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A LOWER BOUND FOR THE NUMBER OF NEGATIVE
EIGENVALUES OF SCHRODINGER OPERATORS

ALEXANDER GRIGOR’YAN, NIKOLAT NADIRASHVILI & YANNICK SIRE

Abstract

We prove a lower bound for the number of negative eigenval-
ues for a Schodinger operator on a Riemannian manifold via the
integral of the potential.

1. Introduction

Let (M,g) be a compact Riemannian manifold without boundary.
Consider the following eigenvalue problem on M:

(1) —Au —Vu =,

where A is the Laplace-Beltrami operator on M and V € L* (M) is
a given potential. It is well-known, that the operator —A — V has a
discrete spectrum. Denote by {A;(V)};2 the sequence of all its eigen-
values arranged in increasing order, where the eigenvalues are counted
with multiplicity.

Denote by N(V') the number of negative eigenvalues of (1), that is,

N(V) =card{k : \p(V) < 0}.
It is well-known that N (V) is finite. Upper bounds of N (V) have
received enough attention in the literature, and for that we refer the
reader to [2], [5], [12], [11], [15] and references therein.
However, a little is known about lower estimates. Our main result is
the following theorem. We denote by p the Riemannian measure on M.

Theorem 1.1. Set dim M = n. For any V € L>® (M) the following
mequality is true:

2) N (V) > W ( / Vdu) iﬂ |

where C' > 0 is a constant that in the case n = 2 depends only on the
genus of M and in the case n > 2 depends only on the conformal class
of M.
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In the case V' > 0 the estimate (2) was proved in [6, Theorems 5.4
and Example 5.12]. Our main contribution is the proof of (2) for signed
potentials V' (as it was conjectured in [6]), with the same constant C
as in [6]. In fact, we reduce the case of a signed V' to the case of non-
negative V' by considering a certain variational problem for V and by
showing that the solution of this problem is non-negative. The latter
method originates from [14].

In the case n = 2, inequality (2) takes the form

(3) N(V) > C/M V.

For example, the estimate (3) can be used in the following situation. Let
M be a two-dimensional manifold embedded in R? and the potential V/
be of the form V = aK + SH where K is the Gauss curvature, H is the
mean curvature, and «, § are real constants (see [8], [4]). In this case
(3) yields

N(V) > C (Ktotal + Htotal) )

where Ky is the total Gauss curvature and Hi. is the total mean
curvature. We expect in the future many other applications of (2)-(3).

2. A variational problem

Fix positive integers k, N and consider the following optimization
problem: find V' € L*° (M) such that

(4) / Vdp — max under restrictions A\, (V) > 0 and ||V 0 < N.
M

Clearly, the functional V' + | v Vdp is weakly continuous in L (M).
Since the class of potentials V satisfying the restrictions in (4) is bounded
in L> (M), it is weakly precompact in L> (M). In fact, we prove in
the next lemma that this class is weakly compact, which will imply the
existence of the solution of (4).

Lemma 2.1. The class
Con={VeL®(M): N (V)>0and |V« <N}

is weakly compact in L> (M). Consequently, the problem (4) has a
solution V€ L*°(M).

Proof. It was already mentioned that the class Cj n is weakly pre-
compact in L> (M). It remains to prove that it is weakly closed, that
is, for any sequence {V;} C Cj n that converges weakly in L>°, the limit
V is also in Cj. n. The condition ||V < N is trivially satisfied by
the limit potential, so all we need is to prove that g (V) > 0. Let us
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use the minmax principle in the following form:

Jog IVl dp — [y, Vuldu

A (V) = inf su ,
£ (V) EEIWEQ_(%)LLEE\IEO} Jop wtdp

where E is a subspace of W12 (M) of dimension k. The condition
Ak (V) > 0 is equivalent then to the following:

VE C WH2 (M) with dimE =k Ve>0 3Juec E\ {0}
(5) such that / \Vu\2du—/ Vuldy > —5/ u?dp.
M M M

Fix a subspace £ C W2 (M) of dimension k£ and some ¢ > 0. Since
Ak (Vi) > 0, we obtain that there exists u; € E'\ {0} such that

(6) / Vil dyt / Viddp > —< / .
M M M

Without loss of generality we can assume that HuiHWl,z( m) = 1. Then
the sequence {u;} lies on the unit sphere in the finite-dimensional space
E. Hence, it has a convergent (in W12 (M)-norm) subsequence. We
can assume that the whole sequence {u;} converges in F to some u € E
with [lul[y1.2(pp) = 1. It remains to verify that u satisfies the inequality
(5). By construction we have

/]Vui\zdu—)/ |Vul>dp and /u?du—)/ u?dp.
M M M M

Next we have

/ V,-u?d,u—/ Vu2d,u‘ < ‘/ (Vluf—szﬁ) du‘
M M M
+ ‘/ (Viu2 - Vu2) d,u‘
M

< Nt | [ - v)da.
M

By construction we have ||u; — ul|;2 — 0 as i — co. Since u? € L (M),
the L*° weak convergence V; — V implies that

/ (Vi = V)uldp — 0 as i — oo.
M

Hence, the inequality (5) follows from (6). q.e.d.

Lemma 2.2. If N is large enough (depending on k and M ) then any
solution V' of (4) satisfies \p,(V') = 0.

Proof. Assume that A\;(V) > 0 and bring this to a contradiction.
Consider the family of potentials

Vi=(1—t)V+tN wheret € [0,1].
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Since V; > V, we have by a well-known property of eigenvalues that
M(Vi) < Ae(V). By continuity we have, for small enough ¢, that
Me(Vi) > 0. Clearly, we have also |V;| < N. Hence, V; satisfies the
restriction of the problem (4), at least for small ¢. If u{V <N} >0
then we have for all ¢ > 0

/thu>/ Vidu,
M M

which contradicts the maximality of V. Hence, we should have V = N
a.e.. However, if N > A;(—A) then \y (A —-N) < 0and V = N
cannot be a solution of (4). This contradiction finishes the proof. q.e.d.

3. Proof of Theorem 1.1

The main part of the proof of Theorem 1.1 is contained in the follow-
ing lemma.

Lemma 3.1. Let Viax be a mazimizer of the variational problem (4).
Then Vinax satisfies the inequality

Vinax = 0 a.e.on M.

3.1. Proof of Theorem 1.1 assuming Lemma 3.1. Choose N large
enough, say
N > sup|V].
M

Set k = N (V) +1 so that A\ (V) > 0. For the maximizer Viax of (4) we

have
/ Vidu S/ Vinax dpt.
M M

On the other hand, since Vi,ax > 0, we have by [6]
N (Vinax) > ¢ (/ i d,u)n/Z
max) = M(M)n/2_1 " max .
Also, we have

)\k(vmax) >0

which implies

Hence, we obtain

C n/2
NV) > N(vmax)z< / Vmaxdu>
L M

which was to be proved.
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3.2. Some auxiliary results. Before we can prove Lemma 3.1, we
need some auxiliary lemmas. The following lemma can be found in [9].

Lemma 3.2. Let V (t,x) be a function on R x M such that, for
any t € R, V(t,-) € L*° (M) and 0;V(t,-) € L>(M). For anyt €
R, consider the Schrédinger operator Ly = —A — V (t,-) on M and
denote by { A (t)}r—, the sequence of the eigenvalues of Ly counted with
multiplicities and arranged in increasing order. Let X be an eigenvalue
of Lo with multiplicity m; moreover, let

A= Nps1 (0) = . = N (0) .

Let Uy, be the eigenspace of Lo that corresponds to the eigenvalue A and
{uy,...;um} be an orthonormal basis in Uy. Set for alli,j =1,...,m

ov
=], o

and denote by {a;};, the sequence of the eigenvalues of the matrix
{Q}ZLFl counted with multiplicities and arranged in increasing order.
Then we have the following asymptotic, for any i =1,...,m,

’LLZ"LLjd,u.
t=0

)\k—l—i(t) = )\k+z(0) — tay + O(t) ast — 0.

Given a connected open subset 2 of M with smooth boundary, the
Dirichlet problem

{Au:OinQ
ulpo = f

has for any f € C'(0€2) a unique solution that can be represented in the
form

u(y) = | Q(x,y) f(x)do(z)
o9

for any y € Q, where @ (z,y) is the Poisson kernel of this problem
and o is the surface measure on 9f). For any y € €, the function
q(x) =Q (x,y) on 09 will be called the Poisson kernel at the source y.
Note that ¢ (x) is continuous, positive and

/ qdo = 1.
o0

Lemma 3.3. Let ) be a connected open subset of M with smooth
boundary and xg be a point in . Then, for any constant N > 1 there
exists € = (Q, N,z) > 0 such that for any measurable set E C Q with

n(E)<e
and for any positive solution v € C% () of the inequality
(7) Av+Wov >0 in Q,
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where

N mn B,
(8) W:{—% in Q\ E,

the following inequality holds

9) v(zg) </ v qdo,
o0
where q is the Poisson kernel of the Laplace operator at the source xg.

Proof. For any 6 > 0 denote by As the set of points in  at the
distance < ¢ from 02 (see Fig. 1) and consider the potential Vs in €
defined by

| N in As,
(10) V;S_{ —% in Q\ As.

Figure 1

Since HV(;Jr H Lr(e) CA1 be made sufficiently small by the choice of 6 > 0,
the following boundary value problem has a unique positive solution:
Aw + Vsw =0 in Q
(11) { w = f on 01,
for any positive continuous function f on 92. Denote by g5 (x), € 09,

the Poisson kernel of (11) at the source zg. Letting § — 0, we obtain
that the solution of (11) converges to that of

Aw—%w:0inQ
w = f on OS.

Denoting by ¢o the Poisson kernel of (12) at the source xy, we obtain
that g5 \( go on 9 as § \, 0 and, moreover, the convergence is uniform.

(12)
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Let g be the Poisson kernel of the Laplace operator A in €, as in
the statement of the theorem. Since any solution of (12) is strictly
subharmonic in €2, we obtain that ¢y < ¢ on 9€). In particular, there is
a constant 17 > 0 depending only on Q, N, g such that

q0 < (1 —n)q on 0.

Since the convergence ¢s — ¢ is uniform on 02, we obtain that, for
small enough ¢ (depending on 2, N, x¢),

g5 < (1 —n/2)q on 0.
Fix such 0. Consequently, we obtain for the solution w of (11) that

(13) w(x0) < (1 —n/2) /8Q fqdo.

Note that the function W from (8) can be increased without violating
(7). Define a new potential Wy by

W5:{ N in A;UE,

(14) —% inQ\ A;\ E.

Observe that, for any p > 1
W5 170y < NP (1 (A5) +2).

so that by the choice of ¢ and further reducing § this norm can be
made arbitrarily small. By a well-known fact (see [13]), if || W[, @
is sufficiently small, then the operator —A— Wy in € with the Dirichlet
boundary condition on 9f2 is positive definite, provided p = n/2 for
n>2andp>1forn=2.

So, we can assume that the operator —A— Wj is positive definite. In
particular, the following boundary value problem

(15) { Au+ Wsu =0 in Q
ulpn =v

has a unique positive solution . Comparing this with (7) and using
the maximum principle for the operator A+ W, we obtain v > v in .
Since u = v on 0f2, the required inequality (9) will follow if we prove
that

(16) u(xg) < / uqdo.
0N
Set Q5 = 2\ As and prove that

(17) supu < C udo,
Qs o0

for some constant C' that depends on €, N,J,n. By choosing ¢ and ¢
sufficiently small, the norm ||Wj||;, can be made arbitrarily small for
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any p. Hence, function u satisfies the Harnack inequality
(18) supu < C [ udp
Qs Qs
where C' depends on Q, N,§ (see [1], [7]). Let h be the solution of the
following boundary value problem
—Ah —Wsh = 1g; in Q
h =0 on 09,

where Q5 = Q\ As. Since [|[Ws]|;, is bounded for any ¢, we obtain by
the known a priori estimates, that

”h”WQP(Q) <C Hlﬂa”Lp(Q) )

where p > 1 is arbitrary and C' depends on Q, N, §, p (see [10]). Choose
p > n so that by the Sobolev embedding

Ihllos oy < C Il -
Since ||1q,|| Lr(q) is uniformly bounded, we obtain by combining the
above estimates that
”h”cl(Q) S Cu
with a constant C' depending on 2, N, d, n.
Multiplying the equation —Ah — Wsh = 1o, by u and integrating
over (), we obtain
oh
/ udp = —udo <(C udo
Qs o0 OV 09
which together with (18) implies (17).
Let w be the solution (11) with the boundary condition f = u, that
is,
Aw + Vzw =0in Q
w = u on Of).
Let us consider the difference
Y=u—w.
Clearly, we have in 2
Ap + Vsp = (Au+ Vsu) — (Aw + Vsw) = (Vs — Ws)u

and ¢ = 0 on 2. Denoting by Gy; the Green function of the operator
—A — Vs in  with the Dirichlet boundary condition, we obtain

o (o) = /Q G (v0,9) (W5 — Vi) u () dia ().

Since we are looking for an upper bound for ¢ (z¢), we can restrict the
integration to the domain {Vz < Ws}. By (14) and (10) we have

(Vs < W5} = (Q\ 45) N (AsUE) = B\ A4; =: E
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and, moreover, on E’ we have
1
Ws—Vs =N+ — < 2N,
§— Vs + N
whence it follows that

¢ (a0) <2V [ Guy (a,9) u ) din ).

Using (17) to estimate here u (y), we obtain

@ (20) < 2N0< . Gv; (z0,y) du (y)> /m udo.

Since p (E') < € and the Green function Gy; (o, -) is integrable, we see
that [, Gv; (wo,-) du can be made arbitrarily small by choosing & > 0
small enough. Choose € so small that

2NC [ Gy (0,) di ) < 1/2int 0
I 09
which implies that

¢ o) <n/2 [ uade
Since by (13)
w(xo) < (1 — 77/2)/ uqdo,

0N
we obtain
w(an) = ¢ (@) + 0 (@) < | uado
Q
which was to be proved. q.e.d.

Let Vihax be a solution of the problem (4). Denote by U the eigenspace
of —A — Viyax associated with the eigenvalue A\; (Vinax) = 0 assuming
that N is sufficiently large.

Lemma 3.4. Fiz some ¢ > 0 and consider the set
F = {Viae < —c}.

Then, for any Lebesque point x € F', then there exists a non-negative
function q € L (M) such that

D [yadp=1;

2) for any v € U\ {0} we have

19 2 2q dp.
(19) @) < [ atqdy

Proof. Set V.= Vyax. Any function u € U satisfies Au + Vu = 0,
which implies by a simple calculation that the function v = u? satisfies

Av+ 2V > 0.
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Next, we apply Lemma 3.3 with W = 2V where instead of parameter
N there we will use N’ = max(2N, ). Choose r so small that

p(FNB(xr)>1—-¢e)p(B(xr),
where ¢ = £ (N') is given in Lemma 3.3. Since W < 2N < N’ in B (x,r)
and
1 <{W > —%} N B(m,r)) < uw({W > —=2c}NB(x,1))
= p({V>-c}nB(z,r))
< ep(B(z,r),

all the hypotheses of Lemma 3.3 in Q = B (z,r) are satisfied. Let ¢ be
the function from Lemma 3.3. Extending ¢ by setting ¢ = 0 outside
B (z,r) we obtain (19). q.e.d.

3.3. Proof of main Lemma 3.1. We can now prove Lemma 3.1, that
is, that Vipax > 0. Consider again the set

= {Vma:c < —C},
where ¢ > 0. We want to show that, for any ¢ > 0,

u(F) =0,

which will imply the claim. Assume the contrary, that is u(F) > 0 for
some ¢ > 0. Denote by F, the set of Lebesgue points of F. For any
x € Fj, denote by ¢, the function ¢ that is given by Lemma 3.4. For
x ¢ Fr, set gz = 6,. Then x — ¢, is a Markov kernel and, for all z € M
and u € U

2 2
(20) u® (x) < /Mu Gz djs.

Denote by M the set of all probability measures on M. Define on M
a partial order: 11 < v if and only if

(21) / u?dyy < / u?dyy for all w € U \ {0} .
M M
Define vy € M by
1
dvg = ——=—=1p, d
0 N(FL) Fr, QG

and measure v, € M by

1 :/ qzdvy (x) .
M
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Since vy (Fr) > 0, we obtain for any v € U \ {0} that

/M vy = /M </M U2qwd,u> duy ()
/F ' < /M u2qxdu> dvg () + /M\FL < /M uqud,u> dvo (z)

> /F ) o (0) + / 2 () dvo (2)

M\Fp,
(22) = / u?duy.
M

In particular, we have vy < 1. Consider the following subset of M:

v

My={reM:vir=u}.

Let us prove that M; has a maximal element. By Zorn’s Lemma, it
suffices to show that any chain (=totally ordered subset) C of M;j has
an upper bound in M. It follows from dim U < oo that there exists an
increasing sequence {v;};~; of elements of C such that, for all u € U,

lim u?dv; — sup / uldy.
=0 S M {vec} J M

The sequence {v,}:;2, of probability measures is w*-compact. Without

loss of generality we can assume that this sequence is w*-convergent. It
follows that the measure

ve = w'-limy; € My

is an upper bound for C.

By Zorn’s Lemma, there exists a maximal element v in M;. Note
that the measure v can be alternatively constructed by using a standard
balayage procedure (see e.g. [3, Proposition 2.1, p. 250]). Consider first
the measure v/ defined by v/ = [}, qdv (x). It follows from (20) that

for any u € U
/ wdy = / </ u2qxd,u> dv
M M \JM
> / u?dy,
M

that is, / >= v, in particular, v/ € M. Since v is a maximal element in
My, it follows that v/ = v, which implies the identity

(23) /M uldy = /M < /M uqudu> dv.
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Now we can prove that v (Fr) = 0. Assuming from the contrary that
v (Fp) > 0, we obtain, for any u € U \ {0}.

[ = [, ([ Fas)at
/FL (/M u2qmd,u> dv (z) + /M\FL </M uqudu> dv (z)

/F (@) )+ / W2 () dv ()

M\Fp,
(24) = / u?dv,
M

which is a contradiction. Finally, it follows from (22) and v € M, that,

for any uw € U \ {0},
/ u?dvg < / u?dv.
M M

Measure v can be approximated in w*-sense by measures with bounded
densities sitting in M \ Fr,. Therefore, there exists a non-negative func-
tion ¢ € L (M) that vanishes on Fj, and such that

/ pdp =1

M

and, for any u € U \ {0},

(25) / u?podp < / u?pdp
M M

where ¢y = ﬁl r, - Consider now the potential

v

\

‘/t = Vmam + tQDO - tSD-

/th,u:/ ‘/maxd,u
M M

M (Vi) = A (Vinax) — ta + o(t),

where « is the minimal eigenvalue of the quadratic form

Q (u, ) =/ u® (0o — @) dp,
M
which by (25) is negative definite. Therefore, a < 0, which together
with Ag (Vinax) = 0 implies that, for all small enough ¢ > 0
Ae(Vi) > 0.
Finally, let us show that |V;| < N a.e. Indeed, on F' we have

We have for all ¢

and for t — 0

Vi< —cH+itpg <N
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for small enough ¢ > 0, and on M \ Fj, we have
Vi < Vinax — 19 < Vinax < N.
Therefore, V' < N a.e. for small enough ¢ > 0. Similarly, we have on Fp,
Vi 2 Vinax +tp0 = Vinax = —N

and on M \ F
Viz—c—tp>—-N

for small enough ¢ > 0, which implies that |V;| < N a.e. for small enough
t>0.

Hence, we obtain that V; is a solution to our optimization problem
(4), but it satisfies A\g(V;) > 0, which contradicts the optimality of V;
by Lemma 2.2.
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