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Abstract

We obtain several results about stability of the Bergman ker-
nel on a tower of coverings on complex manifolds. An effective
estimate for stability of the Bergman kernel is given for a tower of
coverings on a compact Riemann surface of genus ≥ 2. Stability of
the Bergman kernel is established for towers of coverings on all hy-
perbolic Riemann surfaces and on complete Kähler manifolds that
satisfy certain potential conditions. As a consequence, stability of
the Bergman kernel is established for any tower of coverings of
Riemann surfaces.

1. Introduction

The classical Bergman kernel – the reproducing kernel for L2-holomor-
phic functions – has long played an important role in complex analysis.
Its generalization to complex manifolds – in this case, the kernel for the
projection onto the space of harmonic (p, q)-forms with L2-coefficients –
is encoded with information on the algebraic and geometric structures
of the underlying manifolds. How the Bergman kernel behaves as the
underlying structures change is a problem that has been extensively
studied in a number of settings. Convergence of the Bergman kernel
associated to tensor powers of a positive holomorphic line bundle over a
compact complex manifold as the power goes to infinity was established
in the celebrated work of Yau [54], Tian [51], Zelditch [58], and Catlin
[10]. (See [3] and references therein for recent developments.)
In this paper, we study stability of the Bergman kernel on a quotient

M̃/Γ of a complex manifold M̃ by a free and properly discontinuous

group Γ of automorphisms of M̃ as Γ shrinks to the identity. We first

recall the setup in Riemannian geometry. Let M̃ be a Riemannian
manifold and Γ a free and properly discontinuous group of isometries

of M̃ . A tower of subgroups of Γ is a nested sequence of subgroups
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Γ = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γj ⊃ · · · ⊃ ∩Γj = {id} such that Γj is a normal
subgroup of Γ of finite index [Γ : Γj] for each j (see [17, p. 135]). The

smooth manifolds Mj = M̃/Γj are equipped with the push-downs of

the Riemannian metric on M̃ . The family {Mj} is called a tower of

coverings on the Riemannian manifold M = M̃/Γ. We will refer to

M̃ as the top manifold, Mj the covering manifolds, and M = M̃/Γ
the base manifold of the tower of coverings. (In applications, the top
manifold is usually assumed to be the universal covering of the base
manifold. However, we make no such assumption in this paper.) It is
well known that every Riemannian manifold whose fundamental group
is isomorphic to a finitely generated subgroup of SL(n,C) admits a
tower of coverings with the top manifold being the universal covering
(cf. [7, Theorem B and Proposition 2.3]). This is the case, for instance,
for an arithmetic quotient of a bounded symmetric domain. Limiting
behavior of the spectrum of the Laplacian on Mj as j → ∞ was studied
for a tower of coverings on symmetric spaces of non-compact type by
DeGeorge–Wallach [17].
In his work [29, 30], Kazhdan employed the Bergman kernel to study

arithmetic varieties and initiated the study of the Bergman kernel on
a tower of coverings on a complex manifold. It follows from his work

that for a tower of coverings {M̃/Γj} on a compact complex manifold,
the Bergman kernel on the universal covering M̃ is nontrivial provided
lim supj→∞ hn,0(Mj)/[Γ : Γj] > 0, where hn,0(Mj) is the dimension of
the space of global sections of the canonical line bundle on Mj (see [30,
Theorem 1]). Kazhdan suggested that for a tower of coverings on a
Riemann surface, the pull-back of the Bergman metric on Mj converges

to that of the upper half plane M̃ = H (see [35, p. 12]). In [54, p. 139],
Yau stated, as a result attributed to Kazhdan, that this also holds for
a tower of coverings on any compact complex manifold. (See Section 4
below for a discussion on the link between Kazhdan’s inequality and
convergence of the Bergman kernels.)
For brevity, a tower of coverings {Mj} on a complex manifold is said

to be Bergman stable if the pull-back of the Bergman kernel on Mj

converges locally uniformly to that of the top manifold M̃ as j → ∞.
In 1993, Rhodes showed that a tower of covering on a compact Rie-
mann surface of genus g ≥ 2 is indeed Bergman stable [43]. Donnelly
[21] proved analogous results for a tower of coverings on a Riemann-

ian manifold M under the conditions that M̃ has bounded sectional
curvature and the smallest nonzero eigenvalue of the Laplacian on Mj

is uniformly bounded from below by a positive constant. His method
was based on Cheeger–Gromov–Taylor’s estimates of the heat kernel
[14] and Atiyah’s L2-index theorem [2]. Building on Donnelly’s work,
Yeung showed in [56, 57] that the canonical line bundle of Mj is very
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ample when the injectivity radius of Mj is greater than a certain effec-

tive constant depending on the top manifold M̃ and the base manifold
M . More recently, using Donnelly–Fefferman’s L2-estimate for the ∂̄-
operator, Ohsawa [39] established Bergman stability for a tower of cov-
erings on a complex manifold under certain assumptions on successive

approximations of ∂-closed (n, 0)-forms on Mj by those on M̃ . He fur-
ther gave an example of a tower of non-normal coverings on a compact
Riemann surface that is not Bergman stable ([40]).
In this paper, we study stability of the Bergman kernel on a tower of

coverings of complex manifolds, with an emphasis on the case when the
base manifold is non-compact. For a tower of coverings on a compact
Riemann surface, we establish the following effective version of Rhodes’
theorem:

Theorem 1.1. Let Mj = D/Γj be a tower of coverings on a compact

Riemann surface of genus g ≥ 2. Let τj be the injectivity radius of

Mj and let | · |hyp be the pointwise length with respect to the hyperbolic

metric. Then the Bergman kernel KMj
of Mj satisfies

(1.1) |4π|KMj
|hyp − 1| ≤ 12 · 32/3

π
(g − 1)1/3e−τj/3,

when τj ≥ log 3. Furthermore, a similar estimate also holds for the

Bergman metric.

Our proof of the above theorem is elementary; it uses only the Gauss–
Bonnet formula and the reproducing property of the Bergman kernel.
For a tower of coverings on a compact complex manifold, we exhibit a
connection between the Bergman stability and the theory of L2-Betti
numbers, an area studied extensively in the literatures (cf. [11, 12, 33,
55]; see Section 4 below).
The main focus in this paper, however, is on towers of coverings on

noncompact complex manifolds. Recall that a Riemann surfaceM is hy-
perbolic if it carries a negative nonconstant subharmonic function. This
is equivalent to existence of the Green function on M . (We refer the
reader to [24, Chapter IV] for relevant background material.) For non-
compact Riemann surfaces, as an application of the classical Myrberg’s
formula [37] and an idea from [25], we have:

Theorem 1.2. Any tower of coverings on a hyperbolic Riemann sur-

face is Bergman stable.

Our main result on higher dimensional non-compact complex mani-
folds can be stated as follows:

Theorem 1.3. Let M and M̃ be complete Kähler manifolds with

associated Kähler forms ω and ω̃ respectively. Let Mj = M̃/Γj be a

tower of coverings on M . Then the tower is Bergman stable provided

the following two conditions are satisfied:
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1) There exist a compact set K ⊂ M , a C2-smooth plurisubharmonic

function ψ on M \ K, and a constant C > 0 such that C−1ω ≤
∂∂̄ψ ≤ Cω and ∂∂̄ψ ≥ C−1∂ψ ∧ ∂̄ψ on M \K.

2) There exist a C2-smooth plurisubharmonic function ψ̃ on M̃ and

a constant C̃ > 0 such that C̃−1ω̃ ≤ ∂∂̄ψ̃ ≤ C̃ω̃ and ∂∂̄ψ̃ ≥
C̃−1∂ψ̃ ∧ ∂̄ψ̃ on M̃ .

Recall that M is a hyperconvex complex manifold if it admits a C2

strongly plurisubharmonic exhaustion function. It is easy to see that
the conditions in the above theorem is satisfied if the base manifold M
is hyperconvex (see Corollary 6.6 below). As a consequence of Theo-
rem 1.2 and Theorem 1.3, we establish the following result, confirming
a suggestion by Kazhdan (see [35, p. 12] and [54, p. 139]):

Theorem 1.4. Any tower of coverings of Riemann surfaces with a

simply-connected top manifold is Bergman stable.

Our proof of Theorem 1.3 uses Donnelly–Fefferman type L2-estimates
[22] for the ∂-Laplacian. It also uses spectral theory: the conditions on

M̃ and M ensure that the spectrum and essential spectrum of the re-

spective complex Laplacian on (n, 1)-forms on M̃ and M are positive.
However, here instead of estimating the heat kernel as in [21], we study
the spectral (Bergman) kernel. This enables us to streamline the argu-
ments and replace curvature conditions by potential theoretic conditions

on manifolds M and M̃ .
This paper is organized as follows. In Section 2, we review relevant

definitions and properties for a tower of coverings and the Bergman
kernel. Theorem 1.1 is proved in Section 3. In Section 4, we exhibit
a connection among Kazhdan’s inequality, the L2-Betti numbers, and
stability of the Bergman kernel on towers of coverings on compact com-
plex manifolds. Theorem 1.2 is proved in Section 5 and Theorem 1.3 in
Section 6. Applications of Theorem 1.3 to quotients of the polydisc and
the ball are given in Section 7.
Throughout this paper, we will use C to denote a positive constant

which may be different in various appearances. Also, the notation f �
g means f ≥ Cg where C is a constant, its independence of certain
parameters being clear from the context; and A ≈ B means A � B and
B � A.
Acknowledgments. The authors thank Professor David Kazhdan for
kindly explaining his deep work on the subject in a communication. S.F.
was supported by NSF grants DMS-1101678 and DMS-1500952, and
a U.S.–China Collaboration in Mathematical Research supplementary
to NSF grant DMS-0500909. B.C. was supported by Fok Ying Tung
Education Foundation grant No. 111004, the National Natural Science
Foundation of China grant No. 11031008, and Fudan University Grant
No. JIH1411001.
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2. Preliminaries

We briefly recall the definition of the Bergman kernel and metric
on a complex manifold (see [31]). Let X be a complex manifold and
A2

(n,0)(X) space of square integrable holomorphic (n, 0)-forms f

equipped with the inner product

(2.1) 〈f, g〉 = in
2

2−n

∫
X
f ∧ g.

The Bergman kernel is an 2n-form on X ×X given by

(2.2) KX(z, w) =

∞∑
j=1

bj(z) ∧ bj(w),

where {bj} is an orthonormal basis for A2
(n,0)(X). Write Kz

X(·) =

KX(z, ·). Then the Bergman kernel has the following reproducing prop-
erty:

(2.3) f(z) = (−1)n2

∫
X
Kz

X ∧ f, ∀f ∈ A2
(n,0)(X).

The Bergman kernel on diagonal KX(z) = KX(z, z) is a biholomorphi-
cally invariant (n, n)-form on X with the extremal property:

(2.4) KX(z) = max{f(z) ∧ f(z) | f ∈ A2
(n,0)(X), ‖f‖ = 1},

where ‖·‖ denotes the L2-norm defined by (2.1). Furthermore, it satisfies
the following decreasing property: KX2

(z) ≤ KX1
(z) if X1 and X2 are

subdomains of X with X1 ⊂ X2.
Given a local holomorphic coordinate chart (z1, . . . , zn), write ωn =

∧n
j=1(

i
2dzj ∧ dz̄j) and

KX(z) = K∗(z)ωn.

When K∗(z) > 0, the Bergman (pseudo-)metric is given by

ds2X =

n∑
j,k=1

∂2 logK∗(z)

∂zj∂z̄k
dzjdz̄k.

The Bergman metric is a biholomorphically invariant metric and it can
be regarded as the pull-back of the Fubini–Study metric of (possibly
infinitely dimensional) complex projective spaces ([31]).
We review elements of the L2-cohomology theory for the ∂̄-operator.

Let (M,ω) be a complex hermitian manifold of complex dimension n.
Let Cp,q

0 (M) be the space of C∞ (p, q)-forms with compact supports on
M and let Lp,q

(2)(M) be the completion of Cp,q
0 (M) with respect to the

following L2-norm:

‖u‖ =
(∫

M
|u|2dV

)1/2

,
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where | · | is the point-wise norm corresponding to ω and dV the volume

form. The weak maximal extension ∂̄ : Lp,q
(2)(M) → Lp,q+1

(2) (M) is a

densely defined closed operator. Let ∂̄∗ be the adjoint of ∂̄. Then the
∂̄-Laplacian is � = ∂̄∂̄∗+ ∂̄∗∂̄ and the space of L2-harmonic (p, q)-forms
is given by

Hp,q
(2)(M) =

{
u ∈ Lp,q

(2)(M) : �u = 0
}
=

{
u ∈ Lp,q

(2)(M) : ∂̄u = ∂̄∗u = 0
}
.

We now review relevant basic facts on covering spaces. Let (M̃ , ω̃) be
a Riemannian manifold. Let Γ be a subgroup of the isometries that acts

freely and properly discontinuously on M̃ . (Recall that Γ acts freely if
the identify map is the only element in Γ that has a fixed point and
properly discontinuously if for any compact set K, there is only finitely

many γ ∈ Γ such that K ∩ γK �= ∅.) Let M = M̃/Γ be the quotient

manifold and π : M̃ → M the covering map. We equip M with the

push-down metric ω from M̃ so that π∗(ω) = ω̃. Denote by d
M̃
and dM

the distances on M̃ and M associated with ω̃ and ω respectively. For

x ∈ M̃ , let

(2.5) D(x) = {y ∈ M̃ | d
M̃
(y, x) < d

M̃
(y, γx),∀γ ∈ Γ \ {1}}

be the Dirichlet fundamental domain with center at x. It is easy to see
that no pair of points in D(x) are equivalent under Γ and every point

in M̃ has an equivalent point in D(x) or its boundary. Let

(2.6) τ(x) =
1

2
inf

{
d
M̃
(x, γx) : γ ∈ Γ \ {1}} .

Evidently, the geodesic ball B(x, τ(x)) is contained in D(x). Moreover,

when M̃ has no conjugate points, (i.e., any two points are joint uniquely
– up to reparametrization – by a geodesic), τ(x) is the injectivity radius

of π(x) in M . In particular, this is the case when M̃ = D, the unit disk.
Let {Γj} be a tower of subgroups of Γ. Denote by τj(x) the quantity

defined by (2.6) with Γ replaced by Γj. Since τj(·) is invariant under
Γj, it can be pushed down onto Mj . The following lemma is well known
(compare, e.g., [17, Theorem 2.1] and [20, Lemma 2.1]):

Lemma 2.1. τj(x) is an increasing sequence of positive continuous

functions such that τj(x) → ∞ locally uniformly on M̃ as j → ∞.

Proof. For the reader’s convenience, we include a proof here. Since
τj(x) is the infinum of a sequence of continuous functions, it is itself
upper semi-continuous. To prove that τj(x) is continuous, it suffices to

show that Aα = {x ∈ M̃ | τj(x) > α} is open for any α ≥ 0. Let
x0 ∈ Aα. Choose ε > 0 sufficiently small so that τj(x0) > α + ε. Then
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for any x ∈ B(x0, ε/2) and γ ∈ Γj,

d
M̃
(x, γx) ≥ d

M̃
(x0, γx0)− d

M̃
(x, x0)− d

M̃
(γx, γx0)

= d
M̃
(x0, γx0)− 2d

M̃
(x, x0) ≥ 2α+ ε.

Thus B(x0, ε/2) ⊂ Aα. Therefore, Aα is open and hence τj(x) is
continuous. It follows from the properly discontinuous property of Γ

that τj(x) > 0 and τj(x) → ∞ for any x ∈ M̃ . Since Γj ⊃ Γj+1,
τj(x) ≤ τj+1(x). It then follows from Dini’s theorem that τj(x) → ∞
locally uniformly on M̃ . q.e.d.

Hereafter, we assume that (M̃ , ω̃) is a complex Hermitian manifold

and Γ ⊂ Aut(M̃), the automorphism group of M̃ . Let Mj = M̃/Γj and

p̃j : M̃ → Mj be the natural projection. Throughout the paper, when
it is contextually clear, for the economy of notations, we will identify
K

M̃
with its push-down to M and likewise KMj

with its pull-back on

M̃ . The following proposition establishes the upper semi-continuity of
the Bergman kernel KMj

on a tower of coverings on complex manifolds
(compare [21, Proposition 1.2]).

Proposition 2.2. For each z ∈ M̃ , lim supj→∞p̃∗j(KMj
)(z)≤K

M̃
(z).

Proof. Let Dj(z) ⊂ M̃ be the Dirichlet fundamental domain of Mj

as defined in (2.5) by replacing Γ by Γj . Then p̃j maps Dj(z) biholo-
morphically onto its image p̃j(Dj(z)). It follows from the decreasing
property of the Bergman kernel that

KMj
(p̃j(z)) ≤ Kp̃j(Dj(z))(p̃j(z)).

Since B(z, τj(z)) ⊂ Dj(z), we have

(2.7) p̃∗j (KMj
)(z) ≤ p̃∗j(Kp̃j(Dj(z)))(z) = KDj(z)(z) ≤ KB(z,τj(z))(z).

We then conclude the proof by applying Lemma 2.1 and Ramadanov’s
theorem ([42]). q.e.d.

As an application of the above proposition, we provide a proof of the
following version of Kazhdan’s inequality (see [30, Theorem 1 and its
proof]; also [28, pp. 13 and pp. 153]):

Proposition 2.3. When M is compact,

(2.8) lim sup
j→∞

hn,0(Mj)

[Γ : Γj]
≤

∫
M

K
M̃
.

Proof. Since M is compact, there exists a compact set A ⊂ M̃ such
that p̃(A) = M , where p̃ = p̃1 is as before the natural projection from

M̃ onto M =M1. Let ε be the minimum of τ(x) on A. We cover A by
finitely many geodesic balls {B(zk, rk/2)}mk=1 with zk ∈ A and rk < ε
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such that each B(zk, rk) is contained in a normal neighborhood in M̃ .
It follows from (2.7) that for z ∈ B(zk, rk/2),

p̃∗j(KMj
)(z) ≤ KB(z,τ(z))(z) ≤ KB(zk ,rk/2)(z).

It then follows that KMj
is uniformly bounded from above on M . (Here

we identify KMj
with its push-down onto M .) Inequality (2.8) is then

obtained by integrating both sides of the inequality in Proposition 2.2
over M , the dominated convergence theorem, and the fact that∫

M
KMj

=
1

[Γ : Γj]

∫
Mj

KMj
=

hn,0(Mj)

[Γ : Γj]
. q.e.d.

The following proposition establishes the link between the conver-
gence of the Bergman kernel and the Bergman metric (compare [42]).

Proposition 2.4. Suppose the Bergman kernel K
M̃
(z, z) is positive

and the tower of coverings {Mj} is Bergman stable. Then the pull-back

of Bergman metric of Mj converges locally uniformly to the Bergman

metric on M̃ .

Proof. Let z0 ∈ M̃ . Recall that Bj = B(z0, τj(z0)) ⊂ Dj(z0), the
Dirichlet fundamental domain ofMj with center at z0. Denote by ‖·‖Bj

the L2-norm as defined by (2.1) over Bj . Let w ∈ Bj. It follows from
the reproducing property of the Bergman kernel that∥∥p̃∗j(KMj

)(·, w) −KBj
(·, w)∥∥2

Bj

=
∥∥p̃∗j(KMj

)(·, w)∥∥2

Bj
− 2Re〈p̃∗j (KMj

)(·, w),KBj
(·, w)〉 + ∥∥KBj

(·, w)∥∥2
Bj

=
∥∥KMj

(·, w)∥∥2

p̃j(Bj)
− 2p̃∗j(KMj

)(w,w) +KBj
(w,w)

≤ ∥∥KMj
(·, w)∥∥2

Mj
− 2p̃∗j (KMj

)(w,w) +KBj
(w,w)

= KBj
(w,w) − p̃∗j(KMj

)(w,w).

Similarly,

‖K
M̃
(·, w) −KBj

(·, w)‖2Bj
≤ KBj

(w,w) −K
M̃
(w,w).

Therefore,

(2.9) ‖K
M̃
(·, w) − p̃∗j(KMj

)(·, w)‖2Bj
≤

2
(
2KBj

(w,w) −K
M̃
(w,w) − p̃∗j (KMj

)(w,w)
)
.

It follows from Ramadanov’s theorem [42] and the Bergman stability
assumption that the right hand side above converges locally uniformly
to zero for w near z0. Since the Bergman metric is given locally by

∂∂̄ logK∗ =
∂∂̄K∗

K∗
− ∂K∗ ∧ ∂̄K∗

(K∗)2
,

we then conclude the proof by applying the Cauchy integral formula
and the Cauchy–Schwarz inequality. q.e.d.
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3. Effective estimates

Recall that the hyperbolic metric on the unit disk D is given by

ds2hyp =
4 |dz|2

(1− |z|2)2 ,

and the hyperbolic distance between z and 0 is

disthyp(0, z) = log
1 + |z|
1− |z| .

It follows that the Euclidean and hyperbolic balls Beucl(0, r) and
Bhyp(0, τ) are identical provided

r =
eτ − 1

eτ + 1
.

Furthermore,

KBhyp(0,τ)(0) =
1

π

(eτ + 1)2

(eτ − 1)2
dz ∧ dz̄,

where KBhyp(0,τ) denotes the Bergman kernel form on Bhyp(0, τ). Let
p : D → M be a covering map on a Riemann surface M . Then the
hyperbolic metric ds2hyp,M satisfies

p∗(ds2hyp,M ) = ds2hyp.

Thus for a form K on M , we have |p∗(K)(z)|hyp = |K(p(z))|hyp,M ,
where | · |hyp denotes the pointwise norm with respect to the hyperbolic
metric. (We will drop subscript M when doing so causes no confusion.)
We now prove Theorem 1.1. Let p̃j : D → Mj = D/Γj and pj : Mj →

M =Mj/(Γ/Γj) be the natural projections. Let τj(w) be the injectivity
radius at w ∈ Mj and let τj denote the injectivity radius of Mj . For
any z ∈ D, we have

|KMj
(p̃j(z))|hyp = |p̃∗j (KMj

)(z)|hyp ≤ |KBhyp(z,τj(z))(z)|hyp
≤ |KBhyp(0,τj)(0)|hyp.

Hence

(3.1) |KMj
(p̃j(z))|hyp − 1

4π
≤ 1

π

eτj

(eτj − 1)2
.

It follows from the Gauss–Bonnet theorem that

4π(gj − 1) = volhyp(Mj).

Since volhyp(Mj) = [Γ : Γj]volhyp(M), we obtain

gj
[Γ : Γj]

= g − 1 +
1

[Γ : Γj]
.

Note that

gj =

∫
Mj

|KMj
|hypdVhyp,
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and |KMj
|hyp is invariant under the deck transformations of pj : Mj →

M . Thus

(3.2)

∫
M

|KMj
|hypdVhyp =

∫
M

1

4π
dVhyp +

1

[Γ : Γj]
≥

∫
M

1

4π
dVhyp.

Here we identify KMj
with its push-down to M .

It suffices to prove the theorem at z = 0; the general case is reduced to
this case by applying a Möbius transformation. Let rj = (eτj −1)/(eτj +
1). Then the Euclidean disk Beucl(0, rj) is identical to the hyperbolic
disk Bhyp(0, τj) and it is contained in the Dirichlet fundamental domain
Dj(0) of Mj. Write p̃∗j(KMj

)(z) = K∗
Mj
(z)dz ∧ dz̄ on Bj = Beucl(0, rj).

Let ε be a sufficiently small positive constant to be chosen. For w ∈ Bj ,
let f be a holomorphic 1-form on Mj with unit L

2-norm (as defined by

(2.1)) such that KMj
(p̃j(w)) = fj(p̃j(w))∧ fj(p̃j(w)). Write p̃

∗
j(f)(z) =

f∗(z)dz. Then∫
Bj

|f∗|2dVeucl =
1

2

∣∣∣∣∣
∫
Bj

p̃∗j(f) ∧ p̃∗j(f)

∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣
∫
Mj

f ∧ f̄

∣∣∣∣∣ = 1.

Since

(3.3) (f∗(z))2 =
r2j
π

∫
|ζ|<rj

(f∗(ζ))2

(r2j − zζ̄)2
dVeucl, z ∈ Bj ,

it follows that

|(f∗(z))2 − (f∗(z′))2| ≤ 48

πr3j
|z − z′|,

for all z, z′ ∈ 1
2Bj . Now suppose w ∈ εBj where ε is a sufficiently small

number to be chosen. Then

|p̃∗j (KMj
)(w)|hyp = (1− |w|2)2

4
|f∗(w)|2 ≤ 1

4

(
|f∗(0)|2 + 48ε

πr2j

)
(3.4)

≤ |KMj
(0)|hyp + 12ε

πr2j
.

From (3.2) and then (3.1), we have∫
p̃1(εBj)

(
1

4π
− |KMj

|hyp
)
dVhyp ≤

∫
M\p̃1(εBj)

(
|KMj

|hyp − 1

4π

)
dVhyp

≤ 4(g − 1)eτj

(eτj − 1)2
.

Combining this with (3.4), we obtain

1

4π
− |KMj

|hyp(0)− 12ε

πr2j
≤ 4(g − 1)eτj

(eτj − 1)2
1

volhyp(εBj)
.
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Since volhyp(εBj) = 4π(εrj)
2/(1− (εrj)

2) ≥ 4πε2r2j ,

1

4π
− |KMj

|hyp(0) ≤ 12ε

πr2j
+

(g − 1)eτj

π(eτj − 1)2
1

ε2r2j
.

Choosing ε = ((g − 1)eτj/6(eτj − 1)2)1/3, we then have

1

4π
− |KMj

|hyp(0) ≤ 18

πr2j

(
(g − 1)eτj

6(eτj − 1)2

)1/3

.

Note that the right hand side above is greater than that in (3.1). Since
τj ≥ log 3, we have

eτj − 1 ≥ 2, rj =
eτj − 1

eτj + 1
≥ 1

2
.

Hence ∣∣∣∣|KMj
(0)|hyp − 1

4π

∣∣∣∣ ≤ C

π
(g − 1)1/3e−τj/3,

where

C = 18 · 4 · (6 · 4)−1/3 = 12 · 32/3.
This concludes the proof of Theorem 1.1 for the Bergman kernel.
We now show how to obtain effective estimates for the Bergman met-

ric, without keeping track of the numerical constants. Let K∗
Mj
(z, w)

denote the function on D representing the pull-back of the Bergman
kernel form on Mj. Let K

∗
D
and K∗

Bj
be the Bergman kernel functions

of D and Bj = Beucl(0, rj) respectively. Assume that τj ≥ log 3. Then
rj ≥ 1/2. From the first part of the theorem, we know that for w ∈ 1

2D,

(3.5) |K∗
Mj
(w,w) −K∗

D(w,w)| ≤ C(g − 1)1/3e−τj/3.

Furthermore, a simple calculation yields that

(3.6) |K∗
Bj
(w,w) −K∗

D(w,w)| ≤ Ce−τj .

Following the same lines of argument as in the proof of (2.9), we have

(3.7)

∫
Bj

|K∗
Mj
(z, w) −K∗

D(z, w)|2dVeucl(z) ≤

2
(
2K∗

Bj
(w,w) −K∗

D(w,w) −K∗
Mj
(w,w)

)
.

Combining (3.5)–(3.7), we then obtain∫
1
2
D

|K∗
Mj
(z, w) −K∗

D(z, w)|2dVeucl(z) ≤ C(g − 1)1/3e−τj/3.

Using the reproducing property of the Bergman kernel on 1
2D as in (3.3)

and applying the Cauchy–Schwarz inequality, we have for any integers
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α, β ≥ 0,∣∣∣∣∣
(
∂α+βK∗

Mj

∂zα∂z̄β
− ∂α+βK∗

D

∂zα∂z̄β

)
(0, 0)

∣∣∣∣∣ ≤ C(g − 1)1/3e−τj/3.

The above estimates then enable us to obtain an effective estimate for
the Bergman metric. We leave the detail to the interested reader.

4. Compact complex manifolds

In this section, we study the Bergman stability for a tower of coverings
on a compact complex manifold. In particular, we exhibit a connection
between stability of the Bergman kernel and the theory of L2-Betti
numbers, a subject which has been studied extensively in literature (cf.
[11, 12, 33, 55]). The following proposition is implicit in [30]1:

Proposition 4.1. A tower of coverings {Mj} on a compact complex

manifold M is Bergman stable if and only if Kazhdan’s inequality (2.8)
becomes an equality:

(4.1) lim
j→∞

hn,0(Mj)

[Γ : Γj ]
=

∫
M

K
M̃
.

This proposition is a consequence of Proposition 2.2. We present a
proof below for the reader’s convenience. We will need the following
lemma:

Lemma 4.2. Let {Mj} be a tower of coverings on a complex mani-

fold. Then the family {p̃∗j (KMj
)} of the pull-backs of the Bergman ker-

nels of the Mj’s is locally equicontinuous on M̃ .

Proof. Let z0 ∈ M̃ . Let U ⊂⊂ Bj = B(z0, τj(z0)) be a neighbor-
hood of z0 contained in a local coordinate chart. Let K∗

Mj
(z, w) be

the Bergman kernel function, representing the pull-back to M̃ of the
Bergman kernel form KMj

(z, w) on Mj . Since∥∥p̃∗j(KMj
)(·, w)∥∥2

U
=

∥∥KMj
(·, w)∥∥2

p̃j(U)
≤ ∥∥KMj

(·, w)∥∥2
Mj

= p̃∗j(KMj
)(w,w) ≤ KBj

(w,w),

and KBj
(w,w) converges uniformly on U to K

M̃
(w,w), the above ex-

pressions are uniformly bounded on U . As a consequence,∫
U

∫
U
|K∗

Mj
(z, w)|2 dV (z) dV (w) ≤ C < ∞.

The equicontinuity of p̃∗j(KMj
) near z0 then follows from the Cauchy

estimate. q.e.d.

1The authors thank Professor David Kazhdan for kindly sharing with us his proof
of this proposition.
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We now prove Proposition 4.1. The necessity is trivial, following from
the uniform convergence theorem as in the proof of Proposition 2.3. To
prove the sufficiency, we note that from Proposition 2.2 and (4.1), we
have

lim sup
j→∞

p̃∗j(KMj
)(z) = K

M̃
(z).

Thus it suffices to show lim infj→∞ p̃∗j(KMj
)(z) ≥ K

M̃
(z). Proving by

contradiction, we assume that there exist z0 ∈ M̃ and ε > 0 such

K∗
Mjk

(z0) < K∗
M̃
(z0)− ε,

for a subsequence jk → ∞. As before, K∗ denotes the function repre-
senting the (pull-back) of the Bergman kernel form on a local coordinate
chart U near z0. By Lemma 4.2, after possible shrinking of U , we have

p̃∗jk(KMj
)(z) < K

M̃
(z)− 1

2
ε,

for z ∈ U . It then follows that

lim sup
jk→∞

hn,0(Mjk)

[Γ : Γjk ]
= lim sup

jk→∞

∫
M

KMjk

≤ lim sup
jk→∞

∫
M\U

KMjk
+

∫
U
K

M̃
− 1

2
εvol(U)

≤
∫
M

K
M̃

− 1

2
εvol(U),

contradicting (4.1). We thus conclude the proof of Proposition 4.1.
We now recall relevant facts about the L2-Betti numbers. (We re-

fer the reader to [2], [11, 12, 13], and [28, Section 8] for extensive

discussions on related topics.) Let M̃ be a universal covering and let

Mj = M̃/Γj be a tower of coverings on a complete Riemannian manifold

M . Let Hs
(2)(M̃) be the space of L2-harmonic s-forms on M̃ correspond-

ing to the d-Laplacian Δ. Let Ks
M̃
be the Schwartz kernel of Hs

(2)(M̃).

The L2-Betti number of M is then given by

bs(2)(M) :=

∫
M

|Ks
M̃
|dV.

WhenM has bounded geometry and finite volume, Cheeger and Gromov
showed that

(4.2) lim
j→∞

bs(Mj)

[Γ : Γj]
= bs(2)(M),

where bs(Mj) is the ordinary s-th Betti number ofMj ([11, 12]). Similar
result was obtained by Yeung [55] on compact Kähler manifolds with
negative sectional curvatures. An analogous result was established for
a finite connected CW -complex by Lück [33].
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When M is a compact Kähler manifold, the L2-Hodge number
hp,q(2)(M) of M is similarly given by

hp,q(2)(M) :=

∫
M

|Kp,q

M̃
|dV,

whereKp,q

M̃
is the Schwartz kernel forHp,q

(2)(M̃), the space of L2-harmonic

(p, q)-forms corresponding to the ∂̄-Laplacian �.

Proposition 4.3. A tower of coverings {Mj} on an n-dimensional

compact Kähler manifold is Bergman stable if (4.2) holds for s = n.

Proof. The Hodge–Kodaira decomposition

Hs
(2)(M̃ ) =

⊕
p+q=s

Hp,q
(2)(M̃ )

implies that

(4.3) bs(2)(M) =
∑

p+q=s

hp,q(2)(M).

By Kazhdan’s inequality,

(4.4) lim sup
j→∞

hp,q(Mj)

[Γ : Γj ]
≤ hp,q(2)(M)

([30, Theorem 1 and its proof], [28, pp. 153]; see also Proposition 2.3
above), where hp,q(Mj) denotes the ordinary Hodge numbers of Mj .
Since bs(Mj) =

∑
p+q=s h

p,q(Mj), it follows from (4.2)–(4.4) that

lim
j→∞

hp,q(Mj)

[Γ : Γj]
= hp,q(2)(M).

In particular, we have (4.1) and thus the Bergman stability by Propo-
sition 4.1. q.e.d.

5. Hyperbolic Riemann surfaces

Let Γ be a Fuchsian group, i.e., a properly discontinuous subgroup of
SL(2,R). Recall that Γ is of convergence type if

∑
γ∈Γ(1− |γ(0)|) < ∞.

We refer the reader to [52, Chapter XI] for a treatment of the subject.
Let p̃ be the natural projection from D onto D/Γ (we will also use p̃
to denote the natural projection from D × D onto (D/Γ) × (D/Γ).) A
classical result of Myrberg states that Γ is of convergence type if and
only if D/Γ is a hyperbolic Riemann surface, and in this case,

(5.1) gD/Γ(p̃(z), p̃(w)) =
∑
γ∈Γ

gD(z, γ(w)) = −
∑
γ∈Γ

log

∣∣∣∣∣ z − γ(w)

1− γ(w)z

∣∣∣∣∣ ,
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where gD/Γ and gD are Green’s functions of D/Γ and D respectively (see
[52, Theorem XI. 13]). Note that since gD(z, 0) = gD(γ(z), γ(0)) for any
γ ∈ Γ,

1−|z|2 = (1− |γ(0)|2)(1− |γ(z)|2)
|1− γ(0)γ(z)|2 ≤ 4(1 − |γ(0)|)(1 − |γ(z))|

max{(1− |γ(z)|)2, (1 − |γ(0)|)2} .

Therefore,

(1− |z|2)(1− |γ(0)|)
4

≤ 1− |γ(z)| ≤ 4(1− |γ(0)|)
1− |z|2 ,

from which it follows that when Γ is of convergent type,
∑

γ∈Γ(1 −
|γ(z)|) < ∞ for all z ∈ D. Using

1−
∣∣∣∣∣ z − γ(w)

1− γ(w)z

∣∣∣∣∣
2

=
(1− |z|2)(1 − |γ(w)|2)

|1− γ(w)z|2 ≤ 2
1 + |z|
1− |z| (1− |γ(w)|),

and the simple inequality − log x ≤ 2(1 − x) when x ≥ 1/2, we then
have

−1
2
log

∣∣∣∣∣ z − γ(w)

1− γ(w)z

∣∣∣∣∣
2

≤ 1−
∣∣∣∣∣ z − γ(w)

1− γ(w)z

∣∣∣∣∣
2

≤ 2
1 + |z|
1− |z| (1− |γ(w)|),

provided 1 − |γ(w)| ≤ (1 − |z|)/4(1 + |z|). Therefore, the series on the
right hand side of (5.1) converges local uniformly in z and likewise in w.
We now establish a transformation formula of Bergman kernel for a

normal covering map between hyperbolic Riemann surfaces. A related
formula for Reinhardt domains in C

n was obtained in [25].

Proposition 5.1. Let M and M̃ be hyperbolic Riemann surfaces.

Let p̃ : M̃ → M be a normal covering map. Then

(5.2)
(
p̃∗KM

)
(z, w) =

∑
γ∈Γ

(
γ∗Kz

M̃

)
(w).

Proof. We first prove the case when M̃ = D andM = D/Γ where Γ is
a Fuchsian group of convergence type. WriteKD/Γ(z, w) = K∗

D/Γ(z, w)×
( i2dz ∧ dw̄) where z and w are holomorphic coordinates induced by the
covering map. Then (5.2) becomes

(5.3) K∗
D/Γ(p̃(z), p̃(w))p̃(z)p̃

′(w) =
∑
γ∈Γ

K∗
D(z, γ(w))γ

′(w).

The above formula then follows from differentiating both sides of (5.1)
with respect to z and w̄ and by applying Schiffer’s formula [45].

We now prove the general case. Let M̃ = D/Γ̃ and M = D/Γ with

Γ̃ a normal subgroup of Γ. Applying (5.3) to both D/Γ̃ and D/Γ and
then combining the results, we then obtain formula (5.2). q.e.d.
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We are now in position to prove Theorem 1.2. Let Mj = D/Γj be
a tower of coverings on a hyperbolic Riemann surface M = D/Γ and

M̃ = D/Γ̃ be the top manifold. Then Γj is a decreasing sequence of

normal subgroups such that ∩Γj = Γ̃. Let Γ̂j = Γj/Γ̃. Let p̃j : M̃ → Mj

be the natural projection. Applying (5.3) to p̃j, we have

(5.4) K∗
Mj
(p̃(z), p̃(w))p̃j(z)p̃

′
j(w) =

∑
γ̂∈Γ̂j

K∗
M̃
(z, γ̂(w))γ̂′(w).

For γ̂ ∈ Γ̂j, write γ̂ = [γj] with γj ∈ Γj . Let p̂ : D → D/Γ̃ be the natural

projection. Let w ∈ D and γ̃ ∈ Γ̃. We have

γ̃′(γj(w))γ̂
′(p̂(w)) =

p̂′(γj(w))γ̂
′(p̂(w))

p̂′(γ̃(γj(w)))
=

p̂′(γj(w))(γ̃ ◦ γj)′(w)
p̂′(w)

.

Therefore, for z, w ∈ D,

K∗
M̃
(p̂(z),γ̂(p̂(w)))γ̂′(w) = K∗

M̃
(p̂(z), p̂(γj(w)))γ̂′(p̂(w))

=
1

p̂′(z)

1

p̂′(γj(w))

∑
γ̃∈Γ̃

K∗
D(z, γ̃(γj(w)))γ̃

′(γj(w)) · γ̂′(p̂(w))

=
1

p̂′(z)

1

p̂′(w)

∑
γ̃∈Γ̃

K∗
D(z, γ̃(γj(w)))(γ̃ ◦ γj)′(w).(5.5)

Let

Ej = K∗
Mj
(p̃(p̂(z)), p̃(p̂(w)))p̃′j(p̂(z))p̃

′
j(p̂(w)) −K∗

M̃
(p̂(z), p̂(w)).

Combining (5.4) and (5.5), we then have:

Ej =
∑

γ̂∈Γ̂j\{1}

K∗
M̃
(p̂(z), γ̂(p̂(w)))γ̂′(p̂(w))

=
1

p̂′(z)p̂′(w)

∑
[γj ]∈Γ̂j\{1}

∑
γ̃∈Γ̃

K∗
D(z, γ̃ ◦ γj(w))(γ̃ ◦ γj)′(w)

=
1

p̂′(z)p̂′(w)

∑
γ∈Γj\Γ̃

K∗
D(z, γ(w))γ

′(w).

It follows from a simple computation that

|Ej | ≤ 1

π|p̂′(z)p̂′(w)|(1 − |z|)2(1− |w|)2
∑

γ∈Γj\Γ̃

(1− |γ(0)|2).

Since ∩Γj = Γ̃, we have |Ej | → 0 locally uniformly as j → ∞. This
concludes the proof of Theorem 1.2.

Remark. We have not used the condition [Γ : Γj] < ∞ in the above
proof. Theorem 1.2 remains true even if the finiteness assumption on
the indices [Γ : Γj] is dropped from the definition of tower of coverings.
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6. Complete Kähler manifolds

In this section, we study towers of coverings on complete Kähler man-
ifolds, using tools from spectral theory of the complex Laplacian. Let
(M,ω) be a complete Kähler manifold. Let �M

p,q be the ∂-Laplacian on

Lp,q
(2)(M). (We will drop the subscript or superscript from the notation

�M
p,q when doing so causes no confusions.) Denoted by σ(�) and σe(�)

respectively the spectrum and essential spectrum of the operator �.
The following lemma is well-known:

Lemma 6.1. Suppose there is a compact set K ⊂ M and a constant

C > 0 such that

(6.1) ‖u‖2 ≤ C

(
‖∂̄u‖2 + ‖∂̄∗u‖2 +

∫
K
|u|2dV

)
holds for all u ∈ Dom (∂̄)∩Dom (∂̄∗)∩Lp,q

(2)(M). Then σe(�
M
p,q) ⊂ [ 1C , 0).

Proof. Let λ ∈ σe(�). Then by the Weyl criteria (cf. [53, Theo-
rem 7.24]), there exists a sequence uj ∈ Dom (�) such that ‖uj‖ = 1,
‖(� − λ)uj‖ → 0, and uj → 0 weakly. Thus

lim
j→∞

(
‖∂uj‖2 + ‖∂∗

uj‖2
)
= λ.

By the interior ellipticity of � and the Rellich compactness theorem,
there exists a subsequence ujk converging in the L

2-norm on K. By the
assumption, the limit must be 0. Plugging ujk into (6.1) and taking the
limit, we then obtain λ ≥ 1/C. q.e.d.

Note that if K is an empty set, then (6.1) is equivalent to σ(�) ⊂
[ 1C , ∞). Furthermore, if σe(�) ⊂ [ 1C , ∞), then σ(�) ∩ [0, 1

C ) is either
empty or consists of eigenvalues of finite multiplicities (cf. [16, Theorem
4.5.2]).
Now let (M,ω) be an n-dimensional complex Kähler manifold as in

the statement of Theorem 1.3. Then there exists a C2-smooth plurisub-
harmonic function ψ on M \K satisfying

C−1
0 ω ≤ ∂∂̄ψ ≤ C0ω, |∂̄ψ|2ω ≤ C0,

where K is a compact subset of M and C0 > 0 is a constant. After
a multiple of a cut-off function, we may assume that ψ is a C2 real-
valued function on M such that the above inequalities hold outside a
geodesic ball B(z0, R) = {z ∈ M ; dM (z0, z) < R} where dM (z0, ·) is
the distance to a fixed point z0 ∈ M . Write ψj = p∗j(ψ), ω

∗
j = p∗j(ω),

and dj(·) = p∗j(dM (z0, ·)) where pj : Mj → M is the natural projec-
tion. Note that dj need not be the distance function of Mj . Let Kj =

p−1
j (B(z0, 2R)).
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Lemma 6.2. There exists a constant C1 = C(n,C0, R) > 0 such that

(6.2) ‖u‖2 ≤ C1

(
‖∂̄u‖2 + ‖∂̄∗u‖2 +

∫
Kj

|u|2dV
)

holds for all u ∈ Dom (∂̄) ∩ Dom (∂̄∗) ∩ L2
n,1(Mj). As a consequence,

σe(�
Mj

n,1) ⊂ [ 1
C1

,∞).

Proof. This lemma is an easy consequence of an L2-technique that
goes back to Donnelly–Fefferman [22] and Gromov [27] (see also [41, 19,
48, 5, 36, 15] for related results). We provide a proof for completeness.

Let v ∈ Cn,1
0 (Mj) such that v = 0 on p−1

j (B(z0, R)). By the Bochner–
Kodaira–Nakano formula, we have for any τ > 0,

‖∂̄v‖2τψj
+ ‖∂̄∗

τψj
v‖2τψj

≥
∫
Mj

〈[√−1τ∂∂̄ψj,Λ]v, v〉e−τψj dV

≥ C−1
0 τ‖v‖2τψj

(6.3)

where Λ is the adjoint of Lu = ω ∧ u, ‖ · ‖τψj
the L2-norm with weight

τψj , and ∂̄∗
τψj

the adjoint of ∂̄ with respect to the inner product 〈·, ·〉τψj

(see [6, p. 68]). Let w = e−τψj/2v. Note that

∂̄v = eτψj/2
(
∂̄w +

τ

2
∂̄ψj ∧ w

)
,

and

∂̄∗
τψj

v = eτψj/2
(
∂̄∗w − τ

2
∂̄ψj�w

)
,

where “�” is the contraction operator. It follows from the Cauchy–
Schwarz inequality that

‖∂̄v‖2τψj
+ ‖∂̄∗

τψj
v‖2τψj

≤ 2‖∂̄w‖2 + 2‖∂̄∗w‖2 + C0τ
2‖w‖2.

Substituting this inequality into (6.3), we have

(6.4) ‖∂̄w‖2 + ‖∂̄∗w‖2 ≥ τ

2
(C−1

0 − C0τ)‖w‖2 ≥ C1‖w‖2,

provided τ < C−2
0 /2. Now fix such a positive constant τ . Let 0 ≤ χ ≤ 1

be a C∞ cut-off function such that χ = 0 on (−∞, 1) and χ = 1 on

(2,∞). Let u ∈ Cn,1
0 (Mj) and w = χ(dj/R)u. Then

∂̄w = χ(dj/R)∂̄u+ ∂̄χ(dj/R) ∧ u;

∂̄∗w = χ(dj/R)∂̄
∗u− ∂̄χ(dj/R)�u.

From (6.4) and the Cauchy–Schwarz inequality, we have

‖u‖2 ≤ C1

(
‖∂̄u‖2 + ‖∂̄∗u‖2 +

∫
Kj

|u|2dV
)
.
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By Andreotti–Vesentini’s approximation theorem [1], the same inequal-
ity holds for all u ∈ Dom (∂̄)∩Dom (∂̄∗) ∩L2

n,1(Mj). From Lemma 6.1,

we have σe(�
Mj

n,1) ⊂ [ 1
C1

,∞). q.e.d.

Let C1 be the constant in Lemma 6.2. For 0 < δ < 1
C1
, letHn,1

(2) (Mj , δ)

be the linear span of (n, 1)-eigenforms of the ∂̄-Laplacian �
Mj

n,1, with
the corresponding eigenvalues smaller than or equal to δ. Note that
Hn,1

(2) (Mj , δ) is a finite dimensional complex vector space. Let {φk} be
an orthonormal basis of eigenforms in Hn,1

(2) (Mj , δ). We define the cor-

responding Bergman kernel function as

|K1
Mj ,δ| =

∑
|φk|2.

Then we have

dimHn,1
(2) (Mj , δ) =

∫
Mj

|K1
Mj ,δ|dV.

It is easy to see that

(6.5) |K1
Mj ,δ|(z) ≤ n sup

{
|f |2(z) : f ∈ Hn,1

(2) (Mj , δ), ‖f‖ = 1
}
,

(e.g., [4, Lemma 4.1]).

Lemma 6.3. For every ε > 0, there exist 0 < δ0 < 1
C1

and j0 > 0
such that for δ ≤ δ0 and j ≥ j0,

|K1
Mj ,δ|(z) < ε, ∀z ∈ Kj.

Proof. Let z ∈ Kj. Let f ∈ Hn,1(Mj , δ) be the form that realizes
the supremum on the right side of (6.5). Let κ be a C∞-smooth cut-off
function such that 0 ≤ κ ≤ 1, κ = 1 on (−∞, 1/2), and κ = 0 on (1,∞).
Let

ρ = κ(dMj
(z, ·)/τj(z))f.

Here we use τj(·) to denote also the push-down to Mj of τj(·) from M̃

(as defined by (2.6) with Γ replaced by Γj). Recall that p̃j : M̃ → Mj is
the natural projection. Let ρ̃ = p̃∗j (ρ). By an argument similar to that
in the proof of Lemma 6.2, we have

‖ρ̃‖2
M̃

≤ C(‖∂̄ρ̃‖2
M̃
+ ‖∂̄∗ρ̃‖2

M̃
)

≤ C

(
sup |κ′|2
τ2j (z)

+ ‖∂̄f‖2Mj
+ ‖∂̄∗f‖2Mj

)

≤ C

(
sup |κ′|2
τ2j (z)

+ δ

)
.

Since pj(Kj) = B(z0, 2R) is compact, there is a constant r = r(R) > 0
such that τj(z) > 2r for all j. Thus ρ = f on B(z, r). Using G̊arding’s
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inequality together with Sobolev’s estimates, we have that for suffi-
ciently large j and m > n,

|f |2(z) ≤ C

(∫
B(z,r)

|f |2dV +

∫
B(z,r)

|�(m)f |2dV
)

≤ C
(
‖ρ̃‖2

M̃
+ ‖�(m)f‖2Mj

)
≤ C

(
sup |κ′|2
τ2j (z)

+ δ + δ2m

)
,

where the constants depend only on m and r. Lemma 6.3 then follows
from (6.5) and Lemma 2.1. q.e.d.

Lemma 6.4. For every ε > 0, there exist 0 < δ0 < 1
C1

and j0 > 0
such that for each δ ≤ δ0 and j ≥ j0,

dimHn,1
(2) (Mj , δ) ≤ ε [Γ : Γj] vol(B(z0, 2R)).

Proof. Let {φk} be an orthonormal basis of Hn,1
(2) (Mj , δ) as above.

The estimate (6.2) implies

1 = ‖φk‖2 ≤ C

(
δ +

∫
Kj

|φk|2dV
)
.

Summing up, we have

dimHn,1
(2) (Mj , δ) ≤ C

1− Cδ

∫
Kj

|K1
Mj ,δ|2dV <

Cε

1− Cδ
vol(Kj)

=
Cε

1− Cδ
[Γ : Γj ]vol(B(z0, 2R)). q.e.d.

Observe that every positive eigenvalue λ of �
Mj

n,0 on Ln,0
(2) (Mj) is also

an eigenvalue of �
Mj

n,1 on Ln,1
(2) (Mj): If {f} is a normalized eigenform of

�
Mj

n,0 on Ln,0
(2) (Mj) associated with λ, then

�
Mj

n,1(∂̄f) = λ∂̄f and ‖∂̄f‖2Mj
= (�

Mj

n,0f, f) = λ.

Thus ∂̄ induces a linear injection from Hn,0
(2) (Mj , δ) � Hn,0

(2) (Mj) into

Hn,1
(2) (Mj , δ), and

(6.6) dim
(
Hn,0

(2) (Mj , δ) �Hn,0
(2) (Mj)

)
≤ dimHn,1

(2) (Mj , δ) < ∞,

where Hn,0
(2) (Mj , δ) is the linear span of (n, 0)-eigenforms of �

Mj

n,0, asso-

ciated with the eigenvalues smaller than or equal to δ. Let |KMj ,δ| and
|KMj

| be the Bergman kernel functions of Hn,0
(2) (Mj , δ) and Hn,0

(2) (Mj)

respectively.
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Lemma 6.5. For every ε > 0, there exist 0 < δ0 < 1
C1

and j0 > 0
such that for δ ≤ δ0 and j ≥ j0,

0 < |KMj ,δ|(z) − |KMj
|(z) < ε, ∀ z ∈ Kj.

Proof. By (6.6) and Lemma 6.4, we have for δ ≤ δ0 and j ≥ j0,∫
Mj

(|KMj ,δ| − |KMj
|)dV ≤ ε [Γ : Γj ] vol(B(z0, 2R)).

Since the function in the integral is invariant under Γ/Γj ,

(6.7)

∫
M
(|KMj ,δ| − |KMj

|)dV < ε vol(B(z0, 2R)).

Now take a normal coordinate ball B(z, ε0) around z (lifted from M)
where ε0 depends only onM . Again it follows from G̊arding’s inequality
and Sobolev’s estimates that for m > n,

|f |2(z) ≤ Cm,ε0

(∫
B(z,ε0)

|f |2dV +

∫
B(z,ε0)

|�(m)f |2dV
)

≤ Cm,ε0(1 + δ2m)

∫
M

|f |2dV,(6.8)

for all f ∈ Hn,0
(2) (Mj , δ) �Hn,0

(2) (Mj). By (6.7) and (6.8),

|KMj ,δ|(z)− |KMj
|(z) ≤ Cm,ε0(1 + δ2m)ε vol(B(z0, 2R)),

completing the proof. q.e.d.

We now proceed to prove Theorem 1.3. In light of Proposition 2.2, it
suffices to verify the lower semicontinuity of the Bergman kernelsKMj

as

j → ∞. Let z ∈ M̃ . Let R be sufficiently large so that p̃1(z) ∈ B(z0, R).
Let δ0 and j0 be chosen as in Lemma 6.5. Let f be a candidate for the
extremal property (2.4) of K

M̃
(z) and let

�j = κ(d
M̃
(z, ·)/τj(z))f,

where κ is the cut-off function as in the proof of Lemma 6.3. Since �j
is supported in a Dirichlet fundamental domain of Mj, we may push
down �j onto Mj and regard it as a (n, 0)-form on Mj with ‖�j‖Mj

≤ 1.
Then we have the orthonormal decomposition

�j = uj + vj ,

with uj ∈ Hn,0
(2)
(Mj , δ0) and

(�vj , vj) ≥ δ0‖vj‖2.
By Lemma 6.5, we have

(6.9) |uj|2(z) ≤ |KMj ,δ0 |(z)‖uj‖2 ≤ |KMj ,δ0 |(z) < |KMj
|(z) + ε,



392 B.-Y. CHEN & S. FU

for j ≥ j0, whereas

(6.10) ‖vj‖2 ≤ δ−1
0 (�vj , vj) = δ−1

0 ‖∂̄vj‖2.
Since �uj ∈ Hn,0

(2) (Mj , δ0), we have

(∂̄uj , ∂̄vj) = (�uj, vj) = 0.

Hence

(6.11) ‖∂̄vj‖2 ≤ ‖∂̄�j‖2 ≤ C sup |κ′|2τ−2
j (z).

By (6.10) and (6.11),

(6.12) ‖vj‖2 ≤ C
sup |κ′|2

δ0
τ−2
j (z).

In order to obtain a pointwise estimate of vj, we fix a coordinate unit

ball Bn in M̃ , centered at z and lifted fromM . It follows from G̊arding’s
inequality together with Sobolev’s estimates that for m > n,

|∂̄uj |2(z) ≤ Cm

(∫
Bn

|∂̄uj |2dV +

∫
Bn

|�(m)(∂̄uj)|2dV
)

≤ Cm(1 + δ2m0 )‖∂̄uj‖2 ≤ Cm(1 + δ2m0 )‖∂̄�j‖2,
for z ∈ B

n
1/2. (Here we identify uj and vj with their pull-backs from Mj

onto M̃ .) Since �j is holomorphic in B
n for large j, we conclude that

(6.13) |∂̄vj |2 = |∂̄uj |2 → 0,

uniformly on B
n
1/2 as j → ∞. Let KBM be the Bochner–Martinelli

kernel. Then

vj(0) =

∫
Bn

∂̄(κ(2|z|)vj)KBM

=

∫
Bn

vj ∂̄κ(2|z|)KBM

+

∫
Bn

κ(2|z|)∂̄vjKBM

converges to 0 by (6.12) and (6.13); because KBM is L1 on B
n. Com-

bining this fact with (6.9), we conclude that

|K
M̃
|(z) ≤ lim infj→∞|KMj

|(z).
This concludes the proof of Theorem 1.3.

Corollary 6.6. Any tower of coverings on a hyperconvex complex

manifold is Bergman stable.

Proof. LetMj = M̃/Γj be a tower of covering on a hyperconvex com-
plex manifold M . Let ρ : M → [−1, 0) be a smooth strictly plurisub-
harmonic proper map. Put ψ = − log(−ρ), ω = ∂∂̄ψ, ψ̃ = p̃∗(ψ), and
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ω̃ = p̃∗(ω), where p̃ : M̃ → M is the natural projection. Then the
assumptions in Theorem 1.3 are satisfied. q.e.d.

Theorem 1.3 can be generalized to a tower of coverings on a complete
Hermitian manifold. More specifically, we have the following:

Theorem 6.7. A tower of coverings Mj on a complete Hermitian

manifold (M,ω) is Bergman stable if the following conditions hold:

1) There exist a compact set K ⊂ M , a C∞-smooth plurisubharmonic

function on M\K, and a constant C > 0 such that ω = ∂∂̄ψ and

∂∂̄ψ ≥ C−1∂ψ ∧ ∂̄ψ on M\K.

2) There exist a C∞-smooth plurisubharmonic function ψ̃ on the top

manifold M̃ and a constant C̃ > 0 such that ∂∂̄ψ̃ ≥ C̃−1ω̃ and

∂∂̄ψ̃ ≥ C̃−1∂ψ̃ ∧ ∂̄ψ̃, where ω̃ is the lift of ω to M̃ .

We indicate how the proof of Theorem 1.3 given above can be easily
modified to prove Theorem 6.7. Since M is Kähler on M \ K, the
conclusion of Lemma 6.2 is evidently valid under condition (1) above.
The proof of Lemma 6.3 can be modified as follows: Since for each (n, q)-

form on M̃ , the L2-norm with respect to ∂∂̄ψ̃ is always dominated by
the L2-norm with respect to the metric ω̃. Thus

‖ρ̃‖2
M̃ ,∂∂̄ψ̃

≤ C
(
‖∂̄ρ̃‖2

M̃,∂∂̄ψ̃
+ ‖∂̄∗ρ̃‖2

M̃,∂∂̄ψ̃

)
≤ C

(
‖∂̄ρ‖2Mj

+ ‖∂̄∗ρ‖2Mj

)
≤ C

(
sup |κ′|2
τ2j (z)

+ δ

)
.

The other arguments in the proof remain unchanged after replacing
‖ρ̃‖

M̃
by ‖ρ̃‖

M̃,∂∂̄ψ̃
.

We are now in position to prove Theorem 1.4. Let M be a Riemann
surface. When the universal covering space of M is P1, Theorem 1.4 is
trivial; because in this case, M is also P1 ([24, Theorem IV.6.3, p. 193]).
When the universal covering space of M is C, then M and its normal
covering spaces are conformally equivalent to either C, the punctured
complex plane C∗, or a torus ([24, Theorem IV.6.4, p. 193]). Hence the
Bergman kernels of the normal covering spaces of M vanish identically
when M is non-compact and stability of the Bergman kernel is therefor
established in this case. In the case when M is a torus, each covering
space Mj in the tower is also a torus except the universal covering space
C. Since holomorphic 1-forms on a torus have the form of c · dz where
c is a complex number, we have |KMj

| = 1/volMj , which tends to zero
as j → ∞. Thus we have Bergman stability in this case. It remains
to deal with the case when the universal covering space of M is the
unit disk D. According to Rhodes’ theorem and Theorem 1.2, it suffices
to consider the case when M is parabolic. By a theorem of Nakai [38],
there exists a harmonic function u outside of a compact subset such that
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u(z) → +∞ as z tends to the ideal boundary ∂M of M . Let K be a
compact subset ofM such that u > 1 onM\K. By Richberg’s theorem,
there is a C∞-smooth strictly subharmonic function φ on M\K such
that |φ − (−u)| ≤ 1 holds on M\K. Let 0 ≤ χ ≤ 1 be a function in
C∞
0 (M) such that χ = 1 on a neighborhood of K, and let 0 ≤ κ ≤ 1 be

a function in C∞
0 (M) such that κ = 1 in a neighborhood of suppχ. Let

ω0 be a Kähler metric on M . Put

ω = C1κω0 + ∂∂̄ ((1− χ)(− log(−φ))) ,

where C1 > 0 is a constant. We see that ω is a complete Hermitian
metric on M satisfying condition (1) in Theorem 6.7, provided C1 is
sufficiently large (we may take ψ = − log(−φ)). Let p̃ : D → M be the
natural projection. We define

ψ̃(z) = C2

(− log(1− |z|2))+ p̃∗ ((1− χ)(− log(−φ))) ,

where C2 > 0 is a constant. Since ∂∂̄(− log(1 − |z|2)) descends to a

complete Kähler metric on M , ∂∂̄ψ̃ dominates ω̃ provided C2 suffi-
ciently large. It is also easy to verify ∂∂̄ψ̃ ≥ C−1∂ψ̃ ∧ ∂̄ψ̃. Applying
Theorem 6.7, we then conclude the proof of Theorem 1.4.

7. Appendix: Applications

In this appendix, we apply Theorem 1.3 to study Bergman stability
of towers of coverings on quotients of the polydisc and the ball. We first
recall the setting for quotients of the polydisc.
Let Hn be the n-product of the upper half planes H, equipped with

the Bergman metric. The connected component G of the identity for
the automorphism group of Hn contains all transformations in the form
of σ = (σ(1), · · · , σ(n)), σ(i) ∈ PSL(2,R). An element σ of G is parabolic

if each σ(i) has exactly one fixed point on R. Let Γ be a Hilbert modular
group. (We refer the reader to [50, 47] for the relevant material.) Then
Γ has a fundamental domain F of the form

F = F0 ∪ V1 ∪ · · · ∪ Vt,

where F0 is relatively compact in H
n, the Vj ’s are disjoint, each Vj ⊂

σ−1
j (Uj) is the fundamental domain of the group Γj of all γ ∈ Γ fixing

some point xj in R
n
, and

Uj = {z ∈ C
n : Im z1 × · · · × Im zn > dj},

with dj being a suitably chosen positive number, σj an element in G
such that σj(xj) =∞ (see [47, p. 48]). Since each nontrivial element of

σjΓjσ
−1
j fixes exactly one point ∞, it must be a translation. Let Dn be

the unit polydisc in C
n and let Γ be a Hilbert modular group.

Proposition 7.1. Any tower of coverings Mj = D
n/Γj on M =

D
n/Γ is Bergman stable.
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Proof. Since Dn is biholomorphic to Hn, it suffices to prove the propo-
sition for Hn. The Bergman kernel

KHn(z) =
1

(4π)n
1

(Im z1 × · · · × Im zn)2
,

of Hn is invariant under translations. In particular, it is σjΓjσ
−1
j -invar-

iant. A direct computation shows that

∂∂̄ logKHn � ∂ logKHn ∧ ∂̄ logKHn .

By setting ψ = σ∗
j logKHn on each parabolic end Vj/Γj , we see that

conditions in Theorem 1.3 are satisfied. q.e.d.

Proposition 7.2. Any tower of coverings on a complete Kähler man-

ifold with pinched negative sectional curvature and finite volume is

Bergman stable.

Proof. Let (M,ω) be a complete Kähler manifold with pinched neg-

ative sectional curvature and finite volume. Let (M̃ , ω̃) be its universal
covering. According to a result of Siu and Yau [49], each Busemann

function ψ on M̃ satisfies C−1ω̃ ≤ ∂∂̄ψ ≤ Cω̃ and ∂∂̄ψ ≥ C−1∂ψ ∧ ∂̄ψ.
Furthermore, M is the union of a compact set and a finite number of
cusp ends such that each end admits a function that is a push-down of

some Busemann function on M̃ . Thus the conditions of Theorem 1.3
are satisfied. q.e.d.

Remark. Proposition 7.2 also holds when M is a ball quotient that
is geometrically finite in the sense of Bowditch [9]. We leave the detail
to the interested reader.
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