bundle E is a successive extension of finitely many stable vector
bundles of equal slope. Although the resulting filtration of E is not
unique, the associated graded object does not depend on the choice of
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that filtration and is, by definition, a poly-stable vector bundle. Finally,
by the Narasimhan-Seshadri correspondence ([NS65]), a stable vector
bundle of rank r and degree d comes, in a sense, from an irreducible
U(r)-representation of a certain discrete group Γd which is a central
extension of π1(M ;x) by Z (see [FS92] or Section 2.2 for a geometric
description of Γd as the fundamental group of the Seifert manifold S(L)
over M , where L is a smooth line bundle of degree d). More precisely,
there is a diffeomorphism NC(r, d) � R

irr(r, d), where Rirr(r, d) is the
subset of the usual representation space

R(r, d) := HomZ(Γd;U(r))/U(r)

consisting of conjugacy classes of irreducible representations, as well as
a homeomorphism MC(r, d) � R(r, d) (see Remark 2.5 for the defini-
tion of R(r, d)). One way to construct that homeomorphism is given
as follows. If � : Γd −→ U(r) is a group homomorphism, then there

is a diagonal action of Γd on M̃ × Cr, where M̃ is the universal cover

of M , Γd acts on M̃ through the projection Γd −→ π1(M) defining the
central extension Γd and on Cr via the unitary representation �. The

quotient E� := (M̃×Cr)/Γd of that action is a poly-stable vector bundle
of rank r and degree d. The map � �−→ E� thus defined will be called
the Narasimhan-Seshadri map. The Narasimhan-Seshadri theorem may
then be formulated as follows ([Don83]): a holomorphic vector bundle
E of rank r and degree d is poly-stable if and only if the correspond-
ing complex orbit of unitary connections that it defines on an arbitrary
smooth Hermitian vector bundle of rank r and degree d contains a pro-
jectively flat unitary connection. Such a connection is moreover unique
up to unitary gauge and taking its holonomy representation induces a
group homomorphism � : Γd −→ U(r) of the appropriate type (i.e. ly-
ing in R(r, d)), thus providing an inverse to the Narasimhan-Seshadri
map above. Now, we know from [Sch12] and [LS13] that Real (resp.
Quaternionic) vector bundles are, in a unique way, successive extensions
of semi-stable Real (resp. Quaternionic) vector bundles of increasing
slopes and that semi-stable Real (resp. Quaternionic) vector bundles
are extensions of finitely many stable Real (resp. Quaternionic) vector
bundles of equal slope. So it is natural question to look for an inter-
pretation of stable Real (resp. Quaternionic) vector bundles in terms of
representations of a certain discrete group Γd(Σ). When the problem
is formulated like this, finding the appropriate representation space is
not an easy task, essentially because stable Real or Quaternionic vec-
tor bundles may not be geometrically stable (Proposition 3.2) and in
general we cannot find filtrations of semi-stable Real and Quaternionic
vector bundles whose successive quotients are geometrically stable. It is
therefore better to focus either on geometrically stable Real and Quater-
nionic vector bundles or on poly-stable ones, as being poly-stable and
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Real (resp. Quaternionic) is equivalent to being poly-stable as a Real
(resp. Quaternionic) bundle (Proposition 3.6). We note that it is of
importance for the general picture that stable Real and Quaternionic
bundles be at least poly-stable when viewed as holomorphic vector bun-
dles, which is indeed the case. At any rate, since NC(r, d) � R

irr(r, d)
and

NC(r, d)
Σ � NR(r, d) � NH(r, d),

one can, as a first step, look for a natural action of Σ on Rirr(r, d)
and study the fixed points of that action. The problem is that it is not
immediately clear what special property these particular representations
� : Γd −→ U(r) have. When Mσ 
= ∅, we can choose a base point
x ∈ Mσ, have the group Σ act on π1(M ;x) and its central extension
Γd, and look at Σ-equivariant representations � : Γd −→ U(r) with
respect to an appropriate Σ-action on U(r) that will depend on whether
one wants to obtain Real or Quaternionic vector bundles. We will see
in Theorem 1.5 that this indeed gives a version of the Narasimhan-
Seshadri correspondence for Real and Quaternionic vector bundles over
Klein surfaces with Real points. When d = 0, we can replace Γ0 by
π1(M ;x) and, in that case, it is a consequence of the results of Biswas,
Huisman and Hurtubise in [BHH10] and Proposition 2.9 of the present
paper that an irreducible representation � : π1(M ;x) −→ U(r) whose
U(r)-conjugacy class is fixed under the natural Σ-action on Rirr(r, 0) �
Homirr(π1(M ;x);U(r))/U(r) defines a geometrically stable Real vector
bundle if and only if it extends to a homomorphism of Σ-augmentations

χ : π1(MΣ) −→ U(r)� Σ,

where π1(MΣ) is the (orbifold) fundamental group of (M,σ) (Definition
2.1) and Σ � Z/2Z acts on U(r) via the involutive group automor-
phism u �−→ u. So the group Γ0(Σ) is essentially π1(MΣ) (see Remark
2.7 for a precise statement) and the appropriate representation space
is completely identified for Real vector bundles of degree 0. Moreover,
this naturally includes the case where Mσ = ∅. For Quaternionic vector
bundles of degree 0, Biswas, Huisman and Hurtubise introduced twisted
maps π1(MΣ) −→ U(r) � Σ (in particular, these are not group homo-
morphisms anymore) in order to deal with the condition τ2 = −IdE and
still find a (twisted) representation space in this case. The goal of the
present paper is to identify the discrete group Γd(Σ) for all d ∈ Z as
well as to find the appropriate representation spaces in both the Real
and Quaternionic case. We will see in Section 2.2 that, by contrast
with the group Γd in the usual Narasimhan-Seshadri correspondence,
the group Γd(Σ) is an extension of π1(MΣ) by Z which is never central.
For Quaternionic vector bundles, it will be appropriate to consider not
the semi-direct productU(r)�Σ but a different extension U(r)×(−1)Σ:
the representation space that we introduce for such bundles will then
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consist of homomorphisms of Σ-augmentations Γd(Σ) −→ U(r)×(−1)Σ.
In particular, these will indeed be group homomorphisms.

1.3.2. Statement of the correspondence. We can now formulate
the Narasimhan-Seshadri correspondence for Real and Quaternionic vec-
tor bundles to be proved in this paper. Let (M,σ) be a Klein surface of
topological type (g, n, a) where g ≥ 2. Take c = +1 for Real vector bun-
dles and c = −1 for Quaternionic vector bundles and let us denote by
Mc(r, d, �w) the moduli space of semi-stable Real or Quaternionic vector
bundles of topological type (r, d, �w). We refer to (4.9) for a more detailed
definition ofMc(r, d, �w). Let (L, τL) be any smooth Real line bundle of
degree d over (M,σ) and let (S(L), τL) be the associated Real Seifert
manifold, defined as in Section 2.2. Denote by Γd(Σ) := π1(S(L)Σ) the
orbifold fundamental group of (S(L), τL). The group Γd(Σ) is both a
non-central extension 0 −→ Z −→ Γd(Σ) −→ π1(MΣ) −→ 1 and a Σ-
augmentation 1 −→ Γd −→ Γd(Σ) −→ Σ −→ 1 (see Diagram (2.7)).
A relevant fact for the present paper is that the isomorphism class of
Γd(Σ) as a Σ-augmentation depends only on d (Remark 2.8). Consider
now the action u �−→ u of Σ on U(r) and interpret c = ±1 as an ele-
ment of H2(Σ;Z(U(r))) � {±1}, where Σ acts on the center of U(r)
by complex conjugation. Then there is an extension U(r) ×c Σ of Σ
by U(r), whose isomorphism class depends only on c (see (2.8) for the
definition of that extension). It will be convenient to call U(r) ×c Σ
the extended unitary group. Finally, consider homomorphisms of Σ-
augmentations χ : Γd(Σ) −→ U(r)×cΣ such that, for all n ∈ Z ⊂ Γd(Σ),
χ(n) = exp(i2π

r
n)Ir and let U(r) act on such representations χ by con-

jugation. Let Rc(r, d) be the associated quotient (see Definition 2.4)
and let Rc(r, d, �w) be the subset of Rc(r, d) introduced in Definition
4.7: Rc(r, d, �w) consists of those representations χ such that the bundle
associated to χ by means of Theorem 2.6 is of topological type (r, d, �w).
Alternately, Rc(r, d, �w) can be defined directly in terms of the repre-
sentations χ, without recurring to the notion of an associated Real or
Quaternionic vector bundle, as we do in Definition 4.7. A representation
χ : Γd(Σ) −→ U(r) ×c Σ whose conjugacy class lies in Rc(r, d, �w) will
be called of type �w. The main result of the paper can then be stated as
follows.

Theorem 1.3 (The Narasimhan-Seshadri correspondence). Consider
a compact Klein surface (M,σ) of genus g ≥ 2. Let (L, τL) be a Real
line bundle of degree d and let (S(L), τL) be the associated Real Seifert
manifold over (M,σ). Set c = ±1. Then there is a homeomorphism

Mc(r, d, �w) � Rc(r, d, �w)

between the moduli space of semi-stable Real or Quaternionic vector
bundles of topological type (r, d, �w) and the space of U(r)-conjugacy
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classes of representations of type �w of the orbifold fundamental group
Γd(Σ) := π1(S(L)) into the extended unitary group U(r)×c Σ.

As a consequence, there are homeomorphisms

MR(r, d) � R+1(r, d) and MH(r, d) � R−1(r, d)

where
Rc(r, d) = HomZ

Σ(Γd(Σ);U(r) ×c Σ)/U(r)

for c = ±1. If we denote by Rirr
c (r, d) the set of homomorphisms of

Σ-augmentations χ : Γd(Σ) −→ U(r) ×c Σ whose restriction to Γd is
irreducible, we obtain homeomorphisms Nc(r, d, �w) � Rirr

c (r, d, �w) so,
in particular, NR(r, d) � R irr

+1(r, d) and NH(r, d) � R irr
−1(r, d). More-

over, Theorem 1.3 has the following consequence on the topology of the
moduli space Mc(r, d, �w).

Corollary 1.4. For fixed c and (r, d, �w), the homeomorphism type
of the moduli space Mc(r, d, �w) depends only on the topological type
(g, n, a) of the Klein surface (M,σ), i.e. the homeomorphism type of the
surface M/σ, not on the complex analytic structure of M .

Let us end the present section by outlining the strategy of proof for
Theorem 1.3. In Section 2 we review the basics of orbifold fundamental
groups and, in Theorem 2.6, we set up a map Rc(r, d) −→ Mc(r, d).
Then in Section 3 we recall the gauge-theoretic construction of the
moduli spacesMc(r, d, �w), completing the invariant-theoretic picture of
[Sch12] to include results on the closure of semi-stable orbits (Theorem
3.13). This later enables us to construct, in Section 4, representations of
orbifold fundamental groups by taking the holonomy representation of
a Galois-invariant, projectively flat, unitary connection on a fixed Real
or Quaternionic Hermitian vector bundle (Theorem 4.5). This sets up a
collection of maps Mc(r, d, �w) −→ Rc(r, d, �w) which are all homeomor-
phisms (Theorem 4.8), thus completing the proof of Theorem 1.3. We
note that, when Mσ 
= ∅, we can use Proposition 2.9 to provide a Σ-
equivariant version of the Narasimhan-Seshadri correspondence for Real
and Quaternionic vector bundles, which can be formulated as follows.

Theorem 1.5 (Equivariant version of 1.3 over Klein surfaces with
Real points). Assume that Mσ 
= ∅. Choose x ∈Mσ and x ∈ Fix(τL) in
the fiber of S(L) above x. Consider the action of Σ on π1(M ;x) given
by γ �−→ σ ◦ γ, as well as the induced action on the central extension
Γd = π1(S(L);x) of π1(M ;x). Let Σ act on U(r) either by σR : u �−→ u
or, when r = 2r′, by σH : u �−→ JuJ−1, where J is the usual matrix of
square −Ir. Then there are homeomorphisms

MR(r, d) � HomZ(Γd;U(r))Σ/O(r)

and
MH(r, d) � HomZ(Γd;U(r))Σ/Sp

(r
2

)
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where HomZ(Γd;U(r))Σ is the set of Σ-equivariant representations � :
Γd −→ U(r) satisfying, for all n ∈ Z ⊂ Γd, �(n) = exp(i2πr n)Ir, acted

upon by conjugation by the group U(r)Σ, which is equal to O(r) in the
Real case and to Sp( r2 ) in the Quaternionic one.

If we denote by HomZ(Γd;U(r))Σ�w the subset

W−1(�w) ⊂ HomZ(Γd;U(r))Σ

where W is the Real obstruction map of (4.10), then we also have a
homeomorphism

MR(r, d, �w) � HomZ(Γd;U(r))Σ�w /O(r).

In particular, the representation spaces HomZ(Γd;U(r))Σ�w /O(r) are

connected and so is HomZ(Γd;U(r))Σ/Sp( r2 ). In keeping with this
equivariant perspective, we note that the Narasimhan-Seshadri map
� �−→ E� satisfies σ�σ−1 �−→ (σ−1)∗E�, so the Narasimhan-Seshadri
map can be made Σ-equivariant when Mσ 
= ∅.

Acknowledgments. It is a pleasure to thank Ahmed Abbes, Olivier
Guichard, Johannes Huisman, Chiu-Chu Melissa Liu and Richard Went-
worth for helpful conversations on the topics dealt with in this paper.

2. Representations of orbifold fundamental groups

2.1. The fundamental group of a Klein surface. Recall that a
Klein surface (M,σ) is in particular a topological space endowed with
an action of the finite group Σ = Gal(C/R) � Z/2Z. Let Σ act on the
sphere EΣ := S∞ by multiplication by ±1. This action is free with
quotient BΣ = RP∞ and, since S∞ is contractible, we have fixed a
classifying bundle EΣ −→ BΣ for the group Σ. In particular, π1(BΣ)
is canonically identified with π0(Σ) = Σ via the connecting homomor-
phism of the homotopy long exact sequence of that fibration. The ho-
motopy quotient of the action of Σ on M is, by definition, the space
MΣ := M ×Σ EΣ, which is the topological quotient of M × EΣ by
the diagonal action of Σ. When the action of Σ on M is free, MΣ is
homotopically equivalent to the ordinary quotient M/Σ.

Definition 2.1. The fundamental group of the Klein surface (M,σ)
is the group π1(M ×Σ EΣ; [x, 1Σ]), which we will simply denote by
π1(MΣ;x) from now on.

This group is known as the orbifold fundamental group of the orbifold
[M/Σ]. It can be defined for general orbifolds, not only the good ones,
but we shall not need this more general notion ([Sco83,Hae90]). Given
a point x ∈ M , the homotopy long exact sequence of the fibration
M −→ MΣ −→ BΣ gives rise (using the fact that M is connected and
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Σ is discrete) to a short exact sequence

(2.1) 1 −→ π1(M ;x) −→ π1(MΣ;x) −→ Σ −→ 1,

which we will call the homotopy exact sequence. In particular, there
exists a group homomorphism Σ −→ Out(π1(M ;x)) from Σ to the outer
automorphism group Out(π1(M ;x)) := Aut(π1(M ;x))/Int(π1(M ;x)),
usually called the outer action.

To develop the theory of representations of fundamental groups of
Klein surfaces, it will be useful to formulate it in terms of group aug-
mentations.

Definition 2.2. An augmentation of the group Σ (also called a Σ-
augmentation) is a surjective group homomorphism α : G(Σ) −→ Σ. A
homomorphism between two Σ-augmentations α1 : G1(Σ) −→ Σ and
α2 : G2(Σ) −→ Σ is a group homomorphism ϕ : G1(Σ) −→ G2(Σ) such
that the following diagram commutes:

G1(Σ)
α1−−−−→ Σ⏐⏐�ϕ ‖

G2(Σ)
α2−−−−→ Σ.

Note that, if ϕ is a homomorphism of Σ-augmentations, then one has
ϕ(kerα1) ⊂ kerα2. We will sometimes use the notation G := kerα when
α : G(Σ) −→ Σ is a Σ-augmentation. The notion of representation of
the fundamental group of a Klein surface then goes as follows.

Definition 2.3. Let α : G(Σ) −→ Σ be a Σ-augmentation and de-
note by G the kernel of α. A representation of π1(MΣ;x) in G(Σ)
is a homomorphism of Σ-augmentations, i.e. a group homomorphism
χ : π1(MΣ;x) −→ G(Σ) making the following diagram commutative:

1 −−−−→ π1(M ;x) −−−−→ π1(MΣ;x) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐�χ ‖

1 −−−−→ G −−−−→ G(Σ) −−−−→ Σ −−−−→ 1.

The set of such representations will be denoted by

HomΣ(π1(MΣ;x);G(Σ)).

When G is a Lie group, G(Σ) has an induced Lie group topology, which
in turn causes HomΣ(π1(MΣ;x);G(Σ)) to inherit a topology.

Two representations χ1 and χ2 are called equivalent if there exists
an element g ∈ G such that χ2 = Intg ◦ χ1, where by Intg we denote
conjugation by g ∈ G inside G(Σ). The associated representation space
is the space

(2.2) HomΣ(π1(MΣ;x);G(Σ))/G,
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endowed, when G is a Lie group, with the quotient topology. In partic-
ular, when G is compact, this representation space is Hausdorff.

It is worth noting that the representation space in (2.2) is independent
of the choice of the base point x ∈M since, if we choose a different base
point x′ ∈ M , we obtain an isomorphic Σ-augmentation by picking a
path from x to x′ and the difference of two such paths is an element of
π1(M ;x), so is eventually absorbed into the G-action. Also, if we choose
a different model for EΣ, the short exact sequence (2.1) will be replaced
by a non-canonically isomorphic one but the representation space (2.2)
will remain the same. In (2.4), an alternate definition of π1(MΣ;x) is
given which is independent of the choice of a particular model for EΣ.

We will often use the notation � := χ|π1(M ;x) for the restriction
of χ to π1(M ;x) and χ = �̂ for the extension of a group homomor-
phism � : π1(M ;x) −→ G to a homomorphism of Σ-augmentations
χ : π1(MΣ;x) −→ G(Σ). The fact that, in the notion of equivalence
between representations of π1(MΣ;x), the element g is required to lie in
G and not in G(Σ) implies the existence of a map

(2.3)
HomΣ(π1(MΣ;x);G(Σ))/G −→

(
Hom(π1(M ;x);G)/G

)Σ

[χ] �−→ [χ|π1(M ;x)]

which is, however, neither injective nor surjective in general (for exam-
ple in the present paper). Note that the target space of (2.3) is the
fixed-point set of the natural Σ-action on the G-representation space of
π1(M ;x), obtained by composing the outer action

Σ −→ Out(G)×Out(π1(M ;x))

with the usual Out(G)×Out(π1(M ;x))-action on the G-representation
space of π1(M ;x) (the latter being defined by [g, β]·[�] = [Intg◦�◦β

−1]).
An important example of representation of π1(MΣ;x) is given as fol-

lows. Let M̃ (x) denote the set of homotopy classes of continuous paths

in M whose starting point is x. The canonical projection q : M̃(x) −→

M (taking a path η to its ending point) turns M̃(x) into the universal
covering space of M . Since the action of Σ on M × EΣ is free, the
quotient map p : (M × EΣ) −→ MΣ is a covering map and the sim-

ply connected space M̃(x)×EΣ is the universal covering space of MΣ.

Let us then denote by 1 −→ G(M,x) −→ G(M,x)(Σ)
α
−→ Σ −→ 1 the

Σ-augmentation

1 −→ Aut
(
M̃(x)/M

)
−→ Aut

(
(M̃(x)× EΣ)/MΣ

) α
−→ Σ −→ 1,

where the augmentation map α sends the deck transformation f ∈

Aut((M̃ (x)× EΣ)/MΣ) to the induced deck transformation

σf ∈ Aut((M × EΣ)/MΣ) � Σ
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of the intermediate covering space p : (M × EΣ) −→ MΣ between

M̃(x) × EΣ and MΣ. Then, by the classical theory of covering spaces,
we have an isomorphism of Σ-augmentations

1 −−−−→ π1(M ;x) −−−−→ π1(MΣ;x) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐� ‖

1 −−−−→ GM −−−−→ GM (Σ)
α

−−−−→ Σ −−−−→ 1

and it is straightforward to check that the Σ-augmentation in the bottom
line of the diagram above is isomorphic to

1 −→ Aut(M̃(x)/M) −→ AutΣ(M̃(x)/M) −→ Σ −→ 1

where
(2.4)

AutΣ(M̃(x)/M) := {h : M̃(x) −→ M̃(x) | ∃ σh ∈ Σ, q ◦ h = σh ◦ q},

and the augmentation homomorphism is the map h �−→ σh. In par-

ticular, there is an isomorphism π1(MΣ;x) � AutΣ(M̃ (x)/M) and the

orbifold fundamental group of [M/Σ] acts on M̃(x), the universal cov-
ering space of M , by generalized deck transformations (covering either
IdM or σ : M −→M), as pictured in the following diagram.

M̃(x)× EΣ
f=h⊗σh−−−−−→ M̃ (x)× EΣ⏐⏐�q⊗Id

⏐⏐�q⊗Id

M × EΣ
σf=σh⊗σh
−−−−−−−→ M × EΣ⏐⏐�p

⏐⏐�p

MΣ MΣ

Yet another possible characterization of the orbifold fundamental group
is the following description in terms of paths in M ×EΣ, which will be
useful in Section 4.1. Since the map p : M × EΣ −→ MΣ is a covering
map and we have chosen a point x ∈ M , a loop η based at [x, 1Σ] lifts

unically to a path η̃(x,1Σ) in M × EΣ satisfying η̃(x,1Σ)(0) = (x, 1Σ).

One then has η̃(x,1Σ)(1) = λ−1
η (x, 1Σ), where λη ∈ Σ is the image of

η ∈ π1(MΣ;x) under the augmentation homomorphism. By projecting
the path η̃(x,1Σ) toM , we obtain a path γη inM , going from x to λ−1

η (x).
Let us now consider the set

(2.5) P̃x := {(γ, λ) : γ : [0; 1] −→M,λ ∈ Σ, γ(0) = x, γ(1) = λ−1(x)}

endowed with the composition law

(2.6) (γ1, λ1)(γ2, λ2) = (λ−1
2 (γ1)γ2, λ1λ2),

where the product λ−1
2 (γ1)γ2 is the ordinary composition of paths in

M (from right to left). Then the set Px := P̃x/(homotopy in M) is a



REAL AND QUATERNIONIC VECTOR BUNDLES 131

group and the map Px −→ Σ sending (γ, λ) to λ is an augmentation

homomorphism, with kernel Lx := L̃x/(homotopy in M), where

L̃x = {γ : [0; 1] −→M,γ(0) = γ(1) = x}

Finally, the map η �−→ η̃(x,1Σ) �−→ (γη, λη) constructed above sets up
an isomorphism of Σ-augmentations

1 −−−−→ π1(M ;x) −−−−→ π1(MΣ;x) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐� ‖

1 −−−−→ Lx −−−−→ Px
α

−−−−→ Σ −−−−→ 1

In the remainder of the paper, we will often omit the base point x ∈M

and simply write π1(M), π1(MΣ) and M̃ in place of π1(M ;x), π1(MΣ;x)

and M̃(x).

2.2. Construction of Real and Quaternionic vector bundles.

We assume from now on that M is compact, of genus g ≥ 1. Let (L, τL)
be a C∞ Real line bundle over (M,σ) and consider the smooth complex
surface L \ {0L} obtained from L by removing the zero section. This
is preserved by τL and deformation retracts onto a Σ-equivariant circle
bundle over M (to construct it, we can for instance pick up a Σ-invariant
Hermitian metric on L and consider the unit bundle of L: this is indeed
preserved by τL). Let us denote by S(L) the S1-bundle thus obtained
(by definition, this is a Seifert manifold over M). The action of Σ on
S(L) makes it possible to consider the orbifold fundamental group of
the Real Seifert manifold (S(L), τL). Allowing ourselves to omit base
points from the notation, we have the following commutative diagram

(2.7)

0 0⏐⏐� ⏐⏐�
Z Z⏐⏐� ⏐⏐�

1 −−−−→ π1(S(L)) −−−−→ π1(S(L)Σ) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐� ‖

1 −−−−→ π1(M) −−−−→ π1(MΣ) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐�
1 1

where Z � π1(S
1) is the fundamental group of the fiber of S(L) and

S(L)Σ is, as in Section 2.1, the homotopy quotient S(L) ×Σ EΣ. In
the first column, the group π1(S(L)) is a central extension of π1(M)
by Z while, in the second column, the extension π1(S(L)Σ) of π1(MΣ)
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by Z is non-central. Indeed, by a result of Kahn ([Kah87]), smooth
Real line bundles over a Klein surface (M,σ) are classified by their
equivariant first Chern class cΣ1 (L, τL) ∈ H2

Σ(M ;Z) where Σ acts on M
by the orientation-reversing involution σ and on the local Z-coefficients
by n �−→ −n. Since we are assuming that g ≥ 1, the space MΣ is
an Eilenberg-MacLane space K(π; 1) so H2

Σ(M ;Z) � H2(π1(MΣ);Z),
where π1(MΣ) acts on the Abelian group Z via the augmentation ho-
momorphism π1(MΣ) −→ Σ and the previous (non-trivial) action of
Σ on Z, meaning that there is a bijection between the set of isomor-
phism classes of smooth Real line bundles over (M,σ) and extensions
of π1(MΣ) by Z inducing the action n �−→ −n on Z: that bijection
is precisely given by the map taking a given Real line bundle (L, τL)
to the orbifold fundamental group π1(S(L)Σ) of the associated Real
Seifert manifold. Since the action of π1(MΣ) on Z in that construc-
tion is non-trivial, the extension π1(S(L)Σ) of π1(MΣ) by Z is indeed
non-central. Note that the sub-group π1(M) of π1(MΣ), however, acts
trivially on Z, because it maps trivially to Σ through the augmentation
homomorphism, so the extension π1(S(L)) of π1(M) by Z is central: it
is the central extension corresponding to the ordinary first Chern class
c1(L) ∈ H2(M ;Z) � H2(π1(M);Z), as observed by Furuta and Steer in
[FS92].

We now wish to construct Real and Quaternionic vector bundles over
the Klein surface (M,σ) starting from certain representations of the
orbifold fundamental group of the Real Seifert manifold (S(L), τL). Let
us fix a smooth Real line bundle (L, τL) over (M,σ) and denote its
degree by d :=

∫
M

c1(L) ∈ Z. In order to define the appropriate rep-
resentation space for π1(S(L)Σ), we need to specify a Σ-augmentation
1 −→ G −→ G(Σ) −→ Σ −→ 1, where G very soon will be the unitary
group U(r). Such a Σ-augmentation in particular defines an outer ac-
tion Σ −→ Out(G) and we will always assume that Σ actually acts on
G, in other words that there is a given lifting of that outer action to
Aut(G). The typical example for us will be the Σ-action σ : u �−→ u
on U(r). When an outer action Σ −→ Out(G) comes from a fixed
action of Σ on G, isomorphism classes of extensions of Σ by G which
induce that outer action are in bijective correspondence with the group
H2(Σ;Z(G)), where Z(G) is the center of G. If we represent a class
[c] ∈ H2(Σ;Z(G)) by a normalized 2-cocycle c : Σ × Σ −→ Z(G), then
the corresponding extension G(Σ) may be viewed as the product set
G× Σ equipped with the group law defined by the relation

(2.8) (c(σ1, σ2), 1)(g1, σ1)(g2, σ2) = (g1σ1(g2), σ1σ2).

We will denote that extension by G×cΣ. Its isomorphism class depends
only on [c] and, if c is a coboundary, then G ×c Σ is isomorphic to the
semi-direct product G�Σ defined by the given action of Σ on G. Since
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in this paper we are assuming that Σ � Z/2Z, one may observe that

(2.9) H2(Σ;Z(G)) � Z(G)Σ/{aσ(a) : a ∈ Z(G)}.

In particular, the normalized 2-cocycle c is then entirely determined by
its value c(σ, σ) ∈ Z(G)Σ, where σ is the non-trivial element of Σ. So
in practice we can think of c as an element of Z(G)Σ. If for instance
G = U(r) and σ(u) = u, then Z(G) = S1 so, if a ∈ Z(G), σ(a) = a−1.
Therefore, by Observation (2.9), one has H2(Σ;Z(G)) = {±1}. From
now on, we fix G = U(r) and we consider the Σ-action σ : u �−→ u on
U(r). Moreover, we assume that an extension class c = ±1 ∈ H2(Σ;S1)
has been fixed.

Next, we need to specify what kind of representations of π1(S(L)Σ) we
will be considering. Those will be homomorphisms of Σ-augmentations

(2.10)

1 −−−−→ π1(S(L)) −−−−→ π1(S(L)Σ) −−−−→ Σ −−−−→ 1⏐⏐�χ|π1(S(L))

⏐⏐�χ ‖

1 −−−−→ U(r) −−−−→ U(r)×c Σ −−−−→ Σ −−−−→ 1

satisfying the additional requirement

(2.11) ∀n ∈ Z, χ(n) = ei
2π
r

nIr ∈ Z(U(r)).

Condition (2.11) means that the homomorphism of Σ-augmentations χ
also makes the following diagram commute:

0 −−−−→ Z −−−−→ π1(S(L)Σ) −−−−→ π1(MΣ) −−−−→ 1⏐⏐�n �→exp(i 2π
r
n)

⏐⏐�χ

⏐⏐�
1 −−−−→ S1 −−−−→ U(r)×c Σ −−−−→ PU(r)� Σ −−−−→ 1

where Σ acts on PU(r) by complex conjugation.

Definition 2.4. The set of all homomorphisms of Σ-augmentations
which satisfy Condition (2.11) will be denoted by

HomZ
Σ(π1(S(L)Σ);U(r) ×c Σ)

and endowed with the U(r)-action u · χ = Intu ◦ χ, thus providing
a notion of equivalence of representations, as in Definition 2.3. The
associated representation space is the quotient space

(2.12) Rc(r, d) := HomZ
Σ(π1(S(L)Σ);U(r) ×c Σ)/U(r).

Remark 2.5. Let R(r, d) := HomZ(π1(S(L));U(r))/U(r) be the
usual representation space for π1(S(L)), to be useful in Proposition
2.9 and consisting of group homomorphisms � : π1(S(L)) −→ U(r)
satisfying, for all n ∈ Z, �(n) = exp(i2π

r
n)Ir. Similarly to (2.3), there

is a natural Σ-action on R(r, d) and the map χ �−→ χ|π1(S(L)) is a map

from Rc(r, d) −→ R(r, d)Σ, which is not surjective in general.
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To finish the construction of Real and Quaternionic vector bundles,
we pick an element σ̃ ∈ π1(S(L)Σ) in the fiber above the non-trivial
element σ ∈ Σ. Note that any two choices of such a lifting σ̃ of σ ∈ Σ

differ by an element of π1(S(L)). The element σ̃ acts on M̃ via the group

homomorphism π1(S(L)Σ) −→ π1(MΣ) � AutΣ(M̃/M) (although σ̃2 
=
Id

M̃
in general). The group Σ acts on Cr via σ : z �−→ z (complex

conjugation on each coordinate of the vector z) and on U(r) via σ :
u �−→ u. In particular, for all u ∈ U(r) and all z ∈ Cr, σ(uz) =
σ(u)σ(z). Consider then any representation χ : π1(S(L)Σ) −→ U(r)×c

Σ in the sense of (2.12) and denote its restriction to π1(S(L)) by � :=
χ|π1(S(L)) : π1(S(L)) −→ U(r). Let us define uσ̃ ∈ U(r) by the equation

χ(σ̃) = (uσ̃, σ) and equip the product bundle M̃ × Cr over M̃ with
the diagonal π1(S(L))-action γ · (δ, v) := (γ · δ, �(γ)v), defined by the

homomorphism π1(S(L)) −→ π1(M) � Aut(M̃/M) and by �. This in
particular defines a rank r holomorphic vector bundle

E� = M̃ ×� C
r := (M̃ × Cr)/π1(S(L))

over M , whose determinant is smoothly isomorphic to L so in particular
deg E� = d (if Condition (2.11) were modified to n �−→ exp(ik2πr n)Ir for
some fixed k ∈ Z, then det(E�) would become smoothly isomorphic to

Lk and have degree kd, [FS92, Theorem 4.1]). Finally, consider the
map

(2.13) τ̃ :
M̃ × Cr −→ M̃ × Cr

(δ, v) �−→
(
σ̃ · δ, uσ̃σ(v)

) .

Theorem 2.6. The map τ̃ induces an anti-holomorphic map τ on

the holomorphic vector bundle E� = M̃ ×� C
r over M . The map τ on

E� lies above the map σ on M , is fiberwise C-anti-linear and squares
to c IdE . In other words, (E�, τ) is a Real vector bundle if c = 1 and a
Quaternionic vector bundle if c = −1. Moreover:

• Equivalent representations χ and χ′ give rise to isomorphic Real
or Quaternionic vector bundles (E�, τ) and (E�′ , τ

′).
• A different choice of σ̃′ ∈ π1(S(L)Σ) in the fiber of the augmenta-
tion map above σ ∈ Σ gives rise to a Real or Quaternionic vector
bundle (E�, τ

′) isomorphic to (E�, τ).

Proof. The only things to check are that τ̃ descends to E� and that
the induced map τ squares to c IdE .

If (δ, v) ∈ (M̃ ×Cr) and γ ∈ π1(M), we have

τ̃
(
γ · (δ, v)

)
= τ̃

(
γ · δ, �(γ)v

)
=

(
σ̃
(
γ · δ

)
, uσ̃σ

(
�(γ)v)

)
=

(
σ̃γσ̃−1 ·

(
σ̃ · δ

)
, uσ̃σ

(
�(γ)

)
u−1
σ̃

(
uσ̃σ(v)

))
∼

(
σ̃ · δ, uσ̃σ(v)

)
= τ̃(δ, v)



REAL AND QUATERNIONIC VECTOR BUNDLES 135

since σ̃γσ̃−1 ∈ π1(M) and, using Equation (2.8),(
�(σ̃γσ̃−1), 1

)
= χ

(
σ̃γσ̃−1

)
= χ(σ̃)χ(γ)χ(σ̃)−1

=
(
uσ̃, σ

)(
�(γ), 1

)(
uσ̃, σ

)−1

=
(
uσ̃σ

(
�(γ)

)
, σ

)(
cσ(u−1

σ̃ ), σ
)

=
(
uσ̃σ

(
�(γ)

)
u−1
σ̃ , 1

)
so τ̃ indeed induces a map τ on E� = M̃ ×� C

r.
Moreover, one has τ̃2

(
δ, v

)
=

(
σ̃2 ·δ, uσ̃σ(uσ̃)v

)
∼ (δ, c ·v) since, using

again Equation (2.8),

χ(σ̃2) = χ(σ̃)χ(σ̃) = (uσ̃, σ)(uσ̃ , σ) = (c−1uσ̃σ(uσ̃), σ
2)

so the induced map τ indeed satisfies τ2 = c IdE . q.e.d.

By the Narasimhan-Seshadri theorem ([NS65]), the vector bundle E� is
poly-stable and of rank r and degree d. What Theorem 2.6 says is that,
if � : π1(S(L)) −→ U(r) extends to a representation �̂ : π1(S(L)Σ) −→
U(r)×cΣ, then E� admits a natural Real structure if c = 1 and a natural
Quaternionic structure if c = −1. One of the goals of the present paper
is to show that, conversely, any poly-stable Real or Quaternionic vector
bundle of rank r and degree d on (M,σ) is isomorphic to a bundle (E�, τ)
obtained as above from a rank r representation �̂ of π1(S(L)Σ), where
(L, τL) is any smooth Real line bundle of degree d on (M,σ).

Remark 2.7. When L = L0 := M×C, the trivial Real line bundle on
M , one has π1(S(L0)Σ) � Z�π1(MΣ), where π1(MΣ) acts on Z through
the augmentation homomorphism to Σ and the non-trivial action of Σ
on Z. In particular, π1(MΣ) is now a sub-group of π1(S(L0)Σ), so there
is a well-defined map

Rc(r, d) −→ HomΣ(π1(MΣ);U(r)×c Σ)/U(r)
χ �−→ χ|π1(MΣ)

which is in fact a homeomorphism whose inverse map is given as follows:
to any homomorphism of Σ-augmentations χ0 : π1(MΣ) −→ U(r)×cΣ,
we associate the map

χ :
Z� π1(MΣ) −→ U(r)×c Σ

(n, η) �−→ (ei
2π
r
n, 1Σ)χ0(η)

which is readily checked to be a homomorphism of Σ-augmentations
such that χ(n, 1) = exp(i2πr n)Ir for all n in Z and satisfying χ|π1(MΣ) =
χ0. Thus, the representation spaces Rc(r, d) constructed in (2.12) are
a generalization of the representation space of π1(MΣ) introduced in
(2.2).

To sum up, on a Klein surface (M,σ), we can construct, given any
smooth Real line bundle, an orbifold fundamental group π1(S(L)Σ),
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which is a non-central extension of π1(MΣ) by Z, as well as represen-
tation spaces Rc(r, d) for π1(S(L)Σ). Theorem 2.6 then says that there
are maps

(2.14) R+1(r, d) −→MR(r, d) and R−1(r, d) −→MH(r, d)

whereMR(r, d) (respMH(r, d)) denotes the moduli space of poly-stable
Real (resp. Quaternionic) vector bundles of rank r and degree d (see Def-
inition 3.7). Theorem 1.3 implies that these maps are homeomorphisms.

Remark 2.8. Note that isomorphic smooth Real line bundles give
rise to isomorphic extensions π1(S(L)Σ) of π1(MΣ) by Z and that non-
isomorphic smooth Real line bundles give rise to non-isomorphic ex-
tensions but that, as an augmentation of Σ, π1(S(L)Σ) only depends
on the degree d of L, not on the whole cΣ1 (L, τL), because the exten-
sion class of the central row in Diagram (2.7) is determined by a class
in H2(Σ;Z(π1(S(L)))) � H2(Σ;Z), which is trivial when Σ acts on Z
by n �−→ −n (see (2.9)). As a consequence, the topology of Rc(r, d)
only depends on the topological invariants (g, n, a) of the Klein surface
(M,σ), the topological invariants (r, d) of complex vector bundles over
M and the extension class c = ±1 that we consider. We shall see in
Section 4.3 how to use additional topological invariants to distinguish
the connected components of Rc(r, d).

2.3. The case of a Klein surface with Real points. When the
Klein surface (M,σ) satisfies Mσ 
= ∅, the construction of Real and
Quaternionic vector bundles given in Theorem 2.6 can be simplified by
choosing the base point x ∈ M to lie in Mσ. By functoriality of the
orbifold fundamental group, the choice of x ∈Mσ makes π1(MΣ;x) iso-
morphic, as an extension of Σ by π1(M ;x), to the semi-direct product
π1(M ;x)�Σ for the Σ-action on π1(M ;x) defined by γ �−→ σ ◦γ, which
we simply denote by σ(γ). Since the Real Seifert manifolds constructed
in Section 2.2 always have Real points when M does, the orbifold fun-
damental group π1(S(L)Σ) is also isomorphic to a semi-direct product
π1(S(L))�Σ, via the choice of a point x ∈ Fix(τL) in the fiber of S(L)
above x. So the representation spaces (2.12) now involve those semi-
direct products π1(S(L)) � Σ, as well as the extensions U(r) ×c Σ for
c = ±1. When c = 1, U(r)×cΣ is isomorphic to the semi-direct product
U(r) �σR

Σ, where σR : u �−→ u on U(r). When c = −1, U(r) ×c Σ is
not a semi-direct product for the Σ-action u �−→ u on U(r) but it can
be sometimes be made into a semi-direct product for a different lifting
of the same outer action Σ −→ Out(U(r)), namely for the Σ-action

σH : u �−→ JuJ−1 when r = 2r′ and J =

[
0 −Ir′
Ir′ 0

]
, which indeed

differs from σR : u �−→ u only by the inner automorphism IntJ . Note
that the purpose of doing that is to handle Quaternionic vector bundles
over (M,σ) and that the latter always have even rank r = 2r′ when
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Mσ 
= ∅, so the parity condition on r is not a restriction. Moreover,
when c = −Ir ∈ Z(U(r))Σ, one has c = J2 = Jσ(J), so the cocycle
c = −1 can be written under the form aσ(a) for some a ∈ G (this means
that c is a Z(G)-valued 2-cocycle which, in a sense, splits over G but
not over Z(G), compare (2.9)). This readily implies that the map

U(2r′)×(−1) Σ −→ U(2r′)�σH
Σ

(u, ε) �−→
(
(JuJ−1)aε, ε

)
where a1Σ = I2s and aσ = J (a is a G-valued normalized 1-cochain)
is an isomorphism of Σ-augmentations. Observe that the two exten-
sions of Σ by U(2r′) above indeed induce the same outer action Σ −→
Out(U(2r′)), namely the outer action defined by the inner equivalence
class of σR, as well as the same Σ-action on Z(U(2r′)) � S1, namely
z �−→ z.

Summing up, when Mσ 
= ∅, the representation spaces Rc(r, d) of
(2.12) become

HomZ
Σ(π1(S(L))� Σ;U(r)�σ Σ)/U(r)

for the Σ-action on U(r) defined by either σ = σR (if c = +1) or σ = σH
(if c = −1). It turns out that the involutions σR and σH share the
following property:

(2.15) σ(u) = u−1 if and only if ∃ v ∈ U(r), u = vσ(v−1)

(when σ = σR, this simply means that a symmetric unitary matrix u is
of the form vvt, which is a classical result; the case of σH is similar) and
that Property (2.15) is a sufficient condition to remove the semi-direct
products in the above representation spaces, in the following sense.

Proposition 2.9. Assume that Mσ 
= ∅ and that Σ acts on U(r) by
σR : u �−→ u or, when r = 2r′, either by σR or by σH : u �−→ JuJ−1.
Then there is a homeomorphism

Rc(r, d) � HomZ(π1(S(L));U(r))Σ/U(r)Σ ,

where on the right-hand side we consider all Σ-equivariant representa-
tions

� : π1(S(L)) −→ U(r)

such that, for all n ∈ Z ⊂ π1(S(L)), �(n) = exp(i2π
r
n)Ir, up to U(r)Σ-

conjugation.

Note that U(r)Σ = O(r) if σ = σR and U(r)Σ = Sp( r2 ) if σ = σH and
that the representation space on the right-hand side does not depend
on the choice of the base point x ∈ Mσ since, by the observation after
Definition 2.3, the representation space Rc(r, d) is independent of such
a choice.

The proof of Proposition 2.9 is based on an argument in group coho-
mology. Recall that we are assuming that there is a fixed action of Σ,
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which could in fact be any finite group, on the given Lie groupG = U(r),
which could also be arbitrary, by group automorphisms. The pointed
set H1(Σ;G) is by definition the set of all crossed homomorphisms, i.e.
(normalized) maps a : Σ −→ G such that, for all (σ, σ′) ∈ Σ × Σ,
aσσ′ = aσσ(aσ′), modulo the following equivalence relation: a ∼ a′ if
there exists g ∈ G such that, for all σ ∈ Σ, a′σ = gaσσ(g

−1). If the
action of Σ on G is trivial, then H1(Σ;G) = Hom(Σ;G)/G. Also, when
Σ � Z/2Z, a normalized 1-cocycle a is determined by its value on the
non-trivial element σ ∈ Σ (so we can identify aσ and a) and we have
H1(Z/2Z;G) � {a ∈ G | σ(a) = a−1}/G, where the G-action on the set
of elements a ∈ G satisfying σ(a) = a−1 is given by g · a = gaσ(g−1),
which again is ordinary conjugacy if the Σ-action on G is trivial so, in
that case, H1(Z/2Z;G) is the set of conjugacy classes of order 2 ele-
ments of G. We then see that Property (2.15) amounts to saying that
H1(Σ;U(r)) = {1} when Σ � Z/2Z acts on U(r) by u �−→ u or by
u �−→ JuJ−1 and we can now give a proof of Proposition 2.9 which is
valid for an arbitrary Lie group G acted upon by group automorphisms
by an arbitrary finite group Σ assuming only that H1(Σ;G) = {1}.

Proof of Proposition 2.9. The particular group π1(S(L)) plays no role
in what follows and can be replaced by an arbitrary group Γ on which
Σ acts by group automorphisms. The same goes for the condition of the
image of the sub-group Z, which can be omitted on both sides. Given
a Σ-equivariant group homomorphism � : Γ −→ G, it is straightforward
to check that the map �̂ : (γ, σ) �−→ (�(γ), σ) is a homomorphism of
Σ-augmentations from Γ�Σ to G�Σ, satisfying in particular �̂(1, σ) =
(1, σ), and that this induces a map

(2.16)
Hom(Γ;G)Σ/GΣ −→ HomΣ(Γ� Σ;G� Σ)/G

[�] �−→ [�̂]
.

To show that the map (2.16) is bijective when H1(Σ;G) = {1}, let
us consider an arbitrary homomorphism of Σ-augmentations χ : Γ �
Σ −→ G � Σ and the group homomorphism � = χ|Γ : Γ −→ G. Let
us then define, for all σ ∈ Σ the element aσ ∈ G by the condition
χ(1, σ) = (aσ, σ). The fact that χ is a group homomorphism implies
that (aσ)σ∈Σ is a normalized 1-cocycle with values in G:

(aσσ′ , σσ′) = χ(1, σσ′) = χ(1, σ)χ(1, σ′) = (aσσ(aσ′), σσ′).

Let us then compute χ(γ, σ) in two different ways. On the one hand,
χ(γ, σ) = χ(γ, 1)χ(1, σ) = (�(γ)aσ , σ) and on the other hand, χ(γ, σ) =
χ(1, σ)χ(σ−1(γ), 1) = (aσ(σ�σ

−1)(γ), σ). So, for all σ ∈ Σ, one has

(2.17) (Intaσ ◦ σ) ◦ � ◦ σ
−1 = �.

SinceH1(Σ;G) is assumed to be trivial, there exists h ∈ G such that, for
all σ ∈ Σ, aσ = h−1σ(h) so Equation (2.17) becomes σ◦(Inth◦�)◦σ

−1 =
Inth◦�, which precisely means that (Inth◦�) : Γ −→ G is Σ-equivariant.
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Moreover, for all (γ, σ) ∈ Γ × Σ, ̂(Inth ◦ �)(γ, σ) =
(
(Inth ◦ �)(γ), σ

)
=(

h�(γ)h−1, σ
)
and(

Int(h,1) ◦ χ
)
(γ, σ) = (h, 1)χ(γ, 1)χ(1, σ)(h, 1)−1

= (h, 1)(�(γ), 1)(h−1σ(h), σ)(h−1 , 1)

= (h�(γ)h−1, σ)

so ̂(Inth ◦ �) = Int(h,1) ◦ χ, which is G-conjugate to χ, and we have
indeed proved that the map (2.16) is surjective.

To show that it is injective, let us take two Σ-equivariant representa-
tions �1, �2 : Γ −→ G and assume that �̂2 = Int(g,1) ◦ �̂1 for some g ∈ G.
Then, for all σ ∈ Σ,

(1, σ) = �̂2(1, σ) = Int(g,1)
(
�̂1(1, σ)

)
= (g, 1)(1, σ)(g−1 , 1) = (gσ(g−1), 1)

so σ(g) = g and �1 and �2 are in fact GΣ-conjugate, which means that
the map (2.16) is injective. q.e.d.

Note that the general case, where possibly H1(Σ;G) 
= {1}, is not much
more difficult to handle within the same framework: all homomorphisms
of Σ-augmentations χ : Γ� Σ −→ G� Σ still come from Σ-equivariant
representations � : Γ −→ G, provided one adds new actions of Σ on G
indexed by elements of H1(Σ;G) and differing from the original action
of Σ on G only by an inner automorphism. Indeed, there is a homeo-
morphism
(2.18) ⊔

[a]∈H1(Σ;G)

Hom(Γ;G)Σa/GΣa 	
−→ HomΣ(Γ� Σ;G� Σ)/G

[�] �−→ [�̂ : (γ, σ) �−→ (�(γ)aσ , σ)]

generalizing (2.16), where the notation Σa means that Σ acts on G via
σ · g := Intaσ σ(g). This is an action because a is a 1-cocycle and it
induces a new action of Σ on Hom(Γ;G), defined by σ · � = (Intaσ ◦σ) ◦
�◦σ−1, which is compatible with the previous Σ-action on G and the G-
conjugacy action on Hom(Γ;G) in the sense that σ ·(g ·�) = (σ ·g)·(σ ·�).
In particular, GΣa indeed acts on Hom(Γ;G)Σa for all [a] ∈ H1(Σ;G),
from which one can prove (2.18) exactly in the same way as Proposition
2.9.

In view of Section 2.2, Proposition 2.9 means that, when Mσ 
=
∅, Real and Quaternionic vector bundles can be constructed from Σ-
equivariant unitary representations of π1(S(L)). The point is now to
show that we can in fact go through this construction directly, without
going back to representations of the groups π1(S(L)Σ), thus simplifying
the proof of Theorem 2.6 whenMσ 
= ∅. First, since an x ∈Mσ has been

chosen, the universal covering space M̃(x), which is the set of paths δ in
M such that δ(0) = x, acquires a canonical Real structure δ �−→ σ ◦ δ,
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which we will simply denote by σ(δ). Second, recall that π1(S(L);x)

acts on M̃(x) via the map π1(S(L);x) −→ π1(M ;x) � Aut(M̃(x)/M).
Then, given a Σ-equivariant representation � : π1(S(L);x) −→ U(r), we

can endow the product bundle M̃(x)×Cr with the Real (resp. Quater-
nionic) structure
(2.19)

τ̃ :
M̃ (x)× Cr −→ M̃(x)× Cr(

δ, v
)

�−→
(
σ(δ), σ(v)

) where σ(v) =

{
v if σ = σR,
Jv if σ = σH,

and this Real (resp. Quaternionic) structure τ̃ is immediately seen to

induce a Real (resp. Quaternionic) structure τ on E� = M̃(x) ×� Cr.
Evidently, U(r)Σ-conjugate Σ-equivariant representations � give rise
to isomorphic Real (resp. Quaternionic) bundles. By Remark 2.7, if
L = L0 = M × C, then Proposition 2.9 says that, when Mσ 
= ∅,
HomΣ(π1(MΣ);U(r)� Σ)/U(r) � Hom(π1(M);U(r))Σ/U(r)Σ.

3. Moduli of Real and Quaternionic holomorphic vector

bundles

3.1. Stability. Let E be a holomorphic vector bundle over a Klein
surface (M,σ). We denote by σ(E) the holomorphic vector bundle

(σ−1)∗E , explicitly defined as follows. Let (Ui)i∈I be a covering of M
by open sets which are trivializing for E . By considering the trivializing
open sets Uσ(i) := σ(Ui) and enlarging I if necessary, we may assume
that Σ acts on I. If E is represented by the holomorphic 1-cocycle
gij : Ui ∩ Uj −→ GL(r;C) then σ(E) is represented by the holomorphic

1-cocycle σ(gij) := gij ◦ σ−1. Since deg(σ(E)) = deg(E), this defines a
left action of Σ = Gal(C/R) � {1;σ} on the set of isomorphism classes
of holomorphic vector bundles of rank r and degree d on M . Moreover,
if ϕ : E1 −→ E2 is a homomorphism of holomorphic vector bundles,
then there is a well-defined homomorphism of holomorphic vector bun-
dles σ(ϕ) : σ(E1) −→ σ(E2). By definition of σ(E) = (σ−1)∗E , there is
always an anti-holomorphic map σE : E −→ σ(E) such that the diagram

(3.1)

E
σE−−−−→ σ(E)⏐⏐� ⏐⏐�

M
σ

−−−−→ M

is commutative and σE is fiberwise C-anti-linear. If there exists a (C-
linear) isomorphism of holomorphic vector bundles ϕσ : σ(E) −→ E
(over IdM on the base), in which case we say that E is self-conjugate
(for instance, Real and Quaternionic bundles are self-conjugate and so



REAL AND QUATERNIONIC VECTOR BUNDLES 141

is the direct sum of a Real and a Quaternionic bundle), then the anti-
holomorphic map

(3.2) τ := ϕσσE

satisfies conditions (1) and (2) of Definition 1.1. The pair (E , τ) thus de-
fined is a Real (resp. Quaternionic) vector bundle if and only if σ(ϕσ) =
ϕ−1
σ (resp. σ(ϕσ) = −ϕ−1

σ ), as follows from the commutativity of the
diagram

E

��

σE �� σ(E)

��

ϕσ
�� E

����
�
�
�
�
�
�

M
σ �� M

and from the fact that τ2 = (ϕσσE)(ϕσσE) = ϕσσ(ϕσ).
The slope of a non-zero complex vector bundle E on a compact con-

nected Riemann surface M is the ratio μ(E) = deg(E)
rk(E) ∈ Q of its degree

by its rank. Let us recall the various notions of slope stability for Real
and Quaternionic vector bundles over Klein surfaces ([Wan96, Sch12]).

Definition 3.1 (Stability conditions for Real and Quaternionic vec-
tor bundles). Let (E , τ) be a non-zero Real (resp. Quaternionic) vector
bundle on (M,σ). We call a sub-bundle of E non-trivial if it is distinct
from 0 and E . Then (E , τ) is said to be:

1) stable if, for all non-trivial, τ -invariant sub-bundles F ⊂ E , the
slope stability condition μ(F) < μ(E) is satisfied;

2) semi-stable if, for all non-trivial, τ -invariant sub-bundles F ⊂ E ,
one has μ(F) ≤ μ(E);

3) geometrically stable if the underlying holomorphic bundle E is
stable, that is, if, for all non-trivial sub-bundles F ⊂ E , one has
μ(F) < μ(E);

4) geometrically semi-stable, if the underlying holomorphic bundle E
is semi-stable, that is, if for all non-trivial sub-bundles F ⊂ E , one
has μ(F) ≤ μ(E).

Condition (1) for Real vector bundles was first studied by Wang in
[Wan96]. Evidently, (3) implies (1) and (4) implies (2). Given a non
geometrically semi-stable vector bundle E , the existence of a unique
sub-bundle of maximal rank among sub-bundles of maximal slope (this
sub-bundle is called the destabilizing bundle of E) shows that, actually,
(2) implies (4). Indeed, the destabilizing bundle F of a Real (resp.
Quaternionic) bundle (E , τ) satisfies ϕ−1

σ (σ(F)) = F by uniqueness of
the destabilizing bundle, so F is necessarily τ -invariant, contradicting
semi-stability in the Real (resp. Quaternionic) sense. Thus, being semi-
stable as a Real (resp. Quaternionic) bundle is equivalent to being ge-
ometrically semi-stable and Real (resp. Quaternionic). Being stable as
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a Real (resp. Quaternionic) bundle, in contrast, is not equivalent to be-
ing both geometrically stable and Real (resp. Quaternionic). We can,
nonetheless, completely characterize all stable Real (resp. Quaternionic)
vector bundles.

Proposition 3.2 ([Sch12]). Let (E , τ) be a stable Real (resp. Quater-
nionic) vector bundle. Then either E is geometrically stable or there
exists a stable holomorphic vector bundle F such that

(E , τ) �

(
F ⊕ σ(F), τ+ :=

(
0 σ−1

F
σF 0

))
,

resp.

(E , τ) �

(
F ⊕ σ(F), τ− :=

(
0 −σ−1

F
σF 0

))
,

as a Real (resp. Quaternionic) vector bundle, where σF : F −→ σ(F) is
the map defined in (3.1). Moreover, in the Real case one has σ(F) 
� F .
If (E, τ) is geometrically stable then End(E) � R and otherwise

End(E) �

{(
λ

λ

)
: λ ∈ C

}
� C

as R-algebras.

So, there are stable Real (resp. Quaternionic) bundles which are not ge-
ometrically stable (they are, however, poly-stable in the complex sense).
This is actually a good thing because it gives enough stable objects for
the following result to hold.

Theorem 3.3 ([Sch12]). Let (E , τ) be a semi-stable Real or Quater-
nionic vector bundle. Then there exists a filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂
Fk = E by τ -invariant holomorphic sub-bundles such that:

1) for all i ∈ {1; . . . ; k}, the Real (resp. Quaternionic) bundle

(Fi/Fi−1, τi)

is stable with respect to the Real (resp. Quaternionic) structure τi
induced by τ ,

2) for all i ∈ {1; . . . ; k}, μ(Fi/Fi−1) = μ(E).

Moreover, the graded isomorphism class of the associated graded Real

(resp. Quaternionic) object
(⊕k

i=1 Fi/Fi−1,
⊕k

i=1 τi

)
is independent of

the choice of the filtration. We denote it by gr(E , τ).

A filtration of (E , τ) satisfying the conditions of Theorem 3.3 is called a
Real (resp. Quaternionic) Jordan-Hölder filtration. It is not, in general,
a Jordan-Hölder filtration of the holomorphic vector bundle E : for in-
stance, (F ⊕ σ(F), τ±) is stable in the Real (resp. Quaternionic) sense,
but its holomorphic Jordan-Hölder filtration have length 2 (this exam-
ple also shows that it is not true in general that a semi-stable Real
(resp. Quaternionic) vector bundle admits a filtration by τ -invariant
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sub-bundles the successive quotients of which are geometrically stable).
The following definitions are inspired from the classical holomorphic
case ([Ses67]).

Definition 3.4 (S-equivalence, [Sch12]). Two semi-stable Real or
Quaternionic vector bundles (E1, τ1) and (E2, τ2) are called S-equivalent
in the Real (resp. Quaternionic) sense if gr(E1, τ1) = gr(E2, τ2), i.e. if the
graded bundles associated to any choice of Real (resp. Quaternionic)
Jordan-Hölder filtrations are isomorphic as graded Real (resp. Quater-
nionic) vector bundles.

Definition 3.5 (Poly-stable Real and Quaternionic vector bundles,
[Sch12]). Let (E , τ) be a Real (resp. Quaternionic) vector bundle. Then
(E , τ) is called poly-stable if it is isomorphic, as a Real (resp. Quater-
nionic) vector bundle, to a direct sum (E1⊕ . . .⊕Ek, τ1⊕ . . .⊕ τk) of sta-
ble Real (resp. Quaternionic) vector bundles satisfying μ(E1) = μ(E2) =
. . . = μ(Ek). This implies that E is semi-stable and that μ(E) = μ(Ei)
for all i ∈ {1; . . . ; k}.

For instance, any graded object in the Real (resp. Quaternionic) S-
equivalence class of a semi-stable Real (resp. Quaternionic) bundle is
poly-stable in the sense of Definition 3.5. The next result follows almost
directly from Proposition 3.2.

Proposition 3.6 ([Sch12]). Let (E , τ) be a Real (resp. Quaternionic)
vector bundle. Then (E , τ) is poly-stable in the Real (resp. Quaternionic)
sense if and only if it is poly-stable in the complex sense. In other words,
a poly-stable Real (resp. Quaternionic) vector bundle is a holomorphic
vector bundle which is both poly-stable and Real (resp. Quaternionic).

Proof. By Proposition 3.2, a poly-stable Real (resp. Quaternionic)
vector bundle is a direct sum of holomorphic vector bundles of the same
slope which are stable in the complex sense, so it is poly-stable in the
complex sense. Conversely, if (E , τ) is a Real (resp. Quaternionic) vector
bundle which is poly-stable in the complex sense, then E � E1⊕. . .⊕Ek as
holomorphic vector bundles, with each Ei stable (in the complex sense)
and of slope μ(E). If k = 1, then (E , τ) is geometrically stable. If k = 2,
then E � σ(E) implies that either σ(Ei) � Ei for i = 1, 2, or σ(E1) � E2.
In both cases, (E , τ) is poly-stable (in fact, here, stable) as a Real (resp.
Quaternionic) vector bundle. The general case follows by induction on
k. q.e.d.

In analogy with the construction of Seshadri ([Ses67]), Theorem 3.3
makes it natural to introduce the following moduli sets.

Definition 3.7. We denote byMR(r, d) the set of Real S-equivalence
classes of semi-stable Real vector bundles of rank r ≥ 1 and degree
d ∈ Z and byMR(r, d, �w) the subset ofMR(r, d) consisting of those Real
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vector bundles (E , τ) satisfying w1(E
τ ) = w = (s1, . . . , sn) ∈ (Z/2Z)n,

so
MR(r, d) =

⊔
|�w|=dmod 2

MR(r, d, �w),

where |�w| = s1 + . . . + sn. Likewise, we denote by MH(r, d) the set of
Quaternionic S-equivalence classes of semi-stable Quaternionic vector
bundles of rank r ≥ 1 and degree d ∈ Z.

We take a moment here to make the following observation: it is not
true in general that MR(r, d) is the set of real points of the variety
MC(r, d) with respect to the Galois action induced by E �−→ σ(E) (this
action indeed takes a semi-stable bundle to a semi-stable one and sends
a Jordan-Hölder filtration of E to a Jordan-Hölder filtration of σ(E)).
For instance it is not true when r = 2 and d = 0, which is of course
a case of interest. The point is that the fixed points of Σ in MC(r, d)
do not necessarily come from Real vector bundles: they may come from
Quaternionic vector bundles and this phenomenon is exactly due to the
presence of non-trivial automorphisms for the objects parametrized by
the moduli space MC(r, d). Also, two Real (resp. Quaternionic) vector
bundles whose underlying holomorphic vector bundles are isomorphic
could be non-isomorphic as Real (resp. Quaternionic) vector bundles
(this last phenomenon does in fact not occur in the geometrically stable
case; see Proposition 3.9). To further formalize this, let us restrict our
attention to the smooth dense part NC(r, d) of MC(r, d) consisting of
isomorphism classes of stable holomorphic vector bundles of rank r and
degree d ([Mum63, Ses67]). A Σ-invariant class therein is represented
by a self-conjugate stable holomorphic vector bundle E on M , meaning
that there exists a (C-linear) isomorphism of holomorphic vector bundles

ϕσ : σ(E)
	
−→ E (covering the identity map on M). Since E is stable, it

is in particular simple, in the sense that Aut(E) � C∗. Given λ ∈ Σ =
Gal(C/R) � Z/2Z, we set ϕλ = IdE if λ is trivial and ϕλ = ϕσ if λ is
the non-trivial element of Σ. Then, given (λ, λ′) ∈ Σ× Σ, let us define
the automorphism u(λ, λ′) of E by requiring that the diagram

(3.3) (λλ′)(E)

ϕλλ′

��

λ(ϕλ′ ) �� λ(E)
ϕλ �� E

E
u(λ,λ′)

���
�

�
�

�
�

�
�

�
�

be commutative. Explicitly, u(λ, λ′) := ϕλλ(ϕλ′)ϕ−1
λλ′ .

Proposition 3.8. Given a self-conjugate simple bundle E, the map
u : Σ × Σ −→ C∗ defined in (3.3) is a 2-cocycle in Galois cohomology.
Consequently, it defines a class

[u] ∈ H2(Σ;C∗) � Br(R)
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in the Brauer group of R and this defines a map, that we may call the
type map,

T : NC(r, d)
Σ −→ Br(R) = {R;H} � Z/2Z

from the Galois-invariant part of NC(r, d) to the Brauer group of R. If
E ∈ T −1({R}), then E admits a Real structure τ and, if E ∈ T −1({H}),
then E admits a Quaternionic structure. In particular, a geometrically
stable self-conjugate vector bundle is either Real or Quaternionic and
cannot be both.

Proof. Recall that u(λ, λ′) = ϕλλ(ϕλ′)ϕ−1
λλ′ , where ϕλ is, for all λ ∈ Σ,

an isomorphism between λ(E) and E . That u is a 2-cocycle follows from
a simple computation and the associated cohomology class [u] does not
depend on the choice of the family (ϕλ)λ∈Σ. If [u] = 1 in H2(Σ;C∗) �
Br(R) � {±1}, then u is a coboundary: u(λ, λ′) = a(λλ′)a(λ)(λ ·
a(λ′))−1, where a : Σ −→ Aut(E) and λ · a(λ′) = ϕλλ(a(λ

′))ϕ−1
λ (this

does not depend on the choice of the isomorphism ϕλ : λ(E) −→ E). Set-
ting ψλ := a(λ)ϕλ yields ψλλ(ψλ′) = ψλλ′ . In particular, if λ = λ′ = σ,
then σ(ψσ) = ψ−1

σ . Likewise, [u] = −1 yields ψσ
σ = −ψ−1

σ . If we set
τ := ψσσE , where σE is defined as in (3.1), then τ2 = ψσσEψσσE =
ψσσ(ψσ) = ±IdE . q.e.d.

The lesson from Proposition 3.8 is that there may be Gal(C/R)-invariant
stable holomorphic vector bundles that do not come from Real vector
bundles. This situation contrasts with the one studied by Harder and
Narasimhan in [HN75], where all Gal(Fq/Fq)-invariant bundles are nec-
essarily defined over Fq, reflecting the fact that Br(Fq), unlike Br(R), is
trivial. To conclude the present section, let us identify the fibers of the
type map T with moduli spaces of Real and Quaternionic vector bun-
dles. We define NR(r, d), resp. NH(r, d), to be the set of isomorphism
classes of geometrically stable Real, resp. Quaternionic, holomorphic
vector bundles of rank r and degree d. By Proposition 3.8, there are
surjective maps

NR(r, d) −→ T −1({R}) and NH(r, d) −→ T −1({H}),

which in particular endows NR(r, d) and NH(r, d) with a natural topol-
ogy that they inherit from the Hausdorff topology of the complex variety
NC(r, d). In fact, these maps are also injective, as shown by the next
result.

Proposition 3.9. Two geometrically stable Real (resp. Quaternio-
nic) vector bundles (E1, τ1) and (E2, τ2) are isomorphic as Real (resp.
Quaternionic) vector bundles if and only if they are isomorphic as holo-
morphic vector bundles. Therefore, there are bijections NR(r, d) �
T −1({R}) and NH(r, d) � T

−1({H}).
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Proof. It suffices to show that two Real (resp. Quaternionic) struc-
tures τ1 and τ2 on a stable holomorphic vector bundle E are conjugate
by an automorphism of E . An elementary proof is available in [Sch12,
Proposition 2.8] but it is interesting to see the group cohomology argu-
ment which is hidden there. To that end, let us replace τ1 and τ2 by iso-
morphisms ϕσ , ψσ : σ(E) −→ E defined as in (3.2). Then a(σ) := ψσϕ

−1
σ

defines a C∗-valued 1-cocycle on Σ (even when ϕσ and ψσ both come
from Quaternionic structures on E). Since H1(Σ;C∗) = 0 by Hilbert’s
90, we have that τ1 and τ2 are indeed conjugate by an automorphism of
E . q.e.d.

3.2. Galois-invariant connections. We now give the gauge-theoretic
construction the moduli spacesMR(r, d, �w) andMH(r, d), which lies at
the heart of our proof of the Narasimhan-Seshadri correspondence for
Real and Quaternionic vector bundles. The upshot of this construc-
tion is that it places Real and Quaternionic vector bundles on an equal
footing: both are fixed points of an appropriate Real structure on a
space of unitary connections. The general idea behind our approach is
the Kempf-Ness theorem ([KN79]), or rather the use that Donaldson
makes of that theorem in [Don83]. In what follows, we fix a compat-
ible Riemannian metric of volume 2π on the Riemann surface M and
we denote by volM the associated volume form. Following Atiyah and
Bott in [AB83], we denote by E a Hermitian vector bundle of rank
r and degree d on M , and GE the group of unitary automorphisms of
E (henceforth referred to as the unitary gauge group). Let GC be the
group of all complex linear automorphisms of E (henceforth referred to
as the complex gauge group; it can be seen as a complexification G C

E of
GE). Let AE be the (affine) space of unitary connections on E. Then
the unitary gauge action, defined for u ∈ GE , A ∈ AE and s ∈ Ω0(M ;E)
by du·A(s) = u

(
dA(u

−1s)
)
= (dA− (dAu)u

−1) s, extends to the complex
gauge action defined for g ∈ GC by

dg·A(s) = g
(
∂A(g

−1s)
)
+ (g∗)−1

(
∂A(g

∗s)
)

=
[
dA −

(
(∂Ag)g

−1 −
(
(∂Ag)g

−1
)∗)]

s,

where g∗ is the Hermitian adjoint of g and ∂A (resp. ∂A) is the (0, 1)
(resp. (1, 0)) part of dA : Ω0(M ;E) −→ Ω1(M ;E) = Ω1,0(M ;E) ⊕
Ω0,1(M ;E) (if g∗ = g−1, the actions above indeed coincide because
(∂Ag)

∗ = ∂A(g
∗)), which puts us in a situation similar to that of the

Kempf-Ness theorem, albeit in an infinite-dimensional context. This is
interesting because, by the Newlander-Nirenberg theorem, the GC-orbits
inAE are precisely the isomorphism classes of holomorphic structures on
E. Moreover, Atiyah and Bott have proved ([AB83]) that the curvature
map F : AE −→ Ω2

(
M ; u(E)

)
�

(
Lie(GE)

)∗
(where u(E) is the bundle

of anti-Hermitian endomorphisms of E) is a momentum map for the
unitary gauge action on AE , and Donaldson has proved ([Don83]) that
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poly-stable GC-orbits (i.e. GC-orbits of unitary connections defining a
poly-stable holomorphic structure on E) are characterized by the fact
that they contain a, necessarily unique, GE-orbit of unitary connections
having constant central curvature, i.e. satisfying the momentum map
condition

(3.4) FA =

(
i
d

r
IdE

)
volM ∈ Ω2

(
M ; u(E)

)
.

Finally, Daskalopoulos and R̊ade have proved that the closure of a semi-
stable GC-orbit (i.e. GC-orbits of unitary connections defining a semi-
stable holomorphic structure on E) contains a unique poly-stable GC-
orbit ([Das92, R̊ad92]). More precisely, if we denote by

(3.5) LYM :
AE −→ R
A �−→

∫
M
‖FA‖

2

the Yang-Mills functional of E (the smooth map ‖·‖2 : Ω2(M ; u(E)) −→
Ω2(M ;R) being induced by the canonical scalar product (P,Q) �−→
−tr(PQ) on u(r)), then, given any A ∈ AE, there exists a one-parameter
family (At)t≥0 of unitary connections satisfying

(3.6)

{
A0 = A
d
dt
At = −gradAt

LYM

and such that A∞ := limt→+∞At exists and is a critical point of LYM

([Das92, R̊ad92]). The connection A∞ is called the limit point of A
under the Yang-Mills flow (i.e. the negative gradient flow of LYM ) and
a critical point of LYM is called a Yang-Mills connection. Additionally,
the limiting connection A∞ is an absolute minimum of LYM if and only
if it defines a poly-stable holomorphic structure on E, if and only if the
original connection A defines a semi-stable holomorphic structure on E.
And in this case, GC ·A∞ is the only poly-stable orbit contained in the
closure GC ·A of GC·A in the semi-stable locus of AE ([Das92, R̊ad92]).
In particular, the closed semi-stable GC-orbits are the poly-stable ones.
Putting it all together, this shows that an analog, in the present context,
of the Kempf-Ness theorem indeed holds: two semi-stable homolorphic
structures on E are S-equivalent if and only if the closures of the cor-
responding GC-orbits intersect in the semi-stable locus of AE, and the
space of closed semi-stable orbits is in bijection with unitary orbits of
solutions to the momentum map equation (3.4). Denoting by Css ⊂ AE

the set of unitary connections defining semi-stable holomorphic struc-
tures on E, we see that the above implies the existence of bijections (in
fact, homeomorphisms)

(3.7) Mss(E) � Css//GC � F−1

({
i
d

r
volM IdE

})
/GE ,

between



148 F. SCHAFFHAUSER

• the set of S-equivalence classes of semi-stable holomorphic struc-
tures on E,

• the space of closed semi-stable GC-orbits in AE,
• and the space of unitary gauge orbits of minimal Yang-Mills con-
nections (solutions to Equation (3.4)).

Since any two Hermitian vector bundles of rank r and degree d over a
curve are smoothly isometric, Mss(E) coincides with the moduli space
MC(r, d).

We now explain the invariant-theoretic picture analogous to (3.7) in
the Real and Quaternionic cases (see (3.9)), expanding the results of
[Sch12] to include results on the closure of semi-stable orbits of Real
and Quaternionic structures. As in [AB83], the first step consists in
fixing a Real (resp. Quaternionic) Hermitian vector bundle (E, τ) on
(M,σ). This means that the map τ : E −→ E is a fiberwise C-antilinear
isometry covering σ : M −→M and whose square is equal to IdE (resp.
−IdE).

Definition 3.10. A holomorphic structure on a Real or Quaternionic
Hermitian bundle (E, τ) is said to be τ -compatible if it turns τ into an
anti-holomorphic map. We denote byMss(E, τ) the set of S-equivalence
classes of semi-stable τ -compatible holomorphic structures on (E, τ).

Let us now fix a Real (resp. Quaternionic) Hermitian vector bundle
(E, τ) on (M,Σ) of rank r and degree d, say, and study the setMss(E, τ)
of S-equivalence classes (in the Real (resp. Quaternionic) sense) of semi-
stable τ -compatible holomorphic structures on (E, τ). The set of all
holomorphic structures on E is the space AE of unitary connections
on that bundle. If (uij)(i,j)∈I×I is a unitary cocycle representing E,

the cocycle (uij ◦ σ−1)(σ(i),σ(j)) is also unitary, so the bundle σ(E) is
naturally Hermitian. Moreover, a unitary connection A on E induces
a unitary connection σ(A) on σ(E): if A is locally represented by the
anti-Hermitian matrices (ai)i∈I , then σ(A) is locally represented by the

matrices (ai ◦ σ−1)σ(i). A similar construction applies to the curvature
FA of the connection A and it is immediate that Fσ(A) = σ(FA). In
particular, if A is flat, then σ(A) is also flat and, more generally, if A is
projectively flat then σ(A) is also projectively flat, for

σ(i
d

r
volM ) = (σ−1)∗

(
i
d

r
volM

)
= −i

d

r
((σ−1)∗volM ) = i

d

r
volM

since σ reverses orientation on M . Now, since τ2 = ±IdE , there is a C-
linear isomorphism ϕσ : σ(E) −→ E satisfying σ(ϕσ) = ±ϕ

−1
σ (namely

ϕσ := τσ−1
E , where σE is defined as in (3.1)), so we can define the

following map

(3.8) β :
AE −→ AE

A �−→ (ϕ−1
σ )∗σ(A)
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where (ϕ−1
σ )∗σ(A) is the connection on E defined, for all smooth sections

s ∈ Ω0(M ;E), by d(ϕ−1
σ )∗σ(A)(s) := ϕσ

(
dσ(A)(ϕ

−1
σ s)

)
.

Proposition 3.11 ([Sch12]). Let (E, τ) be a Real (resp. Quater-
nionic) Hermitian vector bundle. Then the map β defined in (3.8) is
involutive and the holomorphic structure defined by a unitary connec-
tion A ∈ AE is τ -compatible if and only if β(A) = A. We call such a
fixed point of β a Galois-invariant connection.

Proof. Recall that σ(ϕσ) = ±ϕ−1
σ , depending on whether τ is Real

or Quaternionic. So

β2(A) = (ϕ−1
σ )∗σ((ϕ−1

σ )∗σ(A))
= (σ(ϕσ)

−1ϕ−1
σ )∗σ2(A)

= (±IdE)
∗A

= A,

since ±IdE lies in the center of GE therefore acts trivially on A. More-
over, β(A) = A if and only if the corresponding covariant derivative
dA : Ω0(M ;E) −→ Ω1(M ;E) commutes to the Real (resp. Quater-
nionic) structures of Ω0(M ;E) and Ω1(M ;E) induced by σ and τ . This
guarantees that ker ∂A inherits a Real (resp. Quaternionic) structure,
which in turn endows E with a τ -compatible holomorphic structure
([Sch12]). q.e.d.

Note that β is involutive even if τ is Quaternionic. Moreover, the invo-
lution β is compatible with the Hamiltonian structure of AE. Indeed,
first note that both the unitary and complex gauge groups of E inherit
an involution, also denoted by β,

β :
GC −→ GC
g �−→ (ϕ−1

σ )∗σ(g) := ϕσσ(g)ϕ
−1
σ = τgτ−1

(this indeed preserves the sub-group GE ⊂ GC because ϕσ is an isometry)
and that the fixed-point set of β consists of gauge transformations of
E which commute to τ . Note that β induces an involution R �−→
(ϕ−1

σ )∗σ(R) on Ω2(M ; u(E)) � (LieGE)
∗. Then, the following result

holds.

Theorem 3.12 ([Sch12]). The involution β defined in (3.8) is anti-
symplectic with respect to the Atiyah-Bott symplectic form ωA(a, b) =∫
M
−tr(a∧ b) on AE. It is an isometry of the Kähler metric of AE and

it is also compatible with the action of GC and the momentum map of
the induced GE-action, in the following sense:

1) for all g ∈ GC and all A ∈ AE, β(g ·A) = β(g) · β(A),
2) for all A in AE, Fβ(A) = β(FA).
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This implies that β induces an anti-holomorphic and anti-symplectic
involution β̂ of the (smooth part of the) quotient

F−1

({
i
d

r
volM IdE

})
/GE �M

ss(E) �MC(r, d) .

The involution β̂ is independent of τ (in particular, it does not depend
on whether τ is Real or Quaternionic) and it coincides with the canonical
Real structure E �−→ σ(E) of MC(r, d). In what follows, we will denote
by G τ

E (resp. GτC) the group of fixed points of β in GE (resp. GC) and call it
the τ -unitary (resp. τ -complex) gauge group. Let us writeA τ

E for the set
of τ -compatible holomorphic structures on (E, τ). By Proposition 3.11,
A τ

E = Fix(β), the set of Galois-invariant unitary connections on (E, τ)
and it is a closed affine subspace of AE. Property (1) of Theorem 3.12
shows that the group GτC and its sub-group G τ

E act on A τ
E. Moreover,

as seen in [Sch12], GτC-orbits in A
τ
E are precisely isomorphism classes of

Real (resp. Quaternionic) vector bundles that are smoothly isomorphic
to (E, τ). We then have the following result, which is an analog of
the theorems of Donaldson and Daskalopoulos-R̊ade and which will be
proved in Section 3.3.

Theorem 3.13. Let (E, τ) be a Real (resp. Quaternionic) Hermit-
ian vector bundle on a compact connected Real Riemann surface (M,Σ)
of genus g ≥ 2. Let A τ

E be the space of Galois-invariant unitary con-
nections on (E, τ) and let A ∈ A τ

E define a semi-stable τ -compatible
holomorphic structure on (E, τ). Denote by A∞ the limit point of A
under the Yang-Mills flow (3.6). Then:

1) A∞ ∈ A τ
E and it defines a poly-stable τ -compatible holomorphic

structure on (E, τ),
2) GτC ·A∞ is the unique poly-stable GτC-orbit contained in the closure

GτC · A of GτC · A in the semi-stable locus of A τ
E. In particular, the

closed semi-stable GτC-orbits in A τ
E are the poly-stable ones,

3) the space of closed semi-stable GτC-orbits in A
τ
E is in bijection with

the Lagrangian quotient(
F−1

({
i
d

r
volM IdE

})
∩ A τ

E

)/
G τ
E

i.e. with the space of G τ
E-orbits of Galois-invariant minimal Yang-

Mills connections on E.

In other words, two semi-stable τ -compatible holomorphic structures
on (E, τ) are S-equivalent in the Real (resp. Quaternionic) sense if and
only if the closures (in the semi-stable locus of A τ

E) of the corresponding
GτC-orbits intersect. Since Css is a β-invariant and GC-invariant subset
of AE, we have in particular that GτC acts on C τ

ss and, analogously to
(3.7), there are homeomorphisms
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(3.9) Mss(E, τ) � C τ
ss//G

τ
C �

(
F−1

({
i
d

r
volM IdE

})
∩A τ

E

)
/G τ

E ,

between

• the set of S-equivalence classes of semi-stable τ -compatible holo-
morphic structures on (E, τ),

• the space of closed semi-stable GτC-orbits in A
τ
E,

• and the space of τ -unitary gauge orbits of Galois-invariant minimal
Yang-Mills connections (invariant solutions to Eq. (3.4)).

The proof of Theorem 3.13 will be given in Section 3.3. For now, we
use it to give Mss(E, τ) a topology.

Definition 3.14. The set F−1
({

idr volM IdE
})
∩ A τ

E inherits the
subspace topology from the space AE of unitary connections on E, as
defined in [AB83]. The groups G τ

E ⊂ G
τ
C inherit the sub-space topology

from the groups GE ⊂ GC. The setM
ss(E, τ) � (F−1

({
idr volM IdE

})
∩

A τ
E)/G

τ
E is endowed with the quotient topology.

We recall from [AB83,Don83] that the spaceAE is the space of unitary
connections on E of Sobolev class L2

1. This Sobolev norm turns AE into
a Banach affine space. And GE is the set of unitary gauge transforma-
tions of Sobolev class L2

2 and is a Banach Lie group. This is compatible
with the study of holomorphic structures on E because gauge trans-
formations of Sobolev class L2

2 preserve the topology of the bundle and
because any complex gauge orbit of unitary connections of Sobolev class
L2
1 contains a smooth unitary connection ([AB83, Lemma 14.8]). More-

over, if two smooth unitary connections are related by a gauge trans-
formation then the latter is necessarily smooth ([AB83, Lemma 14.9]).
Arguably, the definition of the topology of Mss(E, τ) given above can
seem ad hoc for our purposes of establishing a homeomorphism between
gauge equivalence classes of Galois-invariant connections and conjugacy
classes of Galois-equivariant unitary representations but it is in fact nat-
ural. Indeed, it was shown in [Sch12] that the Lagrangian quotients
(F−1

({
id
r
volM IdE

})
∩ A τ

E)/G
τ
E embed continuously into the set of

Real points of (MC(r, d),Σ), where r = rk(E) and d = deg(E), so the
topology introduced in Definition 3.14 makes Mss(E, τ) a topological
subspace of MC(r, d)

Σ ⊂MC(r, d) when MC(r, d) is equipped with its
Hausdorff topology of complex variety (in which it is homeomorphic to
the symplectic quotient F−1

({
idr volM IdE

})
/GE , by the Narasimhan-

Seshadri theorem). We note that, when r∧d = 1,Mss(E, τ) is actually
a connected component of MC(r, d)

Σ in said topology ([Sch12]).

3.3. Properties of the Yang-Mills flow on Galois-invariant con-

nections. The first step to prove Theorem 3.13 is to show that the space
A τ

E of Galois-invariant unitary connections on (E, τ) is invariant under
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the Yang-Mills flow. Recall that in (3.5) we denoted by LYM the Yang-
Mills functional and that we have defined in (3.8) an involutive isometry
β : AE −→ AE such that, by Theorem 3.12, one has, for all A ∈ AE,
Fβ(A) = β(FA).

Lemma 3.15. The map β satisfies LYM ◦ β = LYM and, for all
A ∈ AE,

gradβ(A)LYM = TAβ · gradALYM .

In particular, if A ∈ A τ
E = Fix(β), then gradALYM ∈ Fix(TAβ) =

TA(A
τ
E).

Proof. One has ‖Fβ(A)‖
2 = ‖β(FA)‖

2 = ‖FA‖
2, so LYM ◦ β = LYM .

In particular, for all A ∈ AE, Tβ(A)LYM ◦ TAβ = TALYM . So, by defi-
nition of the gradient, one has, for all v ∈ TA(AE), (gradβ(A)LYM | v) =

Tβ(A)LYM · v = TA(LYM ◦ β) ◦ (TAβ)
−1 · v = (gradALYM | (TAβ)

−1 · v).
Since β is an isometry of AE, this shows that gradβ(A)LYM = TAβ ·
gradALYM and the rest follows. q.e.d.

We can now prove Part (1) of Theorem 3.13.

Proof of Part (1) of Theorem 3.13. As a consequence of Lemma 3.15,
A τ

E is invariant under the Yang-Mills flow (3.6). Since A τ
E = Fix(β)

is closed in AE, the limiting connection A∞ of a Galois-invariant con-
nection A is also Galois-invariant. Moreover, if A is semi-stable, then
A∞ is of constant central curvature by the Daskalopoulos-R̊ade theo-
rem. Since a connection which is both of constant central curvature and
Galois-invariant defines a holomorphic structure on (E, τ) which is both
poly-stable (by Donaldson’s theorem) and τ -compatible (by Proposition
3.11), Part (1) of Theorem 3.13 is proved (note that, by Proposition 3.6,
being both poly-stable and τ -compatible is indeed the same as being a
poly-stable τ -compatible holomorphic structure). q.e.d.

In order to prove Parts (2) and (3) of Theorem 3.13, we show that
the Yang-Mills flow moves a Galois-invariant connection inside its GτC-
orbit, just as it moves a general unitary connection inside its GC-orbit
([AB83]), and with that we will be able to conclude the proof of The-
orem 3.13.

Lemma 3.16. Let A ∈ A τ
E = Fix(β) and let (At)t≥0 be the one-

parameter family of unitary connections obtained by flowing A along
Yang-Mills gradient lines as in Equation (3.6). Then, for all t ≥ 0,
At ∈ G

τ
C · A.

Proof. If A ∈ A τ
E, Lemma 3.15 shows that gradALYM ∈ TA(A

τ
E).

Moreover, by [AB83, (8.12) p.572], gradALYM ∈ TA(GC · A). So
gradALYM ∈ TA(A

τ
E) ∩ TA(GC · A) = TA(G

τ
C · A), where the equality

follows from the fact that if X ∈ LieGC and Y := τ(X)−X lies in the
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infinitesimal stabilizer of A, then X ′ := X + Y
2 = X+τ(X)

2 ∈ LieGτC and
induces the same infinitesimal action as X. q.e.d.

Proof of Parts (2) and (3) of Theorem 3.13. Since A∞ = limt→+∞At,
one has, by Lemma 3.16, that A∞ ∈ GτC · A, so G

τ
C · A∞ ⊂ GτC ·A. If B

is another Galois-invariant connection with constant central curvature
such that GτC · B ⊂ GτC · A, then by the Daskalopoulos-R̊ade theorem,
GC·A = GC·B. But if two minimal Yang-Mills connections lie in the same
GC-orbit, then by Donaldson’s theorem they lie in the same GE-orbit.
And if both connections are in addition Galois-invariant, then they lie
in the same G τ

E -orbit (a detailed proof is available in [Sch12, Prop.

3.6]). Thus, GτC ·A∞ is the only poly-stable GτC-orbit contained in GτC · A
and G τ

E · A∞ is the only G τ
E -orbit of minimal Yang-Mills connections

contained in GτC · A∞, which proves Parts (2) and (3) of Theorem 3.13.
q.e.d.

As a corollary of Theorem 3.13, we obtain the following analog of a result
of Daskalopoulos and R̊ade ([Das92, R̊ad92]). The proof is immediate
because the retraction r that we consider here is the restriction of the
Daskalopoulos-R̊ade retraction and we have proved that the deformation
occurs within GτC-orbits in A

τ
E.

Corollary 3.17. Recall that we have denoted by C τ
ss ⊂ A

τ
E the set of

semi-stable τ -compatible unitary connections on E. Then the map

r :
C τ
ss −→ F−1

({
id
r
volM IdE

})
∩ A τ

E

A �−→ A∞

is a G τ
E-equivariant deformation retraction.

Since polar decomposition in G τ
C induces a deformation retraction from

GτC to G τ
E , the G

τ
C-equivariant cohomology of C τ

ss coincides with its G τ
E -

equivariant cohomology and Corollary 3.17 implies that

H ∗
G τ
E
(F−1

({
i
d

r
volM IdE

})
∩A τ

E) � H ∗
G τ
E
(C τ

ss) � H ∗
Gτ
C

(C τ
ss),

which is the approach that was implemented in [LS13] to compute the
equivariant cohomology with mod 2 coefficients of the moduli spaces
Mss(E, τ), whose presentation as a quotient was described in (3.9).

4. Invariant connections and parallel transport

4.1. Parallel transport and holonomy representations. Let E be
a smooth complex vector bundle over a Klein surface (M,σ). Recall

that we denote by σ(E) the complex vector bundle (σ−1)∗E. Let A be
a linear connection on E. Given a path γ : [0; 1] −→ M , we denote
by TA

γ : Eγ(0) −→ Eγ(1) the parallel transport operator along γ with

respect to the connection A: if v ∈ Eγ(0), then TA
γ (v) = γ̃

(v)
A (1), where
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γ̃
(v)
A is the unique A-horizontal lifting of γ satisfying γ̃

(v)
A (0) = v. We

then have the following general result (which holds without assuming
that E is self-conjugate).

Lemma 4.1. Denote by σ(γ) the path σ ◦ γ : [0; 1] −→ M and let
σE : E −→ σ(E) be the map defined in (3.1). Then the parallel trans-
port operator along the connection σ(A) induced by A on σ(E) satisfies

T
σ(A)
σ(γ) = σET

A
γ σ

−1
E .

Proof. This follows directly from the definition of parallel transport
in σ(E). Indeed, by unicity of horizontal liftings, one has the following
commutative diagram

E
σE ��

��

σ(E)

��
[0; 1]

γ
��

γ̃
(v)
A

��
�

�

�

�

�

σ̃(γ)
σE(v)

σ(A)

���
�

�
�

�
�

�
�

�
�

�

M
σ �� M,

which proves the lemma. q.e.d.

Let us now fix a class [c] ∈ H2(Σ;Z(GL(r;C))) � {±1}. Since Σ �
Z/2Z, we can just think of the cocycle c itself as being±1 (see (2.9)). We
assume from now on that E is either Real or Quaternionic, meaning that
there is given an isomorphism ϕσ : σ(E) −→ E satisfying σ(ϕσ) = cϕ−1

σ

and we set τ = ϕσσE , as in (3.2), so that τ2 = cIdE . Recall from (3.8)
that in this situation we have an induced action of Σ on the space of
linear connections on E, defined by the involution β(A) = (ϕ−1

σ )∗σ(A).

Proposition 4.2. Let (E, τ) be a Real or Quaternionic vector bundle
and let A be a Σ-invariant connection on E. Then the parallel transport
operators and TA

γ and TA
σ(γ) satisfy TA

σ(γ) = τTA
γ τ

−1. Equivalently, we

have a commutative diagram

Eσ(γ(0))

TA
σ(γ)

−−−−→ Eσ(γ(1))

τ

�⏐⏐ τ

�⏐⏐
Eγ(0)

TA
γ

−−−−→ Eγ(1).

Proof. By Lemma 4.1,

TA
γ = σ−1

E T
σ(A)
σ(γ) σE = (ϕσσE)

−1(ϕσT
σ(A)
σ(γ) ϕ

−1
σ )(ϕσσE),

hence TA
γ = τ−1T

(ϕ−1
σ )∗σ(A)

σ(γ) τ = τ−1TA
σ(γ)τ , which proves the proposition.

q.e.d.

Finally, let us choose a point x ∈ M and a frame of Ex (i.e. a C-
linear isomorphism Ex � Cr). The holonomy group of a connection
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A at x is the sub-group Holx(A) of GL(r;C) generated by all parallel
transport operators TA

γ along loops at x. We will now show that when
A is Σ-invariant, we can enlarge the holonomy group to obtain a Σ-
augmentation HolΣx (A) making the following diagram commute:

(4.1)

1 −−−−→ Holx(A) −−−−→ HolΣx (A) −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐� ‖

1 −−−−→ GL(r;C) −−−−→ GL(r;C)×c Σ −−−−→ Σ −−−−→ 1

To do that, we use the description of π1(MΣ;x) in terms of paths in

M × EΣ recalled in Section 2.1. Based on the definition of the set P̃x

in (2.5), we saw that the group π1(MΣ;x) could be thought of as the
set of homotopy classes of pairs η = (γ, λ) where γ : [0; 1] −→ M and
λ ∈ Σ satisfy γ(0) = x and γ(1) = λ−1(x), the composition η1η2 of two
such pairs being defined as in (2.6). The parallel transport operator is
a C-linear map TA

γ : Ex −→ Eλ−1(x) and, by composing it by τλ (which
we define to be either IdE or τ , depending on whether λ = 1Σ or σ), we
obtain a map τλ ◦ T

A
γ : Ex −→ Ex, which is C-linear or C-anti-linear,

depending on λ ∈ Σ.

Definition 4.3. Given η = (γ, λ) ∈ P̃x, the matrix of the map τλ ◦
TA
γ : Ex −→ Ex in the given frame of Ex is the unique element gγ ∈

GL(r;C) such that, for all v ∈ Cr � Ex, (τλ ◦ T
A
γ )(v) = gγελ(v), where

ελ(v) = v if λ = 1Σ and ελ(v) = v if λ = σ ∈ Σ.

Recall that Σ acts on GL(r;C) via σ(g) = g. Then the map ε : Σ −→
GL(r;C)�Σ introduced in Definition 4.3 is a group homomorphism and
a section of the natural projection GL(r;C) � Σ −→ Σ. In particular,
εσgε

−1
σ = σ(g) = g. This will be useful in the proof of the next result.

Theorem 4.4. Let (E, τ) be a Real or Quaternionic vector bundle
and let A be a Galois-invariant connection on E. Then there exists an
extended holonomy group

HolΣx (A) := {(gγ , λ) : η = (γ, λ) ∈ P̃x}

which, endowed with the projection homomorphism (gγ , λ) �−→ λ, be-
comes a sub-Σ-augmentation of GL(r;C)×c Σ in the sense of Diagram
(4.1), where c = +1 is E is Real and c = −1 if E is Quaternionic.
If E is Hermitian and we choose c to lie in H2(Σ;Z(U(n))) � {±1},
then the extended holonomy group HolΣx (A) is a sub-Σ-augmentation of
U(r)×c Σ.

Proof. It suffices to show that, for all η1 = (γ1, λ1), η2 = (γ2, λ2) in

P̃x, the equality

(4.2) (gγ1γ2 , λ1λ2) = (gγ1 , λ1)(gγ2 , λ2)
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holds in GL(r;C)×c Σ. For the proof, it is convenient to think of IdE
and τ as a family of maps (τλ)λ∈Σ such that, for all (λ1, λ2) ∈ Σ × Σ,
τλ1τλ2 = c(λ1, λ2)τλ1λ2 , where c is now seen as an abstract 2-cocycle.
By (2.6), we have that η1η2 = (λ−1

2 (γ1)γ2, λ1λ2) so, by Definition 4.3,
gγ1γ2 ∈ GL(r;C) is the matrix such that for all v ∈ Cr � Ex,

(τλ1λ2T
A
λ−1
2 (γ1)γ2

)(v) = gγ1γ2ελ1λ2(v).

By the usual properties of parallel transport combined with Proposi-
tion 4.2, we have TA

λ−1
2 (γ1)γ2

= TA
λ−1
2 (γ1)

TA
γ2 = (τλ−1

2
TA
γ1τ

−1
λ−1
2

)TA
γ2 and,

since τλ−1
2

= c(λ2, λ
−1
2 )τ−1

λ2
and c(λ2, λ

−1
2 ) ∈ Z(GL(r;C)), we obtain

TA
λ−1
2 (γ1)γ2

= (τ−1
λ2

TA
γ1τλ2)T

A
γ2 , hence

(4.3) τλ1λ2T
A
λ−1
2 (γ1)γ2

= c(λ1, λ2)
−1(τλ1T

A
γ1)(τλ2T

A
γ2).

Moreover, for all v ∈ Cr � Ex,

(τλ1T
A
γ1
)(τλ2T

A
γ2
)(v) = gγ1ελ1

(
gγ2ελ2(v)

)
= gγ1(ελ1gγ2ε

−1
λ1

)ελ1ελ2(v)

= gγ1λ1(gγ2)ελ1λ2(v)

where, on the last line, λ(g) = g if λ = 1Σ and λ(g) = g if λ = σ ∈ Σ,
as noted just after Definition 4.3. So, in matrix form, Equation (4.3)
becomes(
gγ1γ2 , λ1λ2

)
=

(
c(λ1, λ2)

−1, 1
)(
gγ1λ1(gγ2), λ1λ2

)
= (gγ1 , λ1

)(
gγ2 , λ2

)
,

where the last equality follows from the definition of the group law in
GL(r;C)×cΣ, which was recalled in (2.8). Thus, we have indeed proved
Equality (4.2). q.e.d.

4.2. Orbifold representations associated to invariant connec-

tions. We now investigate the consequences of Theorem 4.4 for the
Narasimhan-Seshadri correspondence. We have seen in Theorem 3.13
that a poly-stable Real or Quaternionic structure on a Hermitian vector
bundle (E, τ) of rank r and degree d is defined by a Galois-invariant,
projectively flat unitary connection A which is unique up to τ -unitary
gauge. By Theorem 4.4, the extended holonomy group of such a con-
nection A fits into the commutative diagram

(4.4)

1 −−−−→ L̃x −−−−→ P̃x −−−−→ Σ −−−−→ 1⏐⏐� ⏐⏐�χ̃ ‖

1 −−−−→ Holx(A) −−−−→ HolΣx (A) −−−−→ Σ −−−−→ 1

where the first row is a short exact sequence of pointed sets and the
extended holonomy group HolΣx (A) is a sub-Σ-augmentation ofU(r)×cΣ
(c being equal to ±1, depending on whether τ is Real or Quaternionic).
In the present section, we wish to answer the following question: when
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does the pointed map χ̃ : P̃x −→ U(r) ×c Σ in Diagram (4.4) induce a
group homomorphism

(4.5) χ : (π1(MΣ;x) � P̃x/homotopy) −→ U(r)×c Σ ?

As for the usual fundamental group π1(M ;x), this can of course not
happen unless d = 0. Indeed, for A projectively flat, the pointed map

�̃ := χ̃|
L̃x

: L̃x −→ U(r) only induces a group homomorphism � :

π1(M ;x) −→ PU(r) in general. Equivalently, �̃ induces a pointed map
� : π1(M ;x) −→ U(r) which is not a group homomorphism but satisfies

(4.6) �(γ1γ2) = ei
2π
r
α(γ1,γ2)�(γ1)�(γ2),

where α : π1(M ;x) × π1(M ;x) −→ Z is a 2-cocycle representing the
cohomology class d = c1(E) ∈ H2(M ;Z). As we saw in Section 2.2, d
is also the class of the (central) extension π1(S(L)) of π1(M ;x) by Z,
where S(L) is the Seifert manifold associated to an arbitrary smooth line
bundle L of degree d. Then, since 1 −→ S1 −→ U(r) −→ PU(r) −→ 1
is a central extension, a pointed map � satisfying (4.6) induces a group
homomorphism � : π1(S(L)) −→ U(r), satisfying, for all n ∈ Z =
Z(π1(S(L))), �(n) = exp(i2π

r
n)Ir. In the Real or Quaternionic case,

the situation is very similar. The pointed map χ̃ : P̃x −→ U(r) ×c Σ
induces a group homomorphism χ : π1(MΣ;x) −→ PU(r)�Σ, where Σ
acts on PU(r) by complex conjugation, or equivalently a pointed map
χ : π1(MΣ;x) −→ U(r)×c Σ, compatible with the projections to Σ and
satisfying

(4.7) χ(η1η2) = ei
2π
r
α̃(η1,η2)χ(η1)χ(η2),

where α̃ : π1(MΣ;x) × π1(MΣ;x) −→ Z is any 2-cocycle extending the
previous cocycle α. Since α was representing a smooth line bundle of
degree d and α̃ represents a smooth Real line bundle (L, τL), saying that
α̃ extends α is equivalent to saying that L has degree d. By Theorem
1.2, the isomorphism class of such an (L, τL) is unique when Mσ = ∅
but, when Mσ has, say, n > 0 connected components, then there are
2n−1 possibilities for the isomorphism class of (L, τL). This constitutes
a difference with the complex case, where the isomorphism class of the
line bundle L depended only on d. But this is not an issue because,
by Remark 2.8, any two such choices will give rise to isomorphic Σ-
augmentations π1(S(L)Σ). Once chosen a τL, we obtain, as in Section
2.2, a Real Seifert manifold (S(L), τL) and an associated (non-central)
extension π1(S(L)Σ) of π1(MΣ;x) by Z. Then, since 1 −→ S1 −→
U(r) ×c Σ −→ PU(r) � Σ −→ 1 is a central extension, a pointed
map χ : π1(MΣ;x) −→ U(r) ×c Σ compatible with the projections
to Σ and satisfying Condition (4.7) induces a homomorphism of Σ-
augmentations χ : π1(S(L)Σ) −→ U(r) ×c Σ, satisfying, for all n ∈ Z,
χ(n) = exp(i2πr n)Ir, as in Diagram (2.10) and Equation (2.11). By
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Remark 2.7, when d = 0, we can think of such a χ as a homomorphism
of Σ-augmentations from π1(MΣ;x) to U(r)×c Σ, as expected in (4.5).
We have therefore proved the following result.

Theorem 4.5. Let (E, τ) be a smooth Real or Quaternionic vector
bundle of rank r and degree d. Let c = ±1 be defined by the equa-
tion τ2 = cIdE. Let (L, τL) be any smooth Real line bundle of degree d
and let (S(L), τL) be the associated Real Seifert manifold. Let A be a
Galois-invariant, projectively flat unitary connection on E. Then, tak-
ing the extended holonomy of the connection A in the sense of Theorem
4.4 induces a homomorphism of Σ-augmentations χA : π1(S(L)Σ) −→
U(r) ×c Σ, whose U(r)-conjugacy class only depends on the τ -unitary
gauge orbit of A.

In view of (3.9), Theorem 4.5 means that we have constructed a holo-
nomy map

(4.8) Hol :
Mss(E, τ) −→ Rc(r, d)

A �−→ χA

where c = ±1 depending on whether τ is Real or Quaternionic and
Rc(r, d) is the representation space of π1(S(L)Σ) introduced in (2.12).
We will see shortly that the collection of such holonomy maps for all
possible topological types of Real or Quaternionic structures τ on E
provides an inverse to the maps in (2.14). But before we do that, let
us study the special case where Mσ 
= ∅. As we saw in Proposition 2.9,
if we choose x ∈Mσ, then orbifold representations may be replaced by
Σ-equivariant unitary representations of the usual fundamental group
π1(M), or more generally π1(S(L)). And we verified in (2.19) that it
was indeed easy, starting from a Σ-equivariant representation, to define
a Real or Quaternionic structure on the associated projectively flat bun-
dle. Conversely, we can check here that the (non-extended) holonomy
representation �A : π1(S(L)) −→ U(r) of a Galois-invariant unitary
connection A on E is indeed Σ-equivariant (for the action of Σ on U(r)
defined by σ(u) = u in the Real case and the action of Σ on U(2r′)
defined by σ(u) = JuJ−1 in the Quaternionic case).

Proposition 4.6. Let x ∈ Mσ. Then, given a projectively flat con-
nection A on E, one has �β(A) = σ�Aσ

−1. In particular, if β(A) = A,
then �A is Σ-equivariant.

Proof. The result is proved as in Proposition 4.2. To translate it into
matrix form, the frame Ex � Cr must send the Real (resp. Quaternionic)
structure τ |Ex to the canonical Real (resp. Quaternionic) structure v �−→
v (resp. v �−→ Jv) of Cr (resp. C2r′). The existence of such frames can
be proved by induction on r (resp. r′). q.e.d.

In particular, it is not necessary, when Mσ 
= ∅, to use Theorem 4.4 in
order to define the holonomy map (4.8). It suffices to compose the map
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A �−→ �A from Proposition 4.6 with the isomorphism in Proposition
2.9:

Hol :
Mss(E, τ) −→ HomZ(π1(S(L));U(r))Σ/U(r)Σ � Rc(r, d)

A �−→ �A

where d = deg(L) and c = ±1 depending on whether τ is Real or
Quaternionic.

4.3. Connected components of the representation variety. The
moduli spaceMss(E, τ) constructed in (3.9) depends only on the topo-
logical type of (E, τ) and, by Theorem 1.2, the latter is entirely deter-
mined by the numerical quantities c = τ2, r = rk(E), d = deg(E) and
(when c = +1 and Mσ 
= ∅) w = w1(E

τ ). Let us then set

(4.9) Mc(r, d, �w) :=

⎧⎨
⎩
MR(r, d) if c = +1 and Mσ = ∅,
MR(r, d, �w) if c = +1 and Mσ 
= ∅,
MH(r, d) if c = −1,

where the moduli spaces on the right-hand side are the ones introduced
in Definition 3.7. By the results of [BHH10] and [Sch12], the sets
Mc(r, d, �w) are non-empty connected topological spaces which can be
embedded into MC(r, d)

Σ, possibly with some non-trivial intersection
unless we restrict to the stable locus of MC(r, d). In (4.8), we defined
a map Hol : Mc(r, d, �w) −→ Rc(r, d) and, in order to complete the
proof of Theorem 1.3, we now want to specify the image of that map
(see Theorem 4.8). To that end, let us introduce new sets Rc(r, d, �w).
When c = −1 or Mσ = ∅, Rc(r, d, �w) will coincide with Rc(r, d) by
definition. But when c = +1 and Mσ 
= ∅, Rc(r, d, �w) will be the subset
of Rc(r, d) defined as follows. Let us denote by γ1, . . . , γn the connected
components of Mσ. We view γk as a loop in M by picking a base point
xk ∈ γk. Recall from Proposition 2.9 that, if we choose a base point
x ∈ Mσ, the representation variety Rc(r, d) can be seen as the set of
equivalence classes of Σ-equivariant representations � : π1(S(L)) −→
U(r) satisfying, for all n ∈ Z ⊂ π1(S(L)), �(n) = exp(i2πr n)Ir. In
particular det �(n) = 1 for all n ∈ Z. Let us now pick a path δk from x
to xk. Then we have a loop ηk := δ−1

k γkδk, based at x. As in Section
2.3, the Real Seifert fibration S1 −→ S(L) −→M induces a short exact
sequence of Σ-equivariant group homomorphisms

0 −→ Z −→ π1(S(L);x) −→ π1(M ;x) −→ 1,

where x ∈ Fix(τL) lies in the fiber of S(L) above x and Σ acts on Z by
n �−→ (−n). So we can lift ηk to an element αk ∈ π1(S(L)). Morever,
σ(ηk) = ζ−1

k ηkζk, where ζk := σ(δ−1
k )δk is a loop at x, so we can also

lift ζk to some βk ∈ π1(S(L)) and we see that σ(αk) and β−1
k αkβk

differ only by some nk ∈ Z. In particular, det �(αk) = det �(σ(αk)) =
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σ(det �(αk)) ∈ U(1)Σ = O(1) and is independent of the various choices
of liftings that we have made. This implies the existence of a map

(4.10) W :
Rc(r, d) −→ O(1)n

� �−→
(
det �(α1), . . . ,det �(αn)

)
that, in analogy with [Gol88], we may call the Real obstruction map.

Definition 4.7. Assume that c = +1 and Mσ 
= ∅. Given w =
(s1, . . . , sn) ∈ O(1)n, we set

Rc(r, d, �w) :=W−1(s1, . . . , sn)

where W is the Real obstruction map (4.10). As we will see below, this
set is non-empty if and only if s1 . . . sn = (−1)dmod 2. If c = −1 or
Mσ = ∅, we set Rc(r, d, �w) := Rc(r, d). In all cases we have:

Rc(r, d) =
⊔
w

Rc(r, d, �w).

If c = +1 and Mσ 
= ∅, then the Real vector bundle (E , τ) associated to
� by means of Theorem 2.6 satisfies w1(E

τ ) = w, by definition of the first
Stiefel-Whitney class. Conversely, if A is a Σ-invariant, projectively flat
unitary connection on a Real Hermitian vector bundle (E, τ) of topo-
logical type (r, d, �w), then it follows from Theorem 4.5 that taking the
holonomy of A defines a representation � ∈ Rc(r, d, �w). We have thus
proved the following result (the Narasimhan-Seshadri correspondence
for Real and Quaternionic vector bundles of fixed topological type).

Theorem 4.8. For any c = ±1 and any topological type (r, d, �w)
of Real or Quaternionic vector bundle, the holonomy map sets up a
homeomorphism

Hol :Mc(r, d, �w)
	
−→ Rc(r, d, �w)

where Mc(r, d, �w) is the moduli space defined in (4.9) and Rc(r, d, �w) is
the representation space introduced in Definition 4.7.

Using the results of [BHH10] and [Sch12], we then have the following
corollary.

Corollary 4.9. Assume that c = +1 and Mσ has n > 0 connected
components, then the connected components of the representation space
Rc(r, d) introduced in Definition 2.4 are the 2n−1 subset R(r, d, �w),
where w = (s1, . . . , sn) ∈ (Z/2Z)n � O(1)n satisfies s1 + . . . + sn =
dmod 2.

Corollary 4.9 fits well in the theory of representation varieties of funda-
mental groups, where, following the path set by Goldman in [Gol88],
connected components of representation spaces are often distinguished
by the topological invariants of the bundles associated to those repre-
sentations, notably the characteristic classes of such bundles. We also
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note that, although the connected components of Rc(r, d) are known for
all c, r and d, the same is not true in general for the Σ-invariant part
R(r, d)Σ of the usual representation space R(r, d), whose definition was
recalled in Remark 2.5, unless r and d are coprime or one restricts to
the locus consisting of irreducible representations, for which we can use
the vector bundle version of the statement, proved in [Sch12].
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