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NORMAL FAMILY THEORY AND GAUSS CURVATURE
ESTIMATE OF MINIMAL SURFACES IN R

m

Xiaojun Liu & Xuecheng Pang

Abstract

In this paper, we first extend Zalcman’s principle of normality
to the families of holomorphic mappings from Riemann surfaces
to a compact Hermitian manifold. We then use this principle to
derive an estimate for Gauss curvatures of the minimal surfaces
in Rm whose Gauss maps satisfy some property P , in the spirit of
Bloch’s heuristic principle in complex analysis. Consequently, we
recover and simplify the known results about value distribution
properties of the Gauss map of minimal surfaces in Rm.

1. Introduction

According to the Picard’s little theorem, a function meromorphic on
the whole complex plane that omits three distinct values a, b, c in P

1 must
be constant. On the other hand, Montel’s theorem states that a family
of functions meromorphic on a domain G ⊂ C, each of which omits the
fixed values a, b, c, must be normal. Based on this phenomenon, Bloch
(see [1]) pointed out that a family of meromorphic functions which have
a property P in common on a domain D ⊂ C should be normal on D
if the property P forces a meromorphic function on the whole complex
plane C to be constant (this is known as the Bloch’s heuristic princi-
ple). Based on this principle, Bloch was able to predict or conjecture
several important results, such as Ahlfors’s Five Islands theorem and
Cartan’s theorem on holomorphic curves omitting hyperplanes, among
others. Later, Zalcman (see [26, 27]) formulated a more precise state-
ment (known as Zalcman’s principle and the Zalcman–Pang principle
[18, 19]) to dertermine the normality for families of meromorphic func-
tions.

In the theory of minimal surfaces, there is a similar phenomenon.
Every time, while there was a result about the complete minimal sur-
faces satisfying a certain condition being flat, there was always a cor-
responding result about the Gauss curvature estimate for the (non-
complete) minimal surfaces that satisfy the same condition. For exam-
ple, while the well-known Bernstein theorem states that any minimal
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graph z = f(x, y) on R
2 must be flat, Heinz’s theorem (see [10]) gives

a Gauss curvature estimate for the minimal graph z = f(x, y) on a
disc in R

2. Fujimoto (see [6]) proved that the complete minimal sur-
faces in R

3 whose Gauss maps omit the given five distinct points of the
sphere must be flat, while in the same paper, he also gave the Gauss cur-
vature estimate for such (non-complete) minimal surfaces. There were
also this type results involving stability: while Do Carmo and Peng,
Fisher-Colbrie and Schoen (see [2, 5]), and Pogorelov (see [20]) proved
independently that the only complete stable minimal surface in R

3 is the
plane, Schoen (see [24]) later proved the stronger result that the stabil-
ity assumption for a non-complete minimal surface implies the curvature
estimate |K(p)|d(p)2 ≤ C, where K is the Gauss curvature of the sur-
face and d(p) is the geodesic distance form p to the boundary of the
surface. In [21], Ros developed a unified approach to the study of these
problems (i.e., the flatness and the Gauss curvature estimate of mini-
mal surfaces), similar to the Bloch and Zalcman principle in complex
analysis.

Being inspirited by Ros’ paper, we study in this paper the normality
of families of holomorphic mappings from Riemann surfaces (or more
generally from the Kobayashi hyperbolic manifolds) into a compact Her-
mitian manifold, as well as the minimal surfaces in R

m. We first extend
Zalcman’s principle and then use this principle to derive an estimate
for Gauss curvatures of the minimal surfaces in R

m whose Gauss maps
satisfy some property P, in the spirit of Bloch’s heuristic principle. As
consequences, we recover results about value distribution properties of
the Gauss map of minimal surfaces in R

m. Finally, we present a simpler
proof of Ru’s result [22] on complete minimal surfaces in R

m whose

Gauss map omits more than
m(m+ 1)

2
hyperplanes in general position

in P
m−1.

Acknowledgments. Research supported by the NNSF of China (Grant
No. 11371139) and the first author also supported by the NNSF of China
(Grant No. 11401381).

2. A principle for normality of the family of holomorphic
mappings from Riemann surfaces into a compact

Hermitian manifold

In this section, we extend Zalcman’s principle of normality to the
families of holomorphic mappings from Riemann surfaces to a compact
Hermitian complex manifold (see Theorem 2, below).

2.1. The notion of normal family and Marty’s criterion. Let
M be a connected Hermitian manifold of dimension m with Hermitian
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metric hM , and let N be a compact connected Hermitian manifold of di-
mension s with Hermitian metric hN . The space C(M,N) of continuous
mappings between M and N endowed with the compact-open topol-
ogy is second countable so that a metric can be furnished in C(M,N)
with induces the compact-open topology. Note that a sequence {fn} in
C(M,N) converges to f in C(M,N) in this topology if and only if fn con-
verges to f uniformly on compact subset of M . The space H(M,N) of
holomorphic mappings from M into N is a closed subspace of C(M,N).

Definition 2.1. A family F ⊂ H(M,N) is called normal if ev-
ery sequence of F contains a subsequence that is relatively compact in
H(M,N), i.e., any sequence fn ∈ F contains a subsequence that con-
verges to f ∈ H(M,N) uniformly on every compact subset of M .

Definition 2.2. A family F ⊂ C(M,N) is called equicontinuous if
for every ε > 0 and p ∈ M , there exists δ > 0, such that dM (p, q) < δ
implies dN (f(p), f(q)) < ε for all f ∈ F , where dM , dN denotes the
distance function on N generated by hM , hN , respectively.

Remark 1. If N is compact, then F is normal if and only if it is
equicontinuous.

For p ∈ M and ξ ∈ Tp(M), let

KM (p, ξ) = inf{a > 0, ∃ f ∈ H(D,M), f(0) = p, f ′(0)a = ξ}.
KM is called the infinitesimal Kobayashi pseudometric. The complex
manifold M is called (Kobayashi) hyperbolic if the Kobayashi pseudo-
metric KM is a metric.

Remark 2. On the open disc M := D(r), KM (z, ξ) = r|ξ|euc/(r2 −
|z|2), which coincides with the Poincare metric.

For every f ∈ H(M,N), let

(1) Λf (z) = sup
‖ξ‖=1

hN (f(z), df(z)ξ)

and, assuming that M is hyperbolic,

(2) Qf (z) = sup
‖ξ‖=1

hN (f(z), df(z)ξ)

KM (z, ξ)
,

where ‖ξ‖ is the norm with respect to the metric hM . Note that Λf (z)
is the “maximal derivative” of f at z and Qf (z) is the “maximal deriva-
tive” of f with respect toKM at z. Qf (z) is invariant under φ ∈ Aut(M)
in the sense that Qf◦φ(z) = Qf (φ(z)) for all z ∈ M . This follows from
the invariant property of KM . This invariant property for Qf (z) plays
an important role.

We have the following result.
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Proposition 2.1 (Marty’s Criterion). Let M be hyperbolic and
let N be compact. Then a family F ⊂ H(M,N) is normal if and only if
the following equivalent statements hold:

(i) For each compact K ⊂ M , there exists a constant C(K) > 0, such
that

sup
z∈K

{Qf (z), f ∈ F} < C(K).

(ii) For each compact K ⊂ M , there exists a constant C(K) > 0,
such that

sup
z∈K

{Λf (z), f ∈ F} < C(K).

Proof. The equivalence of statements (i) and (ii) is obvious. So we
need only to prove (i). Suppose that, for each compact K ⊂ M , there
exists a constant C(K) > 0, such that sup

z∈K
{Qf (z), f ∈ F} < C(K).

Then F is equicontinuous and, hence, normal from the compactness
of N .

Conversely, suppose that F is normal but (i) fails. Then there must be
a compact subset K ⊂ M , a sequence of points pn ∈ K and pn → p0 ∈
K, and a sequence of functions fn ∈ F , such that Qfn(pn) > n. Take a
local coordinate (p0, U) for M around p0 with T (M)|U = U ×Cm, and
assume that pn ∈ U for n > n0. Under the chosen coordinates, there
is a sequence of unit vectors ξn ∈ C

m for which ξn → ξ0, |ξ0| = 1 such
that

(3) hN (fn(pn), dfn(pn)ξn) > nKM (pn, ξn).

Since F is normal, there exists a subsequence of {fn} (which we still
denote as {fn}), such that fn converges to f0 ∈ H(M,N) uniformly on
compact subsets of M . Since N is compact, the left side of (3) tends to
a finite number hN (f0(p0), df0(p0)ξ0), while the right-hand side, because
of the hyperbolic of M , can be made as large as we want as n → ∞.
This is a contradiction. q.e.d.

2.2. A principle for normality of the family of holomorphic
mappings from Riemann surfaces into P

s(C). In this subsection,
we establish a principle (similar to Zalcman’s principle) for normality of
the family of holomorphic mappings from Riemann surfaces into P

s(C).
We remark that while it has been enough to serve our purpose, the
results can be easily extended to families in H(M,N) for the general
Hermitian manifolds M and N , with M being Kobayashi hyperbolic
and N being compact.

Denote by Σ a (connected) Riemann surface, C the finite complex
plane, Ps(C) the complex projective space of dimension s, and D(r) =
{z ∈ C : |z| < r}, D̄(r) = {z ∈ C : |z| ≤ r} the open and closed
Euclidean disc of radius r > 0, respectively. The unit disc will be denoted
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by D. Denote by H(Σ) the set of holomorphic maps from Σ to P
s(C).

In this case, according to (1), if Σ is hyperbolic, then for any f ∈ H(Σ),

Q2
f (z) =

f∗ωFS

ωΣ
,

where ωFS is the Fubini–Study form on P
s(C) and ωΣ is the (hyperbolic)

metric form on Σ. In particular, for f ∈ H(D),

Q2
f (z) =

ddc log ‖ f ‖2
1/(1 − |z|2)2√−1dz ∧ dz̄

.

Let P be an arbitrary property for holomorphic maps; we put

P(Σ) = {g ∈ H(Σ) : g satisfies the property P}.
Given a property P, we consider the following assertions:

I) For any two Riemann surfaces Σ and Σ1, and for any holomorphic
map without branch points φ : Σ → Σ1,

if g ∈ P(Σ1), then g ◦ φ ∈ P(Σ).

II) Let Σ be any Riemann surface and g ∈ H(Σ). If for any relatively
compact domain Ω of Σ one has

g
∣∣
Ω
∈ P(Ω), then g ∈ P(Σ).

III) For any Riemann surface Σ, P(Σ) is a closed subset of H(Σ).
IV) For any Riemann surface Σ, P(Σ) is compact in H(Σ).

If P satisfies the axioms I), II), and III), we will say that it is a closed
property, and if P satisfies the axioms I), II), and IV), we will say that
it is a compact property.

Remark 3. (i) It is obvious that compact property implies closed
property. (ii) We also note that if P is a property such that P(Σ) is
compact in H(Σ), then every family F ⊂ H(Σ) satisfying P must be
normal. For this reason, in what follows, we only need to seek the cri-
terions for compact property.

Lemma 2.2. Let P be a compact property; then P(C) contains only
constant maps.

Proof. Let g ∈ P(C), and if this is not the case, let there exist two
distinct points z1 and z2 ∈ C, such that g(z1) �= g(z2). Define the

sequence g(n) : C → P
s(C), n = 1, 2, . . ., by g(n)(z) = g(nz), for any

z ∈ C. From I) we see that g(n) lies in P(C). So, by IV), we have {g(n)}
locally uniformly converges to some G ∈ H(C). Then lim

n→∞
g(n)(z1/n) =

lim
n→∞

g(n)(z2/n) = G(0), which contradicts g(n)(z1/n) = g(z1) �= g(z2) =

g(n)(z2/n). Thus, g is constant. q.e.d.

Lemma 2.3. Let P be a closed property. Then the following asser-
tions are equivalent:



302 X. LIU & X. PANG

i) P is a compact property.
ii) P(D) is relatively compact.

Proof. If P is a compact property, by axiom IV), P(D) is relatively
compact. Conversely, for any Riemann surface Σ, a family of holomor-
phic maps over Σ is relatively compact if and only if its restriction to
a neighborhood of each point of it is relatively compact. Then, from
axioms I) and III), we have P is a compact property. q.e.d.

Theorem 1 (An extension of Zalcman’s principle for normal-
ity). Let P be a closed property; then the following two assertions are
alternative.

i) P is a compact property. Or:
ii) There exists g ∈ P(C), such that Λg(0) = 1 and Λg(ζ) ≤ 1, for all

ζ ∈ C.

Proof. Suppose that P is not compact. By Lemma 2.3, P(D) is not
relatively compact. By Proposition 2.1, there are sequences {fn} ∈ P(D)
and {zn} ⊂ D such that Qfn (zn) → ∞. By the invariance property of
Qfn(z) under Aut(D), we can assume that zn = 0 for all n. From I) we
have that the maps Fn(z) : D → P

s(C), given by Fn(z) := fn(z/2), are
in P(D). Moreover, QFn(0) → +∞, and, by definition, QFn = 0 on ∂D
for every n. So, composing if necessary with conformal transformations
of D, we can assume that, for every n,

max
z∈D

QFn(z) = QFn(0).

Let Rn := QFn(0), and notice that ΛFn(z) =
1

1−|z|2
QFn(z); then we get

ΛFn(0) = Rn → +∞, and ΛFn(z) ≤
Rn

1− |z|2
for any z ∈ D and any n. We define a sequence of mappings gn :
D(Rn) → P

s(C), by gn(z) = Fn(z/Rn) for each zn ∈ D(Rn). Then
gn are in P(D(Rn)),

Λgn(0) = 1, and Λgn(z) ≤
(
1− |z|2

R2
n

)−1
,

for any z ∈ D(Rn) and n. So Λgn is uniformly bounded on compact
subsets of C, and then, by taking a subsequence if necessary, we can
assume that gn converges to a map g : C → P

s(C). As P is closed,
using III), we see that g|D(r) ∈ P(D(r)), and from II), we have that
g ∈ P(C). Finally, from the properties of gn, we conclude that Λg(0) = 1
and Λg(ζ) ≤ 1, for all ζ ∈ C. This finishes the proof. q.e.d.

Below, we give some concrete examples of compact properties.
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Example 1. Let H(q) = {Hj}qj=1 be a collection of hyperplanes

in P
s(C) located in general position. We consider the property PH(q)

defined for any Riemann surface Σ by

PH(q)(Σ) = {g ∈ H(Σ) : either g(Σ) ∩Hj = ∅ or g(Σ) ⊂ Hj

for every 1 ≤ j ≤ q} ∪ {constant maps}.
We claim that if q ≥ 2s + 1, then PH(q) is a compact property.

To prove the claim, first notice that PH(q) satisfies trivially the axioms
I) and II). By Hurwitz’s theorem, axiom III) also holds, i.e., PH(q)(Σ)
is a closed subset of H(Σ). To check axiom IV), from Theorem 1, we
only need to show that if g : C → P

s is holomorphic such that either
g(C) ⊂ Hj or g(C)∩Hj = ∅ for every 1 ≤ j ≤ q with q ≥ 2s+1, then g
must be constant (so (ii) in Theorem 1 does not hold, since Λg ≡ 0 if g
is constant, and thus (i) must hold, i.e., PH(q) is a compact property).
To prove our statement, denote by J ⊂ {1, . . . , q} such that j ∈ J
if and only if g(C) ⊂ Hj, and let XJ :=

⋂
j∈J

Hj. We can identify XJ

with a project space of dimension s − k, where k = #J . Notice that
the restrictions of Hj, j �∈ J , to XJ are hyperplanes which are still in
general position in XJ (this is immediate from the definition). Note that
by q − k ≥ 2s + 1 − k ≥ 2(s − k) + 1, and by the results of Green [9]
and Fujimoto [8], g must be constant, which proves our statement.

Note that, by the result of Eremenko and Sodin (see [4]) or Noguchi
and Winkelmann (see [14]), the above result also holds for hypersurfaces
in general position.

Another important concrete example is for holomorphic maps inter-
secting hyperplanes with high multiplicities. We first recall the following.

Definition 2.3. Let f : Σ → P
s(C) be a holomorphic map. Let p ∈

Σ. A local reduced representation of f around p is a holomorphic map
f : U → C

s+1 − {0}, such that P(f) = f , where U is a neighborhood of
p and P is the projection map of Cs+1 − {0} onto P

s(C).

Definition 2.4. Let μ > 0 is an integer. The holomorphic map f :
Σ → P

s(C) is said to be ramified over a hyperplane H = {[w] ∈ P
s(C) :<

a, w >= 0} with multiplicity at least μ if all zeros of < f ,a > have
orders at least μ, where f is a local reduced representation of f (it is
easy to check that this definition is independent of the choices of the
reduced representations). If either the image of f completely omits H or
f(Σ) ⊂ H, we shall say that f is ramified over H with multiplicity ∞.

The following result of Nochka (see [13, Theorem 4]) extends the
result of Green and Fujimoto.

Proposition 2.4 (Nochka’s Theorem). Suppose that H1, . . . ,Hq

are q ≥ 2s + 1 hyperplanes in P
s(C), located in general position. Let
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μ1, . . . , μq be either positive integers or ∞ such that

q∑
j=1

(
1− s

μj

)
> s+ 1.

Then any holomorphic mapping f : C → P
s(C) that intersects Hj with

multiplicity at least μj (some of them may be ∞) for 1 ≤ j ≤ q must be
constant.

Using Nochka’s result from above we give the following example.

Example 2. Let H(q) = {Hj}qj=1 be defined in Example 1 with

q ≥ 2s + 1. We consider the property P̃H(q) defined for any Riemann
surface Σ by

P̃H(q)(Σ) = {g ∈ H(Σ) : g(Σ) is ramified over Hj with multiplicity

at least μj(may be∞) such that

q∑
j=1

(1−s/μj) > s+1}∪ {constant maps}.

We claim that it is a compact property.
Indeed, it is easy to see that P̃H(q) satisfies trivially the axioms I)

and II). As for axiom III), let {g(n)} ⊂ P̃H(q)(Σ) with g(n) locally uni-

formly converging to g ∈ H(Σ). We need to show that g ∈ P̃H(q)(Σ). We
may assume that g is not constant. For each (fixed) j with 1 ≤ j ≤ q,
we claim that g intersects Hj with multiplicity at least μj . In fact, if
g(Σ) completely omits Hj or g(Σ) ⊂ Hj, then, from the definition,
the g intersects Hj with multiplicity ∞ ≥ μj . Now let z0 ∈ Σ with
< g,aj > (z0) = 0, where g is a local reduced representation (note
that the property < g,aj > (z0) = 0 is indeed independent of the
choice of the reduced representation of g). We need to show that z0
is the zero < g,aj > with order at least μj. Since g(n) converges uni-

formly to g around z0, g
(n) has a local reduced representation g(n) such

that g(n) uniformly converges to a reduced representation g of g in a
neighborhood of z0. This is true due to the following reason: we can
choose a coordinate hyperplane—say, the first coordinate hyperplane
{[w0 : · · · : ws] | w0 �= 0}—such that g(z0) is not contained in this hy-
perplane, and hence there is a neighborhood Uz0 of z0 such that g(Uz0)

omits this hyperplane; since g(n) converges uniformly to g, g(n)(Uz0) also
omits the first coordinate hyperplane for n ≥ n0 (we may need to shrink
Uz0 if necessary). Thus, for n ≥ n0, we can choose the local reduced

representation g(n) = (1, g
(n)
1 , . . . , g

(n)
s ) for g(n) and the local reduced

representation g = (1, g1, . . . , gs) for g on Uz0 . Then, obviously, g(n)

converges uniformly to g implies that g
(n)
i converges uniformly to gi on

Uz0 for each 1 ≤ i ≤ s. Therefore, by the Hurwitz theorem, < g(n),aj >



NORMAL FAMILY THEORY AND GAUSS CURVATURE ESTIMATE 305

and < g,aj > have the same number of zeros with counting multiplic-
ities in a neighborhood of z0, for n big enough. Thus, z0 is the zero of
< g,aj > with order at least μj since, by the assumption, zn is the zero

of < g(n),aj > with order at least μj and zn → z0. This proves the

claim. Hence axiom III) is verified. So P̃H(q) is a closed property. From
Nochka’s result, we see that (ii) of Theorem 1 is not satisfied. Thus, (i)

of Theorem 1 must satisfy, i.e., P̃H(q) is a compact property.

3. Minimal surfaces immersed in R
m

In this section, we apply the above results to establish a general re-
sult (see Theorem 2) about the Gauss curvature estimate for minimal
surfaces in R

m whose Gauss maps satisfy certain property P.

3.1. Preparations. In this part, we recall some results that will be
used later.

We first recall the following construction result of minimal surfaces.

Proposition 3.1 ([3, 16]). Let Σ be an open Riemann surface, and
let ω1, ω2, . . . , ωm be holomorphic 1-forms on Σ having no common zero
and no real periods, and locally satisfying the identity

g21 + g22 + · · · + g2m = 0

for holomorphic functions gi with ωi = gidz. Set

xi = 2Re

z∫
z0

ωi,

for arbitrary fixed points z0 of Σ. Then the surface x = (x1, x2, · · · , xm) :
Σ → R

m is a minimal surface immersed in R
m such that its Gauss map

is the map g = [ω1 : ω2 : · · · : ωm] : Σ → Qm−2(C) and the induced
metric is given by

ds2 = 2(|ω1|2 + |ω2|2 + · · · + |ωm|2).
The following is the general version of Hurwitz’s theorem.

Lemma 3.2 ([17]). Let fj : M → N be a sequence of holomorphic
maps between two connected complex manifolds converging uniformly on
every compact subset of M to a holomorphic map f . If the image of each
map fj misses a divisor D of N , then either the image of f misses D
or it lies entirely in D.

The following lemma is the well-known Ahlfors–Schwarz lemma.

Lemma 3.3 ([12]). Let ds2 = λ2(z)|dz|2 be a Hermitian pseudo-
metric on the unit disk D (i.e., λ may have isolated zeros). If the Gauss
curvature K of the metric ds2 satisfies

K ≤ −1,
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then

λ(z) ≤ 1

1− |z|2 .

In other words, the Poincare metric on D is the largest among the
Hermitian pseudo-metrics on the unit D whose Gauss curvatures are
bounded above by −1.

Lemma 3.4 ([17], Lemma 2.1). Let D(r) be the disk of radius r,
0 < r < 1, and let R be the hyperbolic radius of D(r) in the unit disc.
Let

ds2 = λ2(z)|dz|2

be any conformal metric on D(r) with the property that the geodesic
distance from z = 0 to |z| = r is greater than or equal to R. If the
Gauss curvature K of the metric ds2 satisfies

−1 ≤ K ≤ 0,

then the distance of any point to the origin in the metric ds2 is greater
than or equal to the hyperbolic distance in terms of the Poincare metric.

Lemma 3.4 implies the following.

Lemma 3.5 ([17], Lemma 2.2). Let ds2n be a sequence of conformal
metrics on the unit disk D whose curvatures satisfies −1 ≤ Kn ≤ 0.
Suppose that D is a geodesic disk of radius Rn with respect to the metric
ds2n, where Rn → ∞, and that the metrics ds2n converge, uniformly on
compact sets, to a metric ds2. Then all distances to the origin with
respect to ds2 are greater than or equal to the corresponding hyperbolic
distances in D. In particular, ds2 is complete.

We also need the following Yau-version of the Schwarz lemma (See
[25]), which is dual to the above Ahlfors–Schwarz lemma.

Lemma 3.6 ([25]). Let ds2 = λ2(z)|dz|2 be a complete Hermitian
metric on the unit disk D whose Gauss curvature K satisfies K ≥ −1.
Then

1

1− |z|2 ≤ λ(z).

Proof. Applying Theorem 2 in [25] with M = N = D, ds2M = ds2 as
above, and ds2N being the Poincare metric on D, K1 = −1 andK2 = −1,
gives

1

1− |z|2 ≤ λ(z).

q.e.d.
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3.2. Minimal surfaces in R
m. Let M be a minimal surface immersed

in R
m. Take an immersion x : M → R

m. Make M into a Riemann sur-
face, denoted by Σ, by decreeing that the 1-form du+

√−1dv is of type
(1, 0), where (u, v) are isothermal coordinates of M . The generalized
Gauss map of the minimal surface is given by

g =

[
∂x1
∂z

:
∂x2
∂z

: · · · : ∂xm
∂z

]
: Σ → Qm−2(C) ⊂ P

m−1(C),

which is a holomorphic map, where z = u + iv. The metric ds2 on Σ,

induced from the standard metric in R
m, is ds2 =

m∑
j=1

∣∣∣∂xj

∂z

∣∣∣2 dzdz̄, and
its Gauss curvature is

(4) K = −4
|g ∧ g′|2
|g|6 = −4

∑
1≤j<k≤m

|gjg′k − gkg
′
j |2(

m∑
j=1

|gj |2
)3 ,

where g = (g1, g2, · · · , gm), gj =
∂xj

∂z , 1 ≤ j ≤ m, in terms of local
coordinate z.

We also need the following lemma which play a key role in the proof.

Lemma 3.7 ([17], Lemma 3.2). Let x(n) = (x
(n)
1 , x

(n)
2 , · · · , x(n)m ) :

Σ → R
m be a sequence of minimal immersions, and let g(n) : Σ →

Qm−2(C) ⊂ P
m−1(C) be the sequence of their (generalized) Gauss maps.

Suppose that {g(n)} converges uniformly on every compact subset of Σ
to a non-constant holomorphic map g : Σ → Qm−2(C) ⊂ P

m−1(C) and

that there is some p0 ∈ Σ such that for each j, 1 ≤ j ≤ m, {x(n)j (p0)}
converges. Assume also that {|Kn|} is uniformly bounded, where Kn is

that Gauss curvature of the minimal surface x(n). Then either

(i) a subsequence {Kn�
} of {Kn} converges to zero, or

(ii) a subsequence {x(n�)} of {x(n)} converges to a minimal immersion,
x : Σ → R

m, whose Gauss map is g.

Definition 3.1. Let P be a compact property. We say that P satisfies
a curvature estimate if there exists a positive constant C = C(P), such
that any conformal minimal immersion x : Σ → R

m whose Gauss map
lies in P(Σ) verifies the curvature bound

(5) |K(p)|d2(p) ≤ C, p ∈ Σ,

where K is the Gauss curvature of x and d(p) is its geodesic distance
from p to the boundary of Σ.

Before we go to our main theorem, we recall a theorem proved by
Osserman (see [15]) concerning minimal surfaces in R

m whose Gauss
map omits a neighborhood of some hyperplane in P

m−1(C).



308 X. LIU & X. PANG

Proposition 3.8 (Osserman [15]). An inequality of the form (5)
holds for all minimal surfaces in R

m whose Gauss map omits a neigh-
borhood of some hyperplane in P

m−1(C).

We are now ready to prove the following general theorem about the
Gauss curvature estimate, in the spirit of Bloch’s heuristic principle,
which is one of the main theorems in the paper.

Theorem 2. Let P be a compact property for holomorphic maps from
Riemann surfaces into P

m−1. Then the following alternative holds:

i) P satisfies a Gauss curvature estimate, or
ii) there is a conformal complete minimal immersion x : D → R

m

whose Gauss map lies in P(D) and whose Gauss curvature K
satisfies |K(0)| = 1 and |K| ≤ 4 in D.

Proof. Suppose the assertion in i) does not hold. We will construct a
minimal surface satisfying ii).

Since, by assumption that the curvature estimate fails, there exists a
sequence of (possibly non-complete) minimal surfaces x(n) : Σn → R

m

and points pn ∈ Σn, such that |Kn(pn)|d2n(pn) → ∞ and such that the

Gauss map g(n) of x(n) lies in P(Σn).

We claim that the surfaces Mn parameterized by x(n) : Σn → R
m

indeed can be chosen so that

Kn(pn) = −1, −4 ≤ Kn ≤ 0 on Mn for all n and dn(pn) → ∞.(6)

We now prove the claim. First, by changing the Riemann surface Σn if
necessary, we can assume that Mn is a geodesic disc centered at pn. Let
M ′

n = {p ∈ Mn : dn(p, pn) ≤ dn(pn)/2}. Then Kn is uniformly bounded
on M ′

n and d′n(p) = distance of p to the boundary of M ′
n tends to zero as

p → ∂M ′
n. Hence |Kn(p)|(d′n(p))2 has a maximum at a point p′n interior

to M ′
n. Therefore,

|Kn(p
′
n)|d′n(p′n)2 ≥ |Kn(pn)|d′n(pn)2 =

1

4
|Kn(pn)|d2n(pn) → ∞.

So we can replace Mn by M ′
n, with |Kn(p

′
n)|d′n(p′n)2 → ∞. We then

rescale M ′
n to make Kn(p

′
n) = −1. By the invariance under scaling of

the quantity K(p)d(p)2, we will have d′n(p
′
n) → ∞; here, without causing

confusion, we use the same notation d′n to denote the geodesic distance
with respect to the rescaled metric. Again we can assume that M ′

n is a
geodesic disc centered at p′n, and we let

M ′′
n = {p ∈ M ′

n|dn(p, p′n) <
d′n(p

′
n)

2
}.

Then p ∈ M ′′
n implies that d′n(p) ≥ d′n(p

′

n)
2 and

|Kn(p)|d
′
n(p

′
n)

2

4
≤ |Kn(p)|d′n(p)2 ≤ |Kn(p

′
n)|d′n(p′n)2 = d′n(p

′
n)

2.
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Therefore, |Kn(p)| ≤ 4 on M ′′
n . Furthermore, d′′n(p

′
n) = d(p′n, ∂M

′′
n) =

d′n(p
′
n)/2 → ∞. This proves the claim.

By translation of Rm, we can assume that x(n)(pn) = 0. We can also
assume that Σn is, by taking its universal covering if necessary, simply
connected. By the uniformization theorem, Σn is conformally equivalent
to either the unit disc D or the complex plane C, and we can suppose
that pn maps onto 0 for each n. But the latter case that Σn is conformally
equivalent to C is impossible because by Lemma 2.2 g(n) is constant,
so Kn ≡ 0, which contradicts the condition that |Kn(0)| = 1. So we

have constructed a sequence of minimal surfaces, x(n) : D → R
m, that

satisfies (11) and g(n) ∈ P(D). Since P is a compact property, by IV),

there exist a subsequence of {g(n)} (without loss of generality we still
denote it {g(n)}), such that g(n) converges uniformly on every compact
subset of D to a map g ∈ H(D). Since compact property implies closed
property, we have g ∈ P(D).

Now, we claim that g is non-constant. If this is not the case, we
may assume that g is a constant map, and g maps D onto a single
point P . Let H be any hyperplane not containing P , and let U , V be
disjoint neighborhoods of H and P , respectively. Let C be the constant
in Proposition 3.8, such that

|K(p)|1/2d(p) ≤ C

for any minimal surface S in R
m whose Gauss map omits the neighbor-

hood U of H, where p is a point of S and d(p) is the geodesic distance of
p to the boundary of S. Choose r < 1 such that the hyperbolic distance
R of z = 0 to |z| = r satisfies R > C. Since g(n) converges uniformly
to g on D̄(r), the image of |z| = r lies in the neighborhood V of P for
sufficiently large n—say, n ≥ n0. It follows that for any n ≥ n0, the
image of D̄(r) under g(n) omits the neighborhood U of H and we may
therefore apply the above inequality to conclude

|Kn(0)|1/2dn(r) ≤ C,

where dn(r) is the geodesic distance from z = 0 to the boundary of

the surface x(n) : D(r) → R
m. But |Kn(0)| = 1 for all n, and hence

dn(r) ≤ C for n ≥ n0. On the other hand, the surface x(n) : D → R
m is

a geodesic disk of radius Rn. If we reparametrize by w = rnz, where the
subset {w : |w| < rn} has hyperbolic radius Rn, then the circle |z| = r
corresponds to |w| = rnr, and by Lemma 3.4 the distance in the surface
metric from z = 0 to any point on |z| = r, or equivalently, |w| = rnr, is
greater than or equal to the hyperbolic distance from z = 0 to |w| = rnr.
Letting n → ∞, we have Rn → ∞ and rn → 1, so the hyperbolic radius
of |w| = rnr tends to the hyperbolic radius of |w| = r, which is R.
Since by assumption R > C, we have for n sufficiently large that the
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surface distance from z = 0 to |z| = r is greater than C, contradicting
dn(r) ≤ C. Thus, we conclude that g is non-constant.

Therefore, the hypotheses of Lemma 3.7 are satisfied. Since |Kn(0)| =
1, the possibility (i) of Lemma 3.7 cannot happen. Thus, a subsequence

{x(n�)} of {x(n)} converges to a minimal immersion x : D → R
m, whose

Gauss map is g. By (6) and Lemma 3.5, x is complete. This complete
the proof the Theorem 2. q.e.d.

Theorem 2 gives the following consequence.

Theorem 3. Let P be a compact property. Then the following asser-
tions are equivalent:

(i) P satisfies the curvature estimate.
(ii) The plane is the only complete minimal surface in R

m, whose
Gauss map satisfies P.

(iii) There are not complete minimal surfaces, conformally equivalent
to the disc, with bounded Gauss curvature and whose Gauss map
lies in P(D).

Proof. Obviously, we have i)=⇒ii)=⇒iii), and from Theorem 2 we
conclude that iii)=⇒i). q.e.d.

3.3. Some consequences of Theorem 2. We now derive some con-
sequences of Theorem 2. We recall the first concrete in the previous
section (Example 1): Denote by H(q) = {Hj}qj=1 a set of hyperplanes in

P
m−1(C), located in general position. We consider the property PH(q)

defined for any Riemann surface Σ by

PH(q)(Σ) = {g ∈ H(Σ) : either g(Σ) ∩Hj = ∅ or g(Σ) ⊂ Hj

for every 1 ≤ j ≤ q} ∪ {constant maps}.
Above, we showed that if q ≥ 2(m−1)+1, then it is a compact property.
We also need the following result of Ru ([22]).

Proposition 3.9 ([22], Theorem 1). Let M be a non-flat complete
minimal surface immersed in R

m and assume that the Gauss map G of
M is k, non-degenerate (0 ≤ k ≤ m − 1). Then G can omit at most
(k + 1)(m − k/2 − 1) + m hyperplanes in P

m−1(C) located in general
position.

Thus, Theorem 2, together with Ru’s above result, and the fact that
PH(q) is a compact property for q ≥ 2m− 1, gives the following result,
which is the main result of Osserman and Ru ([17]) (see Theorem 1.1
in [17]) with slight modification.

Theorem A ([17, Theorem 1.1],). Let M be a minimal surface im-
mersed in R

m. If there are q > m(m+1)/2 hyperplanes Hj in P
m−1(C),

located in general position, such that the generalized Gauss map g of M
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satisfies g(M) ∩Hj = ∅ or g(M) ⊂ Hj, for each 1 ≤ j ≤ q, then there
exists a constant C > 0, such that

|K(p)|d2(p) ≤ C

for any p ∈ M , where K is the Gauss curvature of x and d is its geodesic
distance to the boundary of M .

Proof. From Theorem 2, we only need to show that if x : D → R
m is

a conformal complete minimal immersion, whose Gauss map g satisfies
either g(D) ∩ Hj = ∅ or g(D) ⊂ Hj, for each 1 ≤ j ≤ q with q >
m(m+1)/2, then g must be constant, since in this case (ii) in Theorem
2 does not hold, because K ≡ 0; thus, (i) must hold, i.e., PH(q) satisfies
a Gauss curvature estimate.

To prove it, denote by J ⊂ {1, . . . , q} such that j ∈ J if and only if
g(D) ⊂ Hj, and let XJ :=

⋂
j∈J

Hj . We can identify XJ with a project

space of dimension m−1−k, where k = #J . Notice that the restrictions
of Hj, j �∈ J , to XJ are hyperplanes that are still in general position in
XJ . Note that q − k > m(m + 1)/2 − k ≥ (m − k)(m − k + 1)/2;
it follows from Proposition 3.9 that g is constant. This completes the
proof of Theorem A. q.e.d.

Note that Theorem A, in the complete case, gives the following result,
which is the main result of Ru ([22]) with slight modification.

Theorem B ([22]). Let M be a complete minimal surface immersed in
R
m. If there are q > m(m+1)/2 hyperplanes Hj in P

m−1(C), located in
general position, such that the generalized Gauss map g of M satisfies
g(M)∩Hj = ∅ or g(M) ⊂ Hj, for each 1 ≤ j ≤ q, then M must be flat.

Next, we use the second concrete example in the previous section.
Let H(q) = {Hj}qj=1 be a set of hyperplanes in P

m−1(C), located in
general position. Assume that q ≥ 2m − 1. We consider the property
PH(q),2m−1 that, for any Riemann surface Σ and for g ∈ H(Σ,Pm−1),
g ∈ PH(q),2m−1(Σ) if and only if either g is a constant map or g is
ramified over Hj with multiplicity at least μj (may be ∞) with

q∑
j=1

(
1− m− 1

μj

)
> m.

We showed in the second example above that it is a compact property.
We also need the following result of Ru (see [23]).

Proposition 3.10 ([23], Theorem 1). Let M be a complete mini-
mal surface immersed in R

m. If its Gauss map is ramified over a set
of hyperplanes Hj, 1 ≤ j ≤ q, in P

m−1(C) located in general position
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multiplicity at least μj (some of them may be ∞) with

q∑
j=1

(
1− m− 1

μj

)
>

(m+ 1)m

2
,

then M must be a plane.

Thus, Theorem 2, together with Ru’s above result, as well as the fact
that PH(q),2m−1 is a compact property for q ≥ 2m−1, gives the following
result.

Theorem 4. Let M be a minimal surface immersed in R
m. If its

Gauss map is ramified over a set of hyperplanes Hj, 1 ≤ j ≤ q in
P
m−1(C) located in general position multiplicity at least μj (some of

them may be ∞) with

q∑
j=1

(
1− m− 1

μj

)
>

(m+ 1)m

2
,

then there exists a constant C > 0, such that

|K(p)|d2(p) ≤ C

for any p ∈ M , where K is the Gauss curvature of x and d is its geodesic
distance to the boundary of M .

4. The use of the boundness |K| ≤ 4 of the Gauss curvature K

Recall that, from Theorem 2 under the assumption that P is a com-
pact property, if P does not satisfy a curvature estimate (i.e., (i) in The-
orem 2 does not hold), then one comes up a non-flat complete minimal
surface in R

m with bounded curvature |K| ≤ 4 (i.e., (ii) in Theorem
2 holds). In this section, we show that this additional information of
|K| ≤ 4 helps to greatly simplify the proof of the known results. This
demonstrates again the importance of Theorem 2 (which is one of our
main results in the paper).

A simpler proof of Theorem B (as well as Theorem A): we give here a
simpler proof of Theorem B (which is the main result of [22]) with the
following statement. Let M be a complete minimal surface immersed in
R
m. If there are q > m(m+1)/2 hyperplanes Hj in P

m−1(C), located in
general position, such that the generalized Gauss map g of M satisfies
g(M)∩Hj = ∅ or g(M) ⊂ Hj, for each 1 ≤ j ≤ q, then M must be flat.

Here is the proof: If the Gauss curvature estimate

|K(p)|d2(p) ≤ C

holds, then we are done since the condition that M is complete implies
that K ≡ 0 and thus M is flat. So we can assume the Gauss curvature
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estimates fails. Then (ii) in Theorem 2 holds, i.e., there is a (new) non-
flat complete minimal surface immersed in R

m—we denote it by x :
D −→ R

m—such that its Gauss curvature satisfies

K(0) = −1 and |K(z)| ≤ 4, z ∈ D

and its Gauss map G satisfies G(D) ∩ Hj = ∅ or G(D) ⊂ Hj, for
each 1 ≤ j ≤ q, where Hj are q hyperplanes in P

m−1(C), located in

general position with q > (m+1)m
2 . We now use this additional condition

|K(z)| ≤ 4 to finish the proof.
Denote by J ⊂ {1, . . . , q} such that j ∈ J if and only if G(D) ⊂

Hj, and let XJ :=
⋂
j∈J

Hj and #J = 
. We can identify XJ with a

project space of dimension m − 1 − 
. Without loss of generality, we
may assume that XJ = P

n(C), where n = m − 1 − 
, i.e., G : D →
P
n(C). Notice that the restrictions of Hj, j �∈ J , to XJ (which we still

denote it by Hj) are hyperplanes that are still in general position in
XJ . Since G : D → P

n(C) is non-constant, we can assume that G(D) is
contained in a k-dimensional linear subspace of Pn(C), but not a lower
one, with 0 < k ≤ n. In other words, G : M → P

k(C) ⊂ P
n(C) is

linearly non-degenerate. Since H1, H2, . . . , Ht are in general position
in P

n(C), where t = q − 
, their restrictions (we still denote them by
H1, . . . , Ht) are in n-subgenernal position in P

k(C). Denote by ω(j) the
Nochka weights associated to the hyperplanes H1, . . . , Ht. From [22],
the Nochka weights satisfy

(7) t− 2n+ k − 1 = θ

⎛
⎝ t∑

j=1

ω(j) − k − 1

⎞
⎠

for some number θ > 0 with

(8) 0 < ω(j)θ < 1

for all 1 ≤ j ≤ t, and

(9) 1 ≤ n− 1

k + 1
≤ θ ≤ 2n− k + 1

k + 1
.

We recall the following (see the main lemma in [22]).

Lemma 4.1. Let H1, . . ., Ht be hyperplanes in P
k(C) in n-subgeneral

position, and let ω(j) be their Nochka weights. Let f = [f0 : · · · :
fk] : D(R) → P

k(C) be a non-degenerate holomorphic map whose image
omits these hyperplanes. Let F = (f0, . . . , fk) : D(R) → C

k+1\{0} be a
reduced representation of f . Assume that t > 2n− k + 1 and

2t

N
<

t∑
j=1

ω(j) − (k + 1)

k(k + 2)
.
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Then there exists some positive constant C such that

|F |S
k−1∏
p=0

t∏
j=1

|Fp(Hj)| 4
N |Fk|1+ 2t

N

t∏
j=1

|F (Hj)|ω(j)
≤ C

(
2R

R2 − |z|2
) k(k+1)

2
+

k−1∑

p=0
(k−p)2 2t

N

,

where S =
t∑

j=1
ω(j) − (k + 1) − (k2 + 2k − 1) 2tN and P(Fp) is the pth

associated map of f .

Let G̃ = (g0, · · · , gk) be a reduced representation of G; then the
metric ds2 on Σ induced from the standard metric on R

m is given by

ds2 = 2|G̃|2|dz|2.
From −4 ≤ K ≤ 0 and Yau’s version of the Schwarz Lemma (See
Lemma 3.6, above),

(10)
1

4(1 − |z|2) ≤ |G̃|.

On the other hand, let S =
t∑

j=1
ω(j)− (k+1)− (k2 +2k− 1)2t/N as

in Lemma 4.1, and let

δ = S −
⎡
⎣k(k + 1)/2 +

k−1∑
p=0

(k − p)22t/N

⎤
⎦

=

t∑
j=1

ω(j)− (k + 1)− k(k + 1)

2
− [(k2 + 2k − 1) +

k−1∑
p=0

(k − p)2]
2t

N
.

From the condition that q > m(m+1)
2 and by using (7) and (9), we have

θ

⎧⎨
⎩

t∑
j=1

ω(j)− (k + 1)− k(k + 1)

2

⎫⎬
⎭ = t− 2n+ k − 1− θ

k(k + 1)

2

≥ t− 2n + k − 1− k(2n − k + 1)

2

= q − 
− 2(m− 1− 
) + k − 1− k(2(m− 1− 
)− k + 1)

2

= q − 2m+ k + 1− k(2m− k − 1)

2
+ (k + 1)


>
m(m+ 1)

2
− (2m− k − 1)

k + 2

2
≥ 0
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for any integer k with 1 ≤ k ≤ n ≤ m−1. Hence, we can choose N such
that

4 + 4t[k2 + 2k − 1 +
k∑

p=0
(k − p)2]

t∑
j=1

ω(j) − (k + 1)− k(k + 1)/2

> N >

2t[k2 + 2k − 1 +
k∑

p=0
(k − p)2]

t∑
j=1

ω(j) − (k + 1)− k(k + 1)/2

.

so that

δ > 0, and δ0 :=
4

δN
> 1.

Write hyperplanes Hj, j = 1, . . . , t, as

Hj = {[z0 : · · · : zk] : aj,0z0 + · · ·+ aj,kzk = 0}.

Then, by the condition that G is linearly non-degenerate, for each pair
(j, p) with 1 ≤ p ≤ k, there is i1, . . . , ip such that

ψj,p =
∑

� 
=i1,··· ,ip

aj,�W (g�, gi1 , · · · , gip)

does not vanish identically. Every ψj,p is holomorphic, so they have only
isolated zeros. From Lemma 4.1, notice that by the definition of ψj,p(w)

we have |ψj,p| < |G̃p(Hj)|,
(11)

|G̃|S
k−1∏
p=0

t∏
j=1

|ψj,p|4/N |G̃k|1+2t/N

t∏
j=1

|G̃(Hj)|ω(j)
≤ C

(
2

1− |z|2
)k(k+1)/2+

k−1∑

p=0
(k−p)22t/N

,

where S =
t∑

j=1
ω(j) − (k + 1) − (k2 + 2k − 1)2t/N . Combing (10) and

(11) implies that

1

1− |z|2 ≤ 4|G̃| ≤ C

⎛
⎜⎜⎜⎝

t∏
j=1

|G̃(Hj)|ω(j)

|G̃k|1+2t/N
k−1∏
p=0

t∏
j=1

|ψj,p|4/N

⎞
⎟⎟⎟⎠

1

S−

[
k(k+1)/2+

k−1∑
p=0

(k−p)22t/N

]
(12)

= Cλ,
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for some positive constant C > 0, where

λ : =

⎛
⎜⎜⎜⎝

t∏
j=1

|G̃(Hj)|ω(j)

|G̃k|1+2t/N
k−1∏
p=0

t∏
j=1

|ψj,p|4/N

⎞
⎟⎟⎟⎠

1

S−

[
k(k+1)/2+

k−1∑
p=0

(k−p)22t/N

]

=

⎛
⎜⎜⎜⎝

t∏
j=1

|G̃(Hj)|ω(j)

|G̃k|1+2t/N
k−1∏
p=0

t∏
j=1

|ψj,p|4/N

⎞
⎟⎟⎟⎠

1
δ

.

We now consider the new metric

ds20 = λ2|dz|2

on D′ = D\
(
{G̃k = 0}⋃⋃

j,p
{z : ψj,p(z) = 0 or ψj,p(1/z) = 0}

)
, with

λ being as above. Then it is easily to see that ds20 is flat, since ψj,p

and G̃k are holomorphic. We claim that it is complete at the punctures.
Indeed, if either G̃k(z0) = 0 or ψj,p(z0) = 0 for some positive p and j,
then it is easy to see that

|ds0| ∼ c

|z − z0|δ0 |dz|

around z0, where c > 0, δ0 = 4
δN > 1. Therefore, ds20 is complete on

{G̃k = 0}⋃⋃
j,p
{z : ψj,p(z) = 0 or ψj,p(1/z) = 0}. Moreover, 1

C(1−|z|2)
≤

λ(z) from (12), so ds20 is complete at the boundary of the disc. So the
universal cover of D′ must be C and this contradiction proves Theo-
rem B.
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